
Rune: Robot-User Nexus
Senior Design Project
Final Technical Report

Nicolas C. Ward
May 5, 2005

Abstract

Rune, the Robot-User Nexus, is the culmination of two years of software development work for
the Swarthmore Robotics Team. The two goals of this ongoing project are to create a robust
and extensible software architecture for mobile robots, and to create an intuitive, flexible, and
extensible interface for mobile robot teleoperation. This report describes a beta version of Rune
that is documented and ready for limited distribution and testing.

CONTENTS i

Contents

1 Introduction 1

1.1 Goals . 1

1.1.1 Team Goals. 1

1.1.2 Project Goals. 1

1.2 Tasks . 2

1.3 Definitions. 3

1.3.1 Graphical User Interface. 3

1.3.2 Human Robot Interaction. 3

1.3.3 Mobile Robot. 4

1.3.4 Situational Awareness. 4

1.3.5 Swarthmore Robotics Team. 5

1.3.6 USR Test Arena. 6

1.4 Report Organization. 6

2 Related Work 7

2.1 Project History . 7

2.1.1 Before 2003. 7

2.1.2 Summer 2003. 7

2.1.3 Winter 2004. .10

2.1.4 Summer 2004. .10

2.1.5 Fall 2004 .11

2.2 Inspiration. .11

2.2.1 Look and Feel .11

2.2.2 Control .12

2.2.3 Philosophy .12

3 System Architecture 13

3.1 Communication Layer .13

3.1.1 CMU IPC. .13

3.1.2 GCM .13

3.1.3 Robomon. .13

CONTENTS ii

3.2 Standard Modules. .14

3.2.1 Mapping Module. .15

3.2.2 Navigation Module. .15

3.2.3 Vision Module .15

3.3 Capabilities .15

3.4 Other Robots .16

4 Rune 16

4.1 Objects .16

4.1.1 View .17

4.1.2 Viewport .18

4.1.3 Visualizer. .18

4.1.4 Widget .18

4.2 Processes. .19

5 Future Work 20

5.1 Interface Testing .20

5.2 Multi-Robot Teleoperation. .20

5.3 Distribution .21

5.4 Updates. .21

6 Conclusion 21

7 Bibliography 21

A Rune Data Structure Reference 23

A.1 Capability Struct Reference. .23

A.1.1 Detailed Description. .24

A.1.2 Field Documentation. .24

A.2 CommonRequest Struct Reference. 25

A.2.1 Detailed Description. .25

A.2.2 Field Documentation. .25

A.3 Control Struct Reference. .26

A.3.1 Detailed Description. .27

CONTENTS iii

A.3.2 Field Documentation. .27

A.4 Event Struct Reference. .28

A.4.1 Detailed Description. .29

A.4.2 Field Documentation. .29

A.5 Font Struct Reference. .30

A.5.1 Detailed Description. .30

A.5.2 Field Documentation. .30

A.6 HatSwitchBindings Struct Reference. 31

A.6.1 Detailed Description. .31

A.6.2 Field Documentation. .31

A.7 ImageRequest Struct Reference. .32

A.7.1 Detailed Description. .32

A.7.2 Field Documentation. .32

A.8 InterestPoint Struct Reference. .33

A.8.1 Detailed Description. .33

A.8.2 Field Documentation. .33

A.9 InterestPoints Struct Reference. .34

A.9.1 Detailed Description. .34

A.9.2 Field Documentation. .34

A.10 Joystick Struct Reference. .35

A.10.1 Detailed Description. .36

A.10.2 Field Documentation. .36

A.11 Robot Struct Reference. .37

A.11.1 Detailed Description. .38

A.11.2 Field Documentation. .38

A.12 Rune Struct Reference. .40

A.12.1 Detailed Description. .41

A.12.2 Field Documentation. .41

A.13 View Struct Reference. .42

A.13.1 Detailed Description. .43

A.13.2 Field Documentation. .44

A.14 Viewport Struct Reference. .45

CONTENTS iv

A.14.1 Detailed Description. .46

A.14.2 Field Documentation. .46

A.15 Visualizer Struct Reference. .48

A.15.1 Detailed Description. .49

A.15.2 Field Documentation. .49

A.16 Widget Struct Reference. .51

A.16.1 Detailed Description. .52

A.16.2 Field Documentation. .52

B Rune Function Reference 53

B.1 capability.c File Reference. .53

B.1.1 Detailed Description. .54

B.1.2 Function Documentation. 55

B.2 event.c File Reference. .60

B.2.1 Detailed Description. .61

B.2.2 Function Documentation. 62

B.3 handler.c File Reference. .63

B.3.1 Detailed Description. .64

B.3.2 Function Documentation. 65

B.4 interest.c File Reference. .68

B.4.1 Detailed Description. .69

B.4.2 Function Documentation. 70

B.5 joystick.c File Reference. .71

B.5.1 Detailed Description. .72

B.5.2 Function Documentation. 73

B.6 joytest.c File Reference. .75

B.6.1 Detailed Description. .76

B.6.2 Function Documentation. 76

B.7 keyboard.c File Reference. .78

B.7.1 Detailed Description. .78

B.7.2 Function Documentation. 79

B.8 main.c File Reference. .81

B.8.1 Detailed Description. .81

CONTENTS v

B.8.2 Function Documentation. 82

B.9 robot.c File Reference. .82

B.9.1 Detailed Description. .83

B.9.2 Function Documentation. 84

B.10 rune.c File Reference. .86

B.10.1 Detailed Description. .87

B.10.2 Function Documentation. 87

B.11 rune.h File Reference. .89

B.11.1 Detailed Description. .96

B.11.2 Define Documentation. .97

B.11.3 Typedef Documentation. 99

B.11.4 Enumeration Type Documentation. .101

B.11.5 Function Documentation. .101

B.12 sdltest.c File Reference. .157

B.12.1 Detailed Description. .158

B.12.2 Define Documentation. .159

B.12.3 Enumeration Type Documentation. .160

B.12.4 Function Documentation. .161

B.12.5 Variable Documentation. .162

B.13 timer.c File Reference. .162

B.13.1 Detailed Description. .163

B.13.2 Function Documentation. .164

B.14 view.c File Reference. .166

B.14.1 Detailed Description. .167

B.14.2 Function Documentation. .168

B.15 viewport.c File Reference. .169

B.15.1 Detailed Description. .170

B.15.2 Function Documentation. .171

B.16 visualizer.c File Reference. .173

B.16.1 Detailed Description. .174

B.16.2 Define Documentation. .174

B.16.3 Function Documentation. .174

LIST OF TABLES vi

B.17 widget.c File Reference. .180

B.17.1 Detailed Description. .182

B.17.2 Function Documentation. .182

B.18 xml.c File Reference. .197

B.18.1 Detailed Description. .199

B.18.2 Function Documentation. .199

B.19 xmltest.c File Reference. .206

B.19.1 Detailed Description. .207

B.19.2 Function Documentation. .207

List of Tables

1 Mobile Robot Platforms . 4

2 Definitions of HRI SA Metrics . 5

List of Figures

1 Pre-Alpha: Robobot 2003 – Fully Expanded Interface View. 8

2 Pre-Alpha: Robobot 2003 – Collapsed View. 9

3 Pre-Alpha: XRoboview. 9

4 Alpha: Robobot 2004. .11

5 Rune Communication Layer. .14

6 Rune Abstract Object Hierarchy. 17

1 INTRODUCTION 1

1 Introduction

This project is the culmination of nearly two years of work as a member of the Swarthmore
Robotics Team. During that time, I developed two successive versions of a teleoperation user
interface. I also contributed small updates and general code improvements to a number of other
software modules that are a part of the Swarthmore Robotics Team codebase.

The further development of this work does not consist solely of a contribution to the Swarthmore
Robotics Team; it is our hope that much of this code will be used by researchers and develop-
ers at other institutions. As such, a significant portion of this Senior Design Project consists of
preparing our system for distribution. This preparation includes both further code development
and significant documentation efforts.

Fundamentally, this project is about moving from alpha to beta, that is from an unstable, unre-
leasable alpha version of the software to a mostly stable, releasable beta version. This idea forms
the basis of the project goals.

1.1 Goals

1.1.1 Team Goals

The single overarching goal of the Swarthmore Robotics Team is tocreate a robust and extensible
software architecture for mobile robots. This idea has influenced nearly all of the design decisions
made by team members over the last few years. Such a system would not merely be for internal
use; we want to be able to distribute this system to anyone who is trying to do mobile robotics
research but who does not have the time to develop their own software architecture.

All of our software will be distributed using an open source license. While we do believe that our
system is approaching the point where it is worth sharing with the world, we do not suffer from
any delusions that our software is a perfect solution. It is our hope that, as other people begin using
our system, they will be willing to make their own contributions, such as finding or fixing bugs, or
suggesting or adding new features. None of this would be possible if our software were distributed
as a black box.

By the end of the project, we hope to freeze a stable version of our code that is ready for widespread
distribution and testing.

Finally, if our software is to be understood by those outside groups using it, then our system must
be well-documented before it is distributed. All of the software modules and their interactions
must be thoroughly explained in a set of interlinked manuals, developer guides, and user guides.

1.1.2 Project Goals

My primary goal for this project is tocreate an intuitive, flexible, and extensible interface for
mobile robot teleoperation. Successfully reaching this goal requires the completion of many tasks.
Some of these requirements have already been met as a part of the work that I did over the past

1.2 Tasks 2

two summers, which is discussed further in Section2.1on Page7.

This interface must also be tightly integrated into the overall system architecture. This is not to say
that the architecture should be dependent on the interface, but rather that the interface should be
compatible with any and all software modules that conform to the architecture standards.

In addition to creating an interface that could be used by the Swarthmore Robotics Team (and oth-
ers) as a part of a larger project, I also want to develop a system that would be useful for performing
human-robot interaction (HRI) research. There are currently a lot of unanswered questions about
the relative importance of the different types of information presented to an operator in a mobile
robot teleoperation task. If the interface is sufficiently flexible, that is, if the design and layout of
the interface is highly configurable, then my project could be used to perform HRI experiments
where specific interface elements could be easily varied for each test subject.

As a subset of one of the Team Goals, I intend to document as many aspects of the interface as
possible. This includes inline code comments which may help guide future developers, the code
reference that is included in the appendices of this report, and the configuration and extension
manuals that I am also including in the appendices.

1.2 Tasks

The task of teleoperating a mobile robot is currently one of the most difficult problems being
approached by experts in HRI. This task can only be solved by a system that has all three of these
critical components:

1. A simple and intuitive interface

2. A robust communication system

3. A modular software architecture

The first component is the only portion of the system that should be presented to the human teleop-
erator. The second component significantly improves the performance of the task by the robot-user
pair by providing real-time information exchange between the operator and their robot. The third
component is needed by the software developers, so that they can easily extend the system to add
new functionality or adapt the system to operate on a wide variety of robot and interface hardware.

As a member of the Swarthmore Robotics Team, my focus for the past two years has been on the
development of a highly configurable mobile robot teleoperation graphical user interface (GUI)
that satisfies the first criterion. This project continues that work.

The other current student member of the team is Fritz Heckel, a Computer Science major in the
Class of 2005. He has developed the higher-level portions of our communication system, to ensure
that our architecture satisfies the second criterion. He has also developed a library of standard
messages and functions that we now use to ensure that all of our software literally speaks the same
language when our modules try to communicate. This interoperability is an important aspect of
the third criterion.

1.3 Definitions 3

As all of our modules are currently under development, it is very important that we maintain the
modules such that they remain interoperable. When this project is completed, we expect to freeze
all development at a releasable version so that our codebase has a stable foundation for future
development.

1.3 Definitions

Before continuing with this report, there are some important terms that need to be defined. This
section should help clarify some of the terms used to explain information in the body of the report.

1.3.1 Graphical User Interface

A Graphical User Interface, commonly abbreviated as GUI, is one of the primary methods by
which a human can interact with a computer. A GUI at its most minimal consists of one or more
display devices and one or more input devices. Although the use of modern personal computers
is now widespread, any discussion of interface design requires a fairly low-level understanding of
user interface components.

The display device typically consists of some sort of hardware screen, such as a cathode ray-tube
(CRT) or liquid crystal display (LCD) monitor, a digital light projection (DLP) or LCD projector, a
light-emitting diode (LED) or LCD text display, or some array of status LEDs. The screen display
device is the method by which the computer conveys information to the user.

The input device typically consists of a coupled pointing device and tactile array. The pointing
device moves a cursor in two-dimensions to navigate the various on-screen displays. A pointing
device, such as a mouse, trackball, joystick, or drawing pad, usually provides context to other user
input by selecting some subset of the GUI. A tactile array consists of a set of buttons or switches,
such as a keyboard. Each button is associated with some input symbol which the computer can
interpret.

A GUI is a simple and powerful way for converting user intentions into actions that can be strictly
interpreted by the computer as specific input events, and for converting the abstract data represen-
tations that a computer may use internally into something that is meaningful to a human user.

1.3.2 Human Robot Interaction

Human-robot interaction (HRI) takes many forms, depending on the specific application. For this
project, I am only considering the set of human-robot interactions that involve an operator remotely
controlling or giving commands to a robot by using some sort of GUI.

HRI is a specialized subset of the more general field of human-computer interaction (HCI). Be-
cause this project centers on the development of a powerful interface for robot teleoperation, aware-
ness of standard HRI and HCI techniques are extremely useful in making design decisions.

HRI studies of multiple versions of this interface, along with studies that cover other groups’ tele-
operation systems, have given me a lot of information about how to approach the task of developing

1.3 Definitions 4

Table 1: Mobile Robot Platforms

Robot Count Manufacturers Locomotion
Magellan Pro 3 Real World Interface (RWI) wheeled
Blimp 1 Geoff Hollinger ’05 flying

Alex Flurie ’05
Zach Pezzementi ’05

ROV 1 Maila Sepri ’05 submarine
Samantha Brody ’05

Rune. Those contributions are covered in more detail in Related Work (Sec.2, pp. 7).

1.3.3 Mobile Robot

A mobile robot is literally a robot that can move. The method of locomotion is variable. For our
purposes, I will refer only to the types of robots used by the Swarthmore Robotics Team. Those
robots, how many of them the team has, who made them, and their type of locomotion are specified
in Table1 on Page4.

1.3.4 Situational Awareness

Situational awareness (SA) is a fairly general term that refers simply to an individual’s ability to
perceive what is going on around them. In the case of HRI, particularly in the context of robot
teleoperation, I will use the following definition from [1]:

The understanding that the humans have of the locations, identities, activities, status,
and surroundings of the robots.

Measuring the quality of an operator’s SA requires some sort of metric. For this project I use a
fairly standard one that uses six independent factors: task effectiveness, neglect tolerance, robot
attention demand, free time, fan out, and interaction effort [2]. These terms are defined in Table2
on Page5.

It is worth noting that Neglect Tolerance is basically a measure of the autonomy of a robot. Also,
Free Time and Robot Attention Demand are complements of one another. That is,FT = 1:0 �
RAD.

These terms, although more relevant to an HRI study than to the software development that is part
of this project, are important to understanding some of the ways in which the quality of such a
system is evaluated.

1.3 Definitions 5

Table 2: Definitions of HRI SA Metrics

Metric Definition
Task Effectiveness How well was the task completed by the opera-

tor?
Neglect Tolerance How much time passed after the operator stopped

interacting with the robot before the robot passed
its minimum effectiveness threshold?

Robot Attention Demand How much of the operator’s attention does the
robot require?

Free Time How much time does the operator have for tasks
other than operating the robot?

Fan Out How many robots can the operator effectively use
at once?

Interaction Effort How much of the operator’s cognitive and physi-
cal resources are dedicated to the task of operat-
ing the robot?

1.3.5 Swarthmore Robotics Team

The Swarthmore Robotics Team is an interdisciplinary group led by Dr. Bruce A. Maxwell, a
professor in the Swarthmore Department of Engineering. Over the last several years, the student
members of the team have come primarily from the Engineering and Computer Science depart-
ments.

During its existence, the team has pursued several major projects, including:

• Indoor Aerial Robot

• Robot Host

• Robot Soccer

• Robot Urban Search & Rescue (USR)

• Underwater ROV

The team has participated in a number of competitions relevant to these projects, performing ad-
mirably in all of them and achieving victory in several of them. Most recently, Swarthmore was
awarded First Place in the mobile robot Urban Search & Rescue competition at the American As-
sociation for Artificial Intelligence (AAAI) 2004 Conference in San Jose, CA. The team set an
all-time record high score for the competition, defeating entries from (among others) MITRE and
Xerox PARC.

None of these achievements would have been possible without the tens of thousands of lines of
code that make up the Swarthmore Robotics Team codebase. All team members have contributed

1.4 Report Organization 6

to this code, which consists of several important software modules and libraries. This architecture
is described in greater detail in Section3 on Page13.

1.3.6 USR Test Arena

The USR Test Arena is maintained by the National Institute of Standards and Technology (NIST)
as a standard reference for comparing the performance of robotic USR solutions. The test arena
is used at all official USR competitions, and is available at the NIST site and at other locations
worldwide.

The test arena consists of three separate arenas, each of which is scaled to a different difficulty level.
These arenas were all designed and constructed by NIST’s Manufacturing Engineering Laboratory.

• The Yellow Arena is navigable by almost all robots. The floor is flat, there are few obstacles,
and only minimal debris.

• The Orange Arena is slightly more difficult. There are sections containing raised flooring,
other sections that are covered with small debris, and an elevated section with a ramp and a
stairwell representing a collapsed upper floor.

• The Red Arena is navigable only by legged, wheeled, whegged, or snake robots. Large
debris covers the entire arena, which represents the rubble pile of a collapsed building.

Because our wheeled RWI Magellan Pro robots are intended only as research robots, they can only
handle the Yellow Arena, and small clear floor areas of the Orange Arena. A significant investment
in hardware would be required for the Swarthmore Robotics Team to be able to participate in the
event more fully.

Recently, NIST added a new venue: the Black Arena, jokingly referred to as the “Reality Arena”.
The Black Arena is an unmodified abandoned Nike missile site with victims distributed arbitrarily
within. The site is prone to flooding, and has numerous stairwells, access tunnels, ductwork, ramps,
and the like. This arena is the gold standard of USR tests [3]. This arena will not be accessible by
the robot members of the Swarthmore Robotics Team for some time.

1.4 Report Organization

I have separated this report into two parts: the first being a research paper describing the work I
have done as part of the Swarthmore Robotics Team, focusing on the portion that is my Senior
Design Project, and the second being a set of appendices that document the configuration, use, and
extension of Rune, the Robot-User Nexus.

The Related Work section (Sec.2, pp. 7) positions the work I’ve done as part of the Swarthmore
Robotics Team in the context of the wider fields of human-robot interaction, human-computer
interaction, and graphical user interface design. It focuses on the inspirations for the project, how
we integrated those ideas into the design of the overall system, and some of the major design
decisions that I made. It also covers the history of this project up until the spring of 2005.

2 RELATED WORK 7

The System Architecture section (Sec.3, pp.13) describes the current set of software and hardware
solutions used by the Swarthmore Robotics Team, as well as the communication between those
components.

The Rune section (Sec.4, pp. 16) provides information about the role and overall functionality of
Rune, the teleoperation interface that I have developed.

The Appendices (pp.23) contain the detailed output from Doxygen, an automatic code documen-
tation utility created by Dmitri van Heesch [4]. They also contain full documentation on how to
configure Rune, and how to add functionality to Rune.

2 Related Work

2.1 Project History

2.1.1 Before 2003

The first system used by the Swarthmore Robotics Team, developed in 2001 and 2002, consisted
of a simple GUI display that provided camera video and map data for up to two robots, along
with a set of clickable buttons that would send camera or movement commands to the appropriate
software modules running on those robots. Unfortunately, this system was essentially unusable in
a competition environment due to lags in communication.

A backup to this system was also used in the competition. Video broadcasts were displayed in
a single window, using thedispipc utility to receive data from the vision module. Commands
were issued to the robot using multiple remote text terminals running command-line shells. In each
shell, the command-line test utility for each module was used to send commands. The problems
with this system were well documented by a group researching HRI at the competition [5].

This system, while functional, was only usable by a person thoroughly experienced in the devel-
opment of the system. Even for an experienced individual, the system was not terribly responsive,
and required typing out commands with explicit numerical values. It was difficult to use, slow to
respond, and did not meet the basic requirements of situational awareness.

2.1.2 Summer 2003

The version of the interface that I designed in 2003 was a totally new set of code. Some of the
design elements were inspired by previous versions. I dubbed this version Robobot, for no reason
other than that our version control archive needed a name. Unfortunately, this tongue-in-cheek
christening lasted for over a year.

