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Eric Kenneth Acton 
 

GENERALIZED DISTRIBUTIVITY AND NONMAXIMALITY IN PLURAL 
DEFINITE NOUN PHRASES IN SUBJECT POSITION* 

 
1. Introduction 

 
In the last couple of decades there has been a great deal of literature on how to 

account for the various readings of sentences with a plural definite subject NP such as the 

following: 

(1) The volunteers made a quilt. 

A collective reading of sentence (1) requires that all the volunteers together made a single 

quilt.  In the distributive reading of (1), each individual volunteer made a quilt by himself 

or herself.  Recently—as I will do in this paper—many linguists (Lin (1998), Brisson 

(2003) et al.) have adopted Roger Schwarzschild’s (1996) generalized distributivity 

operator (or ‘D-operator’) account of sentences such as (1).  In Schwarzschild’s account, 

the verb phrase hosts a D-operator that distributes over subsets of the denotation set of 

the subject NP.  Whether a sentence has a distributive or collective reading (or some 

intermediate reading) depends on a context-determined ‘cover’ of the universe of 

discourse.  

 Another phenomenon associated with sentences like (1) that deserves attention is 

what Brisson (2003) calls ‘nonmaximality’—the fact that a predicate may be considered 

true (or, as we will see later, ‘close enough to true,’) of the denotation set of a subject NP 

                                                 
* This paper is for partial fulfillment of the requirements for the linguistics major at Swarthmore College. 
My interest in the topics to be discussed came largely from my work as a research assistant to Haverford 
College Professor Shizhe Huang and from Muffy Siegel’s 2002 article ‘Like: The Discourse Particle and 
Semantics.’  Thanks to my classmates for their questions and support; to Shizhe Huang, my second faculty 
reader, for her guidance and the opportunity to work with her on her projects; and especially to Ted Fernald 
for being my tremendously helpful primary advisor in the development of this paper, and  Roger 
Schwarzschild and Christine Brisson, who generously assisted me in acquiring a better understanding of 
their work. 
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even if it is not true of every single member of that set.  For instance, under certain 

circumstances most native English speakers would not consider a speaker of (1) to be 

lying even if a couple of the volunteers did not actually participate in quilt-making.   

In this paper we will examine two different accounts of nonmaxmality—the first 

offered by Brisson (2003) and the second offered by Lasersohn (1999).  Brisson’s (2003) 

account employs Schwarzschild’s (1996) analysis of the generalized D-operator.  

According to Brisson—building off of Schwarzschild—nonmaximality occurs as a result 

of certain kinds of covers.  Lasersohn’s (1999) account of nonmaximality, on the other 

hand, is framed within a larger analysis of the “…truism that people speak loosely” (522).  

Under his analysis, hearers assign to every complex expression a context-dependent 

‘pragmatic halo’—a partially ordered set containing all sets that the hearer considers to 

be, as Lasersohn says, ‘close enough to true for practical purposes.’  Based on this 

assumption, Lasersohn is able to formally define the conditions under which a hearer 

considers a sentence to be ‘close enough to true.’  Like Brisson’s approach, Lasersohn’s 

does successfully account for nonmaximality in sentences like (1).  Unlike Brisson’s 

approach, however, it contains no discussion of generalized distributivity. 

Our goal in this paper then, is an attempt to determine/develop the analysis that 

best accounts for both distributivity and nonmaximality in sentences like the volunteers 

made a quilt.  Sections 2, 3, and 4 of the paper serve to define the linguistic phenomena 

and the kind of sentence that we are concerned with, and provide an overview of some 

attempts to account for these phenomena.  Section 2 is on Schwarzschild’s (1996) 

account of the generalized D-operator, Section 3 is on Brisson’s (2003) account of 

nonmaximality, and Section 4 is on Lasersohn’s (1999) account of ‘pragmatic slack,’ 
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focusing on nonmaximality.  Then, in Section 5, is a detailed explanation of a way to 

incorporate Schwarzschild’s D-operator analysis into Lasersohn’s framework, and a 

demonstration of some of the advantages of combining the two analyses.   

Later, in Section 6, we examine a couple of critical problems associated with the 

analyses of Schwarzschild and Brisson, then present an innovation to Schwarzschild’s 

analysis that—when coupled with Lasersohn’s account of pragmatic slack—precludes 

these problems while still accounting for nonmaximality.  Finally, in Section 7, we 

compare Brisson’s account of distributivity and nonmaximality to the account that 

combines the analyses of Schwarzschild and Lasersohn, and argue for the latter.   

2. Schwarzschild and Generalized D-operators 
 

In chapter five of his book Pluralities (Kluwer, 1996), Roger Schwarzschild lays 

out an analysis to account for collective and distributive readings of sentences with plural 

definite NPs.  One of his example sentences is the following: 

(2) John and Mary made $1,000. 

which is true in the case that John and Mary made $1,000 together, and in the case that 

each of them made $1,000.  To account for the fact that both readings are possible, 

Schwarzschild uses the set theoretic concept of a ‘cover’ for the universe of discourse.   

The formal definition of a cover—as stated by Schwarzschild—is given below.  
  

(3) C covers A if: 
a. C is a set of subsets of A1 
b. Every member of A belongs to some set in C. 
c. ∅ is not in C. 
 

                                                 
1 Note that this does not require that C be the set of all subsets of A.  That is, C is not necessarily the power 
set of A. (In fact, part three of this definition makes it impossible for C to be the power set of A.)  Rather, 
part one of the definition of a cover requires that C be a set whose elements are some of the subsets of A. 
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Schwarzschild says that, in English, a cover of the set of everything in the universe of 

discourse is associated with each plural VP in a sentence, and is determined by the hearer 

based on context.   

 To make this clearer I offer the following example (in a style similar to one given 

by Brisson (2003)): 

(4) Let2 U be the universe, where  
 
U = {i, j, k, l, m, n} 

 
And let   

|| John || = {j} 
  || Mary || = {m} 
 
with possible covers of the universe, C1

  and C2, where 
   

C1
 = {{i}, {j}, {k}, {l}, {m}, {n}} 

  C2 = {{l, k}, {i, n}, {j, m}} 
 
As the reader will notice, both C1 and C2 satisfy our definition of a cover of U.  So, what 

makes a cover contextually relevant?  Well, suppose that (2) were part of the answer to 

one of the following questions: 

(5) How much money did each worker make? 
 

(6) How much money did each couple make? 
 
It should be clear that the presence of each in (6) suggests individuals, while couple in (7) 

suggests pairs of individuals.  Thus (6) would correspond to a cover like C1, whose 

elements are one-member sets (singletons), while (7) would correspond to a cover like  

C2, whose elements are two-member sets (duples). 

                                                 
2 Note that in this we use subscript numbers to index two distinct covers corresponding to the same VP.  
Schwarzschild does the same, but only when talking about two distinct covers each associated with a 
different VP within a sentence. 
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 Having applied the notion of covers to semantics, Schwarzschild incorporates 

covers formally via the following two rules: 

(7) Plural VP rule: 
If α is a singular VP with translation α’, then the corresponding plural VP 
is translated as Part(Cov)( α’). 
(1996, p.73) 
 

(8) x ∈ || Part(Cov)(α) ||  if and only if  
 
∀y[ (y ∈ || Cov || ∧ y ⊆ x)  y ∈ || α || ] 

(1996, p.71) 
 
‘Part’ is Schwarzschild’s name for his D-operator, which, in effect, serves to distribute 

the VP predicate over subsets of the denotation of an NP.  And “Cov is a free variable 

over sets of sets,” whose value is a cover of the universe of discourse—determined by the 

hearer according to “…the linguistic and non-linguistic context” (70).   With rules (7) and 

(8) established, we can state the truth conditions for a sentence with a plural definite 

subject NP and a plural VP: 

(9) Let ε α be a sentence, where ε is a definite plural NP and α is plural VP.  
Then ε α is true iff 
  || ε || ∈ || Part(Cov)(α) ||. 
 

We can elucidate this formalism by continuing to flesh out the example we were working 

with above.  We assume, as Schwarzschild does, that the denotation set of John and Mary 

is the set {j, m}.  Let’s take each cover in turn.   With C1 we get that (2) is true if and 

only if || John and Mary || is an element of || Part (C1)(made $1,000) ||.  That is, (2) is true 

if and only if 

(10) ∀y[ (y ∈ {{i}, {j}, {k}, {l}, {m}, {n}} ∧ y ⊆ {j, m})  
 y ∈ || made $1,000 || ] 

 
Further simplification of (11) states that, if C1 is selected, (2) is true if and only if {j} is in 

the denotation set of made $1,000 and {m} is in the denotation set of made $1,000.  
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Hence, we have the distributive reading, requiring Mary and John to have each made 

$1,000.  

Now consider the case that the hearer assigns C2.  (2) is then true if and only if  

|| John and Mary || is an element of || Part (C2)(made $1,000) || or, equivalently 

(11) ∀y[ (y ∈ {{l, k}, {i, n}, {j, m}} ∧ y ⊆ {j, m})  y ∈ || made $1,000 || ] 
 

Thus, if C2 is selected, (2) is true only if and only if the set {j, m} is in the denotation set 

of made $1,000.  That is, we have the collective reading, requiring John and Mary to have 

made $1,000 together. 

 Thus we have seen that Schwarzschild’s analysis provides an effective and fairly 

straightforward way of accounting for distributive and collective readings of sentences 

with plural definite subject NPs.  In the next section we examine how his analysis 

contributes to Brisson’s (2003) analysis of nonmaximality. 

3. Brisson’s Account of Nonmaximality in Plural Noun Phrases 

 In her 2003 article ‘Plurals, All, and the Nonuniformity of Collective Predication’, 

Christine Brisson utilizes Schwarzschild’s generalized D-operator account in order to 

explain nonmaximality in plural definite NPs.  She claims that “speakers and hearers are 

always engaged in a process of guessing about what each other have in mind” (138) and 

thus must always allow for what she calls ‘ill-fitting’ covers:   

(12) A cover C is ill-fitting with respect to a denotation set D if there is no 
union X of elements of C such that X = D. 

