Stabilization of G-Quadruplex DNA by FRET

Cole Harbeck, Vienna Tran Yatsunyk Lab TBIC Meeting – February 7th, 2012

Fluorescence Resonance Energy Transfer (FRET)

When probes are close: acceptor absorbs most emitted light When probes are far apart: acceptor cannot absorb light

F21D – Fam-GGG(TTAGGG)₃-Dabcyl

Quenching

Fluorescence

(Probes close)

(Probes far apart)

Example of FRET Melting Data

First derivative curve

Example Stabilization Data

Adding NMM increases the melting temperature of F21D

Porphyrins Currently Under Investigation

4P3 and PC3M are excellent stabilizers. P2C2M exhibits some stabilization for GQs.

Competition Data for F21D + 4P3 in the presence of ctDNA

Adding ctDNA decreases the T_m of F21D + 4P3 only slightly

PC3M is highly selective for G-quadruplex DNA

Future Plans

- Repeat competition study with current porphryins
- If competition study is confirmed, perform detailed characterization of porphyrin binding to DNA

Ruthenium complexes as potential quadruplex ligands

$[Ru(bpy)_2L]^{2+}$

Compounds from Benjamin Williams, Sharon Burgmayer *et al*. Bryn Mawr

Stabilization

Quadruplex stabilization of these ligands is promising

Competition

Complex, 1.6 μ M

These complexes are weakly selective for GQs

Future Plans

- Continue screening Ru complexes
 - Starting work on allox and pterin ligands
- Detailed characterization of binding

Acknowledgements

- Yatsunyk Lab

 Jack Nicoludis
 Steven Barrett
- Nick Kaplinsky
- Collaborators
 - Burgmayer *et al*Purello and Habdas