The fundamental design was related to the previous version from 2002, but there were some major
differences. First, the GIMP ToolKit, GTK+, was used as the widget library for displaying the GUI
components. The previous version had used Motif, a much older and less flexible widget library.
In terms of usage, GTK+ allowed me to develop an interface that could take command input from

2.1 Project History 8

Figure 1: Pre-Alpha: Robobot 2003 – Fully Expanded Interface View

fixed keyboard bindings, or from interface button events. A menubar for toggling options, such as
image size, as well as multiple text displays to report status, were included.

The full version of the interface is shown in Figure1 on Page8. The primary aspect of the interface
is still the image from the robot’s onboard camera. The options menubar is placed above the image.
Below the image, in several sections, are buttons which can be clicked to issue translate and rotate
commands, and to reorient the pan/tilt/zoom (PTZ) camera.

A more streamlined version of the interface is shown in Figure2 on Page9. None of the buttons are
displayed. In this mode, the operator is expected to have memorized the keymaps that are used to
activate the same functionality as the buttons. We chose to use the standard WASD configuration
for movement, as it is common in many 3-D video games. For the Magellan, W was bound to
forward movement, S to reverse, A to counter-clockwise rotation, and D to clockwise rotation.

I was the operator for all of our USR competition runs at the 2003 International Joint Conference
on Artificial Intelligence (IJCAI). I used this collapsed interface view exclusively, since I had
memorized all of the necessary key bindings. I found that the more limited view actually had more
functionality, because I could react more quickly using the fix key bindings, and because the screen
real estate was less cluttered. Other users could use a menu item to toggle between the two views.

In addition to the primary interface, a separate application, XRoboview, was used to monitor the
robot’s range sensors and the orientation of the robot’s PTZ camera. XRoboview, whose only
window is shown in Figure3 on Page9, was originally designed as a testing and debug program

2.1 Project History 9

Figure 2: Pre-Alpha: Robobot 2003 – Collapsed View

Figure 3: Pre-Alpha: XRoboview

for the new Nav module that Fritz Heckel was beginning to develop. When I tried to integrate the
range sensor display into Robobot, I found that GTK+ could not update the graphical display with
a high enough frequency to be useful. This required that a Robobot and XRoboview window both
be open, in addition to the terminal windows that spawned them.

In retrospect, the GTK+ library is really intended to develop GUIs for non-real time applications,
such as editors, utilities, web browsers, and the like. Although its widget library is extensive,
most of them are more useful for the manipulation of text or data and not of images. It was an
improvement over Motif, in that the library is easier to use and results in cleaner code, but because
of its function as a wrapper for the X windowing system, GTK+ is much slower than a raw X
window.

The results of the IJCAI ’03 competition were promising. The Swarthmore Robotics Team placed
2nd, behind the team from the Idaho National Labs (INEEL). INEEL’s robot, an RWI ATRV Jr.,
was a superior hardware platform, with greater ground clearance, more powerful motors, and a very
expensive sensor package that included a laser rangefinder and a FLIR (forward-looking infrared)
camera. Their system allowed them to enter more difficult areas of the test arena, finding victims
in the Orange and Red Arenas that earned more points.

Although we did not win, the competition was definitely a success. We had a significant lead in
points over the next team, and were capable of quickly finding victims in the Yellow Arena.

2.1 Project History 10

2.1.3 Winter 2004

In February of 2004, Fritz and I had the opportunity to take our robots down to the NIST (National
Institute of Standards and Technology) site in Gaithersburg, MD to participate in an HRI usability
study of USR teleoperation interfaces. The study was run by Jean Scholtz from NIST, Jill Drury
from MITRE, and Holly Yanco from the University of Massachusetts - Lowell [5]. The team from
INEEL was also invited to test their interface.

The NIST USR Test Arena, when it is not traveling to a robotics conference for a competition, is
set up in an abandoned bunker on the NIST site. In addition to the engineered difficulties of the
course, our Magellan robots faced a new environmental condition: cold temperatures. We were
plagued by numerous hardware failures, including a brake relay broken by the cold and battery
operating cycles of less than 15 minutes.

The subjects of this study were all first responders (EMTs, firefighters, etc.), but none of them had
had any robot teleoperation experience. Although our system barely worked due to the temperature
problems, I learned a lot about what parts of the current interface design were lacking.

2.1.4 Summer 2004

The idea for the new version of Robobot was first conceived on the back of a napkin at an Italian
restaurant in Vienna, Austria. At the time, it consisted only of the relationships between widgets,
viewports, and visualizers, and how the fit together inside of their parent view. This overall object
hierarchy was implemented in Robobot, and still exists in Rune today, although the actual imple-
mentation is considerably more complicated. This part of the architecture is discussed thoroughly
in Section4 on Page16.

I implemented this version of Robobot using the Simple DirectMedia Layer library, an open source
graphics library intended for use in video games. It is fast and responsive, and contains support
for USB joysticks. An example screenshot, from during the competition at the 2004 American
Association for Artificial Intelligence conference, is shown in Figure4 on Page4.

Fritz developed GCM and Robomon over this summer as well, which significantly changed the
communication layer of our architecture, as discussed in Section3.1 on Page13. Robobot was
an integral part of these changes, since they both grew together. Fritz also developed a new Nav
module, and Prof. Maxwell added image compression capabilities to SVM that markedly increased
our video framerate. Since we have found that the video is so central to the use of Robobot and
Rune, this was a very important improvement.

It would not be out of line to claim that the Swarthmore Robotics Team destroyed the competition
in the AAAI ’04 USR event. The new Nav module made our old little Magellans fast; Robomon
and its management abilities made our system more stable and fast to recover from a crash; the
SDL library, combined with the new compression in SVM, made the entire interface much more
responsive. We were getting closer and closer to our goals.

2.2 Inspiration 11

Figure 4: Alpha: Robobot 2004

2.1.5 Fall 2004

Most recently, as part of his CS thesis, Fritz made several changes to Robomon. The most impor-
tant of these was the addition of capabilities, which define what a robot can do in a more general
and more granular fashion than modules. These new developments are covered in Section3.3 on
Page15.

2.2 Inspiration

The design of Rune is a synthesis of ideas from several different sources. I spent most of 2003
really learning what the whole task was about. While I did successfully develop a teleoperation
interface, it was certainly not the best configuration. We had the opportunity to be exposed to
several other interface designs, as well as to meet several people who do significant research in the
field of HRI.

I started development from scratch in 2004, with new ideas about how Robobot should look, how
it should function, how it should be configured, and how it should be controlled. All of those
influences are discussed in this section.

2.2.1 Look and Feel

The primary design inspiration for the user interface comes from first-person shooter (FPS) video
games, such asUnreal Tournament[6]. We have explored this paradigm thoroughly in our recent
publications [7][8].

While it may seem unusual to take cues from a game that consists largely of killing virtual people
and apply ideas to a case where we try to save people, the tasks are fundamentally the same. In
the game, as in a simulated USR environment, the user is searching a complex three-dimensional

2.2 Inspiration 12

environment for targets while attempting to achieve a goal.

In addition to the similarity between their respective tasks, FPS games also demonstrate the state
of the art when it comes to real-time interfaces for interacting with a 3-D virtual environment.
Players want their in-game characters to be as carefully controlled as their own physical movement
in reality.

Because of our desire to make the system function as much like a video game as possible, the
video from the robot’s onboard camera has been the primary interface element throughout all of
the versions of the interface, starting with the simplest designs from four years ago. Humans rely
heavily on visual input to navigate our world, so we believe that it makes sense for us to rely
heavily on visual input to teleoperate a camera-equipped robot in a remote environment.

2.2.2 Control

As discussed in Section1.3.1 on Page3, a GUI requires some sort of tactile interface. In my
observations of interface use by non-developers during the winter of 2004 (Sec.2.1.3, pp. 10),
most of the study participants strongly preferred the joystick-based interface used by the team
from INEEL to our keyboard- and mouse-based interface.

For many people, the joystick is a much more intuitive interface. Moving the joystick in a direction
produces the expected movement from the robot. At one of our robot demonstrations held during
the Fall of 2004, a small child under the age of six learned how to operate the robot, and within
5 minutes was explaining to adults how to use the joystick element of the interface. This was the
point at which we knew that we had chosen the correct direction.

2.2.3 Philosophy

The mantra of this project has been abstraction. Rune’s code uses object-oriented programming
techniques to maintain a consistent set of operations on a structure by structure basis. The point
is to, as much as possible, leave the user and even the developer at the high level of widgets,
viewports, and visualizers. The lower level aspects of the code should only need to be understood
by those individuals who wish to add new functionality.

Rune is also meant to be extremely configurable. Rune’s entire state is defined by an external
XML configuration file. All of the relationships between widgets, handlers, visualizers, robots,
capabilities, and all of the other objects are defined in that file. This means that, with even the
limited number of defined widgets and visualizers we have already, there are a tremendous number
of possible interface layouts and configurations.

The configurability idea was inspired in a large part by the work of Holly Yanco, particularly that
which has focused on developing better USR interfaces [9]. Her research and the work of Jean
Scholtz and Jill Drury has given me, and the Swarthmore Robotics Team in general, a lot of useful
input regarding the design of HRI GUIs and in particular those used in USR.

3 SYSTEM ARCHITECTURE 13

3 System Architecture

As described in Section1.2on Page2, there are three components that are critical to a functional
teleoperation system. In this section, I will describe the communication layer and the methods
by which it connects and manages all of the other modules in the system, including the interface
module. Rune itself is described in greater detail in the next section, Section4 on Page16. The
physical robots will also be discussed briefly. The overall architecture is based on the REAPER
system, also developed at Swarthmore [10].

3.1 Communication Layer

3.1.1 CMU IPC

The communication between all of the software modules is conducted using CMU IPC, an inter-
process communication library developed at Carnegie Mellon University [11]. IPC uses sockets,
so it can connect software modules on a single computer or across a network. IPC passes messages
that contain packed data structures that are broadcast to all modules connected to the IPC server
and subscribed to the message type. However, the message formats must be defined by the modules
before they can be used.

One of the biggest problems we have had in using IPC has been in cross-platform configurations.
When processes that run on different architectures try to send fixed length messages, data can come
out of order due to endianness issues, or the data can be packed differently due to the size of the
addressable units of memory. We have had intermittent problems in getting Rune running on Mac
OS X (on a PowerPC architecture) communicating completely successfully with an instance of
central running under Linux (on an IA32 architecture).

3.1.2 GCM

In order to standardize the communication between the various modules, and to provide the capa-
bility of sending common commands to any module, Fritz developed the General Communication
Module (GCM). GCM is not technically a module in its own right, but rather a library that all
other modules depend on at compile-time. In addition to defining a common set of messages,
GCM also defines the set of available module capabilities for use with Robomon. The GCM li-
brary provides a set of utility functions as well, including logging functions, two-dimensional data
compression/decompression functions, and basic message handling functions [12].

3.1.3 Robomon

The top-most level of the communication layer is the module control and management module,
Robomon. Robomon runs as a daemon on the robot, and is responsible for starting and stopping
modules as needed. When Robomon first starts up, it determines what capabilities are available
by querying configured modules for their capability listings. As capabilities are requested, the

3.2 Standard Modules 14

Figure 5: Rune Communication Layer

Robomon daemon starts and stops the relevant modules. Robomon can also automatically restart
modules in the event of a crash, and even replace an unavailable module with a new module that
has an equivalent capability set [12].

The entire communication layer, consisting of these three software modules/libraries, can be con-
sidered to be a single monolithic module/library, as shown in Figure5 on Page14. For convenience
and consistency, I will refer to this as Robomon, although technically Robomon is only the topmost
part of the layer. From the point of view of Rune, Robomon does appear to be a single module
control and management system that provides standardized communication with and control of all
software modules in the Swarthmore Robotics Team codebase.

As you can see, this communication layer fulfills the “robust communication” criterion specified
in Section1.2on Page2.

3.2 Standard Modules

As the architecture of the overall system in use by the Swarthmore Robotics Team has grown more
powerful and robust, so have the individual software modules that do most of the work when the
robots are in operation. The modules described in this subsection include a mapping module (Sec.
3.2.1, pp. 15), a navigation module (Sec.3.2.2, pp. 15), and a vision module (Sec.3.2.3, pp. 15).
When these modules are connected together through the Robomon communication layer, the only
thing that they lack is something to control them and give their capabilities a purpose.

Fritz is currently developing a simple control module that has been code-named Pinky. Pinky is
intended to function as a basic brain, an autonomous real-time control module that can take input
from the other modules, make decisions based upon that input, and direct the actions of the other
modules in a cohesive manner. However, since that module is not yet mature, a human operator is
still required to perform most actions.

As you will see, all of these modules, when functioning as a unit on a single robot, fulfill the

3.3 Capabilities 15

“modular software architecture” criterion specified in Section1.2on Page2.

3.2.1 Mapping Module

The Swarthmore Mapping Module is the most out of date of all of the software modules running
on the robot. Since our physical robots rely on sonar and infrared range sensors to detect obstacles,
and use dead reckoning odometry derived from wheel encoders, the map data is unfortunately
effectively useless. The module has been made compatible with recent changes in Robomon, and
it does have support for capabilities. A new version of the SMM daemon,smmd, will be developed
over the course of the next year by other students.

3.2.2 Navigation Module

The Swarthmore Navigation Module was completely rewritten last year by Fritz. The new version
of the SNM daemon,snmd, utilizes the velocity space method [13] of obstacle avoidance. It is a
much more responsive navigation module, and it is better suited to use with some sort of autonomy
module.

Since Nav was created for use with the RWI Magellan robots, the basic data on which it operates
has not significantly changed. It still used Mage to communicate with the robot’s rFlex controller
board, although a Mage replacement, ArchMage, is currently under development.

3.2.3 Vision Module

The Swarthmore Vision Module has been primarily developed by Prof. Maxwell, although a non-
trivial amount of functionality has been added by students over the last few years. I have recently
updated SVM to be compliant with the recent changes to Robomon. This included moving some
image and two-dimensional data functionality into GCM, which is appropriate given that GCM is
where all image-related messages are defined.

I have also made changes to Rune so that it no longer depends directly on SVM but still has
the functionality for controlling SVM’s behavior through the communication layer. Reducing
dependencies is a key aspect of meeting the “modular software architecture” criterion.

3.3 Capabilities

Capabilities are a description of what a given robot (and therefore, a given instance of Robomon)
can do. A robot’s list of capabilities informs the user what actions that robot can perform, and what
data that robot can provide.

Representing the software on a robot in terms of capabilities instead of modules has several useful
features. The first is that the representation is more granular: a capability is a very specific thing,
associated with only one type of action or data. Contrast this with a module, which is typically a

3.4 Other Robots 16

large piece of software dedicated to an entire category of actions and their associated data. Con-
sider, for example, all of the different types of motion that could be programmed into the navigation
module of just a wheeled robot. Add into the mix other robot platforms, and the number of actions
that could be performed by each navigation module grows.

The second major feature of capabilities is that they are considerably more general. The func-
tionality of a module tends to change from version to version, as new features are added, unused
features are removed, and bugs are fixed. A capability, because it is more granular, can apply to
any number of modules that can perform the relevant action or provide the relevant data.

All of the capabilities that are defined in the Swarthmore Robotics Team’s architecture are a part
of GCM. This ensures that all GCM-compliant software modules can use capabilities, and that a
single standard set of capabilities is maintained for internal consistency.

3.4 Other Robots

The application of this system architecture to two totally different hardware platforms, the blimp
and submarine, have developed two totally different navigation modules. Unfortunately, there was
not time to complete the integration of Rune with these two systems before the academic portions
of all three of these Senior Design Projects were due. It is my hope to finish the integration step
over the next few weeks so that the Swarthmore Robotics Team can have a complete Land-Sea-Air
robot rescue team.

4 Rune

Rune is the Robot-User Nexus, a highly configurable robot teleoperation interface that allows a
single human operator to remotely control one or more robots intuitively and efficiently. An alpha
version of this interface was tested by me extensively in the robot USR competition at AAAI ’04
in San Jose, CA.

If it has not yet been made clear, Rune is the name of the beta version of the Swarthmore Robotics
Team’s teleoperation interface. Robobot was renamed to Rune mostly to remove all references to a
fairly stupidly-named piece of software. The name Rune fits in thematically with a lot of the other
software created as part of the team’s codebase, such as Mage (which is derived from Magellan,
the type of robot it runs on) and ArchMage (the planned successor to Mage, which is both greater
than Mage and a “bridge” between systems). Rune can also be considered to stand for its full title,
the Robot-User Nexus, literally, the place where the robot and the user come together.

4.1 Objects

As mentioned briefly before in Section2.2.3on Page12, Rune consists of four primary abstract
objects. These are the view, the viewports, their visualizers, and their widgets. All of these are
discussed in the following subsections.

4.1 Objects 17

Figure 6: Rune Abstract Object Hierarchy

Technically, Rune’s own state object should be the root of the tree. The Rune object keeps track
of the main view, some important SDL pointers used in drawing to the screen, such as a text font,
and a list of connected robots and joysticks. These aspects of Rune’s internal configuration are
explained in greater detail in the appendices.

4.1.1 View

The view is only step removed from the root of Rune’s object tree, which contains Rune’s state.
The view is the main window and drawing area, which can either be windowed or zoomed into
full screen mode. The preferred mode of operation is full screen, because my experience as a USR
operator has shown that an absence of background data improves my perception of the foreground
data.

The view can contain any number of viewports, as well as any number of global widgets. There are
some logical limitations to this, in the sense that Rune would be fairly useless if it were configured
not to display anything. On the opposite extreme, clogging the main view with viewports would
both make them all illegible and make the entire interface completely unresponsive as it wasted
resources redrawing so many GUI elements.

The global widgets are always active; that is, since they are not associated with a particular view-
port, they cannot be disabled except through global state changes. Since most useful widgets need
to be able to send messages, as described below, there are very few global widgets. One example
would be a quit widget, which is a fairly useful one to have defined. There are no hard-coded
widgets of any kind, a reminder of the fact that Rune is completely configurable.

4.1 Objects 18

4.1.2 Viewport

A viewport is a single drawable area contained within the view. The area could be as large as the
view itself, or cover just a small portion of the view. No viewport is allowed to be completely
outside of the bounds of the view, but they can be partially out-of-bounds.

Each viewport is associated with only one of Rune’s robot connections. Since each viewport is
independent, theoretically the single view could contain data from multiple robots. This feature
has yet to be tested, although the architecture is completely defined.

Each viewport can contain some number of widgets. Since a viewport is associated with a robot,
the functionality of all of these widgets is generally also associated with that robot. In some cases,
the widgets could be used solely to modify the state of the viewport.

A viewport is a fairly abstract data structure. It has a position and size, but most of the work is
performed by its child visualizer and widgets. In addition to a viewport’s(x; y) position in the
parent view, it can also have a z-position. This is essentially a layer number where larger z-values
are “more in front” than smaller (or even negative) z-values. This allows viewports to overlap,
but to have the order in which they are drawn be well-defined. If the data drawn into a viewport
contains an color-keyed alpha channel, then the viewport is composited correctly onto any layers
that may be behind it.

4.1.3 Visualizer

A visualizer does the dirty work of converting a specific type of arbitrary data into a representation
that can be drawn onscreen, specifically, in the area of the parent viewport. Each visualizer is
associated with a type of message by using the message’s string name. These messages can be
either an IPC message received from the parent viewport’s associated robot, or an internal message
received from a state-modifying widget.

The generic handler assigned to each message finds matching visualizers, and then passes the
message off to those visualizers’ associated visualization functions. Each visualization function
can draw something, typically a representation of some part of the data contained in the message,
into the visualizer’s parent viewport.

The list of visualization functions is defined in the source code, as are the visualization functions
themselves. As such, adding new types of visualizers requires access to the source code, plus a
successful recompilation after the addition.

4.1.4 Widget

Widgets come in two varieties, state-modifying and message-passing, and can be located either
within a specific viewport or globally within the view. A widget can both modify state and pass a
message, and there is no limit on the number of modifications a single widget handler can make,
or on the number of messages that a single widget handler can send.

A widget has a very simple function: when an event that matches its configuration is received, its

4.2 Processes 19

associated handler is called on that event. The handler does whatever processing is necessary and
then modifies Rune’s state or passes a message as appropriate.

A set of utility objects, namely joysticks, controls, and events, are loosely associated with widgets
to help define a given widget’s set of matching input events. These too are all defined in the
configuration file.

State-modifying widgets manipulate some sort of data that is internal to Rune. One example would
be a widget that modifies the data structure that is associated with a query-response message. The
widget modifies the query so that the response changes appropriately.

Most widgets, however, are of the message-passing variety, since they can send commands to
modify the state of the robot according to operator input.