 
In order to clarify this definition, let’s return to our first sentence, (1).  To get truth 

conditions for (1), we need—in addition to the denotation set of the volunteers—a 

universe of discourse and a cover of that universe: 
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(13) Let U’ be the universe, where  
 
U’ = {i, j, k, l, m, n} 

 
And let   

|| the volunteers || = {j, k, l} 
 
with possible covers of the universe, C1’ and C2’, where 
   

C1’ = {{i}, {j}, {k}, {l}, {m}, {n}} 
C2’  = {{i}, {j}, {k}, {l, m, n}} 

 
Now consider the truth conditions derived from assigning each of the two covers,   

C1’ and C2’.  In the case of C1’, we get the straightforward distributive case, in which 

each of the volunteers made a quilt.  C2’, on the other hand, is a bit more tricky.  Recall 

that, according to (7) and (8), the predicate made a quilt need only be true of those sets 

that are both elements of C2’and subsets of the denotation set of the volunteers: 

(14) ∀y[ (y ∈ {{i}, {j}, {k}, {l, m, n}} ∧ y ⊆ {j, k, l})  
 y ∈ || made a quilt || ] 

 
Therefore, the relevant sets are only {j} and {k}.  That is, if the hearer of (1) allows for 

C2’, then (1) is true so long as {j} and {k} are elements of the denotation set of made a 

quilt and as Brisson would say, doesn’t care about whether l made a quilt, even though  

l ∈ || the volunteers ||.  This somewhat odd result comes from the fact that C2’is in fact an 

ill-fitting cover, for no union of elements of C2’ is equivalent to || the volunteers ||.   

 As Brisson (2003) points out, the possibility of ill-fitting covers led Lasersohn 

(1995) to criticize Schwarzschild’s generalized D-operator account.  Allowing for ill-

fitting covers could lead to finding (2) true even if John didn’t make any money at all.  

Schwarzschild (1996) argues that such covers are ruled out by pragmatics, while Brisson 

says that they are sometimes determined intentionally.  “In fact,” says Brisson, “it is quite 

clear that there are circumstances in which both speaker and hearer share the assumption 
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that one (or more) individuals who are part of the denotation of the definite plural is (are) 

excluded from the domain of the D operator” (137).  Suppose, for example, there is a 

group of students and among them is Chris, who is lactose intolerant.  Then a hearer of 

the students ate ice cream might throw Chris into what Brisson calls a ‘junkpile’—just as 

l was in C2’—since the hearer knows that Chris never eats dairy products.  In general, 

says Brisson, “speakers and hearers must always make room for the possibility of ill-

fitting covers” (138). 

 However, Brisson never actually explains how problems like the one pointed out 

by Lasersohn above are precluded in her analysis.  Furthermore, it seems that if speakers 

and hearers must always make room for the possibility of ill-fitting covers, then because 

the truth conditions of a sentence are dependent on the cover that the hearer assigns, they 

are never uniquely determined.  Thus, while Brisson’s analysis does account for 

nonmaximality, these issues—as well as others to be discussed later in the paper—

suggest that we ought to try to find a better way to account for nonmaximality.  One 

approach is Lasersohn’s, which is discussed in the following section. 

4. Lasersohn’s Pragmatic Halos 
 

 As Peter Lasersohn (1999) points out, there are many cases in which people do 

not mean exactly what they say.  For instance, the sentence 

(15) Coleman left at noon.   

when in fact he departed at even, say, 12:01 p.m., is considered close enough to the truth 

in most circumstances.  Nonmaximality in NPs is another example of what Lasersohn 

calls ‘pragmatic slack’.  As we’ve discussed, our original sentence (1) would be 
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considered true for practical purposes even in many circumstances under which not every 

volunteer made a quilt.   

 There are of course certain circumstances that don’t allow so much leeway.  If I 

were conducting a psychological experiment on human sleep patterns and told 

(16) The subjects are sleeping. 

I would be very upset if I noticed that one subject was actually awake.  But it is not only 

pragmatic situations that determine the amount of licensed leeway; words within a 

sentence are also relevant. 

(17) Coleman left at exactly noon. 

(17) is more strict than (15).  The presence of exactly allows for less pragmatic slack.  All 

acts in a similar manner in 

(18) All the volunteers made a quilt/The volunteers all made a quilt. 

Lasersohn calls words like exactly and all ‘slack regulators’ because their presence 

allows for less pragmatic slack.  The important points here are a) that sentences are 

considered close enough to the truth if they are “close enough not to obscure 

pragmatically relevant details or distinctions” (525) and b) that both linguistic and 

paralinguistic factors determine how much a speaker is licensed to approximate the truth. 

 Having discussed the nature of the phenomenon as Lasersohn sees it, the next step 

is to see how he models pragmatic slack and slack regulation.  First we will build 

intuition of the concept, then provide the formalism.  Lasersohn’s proposed device is 

what he calls a ‘pragmatic halo’, which has two components.  The first component of a 

pragmatic halo of a given linguistic expression is the set HC containing the denotation of 

the expression and, in addition, all objects of the same logical type as the denotation of 
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the expression that are close enough—relative to the context C—to the denotation for 

practical purposes.  So the set HC of the expression the volunteers in (1) would be the set 

whose members are the denotation set of the volunteers and all sets of individuals that are 

pragmatically close enough to that denotation set.  The second component is a partial or 

complete ordering relation on HC, based on the closeness of elements of HC to the actual 

denotation.  Again for the volunteers, this ordering would be determined by how closely a 

set of individuals in HC approximates the denotation set of the volunteers.  Let’s now 

write this formally (paraphrased from Lasersohn (1999: p. 548): 

(19) The pragmatic halo of a basic expression α with respect to a context C and 
model M is a partially ordered set < HC(α), ≤α,C  > where  

 
HC(α) is the set of objects of the same logical type as || α ||M,C that 
differ from || α ||M,C only in ways that are pragmatically ignorable 
in C.   
 
≤α,C   is a partial ordering of HC(α) according to similarity to  
|| α  ||M,C.  And if v, w ∈ HC(α) and v is more similar to || α  ||M,C 
than w is, then we write 
  v ≤α,C  w 

 
Let’s work out an example, taking the model given in (13): 
 

(20) Let U’ be the universe, where  
 
U’ = {i, j, k, l, m, n} 

 
And let || the volunteers || = {j, k, l} 
 
The pragmatic halo of the volunteers with respect to a context C would be 
something like 
 
 <HC(the volunteers), ≤the volunteers,C  >, where  
  
 HC(the volunteers) = {{j, k, l} {j, k}, {j, l}, {l, k}, {j}} 

 
First of all, note that the value we have assigned to HC(the volunteers) is just an example.  

A different context could call for an entirely different value of HC(the volunteers).  This 
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is merely an example for clarification.  That said, it should be clear that the selection we 

made for the elements of HC(the volunteers) ‘makes sense’ in that they are relatively 

close to being the actual denotation of the volunteers.  Also, this example should suggest 

an intuitive, inherent partial ordering to HC(the volunteers).  The sets {j, k}, {j, l}, and  

{l, k} are all equally close to the denotation set of the volunteers since they are each 

missing one member, so they are on the same level in terms of ordering.  {j}, however is 

less similar than the others because it is missing two members, and {j, k, l} is more 

similar because it is exactly the denotation set of the volunteers3.  We say then, for 

instance, that in this example 

(21)  {j, k, l} ≤the volunteers,C  {j,k} ≤the volunteers,C  {j} 

Now that we know how to find the pragmatic halo of a basic expression, it is easy 

to understand how to derive the pragmatic halo of a complex expression—operating 

compositionally4.  Suppose for example that α is a complex expression made up of β and 

γ, where β denotes a one place predicate f (a function), γ denotes an individual c and  

|| α || = || β ||(|| γ ||).  Then HC (β) would be a set of functions, say {f, g, h} and HC (γ) 

would be a set of individuals, say {a, b, c}.  HC (α) comes from composing HC (β) and 

HC (γ), and would thus be {f(a), f(b), f(c), g(a), g(b), g(c), h(a), h(b), h(c)}.  This 

composition lends itself to a partial ordering, based both on how close the individual is to 

c and how close the function is to f.  Lasersohn formalizes as follows: 

(22)  HC(Fi(α1,…, αn)) = { Gi(x1,…, xn)) : x1∈HC(α1),…, xn∈HC(αn)} 
The ordering relation is preserved in the composition: 

 
(23) If y, z ∈ HC(αk) and y ≤α,C  z, then  

                                                 
3 We should note that Lasersohn makes the requirement, as we do, that || α  ||M,C ∈ HC(α) and, fittingly 
|| α  ||M,C is the element y of HC(α) such that for all x ∈ HC(α), y ≤α,C x. 
4 This explanation comes almost directly from Lasersohn (1999). 
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Gi(x1,…, y,…, xn) ≤α,C  Gi(x1,…,z,…, xn) 

(1999, p.548) 
 
 The two key points to keep in mind are a) pragmatic halos of complex expressions 

are constructed compositionally from the pragmatic halos of basic expressions and, 

crucially, b) pragmatic halos are not constructions that change truth conditions; rather, 

they indicate what conditions are close enough to the truth conditions for practical 

purposes.  Taking all this together, as Lasersohn puts it, “We will count a sentence as 

‘close enough to true for context C’ iff its halo relative to C contains at least one non-

empty element” (528).   

This last part deserves some explanation.  To explain, we will go through one of 

Lasersohn’s examples.  We work with the following sentence from Lasersohn: 

(24) Mary arrived at three o’clock.   
(1999, p.528) 

 
First of all it should be noted that sentences are merely complex expressions that 

are composed of basic expressions.  Thus, a sentence should have a corresponding 

pragmatic halo, constructed in the same way as the halo of any other complex expression.  

Secondly, in Lasersohn’s framework, sentences denote sets of eventualities5 “(that is, 

events, states and processes)” rather than truth values, and a sentence is considered true if 

and only if its denotation set is non-empty (527).  (24), for instance, would denote the set 

of Mary’s arrivals at three o’clock, and would be true if and only if that set were non-

empty. 

                                                 
5We refrain from including events in our framework, except in explaining Lasersohn’s analysis here.  Thus, 
for the purposes of this paper, we treat sentences as denoting sets of individuals rather than sets of 
eventualities—so that the pragmatic halo of a sentence is a set of sets of individuals.   This is not to say, 
however, that our analysis is incompatible with event-based semantics.  For an event-based analysis of 
distributivity see Lasersohn (1998). 
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For this example in particular, Lasersohn takes three o’clock to denote a specific 

time i, and has the halo of three o’clock be the set of times pragmatically close enough to 

i—for example, {i, j, k}.  He takes the other halos in the sentence in this example to be 

trivial, so that the halo of Mary is { || Mary || } etc.  The denotation of (24) as we said, is 

the set of Mary’s arrivals at 3 o’clock—or, in set notation, {x: x is an arrival by Mary at 

i}.  The halo of (24) is thus { {x: x is an arrival by Mary at i}, {x: x is an arrival by Mary 

at j}, {x: x is an arrival by Mary at k}}.  Now suppose, says Lasersohn, that Mary arrived 

only at k, and call this event of Mary’s arrival at k, e.  Then the halo of (24) is  

{∅, ∅, {e}}.  So while (24) is not true, it is close enough to true for practical purposes 

because it’s halo is non-empty.  In this manner, under Lasersohn’s analysis we can 

determine whether any sentence is pragmatically close enough to true.    

5. Extending Lasersohn’s Account: Incorporating Schwarzschild’s Account of 
Distributivity 

 
 While Lasersohn may be critical of Schwarzschild’s account of distributivity, we 

have yet to see any evidence that the two cannot coexist.  In fact I believe that we ought 

to adopt both.  In this section we will outline simple a proposal to do just that.   

 First, we assume the validity of Schwarzschild’s generalized D-operator analysis, 

as it intuitively and successfully accounts for generalized distributivity associated with 

the kind of sentence we’re examining.  That said, our first objective in this section is to 

justify an approach that would assign pragmatic halos to VPs as they are interpreted 

under Schwarzschild’s analysis.  To do so, let’s start by recalling Schwarzschild’s formal 

definition of the denotation of a plural VP: 

(7)   Plural VP rule: 
If α is a singular VP with translation α’, then the corresponding plural VP 
is translated as Part(Cov)( α’). 
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(8)       x ∈ || Part(Cov)(α) ||  if and only if  
 
∀y[ (y ∈ || Cov || ∧ y ⊆ x)  y ∈ || α || ] 

 
An equivalent way of writing (8) is  

(25)   || Part(Cov)(α) || = {x : ∀y[ (y ∈ || Cov || ∧ y ⊆ x)  y ∈ || α || ]} 
 

By writing it this way we are highlighting the fact that the denotation set of plural VP is a 

set of sets.  This will be useful in providing a halo for a plural VP, for we want the 

elements of the halo to be of the same logical type as the denotation of the plural VP. 

 In keeping with Lasersohn’s analysis, we construct the halo of Part(Cov)(α) 

compositionally, incorporating the halos of its relevant subparts, namely the VP, α, and 

Cov.  α  in this framework denotes the set of sets of individuals that have the α-property.  

Thus the halo of α is a set of sets of sets of individuals that are close enough to || α || for 

practical purposes.  To clarify this recursive mess, let’s work with the following example, 

building off of (20): 

(26)  Let U’ be the universe, where  
 
U’ = {i, j, k, l, m, n} 

 
And let  || the volunteers || = {j, k, l} 
  || made a quilt || = {{j}, {l}, {m}}, where 
 
 HC(made a quilt) = {  {{j}, {l}, {m}},   {{j}, {l}, {i}}  } 

 

The pragmatic halo HC(made a quilt) satisfies the requirement that its elements be of the 

same logical type as || made a quilt ||, and it has a partial ordering, defined by an 

element’s closeness to || made a quilt ||.   
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 This part was fairly straightforward, but we have yet to account for Cov.  The 

question is, can/should we provide a pragmatic halo for Cov?  And, if so, how?   

 My answer to the first question is yes.  Covers are determined, in part, by 

linguistic content.  Certain words, such as couple, team, and individual cause a hearer to 

select a particular cover.  So the value of Cov, || Cov ||, is partially determined by the 

denotation of basic expressions within a sentence and across sentences within a 

discourse.  Furthermore, we can say—as we have shown at several points—that || Cov || 

has significant bearing on the interpretation of a sentence of the form given in (9).  And 

thus—since Lasersohn’s analysis requires that the halo of a complex expression be 

composed of the halos of those elements that contribute to the meaning of the complex 

expression—it seems clear that we should allow for covers to have halos, since they both 

contribute to meaning and are partially determined by other linguistic expressions. 

 In fact, there are cases where a pragmatic halo for a cover would be extremely 

helpful.  Consider the role of each in the following: 

(27) The children each painted a picture. 

In addition to contributing universal quantification, each seems to suggest that every 

student painted his or her own painting, rather than contributing to one group painting.  

Within Schwarzschild’s framework, that means that in this sentence each serves to select 

a cover that is the set of singletons.  But consider the following case.  Suppose you are a 

preschool teacher and you have a class of, say, twenty children and that yesterday the 

children were all to make a self-portrait using finger-paints.  One of the younger children, 

Ben, was having trouble, so you had an older child, Lil, help him paint his picture.  Thus 

what actually happened is that every child painted his or her own portrait by himself or 
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herself, except for Ben who received help from Lil.  However, given these circumstances, 

most English speakers would judge (27) as close enough to true for practical purposes.   

The disparity between the requirements of the truth conditions and what is 

actually the case comes solely from the cover.  In our example scenario it is true that 

every child participated in painting a picture, but it is not true that every child did so on 

his or her own.  The cover corresponding to this scenario is one in which every student is 

in his or her own singleton set, except for Ben who is in a set with Lil.  Therefore, in 

deeming (27) to be close enough to the truth for practical purposes, one is actually saying 

that the cover described above is pragmatically close enough to the cover whose elements 

are all singletons.  And so we have evidence that pragmatic halos for covers are not only 

admissible, but in some cases necessary.   

The pragmatic halo HC(Cov) of a cover Cov is thus the set of all sets close enough 

to || Cov || for practical purposes.  Let’s continue build on our working example by adding 

(28)   Let Cov* be the context-dependent cover assigned to (1), where  

Cov* = {{i}, {j}, {k}, {l}, {m}, {n}} and 
 
HC(Cov) = { Cov*, || c1 || = {{i}, {j}, {k}, {l, m}, {n}},  

|| c2 || = {{i}, {j}, {k}, {l}, {m, n}}  }6 
 
 Now that we’ve established that we have pragmatic halos both for singular VPs 

and for covers, we can formally create a pragmatic halo for plural VPs as they are 

interpreted within Schwarzschild’s framework.  First, as a reminder, is the set version of  

|| Part(Cov)(α) ||, then the formalism of the halo: 

(25) || Part(Cov)(α) || = {x : ∀y[ (y ∈ || Cov || ∧ y ⊆ x)  y ∈ || α || ]} 
 
(29)   Let Part(Cov)(α) be the translation of a plural VP α where  

                                                 
6 We introduce the ci’s here for notational brevity later on. 
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|| Cov || = Cov*.  Then the pragmatic halo of the plural VP with 
 respect to context C is 

 
<HC(Part(Cov)(α)), ≤Part(Cov)(α),C  > where 
 
 
HC(Part(Cov)(α)) = { || Part(c)(δ) || : || c || ∈ HC(Cov) ∧  

|| δ || ∈ HC(α) }  
 

     =  { {x : ∀y[ (y ∈ || c ||  ∧ y ⊆ x)  y ∈ || δ || ]} :   
  || c || ∈ HC(Cov) and || δ || ∈ HC(α) }  

   
and ≤Part(Cov)(α),C   is partial ordering based on how pragmatically close || c || 
is to Cov* and how pragmatically close || δ || is to || α || for each element 
|| Part(c)(δ) || of HC(Part(Cov)(α)). 