The list of widget handlers is defined in the source code, as are the widget handlers themselves.
As such, adding new types of widgets requires access to the source code, plus a successful recom-
pilation after the addition.

4.2 Processes

There are four major processes that operate in Rune. The first is the SDL event loop, which
handles user input. The second is one or more IPC listen loops, which handle received messages.
The third is the screen refresh loop, which checks for updated visualizers and draws them to their
parent viewports, and in turn to the root view and the actual screen buffer. The fourth and final
set of processes are those individual timers associated with different capabilities. They are called
regularly, as defined by their timeouts, and perform the action that is defined in the source for them.

When an SDL event is popped off of the event stack, its type is checked. If it is a quit event,
then Rune cleans up after itself and quits. The quit event can be pushed onto the event stack
by the window manager (i.e. with the close window decoration) or by a defined and instantiated
quit widget. All other event types are then compared against the events desired by all global
and viewport widgets. When a matching widget is found, that event information, along with the
matching widget are passed off to that widget’s handler, which takes the appropriate action

When Rune receives a broadcast IPC message, the IPC library first checks to see if the interface
module is subscribed to that message type. If it is, the message is passed to the IPC handler that
subscribed to it, or the handler that was associated with a responding message’s query. There
are some specialized handlers, such as those that are subscribed to GCM common commands, or
Robomon capability listings and module info. The vast majority of messages, however, namely
those intended for a visualizer, are passed to a generic fixed length or variable length message
handler.

The variable and fixed length message handlers function identically, with the exception of how
they handle message data unpacking and message freeing. These functions are naturally different
because of the different message formats. The IPC handler determines the robot that originated the
message, and then checks all of the visualizers whose parent viewport is associated with that robot.
If any visualizer desires the incoming message, it is passed off to that visualizer’s visualization
function, along with the matching visualizer.

5 FUTURE WORK 20

The timer for screen updates is actually associated with Rune’s one and only capability,
CON_REAL, for real-time control. The main view is only updated if the data in any of the vi-
sualizers has changed. Because of the limitations of network bandwidth, this general means the
screen update function is running at a much higher frequency that the effective refresh rate. This
guarantees that newly visualized information is drawn to the screen as soon as it arrives.

If a visualizer has been updated, the entire screen is wiped, and all of the viewports are re-blitted,
that is, copied byte-for-byte, into the screen buffer. The entire screen has to be redrawn to guarantee
that all transparency effects are drawn properly.

Finally, we have the assorted event timers that are associated with individual capabilities. These
are used to query the modules associated with those capabilities for certain types of data. A query-
response model is used here so that network bandwidth is not wasted on the transmission of data
that Rune would have to ignore because it was not ready to receive it. Smaller state messages are
generally broadcast on a regular basis, but any message whose data structure is larger than a few
entries is generally a candidate for query-response instead of broadcast.

5 Future Work

I have made significant progress in the development of the software modules for which I am re-
sponsible. I have also contributed to the overall integration of the entire Swarthmore Robotics
Team system architecture. There are still interesting avenues of research and design that remain
open to future student work.

5.1 Interface Testing

Given the highly configurable nature of Rune, we hope that it will play an important role in future
HRI studies. Such studies were an important inspiration (Sec.2.2, pp. 11) for the design of Rune
in the first place, as Rune was designed expressly with HRI researchers in mind.

The first of these experiments will begin in only a few weeks, under the direction of Dr. Holly
Yanco and her team at UMass-Lowell. They intend to test a large number of possible interface
configurations on subjects of all experience levels. This will allow the HRI community to obtain a
lot more data regarding efficient interface designs for robot teleoperation.

5.2 Multi-Robot Teleoperation

Although I successfully operated two robots simultaneously during the USR competition at the
AAAI ’04 conference, the multi-robot control was achieved by setting up a simple time-sharing
hack in the interface. With true multi-robot support now a part of Rune, and with the addition
of new robot platforms (the blimp and the submarine), we should soon be able to demonstrate
a unified Land-Sea-Air robot team controlled by a single human teleoperator. That achievement
would be a truly impressive one, and would clearly demonstrate that the system we have developed
is highly flexible and extensible.

5.3 Distribution 21

The blimp and submarine projects, like most other Senior Design Projects, have just now reached
the end of their development cycle. I believe that there would be sufficient motivation to finish the
last few integration steps to successfully deploy the Swarthmore Robot Rescue Team.

5.3 Distribution

Once the last few changes are made, Rune will be ready for distribution. With all of the modules
cleaned up, we can create a set of install scripts and package the modules and their documentation
for distribution from the Swarthmore Robotics Team’s website, http://robotics.swarthmore.edu/.

I look forward to seeing how many people choose to try out our software once it is made readily
and freely available.

5.4 Updates

It is my intention to maintain Rune for as long as I can, while simultaneously instructing future
developers in its use. I understand that Rune, as a piece of software, is not a static creation. I hope
that many others will help it grow into something even more powerful and flexible than it already
is. I hope that the design philosophy I used when I created Rune remains to leave an impression
on those future students who pick up where I have left off.

6 Conclusion

This project, over its two-year duration, has become the dominant aspect of my Swarthmore expe-
rience. Although I am happy and proud to see it reach this solid completion point, I know too that
I will miss this work.

The first set of long-term goals of the Swarthmore Robotics Team have finally been met. We
now have a stable foundation on which future generations of team members can build new and
interesting projects. As per the three criteria of this task, we have a robust communication system,
a modular architecture, and an intuitive interface.

Rune, and its previous Robobot incarnations, has proven itself repeatedly in use. The
Robomon/GCM architecture will allow Rune to continue to be adapted to more and more tele-
operated robot systems.

The Robot-User Nexus is ready to accept input.

7 Bibliography

REFERENCES 22

References

[1] J. Scholtz, J. Young, J. L. Drury, and H. A. Yanco, “Evaluation of human-robot interaction
awareness in search and rescue,” inProceedings of the 2004 IEEE International Conference
on Robotics and Automation, vol. 3, New Orleans, LA, Apr. 26–01, 2004, pp. 2327–2332.4

[2] D. R. Olsen and M. A. Goodrich, “Metrics for evaluating human-robot interactions,” inPro-
ceedings of the 2003 Performance Metrics for Intelligent Systems Workshop. Gaithersburg,
MD: National Institute of Standards and Technology, Sept. 16–18, 2003.4

[3] A. Jacoff, B. A. Weiss, and E. Messina. (2005) Nist reality arena. [Online]. Available:
http://www.isd.mel.nist.gov/projects/USAR/Reality%5FArena/6

[4] D. van Heesch. Doxygen. [Online]. Available:http://www.stack.nl/%7Edimitri/doxygen/7

[5] H. A. Yanco, J. L. Drury, and J. Scholtz, “Beyond usability evaluation: Analysis of human-
robot interaction at a major robotics competition,”Human-Computer Interaction, vol. 19, no.
1 and 2, pp. 117–149, 2004.7, 10

[6] Unreal Tournament. Epic Games Inc, 1999.11

[7] B. A. Maxwell, N. Ward, and F. Heckel, “A configurable interface and software architecture
for robot rescue,” inAAAI ’04: Proceedings of the Nineteenth National Conference on Arti-
ficial Intelligence, Sixteenth Conference on Innovative Applications of Artificial Intelligence,
San Jose, CA, July 25–29, 2004.11

[8] ——, “A human-robot interface for urban search and rescue,” inProceedings of the Eigh-
teenth International Joint Conference on Artificial Intelligence, Acapulco, Mexico, Aug. 09–
15, 2003. 11

[9] M. Baker, R. Casey, B. Keyes, and H. A. Yanco, “Improved interfaces for human-robot inter-
action in urban search and rescue,” inProceedings of the 2004 IEEE International Conference
on Systems, Man, and Cybernetics, vol. 3, The Hague, Netherlands, Oct. 10–13, 2004, pp.
2960–2965.12

[10] B. A. Maxwell, L. A. Meeden, N. S. Addo, P. Dickson, N. Fairfield, N. Johnson, E. G. Jones,
S. Kim, P. Malla, M. Murphy, B. Rutter, and E. Silk, “Reaper: A reflexive architecture for
perceptive agents,”AI Magazine, pp. 53–66, 2001.13

[11] R. Simmons and D. James,Inter-Process Communication: A Reference Manual, Mar. 2001.
13

[12] F. Heckel and B. A. Maxwell, “A framework for increased reliability and inter-operability
of robot software modules,” inProceedings of the International Conference on Intelligent
Robots and Systems, Edmonton, Canada, Aug. 02–06, 2005, submitted.13, 14

[13] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision avoidance,”
IEEE Robotics and Automation Magazine, vol. 4, no. 1, pp. 23–33, Mar. 1997.15

http://www.isd.mel.nist.gov/projects/USAR/Reality%5FArena/
http://www.stack.nl/%7Edimitri/doxygen/

A RUNE DATA STRUCTURE REFERENCE 23

A Rune Data Structure Reference

A.1 Capability Struct Reference

#include <rune.h >

Collaboration diagram for Capability:

Capability

Robot

wantCaps robot

Rune

robots

Widget

robot

Viewport

robot

rune

Joystick

rune

View

rune

joysticks

Control

joystick

Event

joystick

controls

control

view

view

view

widgets

widgets

events

viewports

viewport

Visualizer

viewportvisualizer

Font

drawingFont

Data Fields

• Robot � robot
• GCM_Capabilitycap
• SDL_TimerID� timers
• int nTimers
• bool ready
• void � state
• void � query

A.1 Capability Struct Reference 24

A.1.1 Detailed Description

Defines the configuration for a given robot Capability data structure.

Definition at line 243 of file rune.h.

A.1.2 Field Documentation

A.1.2.1 GCM_Capability Capability::cap

The GCM-defined capability with which this Capability data structure is associated.

Definition at line 252 of file rune.h.

Referenced by parseRobot().

A.1.2.2 int Capability::nTimers

The number of timers in use by this capability.

Definition at line 262 of file rune.h.

Referenced by initCapability().

A.1.2.3 void� Capability::query

Arbitrary data query associated with the capability.

Definition at line 274 of file rune.h.

Referenced by getCapabilityQuery(), initCapability(), parseRobot(), timerRequestImage(), timer-
RequestMap(), and timerRequestRobotState().

A.1.2.4 bool Capability::ready

Whether or not the capability is available and active on the robot.

Definition at line 266 of file rune.h.

Referenced by parseRobot().

A.1.2.5 Robot� Capability::robot

A pointer to the Capability’s parentRobot(p.37).

Definition at line 247 of file rune.h.

Referenced by handleMessageFixed(), handleMessageVariable(), parseRobot(), timerRequest-
Image(), timerRequestMap(), timerRequestRobotState(), timerSendKeepAlive(), and timer-
UpdateView().

A.2 CommonRequest Struct Reference 25

A.1.2.6 void� Capability::state

Arbitrary state data associated with the capability.

Definition at line 270 of file rune.h.

Referenced by getCapabilityState(), initCapability(), and parseRobot().

A.1.2.7 SDL_TimerID� Capability::timers

An array of IDs of timers associated with this capability. They are optionally used to set a timeout
between regular events thatRune(p.40) processes for this capability.

Definition at line 258 of file rune.h.

Referenced by initCapability().

The documentation for this struct was generated from the following file:

• rune.h

A.2 CommonRequest Struct Reference

#include <rune.h >

Data Fields

• boolhandled
• GCM_Common_RequestData� request

A.2.1 Detailed Description

Defines common request data associated with a capability.

Definition at line 280 of file rune.h.

A.2.2 Field Documentation

A.2.2.1 bool CommonRequest::handled

Whether or not this particular robot state request has been handled.

Definition at line 284 of file rune.h.

Referenced by initCapability(), timerRequestMap(), timerRequestRobotState(), visualizeMap-
Data(), and visualizeRangeData().

A.3 Control Struct Reference 26

A.2.2.2 GCM_Common_RequestData� CommonRequest::request

The robot state request message that will be sent over IPC.

Definition at line 288 of file rune.h.

Referenced by initCapability(), timerRequestMap(), and timerRequestRobotState().

The documentation for this struct was generated from the following file:

• rune.h

A.3 Control Struct Reference

#include <rune.h >

Collaboration diagram for Control:

Control

Joystick

controls

Event

control

joystick

Rune

joysticks

joystick

rune

View

rune

Robot

rune

view

Widget

view

Viewport

view

widgets

widgets

robots

robot

Capability

robotrobot wantCaps

events

viewports

viewport

Visualizer

viewport visualizer

Font

drawingFont

Data Fields

• Joystick � joystick
• ControlType type
• charname[256]

A.3 Control Struct Reference 27

• int index
• boolcalibrate
• int min
• int max
• bool invert

A.3.1 Detailed Description

Defines the configuration for a single control of a logical joystick.

This single unified structure handles all control types: axes, balls, buttons, and hat switches.

Definition at line 297 of file rune.h.

A.3.2 Field Documentation

A.3.2.1 bool Control::calibrate

Whether or not this Control should be manually calibrated. True if calibration is required. Applies
to axis-type controls only.

Definition at line 319 of file rune.h.

Referenced by parseControl().

A.3.2.2 int Control::index

The integer index of this Control; this maps onto the type-appropriate control array of the logical
joystick.

Definition at line 314 of file rune.h.

Referenced by parseControl(), and parseEvent().

A.3.2.3 bool Control::invert

Whether or not this Control’s direction should be inverted. Applies to axis-type controls only.

Definition at line 334 of file rune.h.

Referenced by parseControl(), widgetSetImageRequest(), and widgetSetSpeed().

A.3.2.4 Joystick� Control::joystick

A pointer to the Control’s parentJoystick(p.35).

Definition at line 301 of file rune.h.

Referenced by initJoysticks(), and parseJoystick().

A.4 Event Struct Reference 28

A.3.2.5 int Control::max

The maximum threshold for this Control. Applies to axis-type controls only.

Definition at line 329 of file rune.h.

Referenced by parseControl(), widgetSetImageRequest(), and widgetSetSpeed().

A.3.2.6 int Control::min

The minimum threshold for this Control. Applies to axis-type controls only.

Definition at line 324 of file rune.h.

Referenced by parseControl(), widgetSetImageRequest(), and widgetSetSpeed().

A.3.2.7 char Control::name[256]

The convenience name of this Control, specified in the configuration file.

Definition at line 309 of file rune.h.

Referenced by parseControl(), parseEvent(), and widgetSetSpeed().

A.3.2.8 ControlType Control::type

The enumerated type of this Control.

Definition at line 305 of file rune.h.

Referenced by parseControl(), parseEvent(), and widgetSetImageRequest().

The documentation for this struct was generated from the following file:

• rune.h

A.4 Event Struct Reference

#include <rune.h >

Collaboration diagram for Event:

A.4 Event Struct Reference 29

Event

Widget

events

Control

control

Joystick

controls

joystick

joystick

Rune

joysticksrune

View

rune

Robot

rune

view

view

Viewport

view

widgets

widgets

robots

robot

Capability

robotrobot wantCaps

viewports

viewport

Visualizer

viewport visualizer

Font

drawingFont

Data Fields

• SDL_Event� event
• Joystick � joystick
• Control � control
• void � options

A.4.1 Detailed Description

Associates an SDL event with aJoystick(p.35) and Control (p.26) configuration to determine
which events should go to which handlers.

Definition at line 341 of file rune.h.

A.4.2 Field Documentation

A.4.2.1 Control� Event::control

The specific joystick control that may be associated with this event.

Definition at line 353 of file rune.h.

Referenced by parseEvent().

A.4.2.2 SDL_Event� Event::event

The SDL event whose parameters are used to match events.

A.5 Font Struct Reference 30

Definition at line 345 of file rune.h.

Referenced by parseEvent().

A.4.2.3 Joystick� Event::joystick

The logical joystick configuration that may be associated with this event.

Definition at line 349 of file rune.h.

Referenced by parseEvent().

A.4.2.4 void� Event::options

Arbitrary options associated with this Event.

Definition at line 357 of file rune.h.

Referenced by parseEvent().

The documentation for this struct was generated from the following file:

• rune.h

A.5 Font Struct Reference

#include <rune.h >

Data Fields

• charfilename[256]
• int size
• TTF_Font� font

A.5.1 Detailed Description

Stores a TrueType font and some metadata, including the path to the font file and the desired point
size of the font.

Definition at line 364 of file rune.h.

A.5.2 Field Documentation

A.5.2.1 char Font::filename[256]

The path to the TTF file.

Definition at line 368 of file rune.h.

A.6 HatSwitchBindings Struct Reference 31

Referenced by runRune().

A.5.2.2 TTF_Font� Font::font

A pointer to the opened font data structure.

Definition at line 376 of file rune.h.

Referenced by runRune().

A.5.2.3 int Font::size

The size in points to use when rendering the font.

Definition at line 372 of file rune.h.

Referenced by runRune().

The documentation for this struct was generated from the following file:

• rune.h

A.6 HatSwitchBindings Struct Reference

#include <rune.h >

Data Fields

• doubleup
• doubleright
• doubledown
• doubleleft

A.6.1 Detailed Description

Defines a set of value bindings for a directional hat switch.

Definition at line 382 of file rune.h.

A.6.2 Field Documentation

A.6.2.1 double HatSwitchBindings::down

The value reported when the hat switch is pressed down.

Definition at line 394 of file rune.h.

A.7 ImageRequest Struct Reference 32

A.6.2.2 double HatSwitchBindings::left

The value reported when the hat switch is pressed left.

Definition at line 398 of file rune.h.

A.6.2.3 double HatSwitchBindings::right

The value reported when the hat switch is pressed right.

Definition at line 390 of file rune.h.

A.6.2.4 double HatSwitchBindings::up

The value reported when the hat switch is pressed up.

Definition at line 386 of file rune.h.

The documentation for this struct was generated from the following file:

• rune.h

A.7 ImageRequest Struct Reference

#include <rune.h >

Data Fields

• boolhandled
• GCM_Image_Request� request

A.7.1 Detailed Description

Defines image request data associated with a VIS_VID capability.

Definition at line 404 of file rune.h.

A.7.2 Field Documentation

A.7.2.1 bool ImageRequest::handled

Whether or not this particular image request has been handled.

Definition at line 408 of file rune.h.

Referenced by initCapability(), timerRequestImage(), and visualizeCameraImage().

A.8 InterestPoint Struct Reference 33

A.7.2.2 GCM_Image_Request� ImageRequest::request

The image request message that will be sent over IPC.

Definition at line 412 of file rune.h.

Referenced by initCapability(), and timerRequestImage().

The documentation for this struct was generated from the following file:

• rune.h

A.8 InterestPoint Struct Reference

#include <rune.h >

Data Fields

• GCM_Map_Interest_Typetype
• doublex
• doubley

A.8.1 Detailed Description

Defines an interest point that may be associated with a PRO_MAP capability.

Definition at line 418 of file rune.h.

A.8.2 Field Documentation

A.8.2.1 GCM_Map_Interest_Type InterestPoint::type

The type of the point.

Definition at line 422 of file rune.h.

Referenced by widgetQuit(), widgetSetLandmark(), and widgetSetVictim().

A.8.2.2 double InterestPoint::x

Global x-position of the point in meters.

Definition at line 426 of file rune.h.

Referenced by widgetCorrectLandmark(), widgetSetLandmark(), and widgetSetVictim().

A.9 InterestPoints Struct Reference 34

A.8.2.3 double InterestPoint::y

Global y-position of the point in meters.

Definition at line 430 of file rune.h.

Referenced by widgetCorrectLandmark(), widgetSetLandmark(), and widgetSetVictim().

The documentation for this struct was generated from the following file:

• rune.h

A.9 InterestPoints Struct Reference

#include <rune.h >

Collaboration diagram for InterestPoints:

InterestPoints

InterestPoint

landmarks
victims

Data Fields

• InterestPoint �� landmarks
• int nLandmarks
• InterestPoint �� victims
• int nVictims

A.9.1 Detailed Description

Defines two resizable arrays for holding victim and landmark data inInterestPoint(p.33) format.

Definition at line 437 of file rune.h.

A.9.2 Field Documentation

A.9.2.1 InterestPoint�� InterestPoints::landmarks

The array of landmark points

Definition at line 441 of file rune.h.

A.10 Joystick Struct Reference 35

A.9.2.2 int InterestPoints::nLandmarks

The number of landmarks in the array

Definition at line 445 of file rune.h.

Referenced by widgetCorrectLandmark(), and widgetSetLandmark().

A.9.2.3 int InterestPoints::nVictims

The number of victims in the array

Definition at line 453 of file rune.h.

Referenced by widgetSetVictim().

A.9.2.4 InterestPoint�� InterestPoints::victims

The array of victim points

Definition at line 449 of file rune.h.