 

The first line of the formalism says that the halo of Part(Cov)(α) is the set of all 

sets of the form Part(c)(δ), such that || c || is an element of the halo of Cov and || δ || is an 

element of the halo of α.  So how would this look with our ongoing example based on 

(1)?  Recall that for our example  

(30) The universe, U’ = {i, j, k, l, m, n} 
 
 || the volunteers || = {j, k, l} 
 || made a quilt || = {{j}, {l}, {m}} 
 || Cov || = Cov* = {{i}, {j}, {k}, {l}, {m}, {n}} 
  
 HC(made a quilt) = {  {{j}, {l}, {m}},   {{j}, {l}, {i}}  } 

 
HC(Cov) = { Cov*, || c1 || = {{i}, {j}, {k}, {l, m}, {n}},  

|| c2 || = {{i}, {j}, {k}, {l}, {m, n}}  } 

Knowing the halo for α—which in this case, is made a quilt—and knowing the halo for 

Cov, we are able to define the halo of Part(Cov)(made a quilt): 

(31)  HC(Part(Cov)(made a quilt)) = { || Part(Cov)(made a quilt) ||,  
|| Part(Cov)( {{j}, {l}, {i}} ) ||, 
|| Part(c1)(made a quilt) ||, 
|| Part(c1)( {{j}, {l}, {i}} ) ||, 
|| Part(c2)(made a quilt) ||, 
|| Part(c2)( {{j}, {l}, {i}} ) || } 
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The halo of Part(Cov)(made a quilt) thus has six elements, corresponding to the six 

possible pairings of an element from the halo of Cov with an element from the halo of 

made a quilt.  The representation in (31) can be further expanded as follows: 

 (32) HC(Part(Cov)(made a quilt)) =  
{ {x :∀y[ (y ∈ Cov* ∧ y ⊆ x)  y ∈ || made a quilt || ]}, 
   {x : ∀y[ (y ∈ Cov* ∧ y ⊆ x)  y ∈ {{j}, {l}, {i}}]}, 
   {x : ∀y[ (y ∈ || c1 ||  ∧ y ⊆ x)  y ∈ || made a quilt || ]} 
   {x : ∀y[ (y ∈ || c1 ||  ∧ y ⊆ x)  y ∈ {{j}, {l}, {i}}]}, 
   {x : ∀y[ (y ∈ || c2 ||  ∧ y ⊆ x)  y ∈ || made a quilt || ]}, 
   {x : ∀y[ (y ∈ || c2 ||  ∧ y ⊆ x)  y ∈ {{j}, {l}, {i}}]} } 

 
Finally, substituting in for the values of Cov*, || c1 ||, || c2 ||, and || made a quilt || we get 
 
 (33) HC(Part(Cov)(made a quilt)) = 

  { {x : ∀y[ (y ∈ {{i}, {j}, {k}, {l}, {m}, {n}} ∧ y ⊆ x)   
y ∈ {{j}, {l}, {m}}]}, 

{x : ∀y[ (y ∈ {{i}, {j}, {k}, {l}, {m}, {n}}  ∧ y ⊆ x)   
y ∈ {{j}, {l}, {i}}]}, 

{x : ∀y[ (y ∈ {{i}, {j}, {k}, {l, m}, {n}}  ∧ y ⊆ x)   
y ∈ {{j}, {l}, {m}}]} 

{x : ∀y[ (y ∈ {{i}, {j}, {k}, {l, m}, {n}}  ∧ y ⊆ x)   
y ∈ {{j}, {l}, {i}}]}, 

{x : ∀y[ (y ∈ {{i}, {j}, {k}, {l}, {m, n}}  ∧ y ⊆ x)   
y ∈ {{j}, {l}, {m}}]}, 

      {x : ∀y[ (y ∈ {{i}, {j}, {k}, {l}, {m, n}}  ∧ y ⊆ x)   
y ∈ {{j}, {l}, {i}}]} } 

 
Thus we have the fully expanded form of the halo7 of Part(Cov)(made a quilt).   

 Now that we have provided an account of halos of plural VPs as they are treated 

in Schwarzschild’s analysis, we are ready to tackle the most important question: How do 

we determine whether a sentence of the form given in (9) is close enough to true for 

practical purposes?   

                                                 

7 Note that the set is, in accordance with our framework, partially ordered.  || Part(c1)(made a quilt) ||, for 
example, is closer to || Part(Cov)(made a quilt) || than is || Part(c1)( {{j}, {l}, {i}} ) ||.   
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 As explained in the last section, a sentence in Lasersohn’s account is judged close 

enough to true if its halo has a member that is nonempty.  Thus, in order for us to operate 

within the framework of Lasersohn, all sentences must have pragmatic halos.  And for a 

sentence to have a pragmatic halo, it must denote a set.  Therefore, we must take 

sentences in Schwarzschild’s account to be set denoting.  The following proposal shows 

how to do just that. 

  Recall our rule from Section 2 that stated the truth conditions of the kind of 

sentences that we are examining: 

(9)       Let ε α be a sentence, where ε is a definite plural NP and α is plural VP.   
Then ε  α is true iff 

    || ε || ∈ || Part(Cov)(α) ||. 

We wish to put a different slant on this rule, so as to make the analysis compatible with 

Schwarzschild’s.  Thus we have  

(34) Let ε α be a sentence, where ε is a definite plural NP and α is plural VP.   
Then  

|| ε α || = {z: z = || ε || ∧ z ∈ || Part(Cov)(α) ||} 
 
 where ε α is true if || ε α || is nonempty and false if || ε α || is empty. 

 
This rule may seem a bit odd/indirect, but it provides exactly what we want.  A sentence 

now explicitly denotes a set and the sentence’s truth conditions are based on whether that 

set is empty.  And, crucially, (34) provides equivalent truth conditions to those stated in 

(9).  That is, || ε || ∈ || Part(Cov)(α) || ⇔ {z: z = || ε || ∧ z ∈ || Part(Cov)(α) ||} is 

nonempty.  The proof is essentially trivial, and given below: 

(35) || ε || ∈ || Part(Cov)(α) || ⇔ ∃x = || ε || such that x ∈ || Part(Cov)(α) || 

 ⇔ {z: z = || ε || ∧ z ∈ || Part(Cov)(α) ||}  
  is nonempty   

 



 20 

 Our Schwarzschild-based framework is now fully capable of being incorporated 

into Lasersohn’s account.  We can now provide a formalism for halos of sentences of the 

kind we have been examining: 

(36) Let ε α be a sentence, where ε is a definite plural NP and α is plural VP.  
Then the pragmatic halo for ε α is   

 
<HC(ε α), ≤Partε α,C  > where 
 
HC(ε α) = { {z: z = || η || ∧ z ∈ || υ ||}:  

|| η || ∈ HC(ε) ∧ || υ || ∈ HC(Part(Cov)(α))} 
  

and ≤ε α,C   is partial ordering based on how pragmatically close || η || is to  
|| ε || and how pragmatically close || υ || is to || Part(Cov)(α) || for each 
element {z: z = || η || ∧ z ∈ || υ ||} of HC(ε α). 

 
The sentence is then judged close enough to true for practical purposes if 
HC(ε α) contains at least one nonempty element. 

 
This formalism may seem complicated but it’s not as bad as it looks.  As usual, we clarify 

with an example.  Let’s work again with sentence (1).  We will adopt the following 

model for this example8: 

(37)  Let M be a model such that  
 
The universe, U’’ = {i, j, k, l, m, n, o} 
|| the volunteers || = {j, k, l} 

 || made a quilt || = {{j}, {l}, {m}} 
 || Cov || = Cov* = {{i}, {j}, {k}, {l}, {m}, {n}} 
  
 HC(the volunteers) = { {j, k, l}, {j, l} }  
 

HC(made a quilt)9 = {  {{j}, {l}, {m}} } and 
 
HC(Cov) = { Cov*, c1 =  {{i}, {j}, {k}, {l, m}, {n}} } so 
 
HC(Part(Cov)(made a quilt)) =  

{ {x : ∀y[ (y ∈ {{i}, {j}, {k}, {l}, {m}, {n}} ∧ y ⊆ x)   

                                                 
8 Note that this is a different model than the one we were working with before when discussing sentence 
(1). 
9 Note that the halo of made a quilt is trivial, for the sake of simplicity.   
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                                                                                                          y ∈ {{j}, {l}, {m}}]}, 
     {x : ∀y[ (y ∈ {{i}, {j}, {k}, {l, m}, {n}} ∧ y ⊆ x)   

          y ∈ {{j}, {l}, {m}}]} } 
 

First of all, we should note that, with respect to model M, this sentence is false.  For, in 

this model, the truth conditions of the volunteers made a quilt require that {k} be in the 

denotation set of made a quilt, which it is not.  However, taking (36) and (37) together, 

we have 

(38) HC(the volunteers made a quilt) =  
   { {z: z = {j, k, l} ∧ z ∈ {x : ∀y[ (y ∈ {{i}, {j}, {k}, {l}, {m}, {n}} ∧  

    y ⊆ x)  y ∈ {{j}, {l}, {m}}]}}, 
                 {z: z = {j, k, l} ∧ z ∈ {x : ∀y[ (y ∈ {{i}, {j}, {k}, {l, m}, {n}} ∧  
               y ⊆ x)  y ∈ {{j}, {l}, {m}}]}}, 

     {z: z = {j, l} ∧ z ∈ {x : ∀y[ (y ∈ {{i}, {j}, {k}, {l}, {m}, {n}} ∧  
                                                                             y ⊆ x)  y ∈ {{j}, {l}, {m}}]}}, 

     {z: z = {j, l} ∧ z ∈ {x : ∀y[ (y ∈ {{i}, {j}, {k}, {l, m}, {n}} ∧  
               y ⊆ x)  y ∈ {{j}, {l}, {m}}]}} } 
 with respect to the model M. 

 
The set HC(the volunteers made a quilt) is exactly as we want it in accordance with (36).  

Notice that it has four members because HC(the volunteers) has two members and  

HC(Part(Cov)(made a quilt)) has two members.  Further simplification of (38) yields the 

following: 

 (39)   HC(the volunteers made a quilt) = {∅, ∅, {{j, l}}, {{j, l}}} 
            = {∅, {{j, l}}} 
 
Thus, with respect to model M given in (37), the halo of the volunteers made a quilt has a 

nonempty element, namely {{j, l}}.  Thus, although the volunteers made a quilt is 

technically false, it is close enough to true for practical purposes.  Note also that the third 

set in HC(the volunteers made a quilt) demonstrates that in this analysis nonmaximality 

can come strictly from the pragmatic slack associated with the subject NP and need not 

rely on ill-fitting covers.  For in the case of this third set of  
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HC(the volunteers made a quilt), the cover is not ill-fitting, and yet the set is nonempty. 

 What we have done here effectively is provide an alternative to Brisson’s account 

of nonmaximality in NPs, while still respecting Schwarzschild’s account of generalized 

distributivity.  We will from here on out refer to this approach as the Lasersohn-

Schwarzschild approach to generalized distributivity and nonmaximality10. In summary, 

in the Lasersohn-Schwarzschild approach the truth conditions of a sentence of the form 

described in (9) are derived by assigning a particular value to the denotation of the 

subject NP, the VP, and Cov.  From there—given a context C—we can define the 

pragmatic halo of the sentence, from which we can determine whether the sentence is 

pragmatically close enough to true. 

6. Some Problems with Schwarzschild’s as Interpreted by Brisson and a Solution 

Before moving on to a comparison of the two approaches to nonmaximality and 

distributivity I would like to illustrate a couple of major problems with Schwarzschild’s 

(1996)/Brisson’s (2003) analysis.  Then, following the presentation of the problems, I 

will offer an innovation that precludes them.  The innovation is afforded to us by the fact 

that in the Lasersohn-Schwarzschild approach we don’t need to rely on ‘ill-fitting covers’ 

as the source of nonmaximality.  For, as we have seen, under the Lasersohn-

Schwarzschild approach nonmaximality can come solely from the pragmatic slack 

associated with the denotation of the subject NP.   

                                                 
10 In adopting the term ‘Lasersohn-Schwarzschild approach’ I do not mean to suggest any agreement 
between Lasersohn and Schwarzschild on the matter of distributivity and/or nonmaximality.  Rather, this 
name is merely to suggest that the approach is one based primarily on a combination of Schwarzschild’s 
account of distributivity and Lasersohn’s account of ‘pragmatic slack.’ 
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Problems with Schwarzschild’s analysis—especially as interpreted by Brisson—

occur in the case of ‘ill-fitting covers.’  Recall the definition of an ill-fitting cover, given 

in (12): 

(12) A cover C is ill-fitting with respect to a denotation set D if there is no 
union X of elements of C such that X = D. 

 
So, for instance || Cov || is an ill-fitting cover of || John and Mary || in the following: 
 
 (40) Let U = {j, k, l, m} 
  || John and Mary || = {j, m} 
  || Cov || =  {{m}, {j, k, l}} 
 
 Ill-fitting covers like || Cov ||, as identified by Lasersohn (1995), can lead to 

sentences being judged true in circumstances under which we wouldn’t want them to be.  

Lasersohn points out, as explained in Schwarzschild (1996) and as we’ve already 

mentioned, that given a cover like the one in (40), the truth conditions of a sentence like 

John and Mary left depend solely on whether or not Mary left, so that the sentence can 

still be considered true even if John didn’t leave.  Schwarzschild says that such a 

‘pathological’ cover should not concern us and “…should be ruled out pragmatically” 

(77).  And, presumably, Schwarzschild is right—it is highly unlikely that a hearer of John 

and Mary left would disregard whether John actually left.   

 But Schwarzschild fails to specify when, if ever, ‘pathological’/ill-fitting covers 

are allowed11. And the example above is not the only case in which ill-fitting covers lead 

to trouble.  There are also cases in which—under Brisson’s analysis based on  

                                                 
11 If anything, by applying the term ‘pathological’ to an ill-fitting cover in one of his examples, 
Scwarzschild is suggesting that all ill-fitting covers are “ruled out pragmatically” (1996: 77).  In this case, 
Brisson’s account of nonmaximality has no grounding because it relies on ill-fitting covers as the source of 
nonmaximality.   
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Schwarzschild’s—certain covers can lead to a sentence being evaluated as false, when we 

would want it to be evaluated as true, (or at least close enough to true.) 12 

 To illustrate let’s return to sentence (1).  Let our universe of discourse, U, be 

defined as follows: 

(41)   U = {a1, a2,…, a50, b1, b2,…, b49} 
|| the volunteers || = { a1, a2,…, a50} 

 
And suppose that the hearer knows that each volunteer, ai, was paired up with a 

corresponding expert quilt-maker, bi, to help him make a quilt—except for a50, who did 

not participate in the quilt-making program at all.  Furthermore, assume that in this 

scenario each of the individuals a1, a2,…, a49  did in fact make a quilt with his assigned 

expert.  Under these circumstances, we would most likely consider (1) at least close 

enough to true for practical purposes.  But suppose that the hearer, knowing that all of the 

volunteers except a50 were paired up with expert quilt-makers, assigns the following 

cover to the universe of discourse: 

(42)   || Cov || = {{a1, b1}, {a2, b2},…, {a49, b49}, {a50}} 
 
Remember that (1) is true if and only if every element of the cover that is a subset of  

|| the volunteers || is also an element of || made a quilt ||.   In this case, the only element of 

the cover that is also a subset of || the volunteers || is a50.  And since a50 did not make a 

quilt, a50 is not an element of || made a quilt || and (1) would be judged as strictly false.   

 So, in summary, under the Brisson (2003) approach we have seen circumstances 

under which sentences that ought to be judged close enough to true are evaluated as false, 

and vice versa.  Furthermore, neither Brisson nor Schwarzschild provides a 

straightforward and complete account of this problem—they do not definitively explain 

                                                 
12 This problem was pointed out to me by Ted Fernald. 



 25 

when ill-fitting covers are licensed nor how the licensing is determined.  And even the 

Lasersohn-Schwarzschild approach, as it currently stands, is susceptible to the same 

problems. 

 Thus we need an amendment to the analyses that will preclude these undesirable 

results.  One thing we don’t want to do is prohibit ill-fitting covers.  After all, it is likely 

that in certain cases—like the one described above corresponding to sentence (1)— the 

speaker and/or hearer may group individuals that are in the denotation set of the subject 

NP with individuals that are not in the denotation set of the subject NP.  The cover given 

in (42) is a perfect example of this.  So, we must find some other way to rule out the 

objectionable results we saw above.  Schwarzschild offers the following (but doesn’t 

adopt it himself):  

(43)   Alternative Semantics for the Part operator: 
a. For any Y, a set of sets of individuals, and any y, a set of individuals, 

Y/x is the largest subset of Y that covers x, if there is one, otherwise it 
is undefined. 

b. x ∈ || Part(Cov)(α) || if and only if 
∀y[ (y ∈ || Cov || /x)  y ∈ || α || ] 

  (1996, p. 77) 
 
As we said, Schwarzschild feels that ‘pathological’ covers should be ruled out by 

pragmatics and not semantics, so he is not in favor of adopting this rule.  And neither are 

we, for under this rule || Cov || /x is undefined in certain circumstances, leaving us no way 

to evaluate the truth of some sentences.   

 Under our innovation given below, however, || Part(Cov)(α) || is always defined.  

First, we provide a crucial definition: 

 (44)  Let V be a cover of Z and let X be a subset of Z, where X and Z  
are sets of individuals and V is a set of sets of individuals.  Then 

 
V↑X = {v ∩ X : v ∈ V ∧ v ∩ X ≠ ∅}. 
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To illustrate this definition, consider the following example: 
  

(45) Let C1 = {{i}, {j}, {k}, {l}, {m}, {n}} 
                   C2  = {{i}, {j}, {k, l, m, n}} 
        || ε || = {j, k, l} 
 

Then C1↑|| ε ||  = {v ∩ || ε || : v ∈ C1  ∧ v ∩ || ε || ≠ ∅} 
= {v ∩ {j, k, l} : v ∈ {{i}, {j}, {k}, {l}, {m}, {n}} ∧  

v ∩ {j, k, l} ≠ ∅} 
= {{j}, {k}, {l}} 

 
and C2↑|| ε || = {v ∩ || ε || : v ∈ C2 ∧ v ∩ || ε || ≠ ∅} 

= {v ∩ {j, k, l} : v ∈ {{i}, {j}, {k, l, m, n}} ∧  
v ∩ {j, k, l} ≠ ∅} 

= {{j}, {k, l}} 
 

We are now prepared to introduce our innovation—a new definition of the interpretation 

of || Part(Cov)(α) ||: 

(46) x ∈ || Part(Cov)(α) || if and only if 
 

∀y[ (y ∈ || Cov ||↑x)  y ∈ || α || ] 
 
This innovation is highly powerful for three major reasons.  First of all—for V, X and 

V↑X as defined in (44)—V↑X is always necessarily a cover of X13. Thus || Cov ||↑x in 

                                                 
13 The proof of this statement is as follows: We must show that V↑X satisfies the three necessary and 
sufficient conditions defining covers, as laid out in (3): 
 

(3)       C covers A if: 
a. C is a set of subsets of A  
b. Every member of A belongs to some set in C. 
c. ∅ is not in C. 

 
We take each condition in turn. 
A) V↑X is a set if sets, each of which is of the form v ∩ X where v ∈ V.  By definition of intersection,  
v ∩ X ⊆ X, ∀v ∈V.  Thus V↑X is a set of subsets of X. 
 
B) V is a cover of Z.  Therefore, by definition, every element of Z belongs to some set in V.  And since  
X ⊆ Z, we know that every element of X also belongs to some set in V.  That is, ∀x ∈ X  ∃v ∈ V such that 
x ∈ v.  Thus, ∀x ∈ X  ∃v ∩ X ∈ V↑X such that x ∈ v ∩ X.  That is, every member of X belongs to some 
set in V↑X. 
 
C) By definition of V↑X, V↑X does not contain the empty set. 
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(46) is necessarily a cover of x.  This means that our formalism still allows for all 

possible collections of subsets of the denotation set of the subject NP, (provided that 

every individual in the denotation set is in one of those subsets.)  As a result, the 

formalism permits distributive readings, collective readings, and any sort of intermediate 

readings—just as before. 

The second key advantage of this innovation is that it precludes the problems 

associated with ill-fitting covers in Schwarzschild’s approach and Brisson’s approach.  

Under the old definition of || Part(Cov)(α) ||, certain covers, (like those in the examples 

we’ve seen so far in this section,) lead to problematic truth conditions—ones that don’t 

take certain members of the subject NP’s denotation set into account.  The new definition 

of || Part(Cov)(α) ||, however, makes sure that in order for a sentence to be true, every 

individual in the denotation of the NP—either in its own singleton set or as a member of 

a larger set—must be a member of some set in the denotation of the VP.  To see this, first 

recall (9), which needs no amendment under our innovation: 

(9)   Let ε α be a sentence, where ε is a definite plural NP and α is plural VP.    
Then ε  α is true iff 
  || ε || ∈ || Part(Cov)(α) ||. 
 