The documentation for this struct was generated from the following file:

• rune.h

A.10 Joystick Struct Reference

#include <rune.h >

Collaboration diagram for Joystick:

A.10 Joystick Struct Reference 36

Joystick

Control

joystick

Rune

joysticks

Event

joystick

controls

control

rune

View

rune

Robot

rune

view

Widget

view

Viewport

view

widgets

widgets

robots

robot

Capability

robot robotwantCaps

events

viewports

viewport

Visualizer

viewport visualizer

Font

drawingFont

Data Fields

• Rune� rune
• charconfig [256]
• SDL_Joystick� joystick
• Control �� controls
• int nControls

A.10.1 Detailed Description

Defines the configuration for a logical joystick.

The distinction between a "physical joystick" and a "logical joystick" is as follows: the physical
joystick is the one connected to the computer that is used by the human operator; the logical
joystick is the internal representation of that connection and configuration.

Definition at line 464 of file rune.h.

A.10.2 Field Documentation

A.10.2.1 char Joystick::config[256]

A.11 Robot Struct Reference 37

The name of this joystick configuration.

Definition at line 472 of file rune.h.

Referenced by parseEvent(), and parseJoystick().

A.10.2.2 Control�� Joystick::controls

The array of control configurations for this joystick.

Definition at line 480 of file rune.h.

Referenced by parseEvent(), and parseJoystick().

A.10.2.3 SDL_Joystick� Joystick::joystick

A pointer to an open SDL joystick connection.

Definition at line 476 of file rune.h.

Referenced by parseJoystick().

A.10.2.4 int Joystick::nControls

The number of controls configured for this joystick.

Definition at line 484 of file rune.h.

Referenced by parseEvent(), and parseJoystick().

A.10.2.5 Rune� Joystick::rune

A pointer to the Joysticks’s parentRune(p.40).

Definition at line 468 of file rune.h.

The documentation for this struct was generated from the following file:

• rune.h

A.11 Robot Struct Reference

#include <rune.h >

Collaboration diagram for Robot:

A.11 Robot Struct Reference 38

Robot

Capability

robot

Rune

robots

Widget

robot

Viewport

robot

wantCapsrune

Joystick

rune

View

rune

joysticks

Control

joystick

Event

joystick

controls

control

view

view

view

widgets

widgets events

viewports

viewport

Visualizer

viewportvisualizer

Font

drawingFont

Data Fields

• Rune� rune
• charname[256]
• charhostname[256]
• IPC_CONTEXT_PTRcontext
• Capability � wantCaps[TOTAL_CAPS]
• GCM_Common_CapabilitieshaveCaps
• GCM_Variable_ModuleInfomoduleInfo

A.11.1 Detailed Description

Defines the configuration for an individual robot.

The robot state data, namely the position and orientation, and the camera state, should probably
not be a part of this structure.

Definition at line 493 of file rune.h.

A.11.2 Field Documentation

A.11.2.1 IPC_CONTEXT_PTR Robot::context

A pointer to an IPC context identifier that defines the IPC connection associated with this robot.

Definition at line 510 of file rune.h.

Referenced by handleMessageFixed(), handleMessageVariable(), timerRequestImage(), timer-
RequestMap(), timerRequestRobotState(), timerSendKeepAlive(), widgetCorrectLandmark(),
widgetSetLandmark(), widgetSetSpeed(), widgetSetVictim(), and widgetToggleNightMode().

A.11 Robot Struct Reference 39

A.11.2.2 GCM_Common_Capabilities Robot::haveCaps

The capabilities available on this robot, as reported by Robomon.

Definition at line 518 of file rune.h.

Referenced by handleMessageCapabilities(), and parseRobot().

A.11.2.3 char Robot::hostname[256]

The robot’s network hostname, used for the IPC connection.

Definition at line 505 of file rune.h.

Referenced by parseRobot(), and runRune().

A.11.2.4 GCM_Variable_ModuleInfo Robot::moduleInfo

The modules running on this robot, as reported by Robomon.

Definition at line 522 of file rune.h.

Referenced by parseRobot().

A.11.2.5 char Robot::name[256]

The short name of the robot.

Definition at line 501 of file rune.h.

Referenced by parseRobot().

A.11.2.6 Rune� Robot::rune

A pointer to the Robot’s parentRune(p.40).

Definition at line 497 of file rune.h.

Referenced by handleMessageFixed(), handleMessageVariable(), timerRequestImage(), timer-
RequestMap(), timerRequestRobotState(), timerSendKeepAlive(), and timerUpdateView().

A.11.2.7 Capability� Robot::wantCaps[TOTAL_CAPS]

The capabilities desired for this robot.

Definition at line 514 of file rune.h.

Referenced by handleMessageCapabilities(), and parseRobot().

The documentation for this struct was generated from the following file:

• rune.h

A.12 Rune Struct Reference 40

A.12 Rune Struct Reference

#include <rune.h >

Collaboration diagram for Rune:

Rune

Joystick

rune

View

rune

Robot

runejoysticks

Control

joystick

Event

joystick

controls

controlview

Widget

view

Viewport

view

widgets

widgets

robots

robot

Capability

robot

robot

wantCaps

events

viewports

viewport

Visualizer

viewport visualizer

Font

drawingFont

Data Fields

• GCM_Module_IPC_Datadata
• GCM_ModuleInfoinfo
• int runNumber
• bool running
• Robot �� robots
• int nRobots
• View � view
• SDL_Surface� screen
• Joystick �� joysticks
• int nJoysticks
• Font drawingFont

A.12 Rune Struct Reference 41

A.12.1 Detailed Description

Stores module data for an instance of Rune.

Definition at line 528 of file rune.h.

A.12.2 Field Documentation

A.12.2.1 GCM_Module_IPC_Data Rune::data

Module name and process ID.

Definition at line 532 of file rune.h.

Referenced by checkIPC(), handleMessageCommon(), main(), quitRune(), runRune(), and timer-
SendKeepAlive().

A.12.2.2 Font Rune::drawingFont

The font loaded for on-screen drawing.

Definition at line 572 of file rune.h.

Referenced by runRune().

A.12.2.3 GCM_ModuleInfo Rune::info

Module information, including capabilities and state.

Definition at line 536 of file rune.h.

Referenced by handleMessageCommon(), main(), and runRune().

A.12.2.4 Joystick�� Rune::joysticks

The array of configured logical joysticks.

Definition at line 564 of file rune.h.

A.12.2.5 int Rune::nJoysticks

The number of configured logical joysticks.

Definition at line 568 of file rune.h.

A.12.2.6 int Rune::nRobots

The number of robots in use.

Definition at line 552 of file rune.h.

Referenced by runRune().

A.13 View Struct Reference 42

A.12.2.7 Robot�� Rune::robots

The array ofRobot(p.37) data structure pointers.

Definition at line 548 of file rune.h.

Referenced by runRune(), and timerSendKeepAlive().

A.12.2.8 bool Rune::running

Whether or not this Rune instance is currently active.

Definition at line 544 of file rune.h.

Referenced by handleMessageFixed(), handleMessageLocal(), handleMessageVariable(), main(),
quitRune(), runRune(), timerRequestImage(), timerRequestMap(), timerRequestRobotState(),
timerSendKeepAlive(), and timerUpdateView().

A.12.2.9 int Rune::runNumber

The run number of this Rune instance. Specified in the configuration file.

Definition at line 540 of file rune.h.

A.12.2.10 SDL_Surface� Rune::screen

The SDL surface for the entire screen.

Definition at line 560 of file rune.h.

Referenced by runRune().

A.12.2.11 View� Rune::view

The mainView(p.42) data structure.

Definition at line 556 of file rune.h.

Referenced by handleMessageFixed(), handleMessageLocal(), handleMessageVariable(), and run-
Rune().

The documentation for this struct was generated from the following file:

• rune.h

A.13 View Struct Reference

#include <rune.h >

Collaboration diagram for View:

A.13 View Struct Reference 43

View

Widget

view

Rune

view

Viewport

view

widgets

widgets

Robot

robot

Capability

robot

robots

robot

wantCaps

rune

rune

Joystick

rune joysticks

Control

joystick

Event

joystick

controls

control

Font

drawingFont

events

viewports

viewport

Visualizer

viewport visualizer

Data Fields

• Rune� rune
• bool fullscreen
• int xsize
• int ysize
• Widget �� widgets
• int nWidgets
• Viewport �� viewports
• int nViewports

A.13.1 Detailed Description

The root of the visual display.

The View has a size that corresponds to its fullscreen or windowed display size. If it is in windowed
mode, positioning is handled by the window manager. There can be only one view per application
instance at this time.

A View contains some number of Widgets and Viewports. Events handled by View Widgets affect
the entire application, as opposed to just their parentViewport (p.45). Viewports are display areas
located within the View’s rectangle.

Definition at line 586 of file rune.h.

A.13 View Struct Reference 44

A.13.2 Field Documentation

A.13.2.1 bool View::fullscreen

Whether the view is in fullscreen or windowed mode. True is fullscreen.

Definition at line 594 of file rune.h.

Referenced by parseView(), and runRune().

A.13.2.2 int View::nViewports

The number of Viewports contained within the View.

Definition at line 620 of file rune.h.

Referenced by parseView(), and runRune().

A.13.2.3 int View::nWidgets

The number of Widgets contained within the View.

Definition at line 612 of file rune.h.

Referenced by parseView().

A.13.2.4 Rune� View::rune

A pointer to the View’s parentRune(p.40).

Definition at line 590 of file rune.h.

Referenced by handleMessageLocal().

A.13.2.5 Viewport�� View::viewports

The array of Viewports contained within the View.

Definition at line 616 of file rune.h.

Referenced by handleMessageFixed(), handleMessageLocal(), handleMessageVariable(), parse-
View(), and runRune().

A.13.2.6 Widget�� View::widgets

The array of Widgets contained within the View.

Definition at line 608 of file rune.h.

Referenced by parseView().

A.13.2.7 int View::xsize

A.14 Viewport Struct Reference 45

Width of the View in pixels. This cannot exceed the pixel width of the physical screen’s current
resolution setting.

Definition at line 599 of file rune.h.

Referenced by parseView(), parseViewport(), and runRune().

A.13.2.8 int View::ysize

Height of the View in pixels. This cannot exceed the pixel height of the physical screen’s current
resolution setting.

Definition at line 604 of file rune.h.

Referenced by parseView(), parseViewport(), and runRune().

The documentation for this struct was generated from the following file:

• rune.h

A.14 Viewport Struct Reference

#include <rune.h >

Collaboration diagram for Viewport:

Viewport

Widget

viewport

View

viewports Visualizer

viewportwidgets

widgets

view

view

Rune

view rune

Joystick

rune

Robot

rune joysticks

Control

joystick

Event

joystick

controls

control

robot

robot

robots

Capability

robotwantCaps

Font

drawingFont

events

visualizer

Data Fields

• View � view

A.14 Viewport Struct Reference 46

• boolvisible
• int transparency
• int xsize
• int ysize
• int xpos
• int ypos
• int zpos
• Robot � robot
• Widget �� widgets
• int nWidgets
• Visualizer � visualizer
• boolupdated

A.14.1 Detailed Description

An individual data display area.

A Viewport contains some number of Widgets and aVisualizer(p.48). Events handled by the
Widgets affect just their parent Viewport. Visualizers convert arbitrary data into image data that
can be drawn into the Viewport.

Definition at line 630 of file rune.h.

A.14.2 Field Documentation

A.14.2.1 int Viewport::nWidgets

The number of Widgets contained within the Viewport.

Definition at line 676 of file rune.h.

Referenced by parseViewport().

A.14.2.2 Robot� Viewport::robot

A pointer to the robot with which this Viewport is associated.

Definition at line 668 of file rune.h.

Referenced by handleMessageFixed(), handleMessageLocal(), handleMessageVariable(), parse-
Viewport(), widgetCorrectLandmark(), widgetSetLandmark(), widgetSetSpeed(), widgetSet-
Victim(), and widgetToggleNightMode().

A.14.2.3 int Viewport::transparency

Alpha channel value, from 0 to 255, for the entire Viewport.

A.14 Viewport Struct Reference 47

Definition at line 642 of file rune.h.

Referenced by parseViewport().

A.14.2.4 bool Viewport::updated

Whether or not newly Visualized data is available for drawing.

Definition at line 684 of file rune.h.

Referenced by handleMessageFixed(), handleMessageLocal(), and handleMessageVariable().

A.14.2.5 View� Viewport::view

A pointer to the Viewport’s parentView(p.42).

Definition at line 634 of file rune.h.

Referenced by parseView(), and parseViewport().

A.14.2.6 bool Viewport::visible

Whether or not the Viewport is currently visible. True if visible.

Definition at line 638 of file rune.h.

Referenced by handleMessageFixed(), handleMessageLocal(), handleMessageVariable(), and
parseViewport().

A.14.2.7 Visualizer� Viewport::visualizer

The Viewport’sVisualizer(p.48), which renders data for display.

Definition at line 680 of file rune.h.

Referenced by handleMessageFixed(), handleMessageLocal(), handleMessageVariable(), parse-
Viewport(), and updateViewport().

A.14.2.8 Widget�� Viewport::widgets

The array of Widgets contained within the Viewport.

Definition at line 672 of file rune.h.

Referenced by parseViewport().

A.14.2.9 int Viewport::xpos

Horizontal position in pixels relative to left side of the parentView(p.42).

Definition at line 656 of file rune.h.

A.15 Visualizer Struct Reference 48

Referenced by parseViewport(), widgetCorrectLandmark(), widgetSetLandmark(), and widgetSet-
Victim().

A.14.2.10 int Viewport::xsize

Width of the Viewport in pixels. This cannot exceed the pixel width of the parentView(p.42).

Definition at line 647 of file rune.h.

Referenced by parseViewport(), widgetCorrectLandmark(), widgetSetLandmark(), and widgetSet-
Victim().

A.14.2.11 int Viewport::ypos

Vertical position in pixels relative to top of the parentView(p.42).

Definition at line 660 of file rune.h.

Referenced by parseViewport(), widgetCorrectLandmark(), widgetSetLandmark(), and widgetSet-
Victim().

A.14.2.12 int Viewport::ysize

Height of the Viewport in pixels. This cannot exceed the pixel height of the parentView(p.42).

Definition at line 652 of file rune.h.

Referenced by parseViewport(), widgetCorrectLandmark(), widgetSetLandmark(), and widgetSet-
Victim().

A.14.2.13 int Viewport::zpos

The depth layer of the Viewport. Larger values are further in front.

Definition at line 664 of file rune.h.

Referenced by compareViewports(), and parseViewport().

The documentation for this struct was generated from the following file:

• rune.h

A.15 Visualizer Struct Reference

#include <rune.h >

Collaboration diagram for Visualizer:

A.15 Visualizer Struct Reference 49

Visualizer

Viewport

visualizer viewport

Widget

viewport

View

viewports

widgets

widgets

view

view

Rune

view rune

Joystick

rune

Robot

runejoysticks

Control

joystick

Event

joystick

controls

control

robot

robot

robots

Capability

robot wantCaps

Font

drawingFont

events

Data Fields

• Viewport � viewport
• int xsize
• int ysize
• VisualizerFunction function
• charmessage[256]
• doubleoption
• SDL_Surface� surface
• void � data

A.15.1 Detailed Description

Converts arbitrary data into visual data that can be drawn into a parentViewport (p.45).

Definition at line 691 of file rune.h.

A.15.2 Field Documentation

A.15.2.1 void� Visualizer::data

A pointer to the arbitrary incoming data, from IPC orRune(p.40).

Definition at line 724 of file rune.h.

A.15 Visualizer Struct Reference 50

Referenced by handleMessageFixed(), handleMessageLocal(), handleMessageVariable(), and
parseVisualizer().

A.15.2.2 VisualizerFunction Visualizer::function

A pointer to the visualization function that does the actual data conversion work.

Definition at line 708 of file rune.h.

Referenced by handleMessageFixed(), handleMessageLocal(), handleMessageVariable(), and
parseVisualizer().

A.15.2.3 char Visualizer::message[256]

The name of the messages to which this Visualizer listens.

Definition at line 712 of file rune.h.

Referenced by handleMessageFixed(), handleMessageLocal(), and handleMessageVariable().

A.15.2.4 double Visualizer::option

An arbitrary numerical value associated with this Visualizer.

Definition at line 716 of file rune.h.

Referenced by parseVisualizer().

A.15.2.5 SDL_Surface� Visualizer::surface

An SDL drawing area for rendering the Visualizer’s incoming data.

Definition at line 720 of file rune.h.

Referenced by parseVisualizer(), and updateViewport().

A.15.2.6 Viewport� Visualizer::viewport

A pointer to the Visualizer’s parentViewport (p.45).

Definition at line 695 of file rune.h.

Referenced by handleMessageFixed(), handleMessageLocal(), handleMessageVariable(), parse-
Viewport(), and parseVisualizer().

A.15.2.7 int Visualizer::xsize

Width in pixels of the resulting visual data.

Definition at line 699 of file rune.h.

Referenced by parseVisualizer().

A.16 Widget Struct Reference 51

A.15.2.8 int Visualizer::ysize

Height in pixels of the resulting visual data.

Definition at line 703 of file rune.h.

Referenced by parseVisualizer().

The documentation for this struct was generated from the following file:

• rune.h

A.16 Widget Struct Reference

#include <rune.h >

Collaboration diagram for Widget:

Widget

View

widgets

Viewport

widgets

view

Rune

view

view

rune

Joystick

rune

Robot

rune joysticks

Control

joystick

Event

joystick

controls

control

robot

robots

Capability

robotrobot wantCaps

Font

drawingFont

viewport

viewports

Visualizer

viewport visualizer

events

Data Fields

• Viewport � viewport
• View � view
• WidgetHandler handler
• Event �� events
• int nEvents
• Robot � robot
• void � history

A.16 Widget Struct Reference 52

A.16.1 Detailed Description

Responds to SDL events.

Definition at line 730 of file rune.h.

A.16.2 Field Documentation

A.16.2.1 Event��Widget::events

An array of events whose parameters are used to match against events that should be handled by
this Widget.

Definition at line 747 of file rune.h.

Referenced by parseWidget().

A.16.2.2 WidgetHandler Widget::handler

The pointer to the handler function that does the actual event handling.

Definition at line 742 of file rune.h.

Referenced by parseWidget().

A.16.2.3 void�Widget::history

Arbitrary data stored from the last event handled by this Widget.

Definition at line 760 of file rune.h.

Referenced by parseWidget().

A.16.2.4 int Widget::nEvents

The number of events registered with this Widget.

Definition at line 751 of file rune.h.

Referenced by parseWidget().

A.16.2.5 Robot�Widget::robot

A pointer to the robot with which this Widget is associated.

Todo
Figure out how to not have this pointer here.

Definition at line 756 of file rune.h.

B RUNE FUNCTION REFERENCE 53

A.16.2.6 View�Widget::view

A pointer to the Widget’s parentView(p.42), if any.

Definition at line 738 of file rune.h.

Referenced by parseView(), and parseWidget().

A.16.2.7 Viewport�Widget::viewport

A pointer to the Widget’s parentViewport (p.45), if any.

Definition at line 734 of file rune.h.

Referenced by parseViewport(), and parseWidget().

The documentation for this struct was generated from the following file:

• rune.h

B Rune Function Reference

B.1 capability.c File Reference

#include <rune.h >

Include dependency graph for capability.c:

B.1 capability.c File Reference 54

capability.c rune.h

stdio.h

stdlib.h

math.h

stdbool.h

unistd.h

string.h

time.h

SDL.h

SDL_rotozoom.h

SDL_gfxPrimitives.h

SDL_ttf.h

SDL_image.h

libxml/parser.h

libxml/relaxng.h

ipc.h

GCM.h

robomon.h

Functions

• boolcheckCapabilities(Robot �robot)
• void freeCapability (Capability �capability)
• void freeCapabilities (Robot �robot)
• void freeGCMCapabilities (GCM_Common_Capabilities�caps)
• GCM_CapabilitygetCapability (char�name)
• char� getCapabilityName(GCM_Capability cap)
• void � getCapabilityQuery (Robot �robot, GCM_Capability cap)
• void � getCapabilityState(Robot �robot, GCM_Capability cap)
• char� getCapabilityString (GCM_Capability cap)
• GCM_ModuleInfo� getModuleWithCapability (Robot �robot, GCM_Capability cap)
• void initCapability (Capability �capability)

B.1.1 Detailed Description

Contains functions for initializing and managing GCM_Capability related data structures and the
robot software modules with which they are associated.

B.1 capability.c File Reference 55

Author:
Nicolas Ward ’05

Date:
2005.03.30

Definition in filecapability.c.

B.1.2 Function Documentation

B.1.2.1 bool checkCapabilities (Robot� robot)

Check if all of the capabilities desired for this robot are actually available and active.

The status of robot capabilities is reported by Robomon, handled elsewhere, and stored in the
Robot(p.37) data structure.

Parameters:
 robot A pointer to this robot’sRobot(p.37) data structure.

Returns:
True if all modules on the given robot are ready, false otherwise.

Author:
Nicolas Ward ’05

Definition at line 24 of file capability.c.

References getCapabilityName(), and getModuleWithCapability().

Referenced by checkIPC().

Here is the call graph for this function:

checkCapabilities

getCapabilityName

getModuleWithCapability

B.1.2.2 void freeCapabilities (Robot� robot)

Frees an array ofCapability (p.23) data structures.

Parameters:
 robot TheRobot(p.37) structure whoseCapability (p.23) array is being freed.

Author:
Nicolas Ward ’05

B.1 capability.c File Reference 56

Definition at line 116 of file capability.c.

References freeCapability().

Referenced by freeRobot().

Here is the call graph for this function:

freeCapabilities freeCapability getCapabilityString

B.1.2.3 void freeCapability (Capability � capability)

Frees aCapability (p.23) data structure and all of its children.

Parameters:
 capability TheCapability (p.23) structure being freed.

Author:
Nicolas Ward ’05

Todo
Add freeing of capability state.

Todo
Free children of capability query and state properly.

Definition at line 69 of file capability.c.

References getCapabilityString().

Referenced by freeCapabilities().

Here is the call graph for this function:

freeCapability getCapabilityString

B.1.2.4 void freeGCMCapabilities (GCM_Common_Capabilities� caps)

Free the arrays in a GCM_Common_Capabilities structure.

Parameters:
 caps A pointer to the structure whose members are to be freed.

Author:
Nicolas Ward ’05

Definition at line 139 of file capability.c.

Referenced by freeRobot().

B.1 capability.c File Reference 57

B.1.2.5 GCM_Capability getCapability (char � name)

Determines a GCM_Capability enumerated type value based on the equivalent string value.

Parameters:
 name The string name for the enumerated value.

Returns:
The enumerated capability value.

Author:
Nicolas Ward ’05

Definition at line 159 of file capability.c.

Referenced by parseRobot().

B.1.2.6 char� getCapabilityName (GCM_Capability cap)

Determines the name of a capability based on the GCM_Capability enumerated type.

Parameters:
 cap A GCM_Capability enumerated type.

Returns:
The string name of the input capability type.

Author:
Nicolas Ward ’05

Definition at line 248 of file capability.c.

Referenced by checkCapabilities(), checkIPC(), getCapabilityQuery(), getCapabilityState(),
handleMessageCapabilities(), initCapability(), and parseRobot().

B.1.2.7 void� getCapabilityQuery (Robot � robot, GCM_Capability cap)

Checks if the specified capability was configured, and then returns its associated query data.

Parameters:
 robot The robot whose capabilities are being searched.

 cap A GCM_Capability enumerated type whose query variable is desired.

Returns:
A pointer to the capability’s associated query variable.

B.1 capability.c File Reference 58

Definition at line 349 of file capability.c.

References getCapabilityName(), getCapabilityString(), and Capability::query.

Referenced by visualizeCameraImage(), visualizeMapData(), visualizeRangeData(), and widget-
SetImageRequest().

Here is the call graph for this function:

getCapabilityQuery

getCapabilityName

getCapabilityString

B.1.2.8 void� getCapabilityState (Robot� robot, GCM_Capability cap)

Checks if the specified capability was configured, and then returns its associated state data.

Parameters:
 robot The robot whose capabilities are being searched.

 cap A GCM_Capability enumerated type whose state variable is desired.

Returns:
A pointer to the capability’s associated state variable.

Definition at line 375 of file capability.c.

References getCapabilityName(), getCapabilityString(), and Capability::state.

Referenced by mapImageToWorld(), mapWorldToImage(), visualizeCameraImage(), visualize-
GroundPlane(), visualizeMapData(), visualizePanData(), visualizeRangeData(), visualizeTilt-
Data(), widgetCorrectLandmark(), widgetSetLandmark(), widgetSetSpeed(), and widgetSet-
Victim().

Here is the call graph for this function:

getCapabilityState

getCapabilityName

getCapabilityString

B.1.2.9 char� getCapabilityString (GCM_Capability cap)

Determines a longer description of a capability based on the GCM_Capability enumerated type.

Parameters:
 cap A GCM_Capability enumerated type.

B.1 capability.c File Reference 59

Returns:
The string description of the input capability type.

Author:
Nicolas Ward ’05

Definition at line 400 of file capability.c.

Referenced by checkIPC(), freeCapability(), getCapabilityQuery(), getCapabilityState(), handle-
MessageCapabilities(), and initCapability().

B.1.2.10 GCM_ModuleInfo� getModuleWithCapability (Robot � robot, GCM_Capability
cap)

Checks if the specified capability was configured, and then returns its associated query data.

Parameters:
 robot The robot whose modules and capabilities are being searched.

 cap A GCM_Capability enumerated type that will be used to find matching modules.

Returns:
A pointer to the GCM_ModuleInfo structure for the first module found that has the specified
capability.

Definition at line 503 of file capability.c.

Referenced by checkCapabilities(), initCapability(), widgetCorrectLandmark(), widgetSet-
Landmark(), widgetSetSpeed(), widgetSetVictim(), and widgetToggleNightMode().

B.1.2.11 void initCapability (Capability � capability)

Initializes aCapability (p.23) data structure based on its GCM_Capability enumerated type.

This function is called bycheckIPC()(p.103) after a successful connection to IPC central is made.
It expects that all types have been defined properly.

This function handles the initialization of all capabilities thatRune(p.40) knows about. For ex-
tensibility, it might be better to break the initialization step into multiple functions, and have this
function call those functions as necessary. It might make the code more readable.

Parameters:
 capability A pointer to theCapability (p.23) being initialized.

Todo
Maybe break this up into separate initializer functions?

B.2 event.c File Reference 60

Definition at line 531 of file capability.c.

References getCapabilityName(), getCapabilityString(), getModuleWithCapability(), Image-
Request::handled, CommonRequest::handled, handleMessageFixed(), Capability::nTimers, Capa-
bility::query, R_ALIVE_INTERVAL, R_IMAGE_INTERVAL, R_MAP_INTERVAL, R_NAV_-
INTERVAL, ImageRequest::request, CommonRequest::request, Capability::state, timerRequest-
Image(), timerRequestMap(), timerRequestRobotState(), Capability::timers, timerSendKeep-
Alive(), and timerUpdateView().

Referenced by checkIPC().

Here is the call graph for this function:

initCapability

getCapabilityName

getCapabilityString

getModuleWithCapability

handleMessageFixed

timerRequestImage

timerRequestMap

timerRequestRobotState

timerSendKeepAlive

timerUpdateView

handleMessageVariable

updateView

intersectViewports

updateViewport

B.2 event.c File Reference

#include <rune.h >

Include dependency graph for event.c:

B.2 event.c File Reference 61

event.c rune.h

stdio.h

stdlib.h

math.h

stdbool.h

unistd.h

string.h

time.h

SDL.h

SDL_rotozoom.h

SDL_gfxPrimitives.h

SDL_ttf.h

SDL_image.h

libxml/parser.h

libxml/relaxng.h

ipc.h

GCM.h

robomon.h

Functions

• boolcompareEvents(Event �event, SDL_Event�sdlEvent)
• char� getEventTypeString(int type)
• void handleEvent(SDL_Event�event,Rune�rune)

B.2.1 Detailed Description

Contains event handling and processing functions.

Author:
Nicolas Ward ’05

Date:
2005.03.19

Definition in fileevent.c.

B.2 event.c File Reference 62

B.2.2 Function Documentation

B.2.2.1 bool compareEvents (Event� event, SDL_Event� sdlEvent)

Compares the parameters of an SDL_Event that occurred with anEvent(p.28) configured as part
of aWidget(p.51).

Parameters:
 event The referenceEvent(p.28).

 sdlEvent The new SDL_event whose parameters are being checked.

Returns:
True if the input events are equivalent, false otherwise.

Author:
Nicolas Ward ’05

Definition at line 21 of file event.c.

References getKeyString(), and getModifierString().

Referenced by handleEvent().

Here is the call graph for this function:

compareEvents

getKeyString

getModifierString

B.2.2.2 char� getEventTypeString (int type)

Determines the string representation of an SDL_Event type.

Parameters:
 type The integer event type.

Returns:
The string name of that event type.

Author:
Nicolas Ward ’05

Definition at line 138 of file event.c.

Referenced by handleEvent(), and parseEvent().

B.3 handler.c File Reference 63

B.2.2.3 void handleEvent (SDL_Event� event, Rune� rune)

Processes SDL events and passes them off to the appropriate event handler.

Parameters:
 event The SDL event that triggered the handler.

 rune TheRune(p.40) data structure.

Author:
Nicolas Ward ’05

Definition at line 192 of file event.c.

References compareEvents(), getEventTypeString(), and quitRune().

Referenced by main(), and runRune().

Here is the call graph for this function:

handleEvent

compareEvents

getEventTypeString

quitRune

getKeyString

getModifierString

checkIPC

freeRune

quit

checkCapabilities getCapabilityName

getCapabilityString

handleMessageCapabilities

handleMessageCommon

handleMessageModuleInfo

initCapability

getModuleWithCapability

handleMessageFixed

timerRequestImage

timerRequestMap

timerRequestRobotState

timerSendKeepAlive

timerUpdateView

freeRobots

freeView

freeRobot

freeViewport

B.3 handler.c File Reference

#include <rune.h >

Include dependency graph for handler.c:

B.3 handler.c File Reference 64

handler.c rune.h

stdio.h

stdlib.h

math.h

stdbool.h

unistd.h

string.h

time.h

SDL.h

SDL_rotozoom.h

SDL_gfxPrimitives.h

SDL_ttf.h

SDL_image.h

libxml/parser.h

libxml/relaxng.h

ipc.h

GCM.h

robomon.h

Functions

• void handleMessageCapabilities(MSG_INSTANCE msgInstance, void�callData, void
�clientData)

• void handleMessageCommon(MSG_INSTANCE msgInstance, void�callData, void
�clientData)

• void handleMessageFixed(MSG_INSTANCE msgInstance, void�callData, void�client-
Data)

• void handleMessageLocal(Widget �widget, char�message, void�data)
• void handleMessageModuleInfo(MSG_INSTANCE msgInstance, void�callData, void
�clientData)

• void handleMessageVariable (MSG_INSTANCE msgInstance, void�callData, void
�clientData)

B.3.1 Detailed Description

Contains functions for handling incoming IPC messages.

B.3 handler.c File Reference 65

Author:
Nicolas Ward ’05

Date:
2005.03.30

Definition in filehandler.c.

B.3.2 Function Documentation

B.3.2.1 void handleMessageCapabilities (MSG_INSTANCEmsgInstance, void � callData,
void � clientData)

Handles Robomon capability listing messages.

Based on capHandler in the rmon-control interface.

Parameters:
 msgInstanceA unique IPC message ID.

 callData The GCM common command contained in the IPC message.

 clientData A pointer to a capabilities data structure.

Author:
Nicolas Ward ’05
Fritz Heckel ’05

Todo
Determine if not freeing causes a small memory leak.

Bug
Freeing the capabilities first causes a segfault.

Definition at line 25 of file handler.c.

References getCapabilityName(), getCapabilityString(), Robot::haveCaps, and Robot::wantCaps.

Referenced by checkIPC().

Here is the call graph for this function:

handleMessageCapabilities

getCapabilityName

getCapabilityString

B.3 handler.c File Reference 66

B.3.2.2 void handleMessageCommon (MSG_INSTANCEmsgInstance, void � callData, void
� clientData)

Handles GCM common command messages. If necessary,Rune(p.40) will respond with the
appropriate behavior.

Based on commonHandler in the skeleton module.

Parameters:
 msgInstanceA unique IPC message ID.

 callData The GCM common command contained in the IPC message.

 clientData A pointer to theRune(p.40) data structure.

Author:
Nicolas Ward ’05
Fritz Heckel ’05

Definition at line 100 of file handler.c.

References Rune::data, and Rune::info.

Referenced by checkIPC().

B.3.2.3 void handleMessageFixed (MSG_INSTANCEmsgInstance, void � callData, void �
clientData)

Processes fixed-length IPC messages from a robot module and passes them off to the appropriate
Visualizer(p.48), based on the module’s capabilities and the message type.

Parameters:
 msgInstanceA unique IPC message ID.

 callData The incoming fixed-length IPC message received from one of the robot modules.

 clientData A pointer to theRune(p.40) data structure.

Author:
Nicolas Ward ’05

Definition at line 165 of file handler.c.

References Robot::context, Visualizer::data, Visualizer::function, Visualizer::message, View-
port::robot, Capability::robot, Robot::rune, Rune::running, Viewport::updated, Rune::view, Visu-
alizer::viewport, View::viewports, Viewport::visible, and Viewport::visualizer.

Referenced by initCapability().

B.3 handler.c File Reference 67

B.3.2.4 void handleMessageLocal (Widget� widget, char � message, void � data)

Passes arbitrary data off to the appropriateVisualizer(p.48), based on the originatingWid-
get(p.51).

Parameters:
 widget The widget that sent this message

 messageThe string name of the message that was sent.

 data The arbitrary data associated with the message.

Author:
Nicolas Ward ’05

Definition at line 238 of file handler.c.

References Visualizer::data, Visualizer::function, Visualizer::message, Viewport::robot,
View::rune, Rune::running, Viewport::updated, Rune::view, Visualizer::viewport,
View::viewports, Viewport::visible, and Viewport::visualizer.

Referenced by widgetToggleNightMode().

B.3.2.5 void handleMessageModuleInfo (MSG_INSTANCEmsgInstance, void � callData,
void � clientData)

Handles Robomon module information messages.

Based on modHandler in the rmon-control interface.

Parameters:
 msgInstanceA unique IPC message ID.

 callData The GCM common command contained in the IPC message.

 clientData A pointer to a module information data structure.

Author:
Nicolas Ward ’05
Fritz Heckel ’05

Definition at line 309 of file handler.c.

Referenced by checkIPC().

B.3.2.6 void handleMessageVariable (MSG_INSTANCEmsgInstance, void � callData, void
� clientData)

Processes variable-length IPC messages from a robot module and passes them off to the appropriate
message handler, which should be aVisualizer(p.48).

B.4 interest.c File Reference 68

Parameters:
 msgInstanceA unique IPC message ID.

 callData The incoming variable-length IPC message received from one of the robot mod-
ules.

 clientData A pointer to theRune(p.40) data structure.

Author:
Nicolas Ward ’05

Definition at line 364 of file handler.c.

References Robot::context, Visualizer::data, Visualizer::function, Visualizer::message, View-
port::robot, Capability::robot, Robot::rune, Rune::running, Viewport::updated, Rune::view, Visu-
alizer::viewport, View::viewports, Viewport::visible, and Viewport::visualizer.

Referenced by timerRequestImage(), timerRequestMap(), and timerRequestRobotState().

B.4 interest.c File Reference

#include <rune.h >

Include dependency graph for interest.c:

B.4 interest.c File Reference 69

interest.c rune.h

stdio.h

stdlib.h

math.h

stdbool.h

unistd.h

string.h

time.h

SDL.h

SDL_rotozoom.h

SDL_gfxPrimitives.h

SDL_ttf.h

SDL_image.h

libxml/parser.h

libxml/relaxng.h

ipc.h

GCM.h

robomon.h

Functions

• void freeInterestPoints(InterestPoints�points)
• InterestPoint � interestLandmarkPeek (InterestPoints�points)
• void interestLandmarkPush (InterestPoints�points,InterestPoint �landmark)
• InterestPoint � interestVictimPeek (InterestPoints�points)
• void interestVictimPush (InterestPoints�points,InterestPoint �victim)

B.4.1 Detailed Description

Containsfunctions which operate onInterestPoint(p.33) andInterestPoints(p.34) data structures.

Author:
Nicolas Ward ’05

Date:
2005.04.29

Definition in file interest.c.

B.4 interest.c File Reference 70

B.4.2 Function Documentation

B.4.2.1 void freeInterestPoints (InterestPoints� points)

Frees anInterestPoints(p.34) data structure and all of its children.

Parameters:
 points TheInterestPoints(p.34) data structure being freed.

Author:
Nicolas Ward ’05

Definition at line 19 of file interest.c.

B.4.2.2 InterestPoint� interestLandmarkPeek (InterestPoints� points)

Gets the current landmark.

Parameters:
 points TheInterestPoints(p.34) data structure being examined.

Returns:
A pointer to the topmostInterestPoint(p.33).

Author:
Nicolas Ward ’05

Definition at line 46 of file interest.c.

Referenced by widgetCorrectLandmark().

B.4.2.3 void interestLandmarkPush (InterestPoints� points, InterestPoint � landmark)

Adds a new landmark.

Landmarks are used as waypoints in robot navigation, and can be used to correct erroneous robot
odometry. They are stored in a push-only stack.

Parameters:
 points TheInterestPoints(p.34) data structure being examined.

 landmark TheInterestPoint(p.33) data structure being added.

Author:
Nicolas Ward ’05

Definition at line 64 of file interest.c.

Referenced by widgetSetLandmark().

B.5 joystick.c File Reference 71

B.4.2.4 InterestPoint� interestVictimPeek (InterestPoints� points)

Gets the current victim.

Parameters:
 points TheInterestPoints(p.34) data structure being examined.

Returns:
A pointer to the topmostInterestPoint(p.33).

Author:
Nicolas Ward ’05

Definition at line 100 of file interest.c.

B.4.2.5 void interestVictimPush (InterestPoints� points, InterestPoint � victim)

Adds a new victim.

Victims are used as waypoints in robot navigation, and can be used to correct erroneous robot
odometry. They are stored in a push-only stack.

Parameters:
 points TheInterestPoints(p.34) data structure being examined.

 victim TheInterestPoint(p.33) data structure being added.

Author:
Nicolas Ward ’05

Definition at line 118 of file interest.c.

Referenced by widgetSetVictim().

B.5 joystick.c File Reference

#include <rune.h >

Include dependency graph for joystick.c:

B.5 joystick.c File Reference 72

joystick.c rune.h

stdio.h

stdlib.h

math.h

stdbool.h

unistd.h

string.h

time.h

SDL.h

SDL_rotozoom.h

SDL_gfxPrimitives.h

SDL_ttf.h

SDL_image.h

libxml/parser.h

libxml/relaxng.h

ipc.h

GCM.h

robomon.h

Functions

• void calibrateAxis (Joystick �joystick,Control �control,Rune�rune)
• int countControls (Joystick �joystick,ControlType type)
• Control � getJoystickControl (Joystick �joystick,ControlType type, int index)
• ControlType getJoystickControlType (char�name)
• void initJoysticks (Rune�rune)

B.5.1 Detailed Description

Contains functions configuring and connecting to a physical joystick attached to the client com-
puter.

Author:
Nicolas Ward ’05

Date:
2005.03.20

Definition in file joystick.c.

B.5 joystick.c File Reference 73

B.5.2 Function Documentation

B.5.2.1 void calibrateAxis (Joystick� joystick, Control � control, Rune� rune)

Handles user-controlled calibration of a single joystick axis.

User is prompted to move a specified axis to its maximum, press any button, move the axis to its
minimum, and press any button. This ensures that a given axes’ extrema are set properly.

Parameters:
 joystick A pointer to the configuration data structure for the logical joystick being cali-

brated.

 control A pointer to the configuration data structure for the axis-type control being cali-
brated.

 rune A pointer to theRune(p.40) data structure.

Author:
Nicolas Ward ’05

Todo
Try to get automatic calibration working.

Definition at line 28 of file joystick.c.

References drawText().

Referenced by initJoysticks().

Here is the call graph for this function:

calibrateAxis drawText

B.5.2.2 int countControls (Joystick� joystick, ControlType type)

Counts the number of controls configured for a given type.

Parameters:
 joystick A pointer to the configuration data structure for the logical joystick whose controls

are being counted.

 type The enumerated control type being counted.

Returns:
The integer count of the specified control type for the specified joystick.

Author:
Nicolas Ward ’05

B.5 joystick.c File Reference 74

Todo
Figure out why I was counting controls in a weird way.

Definition at line 100 of file joystick.c.

References JOYSTICK_CONTROL_NONE.

Referenced by initJoysticks(), and parseJoystick().

B.5.2.3 Control� getJoystickControl (Joystick� joystick, ControlType type, int index)

Selects a specific control from a joystick configuration.

Since all Controls are stored in a single array, the type and index for that type must be specified.

Parameters:
 joystick A pointer to the joystick configuration being queried.

 type The enumerated control type being requested.

 index The integer index into the logical joystick’s control array for the specified type.