By combining (9) and (46) we have: 

(47) Let ε α be a sentence, where ε is a plural NP and α is plural VP.  Then  
ε  α is true iff 

∀y[ (y ∈ || Cov ||↑|| ε ||)  y ∈ || α || ]  
 

The truth conditions defined in (47) require that every single element of || Cov ||↑|| ε || be 

in  || α ||.  And—as we’ve already shown—no matter what the value of Cov is  

                                                                                                                                                 
 



 28 

|| Cov ||↑|| ε || necessarily covers || ε ||, so every member of || ε || is a member of some set 

in || Cov ||↑|| ε ||.  Furthermore, || Cov ||↑ || ε || is a set of subsets of || ε ||. Thus, taking all 

of this together, we know that a sentence ε α is true only if14 for every member of || ε || 

there exists some subset of || ε || that is a member of || α ||—regardless of the choice of 

cover made by the hearer.   

 Let us now illustrate the utility of this innovation by demonstrating how it ‘fixes’ 

the problems we saw earlier in this section.  The first sentence we discussed was John 

and Mary left.  Recall that the problematic model we examined was as follows: 

(40) Let U = {j, k, l, m} 
  || John and Mary || = {j, m} 
  || Cov || =  {{m}, {j, k, l}} 
 
As we explained, under the old definition of || Part(Cov)(α) ||, the truth conditions of this 

sentence don’t take into John into account: 

(48)    John and Mary left is true iff 
|| John and Mary || ∈ || Part(Cov)(α) || 

⇔ ∀y[ (y ∈ || Cov || ∧ y ⊆ || John and Mary ||)  y ∈ || left || ] 
⇔ ∀y[ (y ∈ {{m}, {j, k, l}} ∧ y ⊆ {j, m})  y ∈ || left || ] 
⇔ {m} ∈ || left || 

 
However, under the new definition of || Part(Cov)(α) ||, we avoid this problem 

completely: 

(49)  John and Mary left is true iff 
|| John and Mary || ∈ || Part(Cov)(α) || 

  ⇔ ∀y[ (y ∈ || Cov ||↑|| John and Mary ||)  y ∈ || left || ] 
⇔ ∀y[ (y ∈ {{m}, {j, k, l}}↑{j, m})  y ∈ || left || ] 
⇔ ∀y[ (y ∈ {v ∩ {j, m} : v ∈ {{m}, {j, k, l}} ∧ v ∩ {j, m} ≠ ∅})   

y ∈ || left || ] 
⇔ ∀y[ (y ∈ {{j}, {m}})  y ∈ || left || ] 
⇔ {j}, {m} ∈ || left || 

 

                                                 
14 Note here that we say ‘only if’ not ‘if and only if.’ 
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Thus, the new definition of || Part(Cov)(α) || requires that both John and Mary left in 

order for the sentence to be considered true. 

 Let’s now turn to the second problem we saw in this section, involving sentence 

(1).  Remember that under Schwarzschild’s analysis and Brisson’s analysis in the 

following model: 

(50) U = {a1, a2,…, a50, b1, b2,…, b50} 
|| the volunteers || = { a1, a2,…, a50} 
|| Cov || = {{a1, b1}, {a2, b2},…, {a50, b50}} 

 
the sentence was considered utterly false.  This is because 1) the sentence’s truth 

conditions aren’t satisfied in this model and 2) the sentence can’t be considered ‘close 

enough to true for practical purposes’ because the notion of ‘close enough’ doesn’t even 

exist in Schwarzshild’s/Brisson’s account.  Another problem here is that the truth 

conditions only take one out of the 50 volunteers into account under the old analysis.  

These results are undesirable in many circumstances.  That is, there are certainly times 

when we would want the volunteers made a quilt to be close enough to true if 49 out 50 

volunteers did indeed participate in quilt-making.  And we virtually always want our 

semantics to take more than just one of the 50 volunteers into account in determining 

whether the sentence is close enough to true. 

 Before showing how our innovation precludes the kind of problem exemplified by 

this sentence we must first introduce the innovation’s third compelling advantage—

namely, that it requires very little change to the Lasersohn-Schwarzschild approach 

outlined in the previous section.  We demonstrate this by recalling each formalism we 

introduced in the previous section, revising the formalisms where necessary.  
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 The first major formalism introduced was the definition of the pragmatic halo of  

|| Part(Cov)(α) ||: 

(29) Let Part(Cov)(α) be the translation of a plural VP α, where || Cov || = 
Cov*.  Then the pragmatic halo of the plural VP with respect to context C 
is 
 

<HC(Part(Cov)(α)), ≤Part(Cov)(α),C  > where 
 
HC(Part(Cov)(α)) = { || Part(c)(δ) || : || c || ∈ HC(Cov) ∧  

|| δ || ∈ HC(α) }  
     =  { {x : ∀y[ (y ∈ || c ||  ∧ y ⊆ x)  y ∈ || δ || ]} :  

  || c || ∈ HC(Cov) and || δ || ∈ HC(α) }  
   

and ≤Part(Cov)(α),C   is partial ordering based on how pragmatically close || c || 
is to Cov* and how pragmatically close || δ || is to || α || for each element 
|| Part(c)(δ) || of HC(Part(Cov)(α)). 

 
Because we have changed the definition of || Part(Cov)(α) ||, we need to make one small 

change to the formalism.  Instead of saying  

(51) = { || Part(c)(δ) || : || c || ∈ HC(Cov) ∧ || δ || ∈ HC(α) }  
  = { {x : ∀y[ (y ∈ || c ||  ∧ y ⊆ x)  y ∈ || δ || ]} :  

        || c || ∈ HC(Cov) and || δ || ∈ HC(α) } 

we want  

(52) = { || Part(c)(δ) || : || c || ∈ HC(Cov) ∧ || δ || ∈ HC(α) }  
  = { {x : ∀y[ (y ∈ || c ||↑x)  y ∈ || δ || ]} :  

        || c || ∈ HC(Cov) and || δ || ∈ HC(α) } 

so that we have the following for our definition of the halo of || Part(Cov)(α) ||: 

(53)  Let Part(Cov)(α) be the translation of a plural VP α, where || Cov || = 
Cov*.  Then the pragmatic halo of the plural VP with respect to context C 
is 
 

<HC(Part(Cov)(α)), ≤Part(Cov)(α),C  > where 
 
HC(Part(Cov)(α)) = { || Part(c)(δ) || : || c || ∈ HC(Cov) ∧  

|| δ || ∈ HC(α) }  
     =  { {x : ∀y[ (y ∈ || c ||↑x)  y ∈ || δ || ]} :  

  || c || ∈ HC(Cov) and || δ || ∈ HC(α) }  
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and ≤Part(Cov)(α),C   is partial ordering based on how pragmatically close || c || 
is to || Cov || and how pragmatically close || δ || is to || α || for each element 
|| Part(c)(δ) || of HC(Part(Cov)(α)). 

 
The only other formalism introduced in the previous section was the definition of the halo 

of a sentence of the form ε α, repeated below: 

(36) Let ε α be a sentence, where ε is a plural NP and α is plural VP.  Then the  
  pragmatic halo for ε α is   
 

<HC(ε α), ≤Partε α,C  > where 
 
 
HC(ε α) = { {z: z = || η || ∧ z ∈ || υ ||}|: 

|| η || ∈ HC(ε) ∧ || υ || ∈ HC(Part(Cov)(α))} 
  

and ≤ε α,C   is partial ordering based on how pragmatically close || η || is to  
|| ε || and how pragmatically close || υ || is to || Part(Cov)(α) || for each 
element {z: z = || η || ∧ z ∈ || υ ||} of HC(ε α). 

 
The sentence is then judged close enough to true for practical purposes if 
HC(ε α) contains at least one nonempty element. 

 
Notice that here no change is necessary.  We must simply remember that the definition of  

|| Part(Cov)(α) || and HC(Part(Cov)(α)) have been changed due to the innovation.  Thus, 

all in all our innovation required only two changes to our entire framework, including the 

change that was the innovation itself.   

 Now we can demonstrate how our innovation accounts for the problems that 

occur when a model like the one defined in (41) and (42) is applied to a sentence like (1).  

We begin by reviewing the model we were working with: 

(54) U = {a1, a2,…, a50, b1, b2,…, b50} 
|| the volunteers || = { a1, a2,…, a50}   
|| Cov || = {{a1, b1}, {a2, b2},…, {a50, b50}} 
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Recall also that in our model, each volunteer ai had been paired off with an expert quilt-

maker bi, and that every volunteer—except for a1—did in fact make a quilt both by 

himself and with his assigned expert, so that  

(55)  || made a quilt || = {{a2},…, {a50}, {b1}, {b2},…, {b50},  
{a2, b2},…, {a50, b50}}  

 
Given this model, we can see below that the truth conditions of (1) are not satisfied: 
 
 (56) The volunteers made a quilt is true iff 
 
   || the volunteers || ∈ || Part(Cov)(made a quilt) || 

⇔ { a1, a2,…, a50} ∈ {x : ∀y[(y ∈ ||Cov||↑x)  y ∈ ||made a quilt|| ]} 
⇔ { a1, a2,…, a50} ∈ {x : ∀y[(y ∈{{a1,b1}, {a2,b2},…, {a50,b50}}↑x)  

 y ∈ ||made a quilt|| ]} 
⇔ ∀y[(y ∈{{a1,b1}, {a2,b2},…, {a50,b50}}↑{a1, a2,…, a50})  

 y ∈ ||made a quilt|| ] 
⇔ ∀y[(y ∈{{a1}, {a2},…, {a50}})  y ∈ ||made a quilt|| ] 
⇔  {a1}, {a2},…, {a50} ∈ {{a2},…, {a50}, {b1}, {b2},…, {b50},  

           {a2, b2},…, {a50, b50}} 
 
Thus, since {a1} ∉ {{a2},…, {a50}, {b1}, {b2},…, {b50}, {a2, b2},…, {a50, b50}}, we know 

that The volunteers made a quilt is false in this model—and rightly so.  If one of the 

volunteers didn’t make a quilt—in this case a1—then we don’t want the sentence to be 

considered true.  For as Kroch (1974:190-91, as cited in Lasersohn (1999)) points out, if 

we allow for such truth conditions we end up with sentences like 

(57)  Although the volunteers made a quilt, some of them didn’t make a quilt. 

which sounds contradictory. 