Returns:
The matchingControl (p.26) configuration data structure.

Author:
Nicolas Ward ’05

Todo
Determine if this function is still necessary

Definition at line 138 of file joystick.c.

B.5.2.4 ControlType getJoystickControlType (char� name)

Hashes a joystick control type string to an enumerated type.

Parameters:
 name The string name for the control type being hashed.

Returns:
The enumerated control type.

Author:
Nicolas Ward ’05

Definition at line 162 of file joystick.c.

References JOYSTICK_CONTROL_AXIS, JOYSTICK_CONTROL_BALL, JOYSTICK_-
CONTROL_BUTTON, JOYSTICK_CONTROL_HAT_SWITCH, and JOYSTICK_CONTROL_-
NONE.

Referenced by parseControl().

B.6 joytest.c File Reference 75

B.5.2.5 void initJoysticks (Rune� rune)

Detects and initializes physical joysticks attached to the client computer.

Parameters:
$ rune A pointer to theRune(p.40) data structure.

Author:
Nicolas Ward ’05

Definition at line 189 of file joystick.c.

References calibrateAxis(), countControls(), Control::joystick, JOYSTICK_CONTROL_-
AXIS, JOYSTICK_CONTROL_BALL, JOYSTICK_CONTROL_BUTTON, and JOYSTICK_-
CONTROL_HAT_SWITCH.

Referenced by main(), and runRune().

Here is the call graph for this function:

initJoysticks

calibrateAxis

countControls

drawText

B.6 joytest.c File Reference

#include <rune.h >

Include dependency graph for joytest.c:

B.6 joytest.c File Reference 76

joytest.c rune.h

stdio.h

stdlib.h

math.h

stdbool.h

unistd.h

string.h

time.h

SDL.h

SDL_rotozoom.h

SDL_gfxPrimitives.h

SDL_ttf.h

SDL_image.h

libxml/parser.h

libxml/relaxng.h

ipc.h

GCM.h

robomon.h

Functions

• int main (int argc, char��argv)

B.6.1 Detailed Description

Contains a simple main loop to monitor a physical joystick connected to the client computer.

Author:
Nicolas Ward ’05

Date:
2005.03.20

Definition in file joytest.c.

B.6.2 Function Documentation

B.6.2.1 int main (int argc, char �� argv)

B.6 joytest.c File Reference 77

The main joystick querying function.

Checks command line arguments, allocates theRune(p.40) state data structures, parses the XML
configuration file, calls SDL initialization functions, and executes a joystick querying main loop.

Parameters:
 argc The number of command line arguments.

 argv The array of command line argument strings.

Returns:
0 on successful execution, -1 on error.

Author:
Nicolas Ward ’05

Definition at line 25 of file joytest.c.

References Rune::data, handleEvent(), Rune::info, initJoysticks(), parseDocument(), R_NAME,
and Rune::running.

Here is the call graph for this function:

main

handleEvent

initJoysticks

parseDocument

compareEvents

getEventTypeString

quitRune

getKeyString

getModifierString

checkIPC

freeRune

quit

checkCapabilities

getCapabilityName

getCapabilityStringhandleMessageCapabilities

handleMessageCommon

handleMessageModuleInfo

initCapability

freeRobots

freeView
calibrateAxis

countControls

drawText

parseFont

parseJoystick

parseRobot

parseView

validateDocument

parseControl getJoystickControlType

getCapability

parseViewport

parseWidget

parseVisualizer

B.7 keyboard.c File Reference 78

B.7 keyboard.c File Reference

#include <rune.h >

Include dependency graph for keyboard.c:

keyboard.c rune.h

stdio.h

stdlib.h

math.h

stdbool.h

unistd.h

string.h

time.h

SDL.h

SDL_rotozoom.h

SDL_gfxPrimitives.h

SDL_ttf.h

SDL_image.h

libxml/parser.h

libxml/relaxng.h

ipc.h

GCM.h

robomon.h

Functions

• int getButtonState(char�state)
• SDLKeygetKey (char�name)
• char� getKeyString (SDLKey key)
• SDLModgetModifier (char�name)
• char� getModifierString (SDLMod mod)

B.7.1 Detailed Description

Contains functions for converting between strings and enumerated types that are associated with
keyboard events.

B.7 keyboard.c File Reference 79

Author:
Nicolas Ward ’05

Date:
2005.03.21

Definition in filekeyboard.c.

B.7.2 Function Documentation

B.7.2.1 int getButtonState (char� state)

Deterimes the desired state of a button or key.

Parameters:
 state The string representation of the button or key’s state. This value will be either

"pressed" or "released".

Returns:
An enumerated integer value for the state. This value will be either SDL_PRESSED or SDL_-
RELEASED.

Author:
Nicolas Ward ’05

Definition at line 22 of file keyboard.c.

Referenced by parseEvent().

B.7.2.2 SDLKey getKey (char� name)

Determines the enumerated type of a key symbol based on the key name.

Parameters:
 name The string representation of the key.

Returns:
An enumerated type value for the key.

Author:
Nicolas Ward ’05

Definition at line 36 of file keyboard.c.

Referenced by parseEvent().

B.7 keyboard.c File Reference 80

B.7.2.3 char� getKeyString (SDLKey key)

Determines the name of a key based on the enumerated type of the key.

Parameters:
 key The integer key symbol.

Returns:
The string representation of the key.

Author:
Nicolas Ward ’05

Definition at line 427 of file keyboard.c.

Referenced by compareEvents().

B.7.2.4 SDLMod getModifier (char� name)

Determines the enumerated type of a key modifier based on the modifier name.

Parameters:
 name The string representation of the key modifier.

Returns:
An enumerated type value for the key modifier.

Author:
Nicolas Ward ’05

Definition at line 832 of file keyboard.c.

Referenced by parseEvent().

B.7.2.5 char� getModifierString (SDLMod mod)

Determines the names of key modifiers based on the bitwise ORed enumerated type of the modifier
keys.

Parameters:
 mod An bitwise ORed enumerated type value for the modifier keys.

Returns:
The string representation of the modifier keys.

Author:
Nicolas Ward ’05

Definition at line 877 of file keyboard.c.

Referenced by compareEvents(), and parseEvent().

B.8 main.c File Reference 81

B.8 main.c File Reference

#include <rune.h >

Include dependency graph for main.c:

main.c rune.h

stdio.h

stdlib.h

math.h

stdbool.h

unistd.h

string.h

time.h

SDL.h

SDL_rotozoom.h

SDL_gfxPrimitives.h

SDL_ttf.h

SDL_image.h

libxml/parser.h

libxml/relaxng.h

ipc.h

GCM.h

robomon.h

Functions

• int main (int argc, char��argv)

B.8.1 Detailed Description

Contains a placeholder main function.

Author:
Nicolas Ward ’05

Date:
2005.03.19

Definition in filemain.c.

B.9 robot.c File Reference 82

B.8.2 Function Documentation

B.8.2.1 int main (int argc, char �� argv)

This is a placeholder main function. Calls theRune(p.40) runtime function.

Parameters:
 argc The number of command line arguments.

 argv The array of command line argument strings.

Returns:
The return value of theRune(p.40) runtime funciton.

Author:
Nicolas Ward ’05

Definition at line 20 of file main.c.

References runRune().

Here is the call graph for this function:

main runRune

checkIPC

compareViewports

drawText

handleEvent

initJoysticks

parseDocument

B.9 robot.c File Reference

#include <rune.h >

Include dependency graph for robot.c:

B.9 robot.c File Reference 83

robot.c rune.h

stdio.h

stdlib.h

math.h

stdbool.h

unistd.h

string.h

time.h

SDL.h

SDL_rotozoom.h

SDL_gfxPrimitives.h

SDL_ttf.h

SDL_image.h

libxml/parser.h

libxml/relaxng.h

ipc.h

GCM.h

robomon.h

Functions

• boolcheckIPC (Robot �robot)
• void freeModuleInfo (GCM_Variable_ModuleInfo�moduleInfo)
• void freeRobot (Robot �robot)
• void freeRobots(Rune�rune)

B.9.1 Detailed Description

Contains functions for configuring and operating onRobot(p.37) data structures.

Author:
Nicolas Ward ’05

Date:
2005.03.21

Definition in file robot.c.

B.9 robot.c File Reference 84

B.9.2 Function Documentation

B.9.2.1 bool checkIPC (Robot� robot)

Checks ifRune(p.40) is connected to IPC on a particular robot. If it isn’t connected,Rune(p.40)
will try to connect to IPC on that robot and initialize the connection and other robot data.

Based on smdCheckIPC in the skeleton module.

Parameters:
 robot A pointer to theRobot(p.37) whose connection is being checked.

Returns:
True if IPC is connected, false otherwise.

Author:
Nicolas Ward ’05
Fritz Heckel ’05

Todo
Get the capability request working.

Definition at line 26 of file robot.c.

References checkCapabilities(), Rune::data, getCapabilityName(), getCapabilityString(),
handleMessageCapabilities(), handleMessageCommon(), handleMessageModuleInfo(), and
initCapability().

Referenced by quitRune(), runRune(), widgetAdjustPan(), widgetAdjustPanTilt(), widgetAdjust-
Tilt(), widgetAdjustZoom(), widgetHomePTZ(), widgetSetSpeed(), and widgetToggleNight-
Mode().

Here is the call graph for this function:

checkIPC

checkCapabilities

getCapabilityName

getCapabilityStringhandleMessageCapabilities

handleMessageCommon

handleMessageModuleInfo

initCapability

getModuleWithCapability

handleMessageFixed

timerRequestImage

timerRequestMap

timerRequestRobotState

timerSendKeepAlive

timerUpdateView

handleMessageVariable

updateView

intersectViewports

updateViewport

B.9 robot.c File Reference 85

B.9.2.2 void freeModuleInfo (GCM_Variable_ModuleInfo � moduleInfo)

Frees the contents of an array of GCM_ModuleInfo structures.

Parameters:
 moduleInfo A pointer to a GCM_Variable_ModuleInfo structure whose contents is being

freed

Author:
Nicolas Ward ’05

Todo
Add status printouts.

Definition at line 168 of file robot.c.

Referenced by freeRobot().

B.9.2.3 void freeRobot (Robot� robot)

Frees aRobot(p.37) data structure and all of its children.

Parameters:
 robot TheRobot(p.37) structure being freed.

Author:
Nicolas Ward ’05

Definition at line 187 of file robot.c.

References freeCapabilities(), freeGCMCapabilities(), and freeModuleInfo().

Referenced by freeRobots().

Here is the call graph for this function:

freeRobot

freeCapabilities

freeGCMCapabilities

freeModuleInfo

freeCapability getCapabilityString

B.9.2.4 void freeRobots (Rune� rune)

Frees an array ofRobot(p.37) data structures.

Parameters:
 rune A pointer to theRune(p.40) data structure.

B.10 rune.c File Reference 86

Author:
Nicolas Ward ’05

Definition at line 221 of file robot.c.

References freeRobot().

Referenced by freeRune().

Here is the call graph for this function:

freeRobots freeRobot

freeCapabilities

freeGCMCapabilities

freeModuleInfo

freeCapability getCapabilityString

B.10 rune.c File Reference

#include <rune.h >

Include dependency graph for rune.c:

rune.c rune.h

stdio.h

stdlib.h

math.h

stdbool.h

unistd.h

string.h

time.h

SDL.h

SDL_rotozoom.h

SDL_gfxPrimitives.h

SDL_ttf.h

SDL_image.h

libxml/parser.h

libxml/relaxng.h

ipc.h

GCM.h

robomon.h

B.10 rune.c File Reference 87

Functions

• void freeRune(Rune�rune)
• int runRune (int argc, char��argv)
• void quitRune (Rune�rune)

B.10.1 Detailed Description

Contains the primary runtime functions forRune(p.40).

Author:
Nicolas Ward ’05

Date:
2005.03.19

Definition in file rune.c.

B.10.2 Function Documentation

B.10.2.1 void freeRune (Rune� rune)

Frees aRune(p.40) data structure and all of its children.

Parameters:
 rune TheRune(p.40) structure being freed.

Author:
Nicolas Ward ’05

Definition at line 18 of file rune.c.

References freeRobots(), and freeView().

Referenced by quitRune().

Here is the call graph for this function:

freeRune

freeRobots

freeView

freeRobot

freeCapabilities

freeGCMCapabilities

freeModuleInfo

freeCapability getCapabilityString

freeViewport

freeVisualizer

B.10 rune.c File Reference 88

B.10.2.2 void quitRune (Rune� rune)

Closes IPC connections, deallocates data structures, and quitsRune(p.40).

Called by the SDL main event loop when a quit event is received.

Parameters:
 rune A pointer to theRune(p.40) data strucutre.

Author:
Nicolas Ward ’05

Definition at line 261 of file rune.c.

References checkIPC(), Rune::data, freeRune(), quit(), and Rune::running.

Referenced by handleEvent().

Here is the call graph for this function:

quitRune

checkIPC

freeRune

quit

checkCapabilities

getCapabilityName

getCapabilityStringhandleMessageCapabilities

handleMessageCommon

handleMessageModuleInfo

initCapability

getModuleWithCapability

handleMessageFixed

timerRequestImage

timerRequestMap

timerRequestRobotState

timerSendKeepAlive

timerUpdateView

handleMessageVariable

updateView

freeRobots

freeView

freeRobot

freeCapabilities

freeGCMCapabilities

freeModuleInfo

freeViewport
freeVisualizer

B.10.2.3 int runRune (int argc, char �� argv)

The main runtime function.

Checks command line arguments, allocates theRune(p.40) state data structures, parses the XML
configuration file, calls SDL initialization functions, and executes Rune’s main loop.

B.11 rune.h File Reference 89

Parameters:
 argc The number of command line arguments.

 argv The array of command line argument strings.

Returns:
0 on successful execution, -1 on error.

Author:
Nicolas Ward ’05

Definition at line 53 of file rune.c.

References checkIPC(), compareViewports(), Rune::data, Rune::drawingFont, drawText(),
Font::filename, Font::font, View::fullscreen, handleEvent(), Robot::hostname, Rune::info, init-
Joysticks(), Rune::nRobots, View::nViewports, parseDocument(), R_NAME, R_SDL_INIT_-
FLAGS, R_SDL_SURFACE_FLAGS, Rune::robots, Rune::running, Rune::screen, Font::size,
Rune::view, View::viewports, View::xsize, and View::ysize.

Referenced by main().

Here is the call graph for this function:

runRune

checkIPC

compareViewports

drawText

handleEvent

initJoysticks

parseDocument

checkCapabilities getCapabilityName

getCapabilityString

handleMessageCapabilities

handleMessageCommon

handleMessageModuleInfo

initCapability

compareEvents

getEventTypeString

quitRune

calibrateAxis

countControls
parseFont

parseJoystick
parseRobot

parseView

validateDocument

B.11 rune.h File Reference

#include <stdio.h >

#include <stdlib.h >

B.11 rune.h File Reference 90

#include <math.h >

#include <stdbool.h >

#include <unistd.h >

#include <string.h >

#include <time.h >

#include <SDL.h >

#include <SDL_rotozoom.h >

#include <SDL_gfxPrimitives.h >

#include <SDL_ttf.h >

#include <SDL_image.h >

#include <libxml/parser.h >

#include <libxml/relaxng.h >

#include <ipc.h >

#include <GCM.h>

#include <robomon.h >

Include dependency graph for rune.h:

B.11 rune.h File Reference 91

rune.h

stdio.h

stdlib.h

math.h

stdbool.h

unistd.h

string.h

time.h

SDL.h

SDL_rotozoom.h

SDL_gfxPrimitives.h

SDL_ttf.h

SDL_image.h

libxml/parser.h

libxml/relaxng.h

ipc.h

GCM.h

robomon.h

This graph shows which files directly or indirectly include this file:

B.11 rune.h File Reference 92

rune.h

capability.c

event.c

handler.c

interest.c

joystick.c

joytest.c

keyboard.c

main.c

robot.c

rune.c

timer.c

view.c

viewport.c

visualizer.c

widget.c

xml.c

xmltest.c

Defines

• #defineR_VERSION "1.0.0"
• #defineR_DATE "2005.03.31"
• #defineR_NAME "Rune Interface"
• #defineR_IMAGE_INTERVAL 10
• #defineR_NAV_INTERVAL 10
• #defineR_MAP_INTERVAL 10000
• #defineR_ALIVE_INTERVAL 6000
• #define R_SDL_INIT_FLAGS SDL_INIT_VIDEOjSDL_INIT_TIMERjSDL_INIT_-

JOYSTICK
• #define R_SDL_SURFACE_FLAGS SDL_HWSURFACEjSDL_RLEACCELjSDL_-

DOUBLEBUF
• #defineRMASK 0xff000000
• #defineGMASK 0x00ff0000
• #defineBMASK 0x0000ff00

B.11 rune.h File Reference 93

• #defineAMASK 0x000000ff
• #defineR_TOGGLE_NIGHT_MODE "RuneToggleNightMode"

Typedefs

• typedefCapability Capability
• typedefCommonRequest CommonRequest
• typedefControl Control
• typedefEvent Event
• typedefFont Font
• typedefHatSwitchBindings HatSwitchBindings
• typedefImageRequest ImageRequest
• typedefInterestPoint InterestPoint
• typedefInterestPoints InterestPoints
• typedefJoystick Joystick
• typedefRobot Robot
• typedefRune Rune
• typedefView View
• typedefViewport Viewport
• typedefVisualizer Visualizer
• typedefWidget Widget
• typedef void(� VisualizerFunction)(Visualizer �visualizer)
• typedef void(�WidgetHandler)(Widget �, Event �, SDL_Event�)

Enumerations

• enumControlType {

JOYSTICK_CONTROL_NONE , JOYSTICK_CONTROL_AXIS , JOYSTICK_-
CONTROL_BALL , JOYSTICK_CONTROL_BUTTON ,

JOYSTICK_CONTROL_HAT_SWITCH }

Functions

• boolcheckCapabilities(Robot �robot)
• void freeCapability (Capability �capability)
• void freeCapabilities (Robot �robot)
• void freeGCMCapabilities (GCM_Common_Capabilities�caps)
• GCM_CapabilitygetCapability (char�name)
• char� getCapabilityName(GCM_Capability cap)

B.11 rune.h File Reference 94

• void � getCapabilityQuery (Robot �robot, GCM_Capability cap)
• void � getCapabilityState(Robot �robot, GCM_Capability cap)
• char� getCapabilityString (GCM_Capability cap)
• GCM_ModuleInfo� getModuleWithCapability (Robot �robot, GCM_Capability cap)
• void initCapability (Capability �capability)
• boolcompareEvents(Event �event, SDL_Event�sdlEvent)
• char� getEventTypeString(int type)
• void handleEvent(SDL_Event�event,Rune�rune)
• void handleMessageCapabilities(MSG_INSTANCE msgInstance, void�callData, void
�clientData)

• void handleMessageCommon(MSG_INSTANCE msgInstance, void�callData, void
�clientData)

• void handleMessageFixed(MSG_INSTANCE msgInstance, void�callData, void�client-
Data)

• void handleMessageLocal(Widget �widget, char�message, void�data)
• void handleMessageModuleInfo(MSG_INSTANCE msgInstance, void�callData, void
�clientData)

• void handleMessageVariable (MSG_INSTANCE msgInstance, void�callData, void
�clientData)

• void freeInterestPoints(InterestPoints�points)
• InterestPoint � interestLandmarkPeek (InterestPoints�points)
• void interestLandmarkPush (InterestPoints�points,InterestPoint �landmark)
• InterestPoint � interestVictimPeek (InterestPoints�points)
• void interestVictimPush (InterestPoints�points,InterestPoint �victim)
• void calibrateAxis (Joystick �joystick,Control �control,Rune�rune)
• int countControls (Joystick �joystick,ControlType type)
• Control � getJoystickControl (Joystick �joystick,ControlType type, int index)
• ControlType getJoystickControlType (char�name)
• void initJoysticks (Rune�rune)
• int getButtonState(char�state)
• SDLKeygetKey (char�name)
• char� getKeyString (SDLKey key)
• SDLModgetModifier (char�name)
• char� getModifierString (SDLMod mod)
• void freeRune(Rune�rune)
• int runRune (int argc, char��argv)
• void quitRune (Rune�rune)
• boolcheckIPC (Robot �robot)
• void freeModuleInfo (GCM_Variable_ModuleInfo�moduleInfo)
• void freeRobot (Robot �robot)

B.11 rune.h File Reference 95

• void freeRobots(Rune�rune)
• Uint32 timerRequestImage(Uint32 interval, void�param)
• Uint32 timerRequestMap (Uint32 interval, void�param)
• Uint32 timerRequestRobotState(Uint32 interval, void�param)
• Uint32 timerSendKeepAlive(Uint32 interval, void�param)
• Uint32 timerUpdateView (Uint32 interval, void�param)
• void drawText (SDL_Surface�target, TTF_Font�font, char�text)
• void freeView (View �view)
• void updateView (Rune�rune)
• int compareViewports(const void�viewportPtr1, const void�viewportPtr2)
• void freeViewport (Viewport �viewport)
• bool intersectViewports (Viewport �viewport1,Viewport �viewport2)
• void updateViewport (Viewport �viewport,Rune�rune)
• void drawPTZData (Visualizer �visualizer, int shift, int size)
• void freeVisualizer (Visualizer �visualizer)
• void getVisualizerBindings(char�name,Visualizer �visualizer)
• void printImage (GCM_Common_Image�image)
• void printVisualizer (Visualizer �visualizer)
• void resizeImage(unsigned char�input, int inputW, int inputH, int inputD, unsigned char
�output, int outputW, int outputH, int outputD)

• void visualizeCameraImage(Visualizer �visualizer)
• void visualizeGroundPlane(Visualizer �visualizer)
• void visualizeMapData(Visualizer �visualizer)
• void visualizeNightMode(Visualizer �visualizer)
• void visualizePanData(Visualizer �visualizer)
• void visualizeRangeData(Visualizer �visualizer)
• void visualizeTiltData (Visualizer �visualizer)
• WidgetHandler getWidgetHandler (char�name)
• void mapImageToCamera (double imageSpaceX, double imageSpaceY, double image-

SpaceW, double imageSpaceH, GCM_CameraState�camera, double�cameraSpaceX, dou-
ble�cameraSpaceY)

• void mapImageToWorld (double imageSpaceX, double imageSpaceY, double imageSpace-
W, double imageSpaceH,Robot �robot, double�worldSpaceX, double�worldSpaceY)

• void mapCameraToImage(double cameraSpaceX, double cameraSpaceY, GCM_Camera-
State�camera, double imageSpaceW, double imageSpaceH, double�imageSpaceX, double
�imageSpaceY)

• void mapWorldToImage (double worldSpaceX, double worldSpaceY,Robot �robot, dou-
ble imageSpaceW, double imageSpaceH, double�imageSpaceX, double�imageSpaceY)

• void widgetAdjustPan (Widget �widget,Event �event, SDL_Event�sdlEvent)
• void widgetAdjustPanTilt (Widget �widget,Event �event, SDL_Event�sdlEvent)

B.11 rune.h File Reference 96

• void widgetAdjustTilt (Widget �widget,Event �event, SDL_Event�sdlEvent)
• void widgetAdjustZoom (Widget �widget,Event �event, SDL_Event�sdlEvent)
• void widgetCorrectLandmark (Widget �widget,Event �event, SDL_Event�sdlEvent)
• void widgetHomePTZ (Widget �widget,Event �event, SDL_Event�sdlEvent)
• void widgetQuit (Widget �widget,Event �event, SDL_Event�sdlEvent)
• void widgetSetImageRequest(Widget �widget,Event �event, SDL_Event�sdlEvent)
• void widgetSetLandmark (Widget �widget,Event �event, SDL_Event�sdlEvent)
• void widgetSetSpeed(Widget �widget,Event �event, SDL_Event�sdlEvent)
• void widgetSetVictim (Widget �widget,Event �event, SDL_Event�sdlEvent)
• void widgetToggleNightMode(Widget �widget,Event �event, SDL_Event�sdlEvent)
• void parseControl (Control ��controlPtr, xmlDocPtr doc, xmlNodePtr node)
• void parseDocument(char�filename,Rune�rune)
• void parseEvent(Event ��eventPtr,Rune�rune, xmlDocPtr doc, xmlNodePtr node)
• void parseFont(Font �font, xmlDocPtr doc, xmlNodePtr node)
• void parseJoystick(Joystick ��joystickPtr, xmlDocPtr doc, xmlNodePtr node)
• void parseRobot(Robot ��robotPtr,Rune�rune, xmlDocPtr doc, xmlNodePtr node)
• void parseView(View ��viewPtr,Rune�rune, xmlDocPtr doc, xmlNodePtr node)
• void parseViewport (Viewport ��viewportPtr,Rune �rune, xmlDocPtr doc, xmlNodePtr

node)
• void parseVisualizer(Visualizer ��visualizerPtr,Rune�rune, xmlDocPtr doc, xmlNodePtr

node)
• void parseWidget(Widget ��widgetPtr,Rune�rune, xmlDocPtr doc, xmlNodePtr node)
• void validateDocument(char�filename, xmlDocPtr doc)

B.11.1 Detailed Description

Global header file forRune(p.40).

All Rune(p.40) files include this file. This file should contain all constant definitions, type defini-
tions, and function declarations.

Author:
Nicolas Ward ’05

Date:
2005.03.19

Definition in file rune.h.

B.11 rune.h File Reference 97

B.11.2 Define Documentation

B.11.2.1 #define AMASK 0x000000ff

Definition at line 105 of file rune.h.

Referenced by draw(), main(), visualizeCameraImage(), and visualizeMapData().

B.11.2.2 #define BMASK 0x0000ff00

Definition at line 104 of file rune.h.

Referenced by draw(), drawPTZData(), main(), updateViewport(), visualizeCameraImage(),
visualizeGroundPlane(), visualizeMapData(), visualizeNightMode(), and visualizeRangeData().

B.11.2.3 #define GMASK 0x00ff0000

Definition at line 103 of file rune.h.

Referenced by draw(), drawPTZData(), main(), visualizeCameraImage(), visualizeGroundPlane(),
visualizeMapData(), visualizeNightMode(), and visualizeRangeData().

B.11.2.4 #define R_ALIVE_INTERVAL 6000

Keep-alive delay in ms for theRune(p.40) IPC connection.

Definition at line 79 of file rune.h.

Referenced by initCapability().

B.11.2.5 #define R_DATE "2005.03.31"

Release date of this version ofRune(p.40).

Definition at line 54 of file rune.h.

B.11.2.6 #define R_IMAGE_INTERVAL 10

Interval in ms when image requests are attempted.

Definition at line 64 of file rune.h.

Referenced by initCapability().

B.11.2.7 #define R_MAP_INTERVAL 10000

Interval in ms when map requests are attempted.

Definition at line 74 of file rune.h.

Referenced by initCapability().

B.11 rune.h File Reference 98

B.11.2.8 #define R_NAME "Rune Interface"

Name ofRune(p.40), used in module data

Definition at line 59 of file rune.h.

Referenced by main(), and runRune().

B.11.2.9 #define R_NAV_INTERVAL 10

Interval in ms when robot state requests are attempted.

Definition at line 69 of file rune.h.

Referenced by initCapability().

B.11.2.10 #define R_SDL_INIT_FLAGS SDL_INIT_VIDEOjSDL_INIT_TIMER jSDL_-
INIT_JOYSTICK

Initialization flags for SDL. These enable SDL features.

Definition at line 84 of file rune.h.

Referenced by runRune().

B.11.2.11 #define R_SDL_SURFACE_FLAGS SDL_HWSURFACEjSDL_-
RLEACCEL jSDL_DOUBLEBUF

Surface creations flags for SDL. These enable SDL_Surface features.

Definition at line 92 of file rune.h.

Referenced by drawPTZData(), runRune(), visualizeGroundPlane(), visualizeNightMode(), and
visualizeRangeData().

B.11.2.12 #define R_TOGGLE_NIGHT_MODE "RuneToggleNightMode"

Defines a message passed from the widgetToggleNightModeWidget(p.51) handler to the
visualizeNightModeIconVisualizer(p.48) visualization function.

Definition at line 120 of file rune.h.

Referenced by getVisualizerBindings(), and widgetToggleNightMode().

B.11.2.13 #define R_VERSION "1.0.0"

Version ofRune(p.40).

Definition at line 49 of file rune.h.

B.11.2.14 #define RMASK 0xff000000

B.11 rune.h File Reference 99

Definition at line 102 of file rune.h.

Referenced by draw(), drawPTZData(), main(), visualizeCameraImage(), visualizeGroundPlane(),
visualizeMapData(), visualizeNightMode(), and visualizeRangeData().

B.11.3 Typedef Documentation

B.11.3.1 typedef struct Capability Capability

Defines a type for theCapability (p.23) data structure placeholder.

Definition at line 128 of file rune.h.

B.11.3.2 typedef struct CommonRequest CommonRequest

Defines a type for theCommonRequest(p.25) data structure placeholder.

Definition at line 133 of file rune.h.

B.11.3.3 typedef struct Control Control

Defines a type for theControl (p.26) data structure placeholder.

Definition at line 138 of file rune.h.

B.11.3.4 typedef struct Event Event

Defines a type for theEvent(p.28) data structure placeholder.

Definition at line 143 of file rune.h.

B.11.3.5 typedef struct Font Font

Defines a type for theFont(p.30) data structure placeholder.

Definition at line 148 of file rune.h.

B.11.3.6 typedef struct HatSwitchBindings HatSwitchBindings

Defines a type for theHatSwitchBindings(p.31) data structure placeholder.

Definition at line 153 of file rune.h.

B.11.3.7 typedef struct ImageRequest ImageRequest

Defines a type for theImageRequest(p.32) data structure placeholder.

Definition at line 158 of file rune.h.

B.11 rune.h File Reference 100

B.11.3.8 typedef struct InterestPoint InterestPoint

Defines a type for theInterestPoint(p.33) data structure placeholder.

Definition at line 163 of file rune.h.

B.11.3.9 typedef struct InterestPoints InterestPoints

Defines a type for theInterestPoints(p.34) data structure placeholder.

Definition at line 168 of file rune.h.

B.11.3.10 typedef struct Joystick Joystick

Defines a type for theJoystick(p.35) data structure placeholder.

Definition at line 173 of file rune.h.

B.11.3.11 typedef struct Robot Robot

Defines a type for theRobot(p.37) data structure placeholder.

Definition at line 178 of file rune.h.

B.11.3.12 typedef struct Rune Rune

Defines a type for theRune(p.40) data structure placeholder.

Definition at line 183 of file rune.h.

B.11.3.13 typedef struct View View

Defines a type for theView(p.42) data structure placeholder.

Definition at line 188 of file rune.h.

B.11.3.14 typedef struct Viewport Viewport

Defines a type for theViewport (p.45) data structure placeholder.

Definition at line 193 of file rune.h.

B.11.3.15 typedef struct Visualizer Visualizer

Defines a type for theVisualizer(p.48) data structure placeholder.

Definition at line 198 of file rune.h.

B.11 rune.h File Reference 101

B.11.3.16 typedef void(� VisualizerFunction)(Visualizer �visualizer)

All Visualizer(p.48) functions most conform to this function prototype. These functions take the
arbitrary data from an IPC message associated with aVisualizer(p.48) data structure and convert
them to data that can be drawn onscreen.

Definition at line 214 of file rune.h.

B.11.3.17 typedef struct Widget Widget

Defines a type for theWidget(p.51) data structure placeholder.

Definition at line 203 of file rune.h.

B.11.3.18 typedef void(�WidgetHandler)(Widget �, Event �, SDL_Event�)

All Widget(p.51) functions must conform to this function prototype. These functions take the SDL
event associated with aWidget(p.51) data structure and its parentViewport (p.45) and change
Rune’s state appropriately.

Definition at line 221 of file rune.h.

B.11.4 Enumeration Type Documentation

B.11.4.1 enum ControlType

Enumerated type for logical joystick control configurations.

Enumeration values:
JOYSTICK_CONTROL_NONE

JOYSTICK_CONTROL_AXIS

JOYSTICK_CONTROL_BALL

JOYSTICK_CONTROL_BUTTON

JOYSTICK_CONTROL_HAT_SWITCH

Definition at line 229 of file rune.h.

B.11.5 Function Documentation

B.11.5.1 void calibrateAxis (Joystick� joystick, Control � control, Rune� rune)

Handles user-controlled calibration of a single joystick axis.

User is prompted to move a specified axis to its maximum, press any button, move the axis to its
minimum, and press any button. This ensures that a given axes’ extrema are set properly.

B.11 rune.h File Reference 102

Parameters:
 joystick A pointer to the configuration data structure for the logical joystick being cali-

brated.

 control A pointer to the configuration data structure for the axis-type control being cali-
brated.

 rune A pointer to theRune(p.40) data structure.

Author:
Nicolas Ward ’05

Todo
Try to get automatic calibration working.

Definition at line 28 of file joystick.c.

References drawText().

Referenced by initJoysticks().

Here is the call graph for this function:

calibrateAxis drawText

B.11.5.2 bool checkCapabilities (Robot� robot)

Check if all of the capabilities desired for this robot are actually available and active.

The status of robot capabilities is reported by Robomon, handled elsewhere, and stored in the
Robot(p.37) data structure.

Parameters:
 robot A pointer to this robot’sRobot(p.37) data structure.

Returns:
True if all modules on the given robot are ready, false otherwise.

Author:
Nicolas Ward ’05

Definition at line 24 of file capability.c.

References getCapabilityName(), and getModuleWithCapability().

Referenced by checkIPC().

Here is the call graph for this function:

checkCapabilities

getCapabilityName

getModuleWithCapability

B.11 rune.h File Reference 103

B.11.5.3 bool checkIPC (Robot� robot)

Checks ifRune(p.40) is connected to IPC on a particular robot. If it isn’t connected,Rune(p.40)
will try to connect to IPC on that robot and initialize the connection and other robot data.

Based on smdCheckIPC in the skeleton module.

Parameters:
 robot A pointer to theRobot(p.37) whose connection is being checked.

Returns:
True if IPC is connected, false otherwise.

Author:
Nicolas Ward ’05
Fritz Heckel ’05

Todo
Get the capability request working.

Definition at line 26 of file robot.c.

References checkCapabilities(), Rune::data, getCapabilityName(), getCapabilityString(),
handleMessageCapabilities(), handleMessageCommon(), handleMessageModuleInfo(), and
initCapability().

Referenced by quitRune(), runRune(), widgetAdjustPan(), widgetAdjustPanTilt(), widgetAdjust-
Tilt(), widgetAdjustZoom(), widgetHomePTZ(), widgetSetSpeed(), and widgetToggleNight-
Mode().

Here is the call graph for this function:

checkIPC

checkCapabilities

getCapabilityName

getCapabilityStringhandleMessageCapabilities

handleMessageCommon

handleMessageModuleInfo

initCapability

getModuleWithCapability

handleMessageFixed

timerRequestImage

timerRequestMap

timerRequestRobotState

timerSendKeepAlive

timerUpdateView

handleMessageVariable

updateView

intersectViewports

updateViewport

B.11 rune.h File Reference 104

B.11.5.4 bool compareEvents (Event� event, SDL_Event� sdlEvent)

Compares the parameters of an SDL_Event that occurred with anEvent(p.28) configured as part
of aWidget(p.51).

Parameters:
 event The referenceEvent(p.28).

 sdlEvent The new SDL_event whose parameters are being checked.

Returns:
True if the input events are equivalent, false otherwise.

Author:
Nicolas Ward ’05

Definition at line 21 of file event.c.

References getKeyString(), and getModifierString().

Referenced by handleEvent().

Here is the call graph for this function:

compareEvents

getKeyString

getModifierString

B.11.5.5 int compareViewports (const void� viewportPtr1, const void� viewportPtr2)

Compares the z position of two Viewports.

Intended for use with qsort(). 0 is returned if the two Viewports have the same zpos; the result is
positive if the first is in front of the second, and negative if the second is in front of the first.

Parameters:
 viewportPtr1 A void pointer to the firstViewport (p.45).

 viewportPtr2 A void pointer to the secondViewport (p.45).

Returns:
The difference in the z-position of the input Viewports.

Author:
Nicolas Ward ’05

Definition at line 25 of file viewport.c.

References Viewport::zpos.

Referenced by runRune().

B.11 rune.h File Reference 105

B.11.5.6 int countControls (Joystick� joystick, ControlType type)

Counts the number of controls configured for a given type.

Parameters:
 joystick A pointer to the configuration data structure for the logical joystick whose controls

are being counted.

 type The enumerated control type being counted.

Returns:
The integer count of the specified control type for the specified joystick.

Author:
Nicolas Ward ’05

Todo
Figure out why I was counting controls in a weird way.

Definition at line 100 of file joystick.c.

References JOYSTICK_CONTROL_NONE.

Referenced by initJoysticks(), and parseJoystick().

B.11.5.7 void drawPTZData (Visualizer� visualizer, int shift, int size)

Draws pan and zoom or tilt and zoom data to aVisualizer(p.48) surface.

Parameters:
 visualizer The pan or tiltVisualizer that called this function.

 shift The center of the indicator bar, in pixels from one end of the calling Visualizer’s
surface.

 size The size of the indicator bar in pixels.

Author:
Nicolas Ward ’05

Definition at line 22 of file visualizer.c.

References BMASK, GMASK, R_SDL_SURFACE_FLAGS, and RMASK.

Referenced by visualizePanData(), and visualizeTiltData().

B.11 rune.h File Reference 106

B.11.5.8 void drawText (SDL_Surface� target, TTF_Font � font, char � text)

Draws some arbitrary text into a surface.

The text can be drawn in any TTF font. Currently the text is drawn in black on a grey background,
which is then blitted into the middle of the target surface.

Parameters:
 target The surface onto which the text will be drawn.

 font The font used to render the text.

 text The string of text to be drawn.

Author:
Nicolas Ward ’05

Todo
Add support for arbitrary text coloring.

Definition at line 25 of file view.c.

Referenced by calibrateAxis(), and runRune().

B.11.5.9 void freeCapabilities (Robot� robot)

Frees an array ofCapability (p.23) data structures.

Parameters:
 robot TheRobot(p.37) structure whoseCapability (p.23) array is being freed.

Author:
Nicolas Ward ’05

Definition at line 116 of file capability.c.

References freeCapability().

Referenced by freeRobot().

Here is the call graph for this function:

freeCapabilities freeCapability getCapabilityString

B.11 rune.h File Reference 107

B.11.5.10 void freeCapability (Capability� capability)

Frees aCapability (p.23) data structure and all of its children.

Parameters:
 capability TheCapability (p.23) structure being freed.

Author:
Nicolas Ward ’05

Todo
Add freeing of capability state.

Todo
Free children of capability query and state properly.

Definition at line 69 of file capability.c.

References getCapabilityString().

Referenced by freeCapabilities().

Here is the call graph for this function:

freeCapability getCapabilityString

B.11.5.11 void freeGCMCapabilities (GCM_Common_Capabilities� caps)

Free the arrays in a GCM_Common_Capabilities structure.

Parameters:
 caps A pointer to the structure whose members are to be freed.

Author:
Nicolas Ward ’05

Definition at line 139 of file capability.c.

Referenced by freeRobot().

B.11.5.12 void freeInterestPoints (InterestPoints� points)

Frees anInterestPoints(p.34) data structure and all of its children.

Parameters:
 points TheInterestPoints(p.34) data structure being freed.

Author:
Nicolas Ward ’05

Definition at line 19 of file interest.c.

B.11 rune.h File Reference 108

B.11.5.13 void freeModuleInfo (GCM_Variable_ModuleInfo� moduleInfo)

Frees the contents of an array of GCM_ModuleInfo structures.

Parameters:
 moduleInfo A pointer to a GCM_Variable_ModuleInfo structure whose contents is being

freed

Author:
Nicolas Ward ’05

Todo
Add status printouts.

Definition at line 168 of file robot.c.

Referenced by freeRobot().

B.11.5.14 void freeRobot (Robot� robot)

Frees aRobot(p.37) data structure and all of its children.

Parameters:
 robot TheRobot(p.37) structure being freed.

Author:
Nicolas Ward ’05

Definition at line 187 of file robot.c.

References freeCapabilities(), freeGCMCapabilities(), and freeModuleInfo().

Referenced by freeRobots().

Here is the call graph for this function:

freeRobot

freeCapabilities

freeGCMCapabilities

freeModuleInfo

freeCapability getCapabilityString

B.11.5.15 void freeRobots (Rune� rune)

Frees an array ofRobot(p.37) data structures.

Parameters:
 rune A pointer to theRune(p.40) data structure.

B.11 rune.h File Reference 109

Author:
Nicolas Ward ’05

Definition at line 221 of file robot.c.

References freeRobot().

Referenced by freeRune().

Here is the call graph for this function:

freeRobots freeRobot

freeCapabilities

freeGCMCapabilities

freeModuleInfo

freeCapability getCapabilityString

B.11.5.16 void freeRune (Rune� rune)

Frees aRune(p.40) data structure and all of its children.

Parameters:
 rune TheRune(p.40) structure being freed.