 Despite the fact (1) is judged false in this model under the Lasersohn-

Schwarzschild approach, it can still be considered close enough to true for practical 

purposes.  As long as one of the elements of the pragmatic halo of (1) is nonempty, then 

the sentence will be considered practically true.  Let’s demonstrate how this plays out in 
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our new framework.  We will assume the following pragmatic halos15 for the expressions 

that constitute (1): 

 (58) HC(the volunteers) = { {a1, a2,…, a50}, {a2,…, a50} } 
HC(made a quilt) = { {{a2},…, {a50}, {b1}, {b2},…, { b50},  

{a2, b2},…, {a50, b50}} } 
  HC(Cov) = { {{a1, b1}, {a2, b2},…, {a50, b50}} } 
 
Note that we made HC(made a quilt) and HC(Cov) trivial for simplicity’s sake, so that 
 
 (59) HC(Part(Cov)(made a quilt)) = { || Part(Cov)(made a quilt) || } 
  
Thus the halo for (1) is  
 

(60)   HC(The volunteers made a quilt) = 
{ {z : z = {a1, a2,…, a50} ∧ z ∈ || Part(Cov)(made a quilt) || }, 
  {z : z = {a2,…, a50} ∧ z ∈ || Part(Cov)(made a quilt) || } } 

 
Let’s see if either of the two sets in HC(The volunteers made a quilt) is nonempty.  If  

{a1, a2,…, a50} ∈ || Part(Cov)(made a quilt) || then the first set is nonempty, and if 

{a2,…, a50} ∈ || Part(Cov)(made a quilt) || then the second set is nonempty.  We already 

showed above that {a1, a2,…, a50} ∉ || Part(Cov)(made a quilt) ||, so we only need to 

check to see if the second set is nonempty: 

(61)   {z : z = {a2,…, a50} ∧ z ∈ || Part(Cov)(made a quilt) || } is nonempty iff 
 
{a2,…, a50} ∈ || Part(Cov)(made a quilt) || 

⇔ ∀y[ (y ∈ || Cov ||↑{a2,…, a50})  y ∈ || made a quilt || ] 
⇔ ∀y[ (y ∈ {{a1, b1}, {a2, b2},…, {a50, b50}} ↑{a2,…, a50})   

y ∈ || made a quilt || ] 
⇔ ∀y[ (y ∈ {{a2},…, {a50}})  y ∈ || made a quilt || ] 
⇔ {a2},…, {a50} ∈ {{a2},…, {a50}, {b1}, {b2},…, {b50},  

           {a2, b2},…, {a50, b50}} 
   
Thus, since {a2},…, {a50} ∈ {{a2},…, {a50}, {b1}, {b2},…, {b50}, {a2, b2},…, {a50, b50}}, 

we know that {z : z = {a2,…, a50} ∧ z ∈ || Part(Cov)(made a quilt) || } is nonempty.  And 

                                                 
15 Here we call a set HC(α) a pragmatic halo, although technically when we write a pragmatic halo we 
include its partial ordering.    
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so sentence (1) in this model is judged not true, but close enough to true for practical 

purposes—which is exactly what we want. 

To recap, in this section we first pointed out a pair of problems associated with 

Schwarzschild’s (1996) analysis as interpreted by Brisson (2003), which are a result of 

the possibility of ill-fitting covers.  We then presented a new definition for || Part(Cov)(α) 

|| and showed how the Lasersohn-Schwarzschild approach—coupled with this new 

definition—prevents the problems associated with Schwarzschild’s analysis.  In the next 

and final major section we will contrast Brisson’s approach and the Lasersohn-

Schwarzschild approach16, arguing for the latter.  

7. The Two Approaches to Generalized Distributivity and Nonmaximality:  

A Final Comparison 

 Let’s begin this section with a brief review of the way nonmaximality is 

accounted for in each approach.  In Brisson’s (2003) approach, nonmaximality is the 

result of covers that are ill-fitting with respect to the subject NP.  The example we gave 

way back in Section 2 was based on the following universe of discourse: 

(13)  Let U’ be the universe, where  
 

U’ = {i, j, k, l, m, n} 
 
And let   

|| the volunteers || = {j, k, l} 
 
with possible covers of the universe, C1’ and C2’, where 
   

C1’ = {{i}, {j}, {k}, {l}, {m}, {n}} 
C2’  = {{i}, {j}, {k}, {l, m, n}} 

 

                                                 
16 From here on out, when we refer to the ‘Lasersohn-Schwarzschild approach’ it is to be understood that 
our framework includes the new definition of || Part(Cov)(α) || introduced in this section, as opposed to 
Schwarzschild’s original definition. 
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According to Brisson’s account, if the hearer assigns the ill-fitting cover C2’ as the value 

Cov, the truth conditions of (1) depend on whether j and k made quilts, and ‘doesn’t care’ 

whether l made a quilt—even though l is a volunteer: 

(62)   The volunteers made a quilt is true iff: 
 

∀y[ (y ∈ {{i}, {j}, {k}, {l, m, n}} ∧ y ⊆ {j, k, l})   
y ∈ || made a quilt || ] 

⇔ {j, k} ∈ || made a quilt || 
 
This is an example of how Brisson’s analysis—though it does account for 

nonmaximality—is at the same time not completely satisfying.  For under her account, 

the truth conditions of a sentence ε α can correspond to a nonmaximal reading.  As we 

explained in the last section—in accordance with Kroch (1974:190-91, as cited in 

Lasersohn (1999))—this is rather undesirable, for if we allow for such truth conditions 

we end up with sentences like 

(57)  Although the volunteers made a quilt, some of them didn’t make a quilt. 

In addition to this problem, Brisson (2003) says that “…speakers and hearers must make 

room for the possibility of ill-fitting covers” (138), making it unclear as to whether the 

hearer ever actually arrives at a particular cover for a sentence, and whether any one 

cover is favored over another.  Thus we have no explicit way of getting at the truth 

conditions of a sentence. 

 Under the Lasersohn-Schwarzschild approach, however, we avoid these 

problems.  Let’s review the Lasersohn’s (1999) basic framework, which aims to account 

for the fact that “People speak with varying degrees of precision” (522).  As we recall, 

under this approach every linguistic expression is assigned a context-dependent 

‘pragmatic halo’—a partially ordered set containing all sets pragmatically ‘close enough’ 
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to the denotation set of the expression.  In addition, every sentence is assigned a 

denotation set rather than a truth value, and considered true if and only if its denotation 

set is nonempty.  At the same time, a sentence is considered ‘close enough to true for 

practical purposes’ with respect to a given context C and model M if and only if its 

pragmatic halo contains a set that is nonempty.  And so a sentence can be considered 

close enough to true even if it is technically false.   

To review how nonmaximality is accounted for within our Lasersohn-

Schwarzschild approach, let’s recall the formal definition of the halo of a sentence of the 

form ε α: 

(36) Let ε α be a sentence, where ε is a definite plural NP and α is plural VP.  
Then the pragmatic halo for ε α is   

 
<HC(ε α), ≤Partε α,C  > where 
 
HC(ε α) = { {z: z = || η || ∧ z ∈ || υ ||}:  

|| η || ∈ HC(ε) ∧ || υ || ∈ HC(Part(Cov)(α))} 
  

and ≤ε α,C   is partial ordering based on how pragmatically close || η || is to  
|| ε || and how pragmatically close || υ || is to || Part(Cov)(α) || for each 
element {z: z = || η || ∧ z ∈ || υ ||} of HC(ε α). 

 
The sentence is then judged close enough to true for practical purposes if 
HC(ε α) contains at least one nonempty element. 

 
As stated in the formalism, elements of the set HC(ε α) are of the form  

{z: z = || η || ∧ z ∈ || υ ||} where || η || is an element of the halo of ε and || υ || is an element 

of the halo of Part(Cov)(α), and ε α is judged close enough to true for practical purposes 

if at least one of these sets is nonempty. Another way of thinking about this is to say that 

ε α is close enough to true for practical purposes if there exists || η ||, an element of the 
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halo of ε, and || υ ||, an element of the halo of α, such that || η || ∈ || υ ||.  The following is 

a proof of this statement: 

(63)   A sentence ε α is judged close enough to true for practical purposes if  
 

HC(ε α) contains at least one nonempty element  
⇔  { {z: z = || η || ∧ z ∈ || υ ||}:  

|| η || ∈ HC(ε) ∧ || υ || ∈ HC(Part(Cov)(α))} 
   has at least one nonempty element 

⇔  For some set {z: z = || η || ∧ z ∈ || υ ||} where || η || ∈ HC(ε) and  
|| υ || ∈ HC(Part(Cov)(α)), there exists a z  such that z = || η || and  
z ∈ || υ ||. 

⇔ There exists some || η || ∈ HC(ε) and || υ || ∈ HC(Part(Cov)(α)) 
such that || η || ∈ || υ ||. 

 
This is exactly what we saw, for instance, in (60)-(61) in the previous section.  The 

pragmatic halo for the volunteers made a quilt was the following: 

(60)  HC(The volunteers made a quilt) = 
{ {z : z = {a1, a2,…, a50} ∧ z ∈ || Part(Cov)(made a quilt) || }, 

      {z : z = {a2,…, a50} ∧ z ∈ || Part(Cov)(made a quilt) || } } 

As we showed the volunteers made a quilt was judged close enough to true within the 

context and model we had assumed because the second set listed in HC(The volunteers 

made a quilt) was nonempty.   Said another way, there was an element || η || of HC(the 

volunteers), namely {a2,…, a50}, and an element || υ || of HC(Part(Cov)(made a quilt)), 

namely || Part(Cov)(made a quilt) ||, such that || η || ∈ || υ ||. 

Thus, given a sentence ε α, if there exists some || η || in the halo17 of ε and some  

|| υ || in the halo of Part(Cov)(α) such that || η || ∈|| υ || and || η || ⊂ || ε ||, then the sentence 

will be evaluated as pragmatically close enough to true under a nonmaximal reading.  For 

if || η || ⊂ || ε || that means that the hearer is still counting the sentence as close enough to 

true even if not every member of || ε ||—the denotation set of the NP—is contained in 

                                                 
17 Keep in mind, of course, that halos are assigned by the hearer. 
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some member of the denotation of the VP, || α ||.  Again, this is exactly what we saw in 

(60)-(61).  {a2,…, a50} ∈ HC(the volunteers), {a2,…, a50} ∈ || Part(Cov)(made a quilt) ||, 

and {a2,…, a50} ⊂ || the volunteers ||.  The sentence was thus considered close enough to 

true for practical purposes, even though it was not true that every single volunteer made a 

quilt.   

The last important item to recall for now is that, as we showed in the previous 

section, the definition of || Part(Cov)(α) || associated with the Lasersohn-Schwarzschild 

approach doesn’t allow for nonmaximality to come from ill-fitting covers.  Rather, the 

truth conditions are explicitly defined by a single choice of a cover made by the hearer. 

And regardless of what that cover is, the truth conditions will require that every member 

of the NP’s denotation set be in some member of the VP’s denotation set.  The cover 

merely serves to define the way in which members of subject NP’s denotation set are 

grouped together. 

Having reviewed all of this, we can lay out two of the major advantages of the 

Lasersohn-Schwarzschild approach over Brisson’s.  For one, the Lasersohn-

Schwarzschild approach has much more precisely defined truth conditions for sentences 

of the form ε α.  Namely, that the hearer determines a cover || Cov ||—ill-fitting or not—

based on context, and given this choice, the sentence is true if and only if  

|| ε || ∈ || Part(Cov)(α) ||.  On the other hand, Brisson (p.c.) says, “the listener…has to 

assume that the speaker might have in mind some ill-fitting cover and ‘make room’ for 

the possibility of a nonmaximal reading.”  And since the truth conditions of a sentence 

depend on its associated cover, this is equivalent to saying that the speaker must allow for 
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multiple truth conditions—meaning that in Brisson’s analysis, the truth conditions of a 

sentence ε α are not uniquely defined.   

The second advantage to note here has to do with how the two approaches treat 

nonmaximality with respect to truth conditions.  Brisson’s account allows for a 

nonmaximal reading to correspond to a sentence’s truth conditions, which permits 

equivocal, objectionable sentences like  

(57) Although the volunteers made a quilt, some of them didn’t make a quilt. 

Under the Lasersohn-Schwarzschild account, however, nonmaximal readings never 

correspond to truth conditions, which precludes sentences like (57).  A nonmaximal 

reading of a sentence, however, can be evaluated as pragmatically close enough to true 

under this approach—as we saw in (60)-(61)—whereas the notion of  ‘close enough to 

true for practical purposes’ doesn’t even exist in Brisson’s analysis.  We thus favor the 

Lasersohn-Schwarzschild approach because, unlike Brisson’s, it clearly defines a 

sentence’s truth conditions, while still allowing for false sentences to be judged close 

enough to true—where the judgment of what is in fact close enough to true depends on 

context and the discretion of the hearer.  

 The third substantial advantage of the Lasersohn-Schwarzschild approach was 

demonstrated in Section 6.  Recall that because Brisson’s account of nonmaximality 

relies on ill-fitting covers coupled with Schwarzschild’s definition of || Part(Cov)(α) ||, it 

is susceptible to two problematic results: 1) a sentence that ought to be judged false is 

judged to be true, and 2) a sentence that ought to be judged true (or, more accurately, 

close enough to true) is judged to be strictly false.  The alternative definition of  
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|| Part(Cov)(α) || that we’ve adopted as part of the Lasersohn-Schwarzschild approach, 

however, takes care of these problems.  For in this approach, a) a sentence’s truth 

conditions never correspond to a nonmaximal reading and b) nonmaximality is not a 

result of ill-fitting covers, but rather a result of pragmatic slack associated with the 

subject NP18. 

 The fourth major advantage of the Lasersohn-Schwarzschild approach is that it 

allows for ‘approximation’ with respect to covers.  That is, it accounts for the fact that 

while certain contexts call for an obvious choice for the value of Cov—such as a cover 

containing only singleton sets—there are times when we ought to permit covers that are 

close but not equal to that obvious choice.  As we explained in Section 5, covers are 

assigned pragmatic halos under the Lasersohn-Schwarzschild approach.  This has 

powerful and advantageous ramifications.  To show this, the example we used before was 

based on the following sentence: 

 (27)  The children each painted a picture. 

The presence of each in this sentence suggests that its truth conditions should correspond 

to a distributive reading.  This means that the cover associated with this sentence should 

be a set of singleton sets.  The argument made in Section 5, however, was that there 

might be times in which a reading of (27) that is not strictly distributive would be 

considered close enough to the truth conditions for practical purposes.  The example we 

used was a model in which the children refers to a preschool class of children, all of 

whom are capable of painting a picture on his or her own—except Ben, who gets help 

from an older child in the class, Lil.  Knowing this, a hearer’s pragmatic halo for the 

cover of this sentence would likely include a set containing a singleton set for each child 
                                                 
18 Please refer to Section 6 for a more thorough explanation of this. 
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in the class except for Ben, who is in a duple set with Lil.  With this model and this 

pragmatic halo for Cov, sentence (27) would then be judged not true but close enough to 

true for practical purposes.  Brisson’s approach, on the other hand, does not present any 

way of accounting for this. 

 The final important benefit of the Lasersohn-Schwarzschild approach is that in it 

nonmaximality is accounted for as an instance of the much broader phenomenon of 

pragmatic slack in general.  Thus nonmaximality can be accounted for in the same way as 

other instances of pragmatic slack—such as approximation regarding the time during 

which an event occurred.  This way, more than one kind of pragmatic slack occurring 

within a single sentence can be accounted for.  For instance, the Lasersohn-

Schwarzschild approach we’ve outlined could easily be extended to account for sentences 

like 

(64)   The students arrived at noon.   

Here there is the possibility of pragmatic slack associated with the subject NP and with 

the PP at noon.  That is, it may be that the not every student arrived at noon, and that by 

noon the speaker did not mean exactly 12pm on the dot.  Within Lasersohn’s (1999) 

framework, both instances of pragmatic slack would be captured in the sentence’s 

pragmatic halo.  Brisson’s approach, however, doesn’t frame her analysis of 

nonmaximality as being part of the more general concept of approximation or ‘speaking 

loosely.’  That is, her analysis does not provide a uniform way of accounting for all kinds 

of pragmatic slack19.  Therefore, we prefer the Lasersohn-Schwarzschild approach 

because it is able to account for far more than Brisson’s approach. 

                                                 
19 This is not meant to imply that Brisson’s account ‘fails’ in this respect. Her analysis simply doesn’t 
attempt to provide a general account for pragmatic slack. 
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 Given all the advantages that the Lasersohn-Schwarzschild approach to 

generalized distributivity and nonmaximality has over Brisson’s it should be quite clear 

why we so strongly favor this approach.  In addition to being more precise, it precludes 

certain problems associated with Brisson’s approach, and accounts for phenomena that 

Brisson’s approach, as it stands, is unable to account for. 

9. Summary 

 In this paper we began by providing a detailed overview of some of the literature 

of Schwarzschild, Brisson, and Lasersohn as it related to generalized distributivity and 

nonmaximality in sentences with plural definite subject NPs.  Brisson’s account of 

nonmaximality, as we saw, depends on Schwarzschild’s generalized D-operator analysis, 

and so it has a built-in account of generalized distributivity.  On the other hand, the 

portion of Lasersohn’s work we focused on doesn’t provide any analysis of generalized 

distributivity.  Thus we also introduced a way to incorporate Schwarzschild’s generalized 

D-operator account into Lasersohn’s analysis of pragmatic halos.  This combination of 

analyses was dubbed the Lasersohn-Schwarzschild approach to generalized distributivity 

and nonmaximality.   

 After introducing this approach, we discussed some of the problems with 

Brisson’s approach, then created a new definition for || Part(Cov)(α) || that was amenable 

to the Lasersohn-Schwarzschild approach and precluded those problems.  Finally, in the 

last section of the body of the paper, we made our final arguments for the Lasersohn-

Schwarzschild approach as opposed to Brisson’s.  The main reasons we wish to adopt the 

former is that it accounts for more linguistic phenomena, is more precise, and precludes 

the problematic results associated with Brisson’s approach.  More specifically, the 
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Lasersohn-Schwarzschild approach does not allow for a nonmaximal reading of a 

sentence to correspond to its truth conditions, and instead considers nonmaximality to be 

a special case of the general pragmatic phenomenon of ‘speaking loosely.’ 

 Furthermore, what is judged close enough to true, crucially, is ultimately up to the 

context and the hearer.  But the manner in which this judgment is made is formally 

defined to be consistent across hearers in our framework.  Therefore, our move to adopt 

the Lasersohn-Schwarzschild approach implies that in order to have a complete 

understanding of how we derive meaning from natural language, our linguistic analyses 

must approach language study from the perspectives of both what is context-dependent 

and what is defined independent of context.   
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