Author:
Nicolas Ward ’05

Definition at line 18 of file rune.c.

References freeRobots(), and freeView().

Referenced by quitRune().

Here is the call graph for this function:

freeRune

freeRobots

freeView

freeRobot

freeCapabilities

freeGCMCapabilities

freeModuleInfo

freeCapability getCapabilityString

freeViewport

freeVisualizer

B.11.5.17 void freeView (View� view)

Frees aView(p.42) data structure and all of its children.

Parameters:
 view TheView(p.42) structure being freed.

B.11 rune.h File Reference 110

Author:
Nicolas Ward ’05

Definition at line 94 of file view.c.

References freeViewport().

Referenced by freeRune().

Here is the call graph for this function:

freeView freeViewport freeVisualizer

B.11.5.18 void freeViewport (Viewport� viewport)

Frees aViewport (p.45) data structure and all of its children

Parameters:
 viewport TheViewport (p.45) structure to be freed.

Author:
Nicolas Ward ’05

Definition at line 42 of file viewport.c.

References freeVisualizer().

Referenced by freeView().

Here is the call graph for this function:

freeViewport freeVisualizer

B.11.5.19 void freeVisualizer (Visualizer� visualizer)

Frees aVisualizer(p.48) data structure.

Parameters:
 visualizer TheVisualizer(p.48) structure to be freed.

Author:
Nicolas Ward ’05

Definition at line 131 of file visualizer.c.

Referenced by freeViewport().

B.11 rune.h File Reference 111

B.11.5.20 int getButtonState (char� state)

Deterimes the desired state of a button or key.

Parameters:
 state The string representation of the button or key’s state. This value will be either

"pressed" or "released".

Returns:
An enumerated integer value for the state. This value will be either SDL_PRESSED or SDL_-
RELEASED.

Author:
Nicolas Ward ’05

Definition at line 22 of file keyboard.c.

Referenced by parseEvent().

B.11.5.21 GCM_Capability getCapability (char� name)

Determines a GCM_Capability enumerated type value based on the equivalent string value.

Parameters:
 name The string name for the enumerated value.

Returns:
The enumerated capability value.

Author:
Nicolas Ward ’05

Definition at line 159 of file capability.c.

Referenced by parseRobot().

B.11.5.22 char� getCapabilityName (GCM_Capability cap)

Determines the name of a capability based on the GCM_Capability enumerated type.

Parameters:
 cap A GCM_Capability enumerated type.

Returns:
The string name of the input capability type.

B.11 rune.h File Reference 112

Author:
Nicolas Ward ’05

Definition at line 248 of file capability.c.

Referenced by checkCapabilities(), checkIPC(), getCapabilityQuery(), getCapabilityState(),
handleMessageCapabilities(), initCapability(), and parseRobot().

B.11.5.23 void� getCapabilityQuery (Robot � robot, GCM_Capability cap)

Checks if the specified capability was configured, and then returns its associated query data.

Parameters:
 robot The robot whose capabilities are being searched.

 cap A GCM_Capability enumerated type whose query variable is desired.

Returns:
A pointer to the capability’s associated query variable.

Definition at line 349 of file capability.c.

References getCapabilityName(), getCapabilityString(), and Capability::query.

Referenced by visualizeCameraImage(), visualizeMapData(), visualizeRangeData(), and widget-
SetImageRequest().

Here is the call graph for this function:

getCapabilityQuery

getCapabilityName

getCapabilityString

B.11.5.24 void� getCapabilityState (Robot� robot, GCM_Capability cap)

Checks if the specified capability was configured, and then returns its associated state data.

Parameters:
 robot The robot whose capabilities are being searched.

 cap A GCM_Capability enumerated type whose state variable is desired.

Returns:
A pointer to the capability’s associated state variable.

B.11 rune.h File Reference 113

Definition at line 375 of file capability.c.

References getCapabilityName(), getCapabilityString(), and Capability::state.

Referenced by mapImageToWorld(), mapWorldToImage(), visualizeCameraImage(), visualize-
GroundPlane(), visualizeMapData(), visualizePanData(), visualizeRangeData(), visualizeTilt-
Data(), widgetCorrectLandmark(), widgetSetLandmark(), widgetSetSpeed(), and widgetSet-
Victim().

Here is the call graph for this function:

getCapabilityState

getCapabilityName

getCapabilityString

B.11.5.25 char� getCapabilityString (GCM_Capability cap)

Determines a longer description of a capability based on the GCM_Capability enumerated type.

Parameters:
 cap A GCM_Capability enumerated type.

Returns:
The string description of the input capability type.

Author:
Nicolas Ward ’05

Definition at line 400 of file capability.c.

Referenced by checkIPC(), freeCapability(), getCapabilityQuery(), getCapabilityState(), handle-
MessageCapabilities(), and initCapability().

B.11.5.26 char� getEventTypeString (int type)

Determines the string representation of an SDL_Event type.

Parameters:
 type The integer event type.

Returns:
The string name of that event type.

Author:
Nicolas Ward ’05

Definition at line 138 of file event.c.

Referenced by handleEvent(), and parseEvent().

B.11 rune.h File Reference 114

B.11.5.27 Control� getJoystickControl (Joystick� joystick, ControlType type, int index)

Selects a specific control from a joystick configuration.

Since all Controls are stored in a single array, the type and index for that type must be specified.

Parameters:
 joystick A pointer to the joystick configuration being queried.

 type The enumerated control type being requested.

 index The integer index into the logical joystick’s control array for the specified type.

Returns:
The matchingControl (p.26) configuration data structure.

Author:
Nicolas Ward ’05

Todo
Determine if this function is still necessary

Definition at line 138 of file joystick.c.

B.11.5.28 ControlType getJoystickControlType (char� name)

Hashes a joystick control type string to an enumerated type.

Parameters:
 name The string name for the control type being hashed.

Returns:
The enumerated control type.

Author:
Nicolas Ward ’05

Definition at line 162 of file joystick.c.

References JOYSTICK_CONTROL_AXIS, JOYSTICK_CONTROL_BALL, JOYSTICK_-
CONTROL_BUTTON, JOYSTICK_CONTROL_HAT_SWITCH, and JOYSTICK_CONTROL_-
NONE.

Referenced by parseControl().

B.11 rune.h File Reference 115

B.11.5.29 SDLKey getKey (char� name)

Determines the enumerated type of a key symbol based on the key name.

Parameters:
 name The string representation of the key.

Returns:
An enumerated type value for the key.

Author:
Nicolas Ward ’05

Definition at line 36 of file keyboard.c.

Referenced by parseEvent().

B.11.5.30 char� getKeyString (SDLKey key)

Determines the name of a key based on the enumerated type of the key.

Parameters:
 key The integer key symbol.

Returns:
The string representation of the key.

Author:
Nicolas Ward ’05

Definition at line 427 of file keyboard.c.

Referenced by compareEvents().

B.11.5.31 SDLMod getModifier (char� name)

Determines the enumerated type of a key modifier based on the modifier name.

Parameters:
 name The string representation of the key modifier.

Returns:
An enumerated type value for the key modifier.

Author:
Nicolas Ward ’05

Definition at line 832 of file keyboard.c.

Referenced by parseEvent().

B.11 rune.h File Reference 116

B.11.5.32 char� getModifierString (SDLMod mod)

Determines the names of key modifiers based on the bitwise ORed enumerated type of the modifier
keys.

Parameters:
 mod An bitwise ORed enumerated type value for the modifier keys.

Returns:
The string representation of the modifier keys.

Author:
Nicolas Ward ’05

Definition at line 877 of file keyboard.c.

Referenced by compareEvents(), and parseEvent().

B.11.5.33 GCM_ModuleInfo� getModuleWithCapability (Robot � robot, GCM_Capability
cap)

Checks if the specified capability was configured, and then returns its associated query data.

Parameters:
 robot The robot whose modules and capabilities are being searched.

 cap A GCM_Capability enumerated type that will be used to find matching modules.

Returns:
A pointer to the GCM_ModuleInfo structure for the first module found that has the specified
capability.

Definition at line 503 of file capability.c.

Referenced by checkCapabilities(), initCapability(), widgetCorrectLandmark(), widgetSet-
Landmark(), widgetSetSpeed(), widgetSetVictim(), and widgetToggleNightMode().

B.11.5.34 void getVisualizerBindings (char� name, Visualizer � visualizer)

Hashes aVisualizer(p.48) function name to a VisualizerFunction pointer and a string name of an
IPC message.

Parameters:
 name The string name of the function being hashed.

$ visualizer TheVisualizer(p.48) that will be bound to the returned visualization function
and data message.

B.11 rune.h File Reference 117

Author:
Nicolas Ward ’05

Definition at line 159 of file visualizer.c.

References R_TOGGLE_NIGHT_MODE, visualizeCameraImage(), visualizeGroundPlane(),
visualizeMapData(), visualizeNightMode(), visualizePanData(), visualizeRangeData(), and
visualizeTiltData().

Referenced by parseVisualizer().

Here is the call graph for this function:

getVisualizerBindings

visualizeCameraImage

visualizeGroundPlane

visualizeMapData

visualizeNightMode

visualizePanData

visualizeRangeData

visualizeTiltData

getCapabilityQuery

getCapabilityState

printImage

printVisualizer

resizeImage

getCapabilityName

getCapabilityString

mapCameraToImage

drawPTZData

B.11.5.35 WidgetHandler getWidgetHandler (char� name)

Hashes aWidget(p.51) handler function name to a WidgetHandler pointer.

Parameters:
 name The string name of the function being hashed.

Returns:
The function pointer.

Author:
Nicolas Ward ’05

Definition at line 20 of file widget.c.

References widgetAdjustPan(), widgetAdjustPanTilt(), widgetAdjustTilt(), widgetAdjustZoom(),
widgetCorrectLandmark(), widgetHomePTZ(), widgetQuit(), widgetSetImageRequest(), widget-
SetLandmark(), widgetSetSpeed(), widgetSetVictim(), and widgetToggleNightMode().

Referenced by parseWidget().

Here is the call graph for this function:

B.11 rune.h File Reference 118

getWidgetHandler

widgetAdjustPan

widgetAdjustPanTilt

widgetAdjustTilt

widgetAdjustZoom

widgetCorrectLandmark

widgetHomePTZ

widgetQuit

widgetSetImageRequest

widgetSetLandmark

widgetSetSpeed

widgetSetVictim

widgetToggleNightMode

checkIPC

checkCapabilities

getCapabilityName

getCapabilityString

handleMessageCapabilities

handleMessageCommon

handleMessageModuleInfo

initCapability

getModuleWithCapability

getCapabilityState

interestLandmarkPeek

mapImageToWorld mapImageToCamera

getCapabilityQuery

interestLandmarkPush

interestVictimPush

handleMessageLocal

B.11.5.36 void handleEvent (SDL_Event� event, Rune� rune)

Processes SDL events and passes them off to the appropriate event handler.

Parameters:
 event The SDL event that triggered the handler.

 rune TheRune(p.40) data structure.

Author:
Nicolas Ward ’05

Definition at line 192 of file event.c.

References compareEvents(), getEventTypeString(), and quitRune().

Referenced by main(), and runRune().

B.11 rune.h File Reference 119

Here is the call graph for this function:

handleEvent

compareEvents

getEventTypeString

quitRune

getKeyString

getModifierString

checkIPC

freeRune

quit

checkCapabilities getCapabilityName

getCapabilityString

handleMessageCapabilities

handleMessageCommon

handleMessageModuleInfo

initCapability

getModuleWithCapability

handleMessageFixed

timerRequestImage

timerRequestMap

timerRequestRobotState

timerSendKeepAlive

timerUpdateView

freeRobots

freeView

freeRobot

freeViewport

B.11.5.37 void handleMessageCapabilities (MSG_INSTANCEmsgInstance, void � call-
Data, void � clientData)

Handles Robomon capability listing messages.

Based on capHandler in the rmon-control interface.

Parameters:
 msgInstanceA unique IPC message ID.

 callData The GCM common command contained in the IPC message.

 clientData A pointer to a capabilities data structure.

Author:
Nicolas Ward ’05
Fritz Heckel ’05

Todo
Determine if not freeing causes a small memory leak.

Bug
Freeing the capabilities first causes a segfault.

Definition at line 25 of file handler.c.

References getCapabilityName(), getCapabilityString(), Robot::haveCaps, and Robot::wantCaps.

B.11 rune.h File Reference 120

Referenced by checkIPC().

Here is the call graph for this function:

handleMessageCapabilities

getCapabilityName

getCapabilityString

B.11.5.38 void handleMessageCommon (MSG_INSTANCEmsgInstance, void � callData,
void � clientData)

Handles GCM common command messages. If necessary,Rune(p.40) will respond with the
appropriate behavior.

Based on commonHandler in the skeleton module.

Parameters:
 msgInstanceA unique IPC message ID.

 callData The GCM common command contained in the IPC message.

 clientData A pointer to theRune(p.40) data structure.

Author:
Nicolas Ward ’05
Fritz Heckel ’05

Definition at line 100 of file handler.c.

References Rune::data, and Rune::info.

Referenced by checkIPC().

B.11.5.39 void handleMessageFixed (MSG_INSTANCEmsgInstance, void � callData, void
� clientData)

Processes fixed-length IPC messages from a robot module and passes them off to the appropriate
Visualizer(p.48), based on the module’s capabilities and the message type.

Parameters:
 msgInstanceA unique IPC message ID.

 callData The incoming fixed-length IPC message received from one of the robot modules.

 clientData A pointer to theRune(p.40) data structure.

Author:
Nicolas Ward ’05

B.11 rune.h File Reference 121

Definition at line 165 of file handler.c.

References Robot::context, Visualizer::data, Visualizer::function, Visualizer::message, Capabil-
ity::robot, Viewport::robot, Robot::rune, Rune::running, Viewport::updated, Rune::view, Visual-
izer::viewport, View::viewports, Viewport::visible, and Viewport::visualizer.

Referenced by initCapability().

B.11.5.40 void handleMessageLocal (Widget� widget, char � message, void � data)

Passes arbitrary data off to the appropriateVisualizer(p.48), based on the originatingWid-
get(p.51).

Parameters:
 widget The widget that sent this message

 messageThe string name of the message that was sent.

 data The arbitrary data associated with the message.

Author:
Nicolas Ward ’05

Definition at line 238 of file handler.c.

References Visualizer::data, Visualizer::function, Visualizer::message, Viewport::robot,
View::rune, Rune::running, Viewport::updated, Rune::view, Visualizer::viewport,
View::viewports, Viewport::visible, and Viewport::visualizer.

Referenced by widgetToggleNightMode().

B.11.5.41 void handleMessageModuleInfo (MSG_INSTANCEmsgInstance, void � call-
Data, void � clientData)

Handles Robomon module information messages.

Based on modHandler in the rmon-control interface.

Parameters:
 msgInstanceA unique IPC message ID.

 callData The GCM common command contained in the IPC message.

 clientData A pointer to a module information data structure.

Author:
Nicolas Ward ’05
Fritz Heckel ’05

Definition at line 309 of file handler.c.

Referenced by checkIPC().

B.11 rune.h File Reference 122

B.11.5.42 void handleMessageVariable (MSG_INSTANCEmsgInstance, void � callData,
void � clientData)

Processes variable-length IPC messages from a robot module and passes them off to the appropriate
message handler, which should be aVisualizer(p.48).

Parameters:
 msgInstanceA unique IPC message ID.

 callData The incoming variable-length IPC message received from one of the robot mod-
ules.

 clientData A pointer to theRune(p.40) data structure.

Author:
Nicolas Ward ’05

Definition at line 364 of file handler.c.

References Robot::context, Visualizer::data, Visualizer::function, Visualizer::message, Capabil-
ity::robot, Viewport::robot, Robot::rune, Rune::running, Viewport::updated, Rune::view, Visual-
izer::viewport, View::viewports, Viewport::visible, and Viewport::visualizer.

Referenced by timerRequestImage(), timerRequestMap(), and timerRequestRobotState().

B.11.5.43 void initCapability (Capability � capability)

Initializes aCapability (p.23) data structure based on its GCM_Capability enumerated type.

This function is called bycheckIPC()(p.103) after a successful connection to IPC central is made.
It expects that all types have been defined properly.

This function handles the initialization of all capabilities thatRune(p.40) knows about. For ex-
tensibility, it might be better to break the initialization step into multiple functions, and have this
function call those functions as necessary. It might make the code more readable.

Parameters:
 capability A pointer to theCapability (p.23) being initialized.

Todo
Maybe break this up into separate initializer functions?

Definition at line 531 of file capability.c.

References getCapabilityName(), getCapabilityString(), getModuleWithCapability(), Common-
Request::handled, ImageRequest::handled, handleMessageFixed(), Capability::nTimers, Capa-
bility::query, R_ALIVE_INTERVAL, R_IMAGE_INTERVAL, R_MAP_INTERVAL, R_NAV_-
INTERVAL, CommonRequest::request, ImageRequest::request, Capability::state, timerRequest-
Image(), timerRequestMap(), timerRequestRobotState(), Capability::timers, timerSendKeep-
Alive(), and timerUpdateView().

B.11 rune.h File Reference 123

Referenced by checkIPC().

Here is the call graph for this function:

initCapability

getCapabilityName

getCapabilityString

getModuleWithCapability

handleMessageFixed

timerRequestImage

timerRequestMap

timerRequestRobotState

timerSendKeepAlive

timerUpdateView

handleMessageVariable

updateView

intersectViewports

updateViewport

B.11.5.44 void initJoysticks (Rune� rune)

Detects and initializes physical joysticks attached to the client computer.

Parameters:
$ rune A pointer to theRune(p.40) data structure.

Author:
Nicolas Ward ’05

Definition at line 189 of file joystick.c.

References calibrateAxis(), countControls(), Control::joystick, JOYSTICK_CONTROL_-
AXIS, JOYSTICK_CONTROL_BALL, JOYSTICK_CONTROL_BUTTON, and JOYSTICK_-
CONTROL_HAT_SWITCH.

Referenced by main(), and runRune().

Here is the call graph for this function:

initJoysticks

calibrateAxis

countControls

drawText

B.11 rune.h File Reference 124

B.11.5.45 InterestPoint� interestLandmarkPeek (InterestPoints� points)

Gets the current landmark.

Parameters:
 points TheInterestPoints(p.34) data structure being examined.

Returns:
A pointer to the topmostInterestPoint(p.33).

Author:
Nicolas Ward ’05

Definition at line 46 of file interest.c.

Referenced by widgetCorrectLandmark().

B.11.5.46 void interestLandmarkPush (InterestPoints� points, InterestPoint � landmark)

Adds a new landmark.

Landmarks are used as waypoints in robot navigation, and can be used to correct erroneous robot
odometry. They are stored in a push-only stack.

Parameters:
 points TheInterestPoints(p.34) data structure being examined.

 landmark TheInterestPoint(p.33) data structure being added.

Author:
Nicolas Ward ’05

Definition at line 64 of file interest.c.

Referenced by widgetSetLandmark().

B.11.5.47 InterestPoint� interestVictimPeek (InterestPoints� points)

Gets the current victim.

Parameters:
 points TheInterestPoints(p.34) data structure being examined.

Returns:
A pointer to the topmostInterestPoint(p.33).

Author:
Nicolas Ward ’05

Definition at line 100 of file interest.c.

B.11 rune.h File Reference 125

B.11.5.48 void interestVictimPush (InterestPoints� points, InterestPoint � victim)

Adds a new victim.

Victims are used as waypoints in robot navigation, and can be used to correct erroneous robot
odometry. They are stored in a push-only stack.

Parameters:
 points TheInterestPoints(p.34) data structure being examined.

 victim TheInterestPoint(p.33) data structure being added.

Author:
Nicolas Ward ’05

Definition at line 118 of file interest.c.

Referenced by widgetSetVictim().

B.11.5.49 bool intersectViewports (Viewport� viewport1, Viewport � viewport2)

Checks if oneViewport (p.45) overlaps another, to determine if the overlappedViewport (p.45)
needs to be redrawn.

Checks if the second (overlapping)Viewport (p.45) is in front, and if it is somewhere inside the
first (overlapped) Viewport’s bounding box.

Parameters:
 viewport1 A pointer to the overlappedViewport (p.45).

 viewport2 A pointer to the overlappingViewport (p.45).

Returns:
True if there is any overlap.

Author:
Nicolas Ward ’05

Definition at line 91 of file viewport.c.

Referenced by updateView().

B.11.5.50 void mapCameraToImage (doublecameraSpaceX, doublecameraSpaceY, GCM_-
CameraState� camera, double imageSpaceW, double imageSpaceH, double � imageSpaceX,
double� imageSpaceY)

Performs a coordinate mapping from an (x,y) position relative to the robot’s axes to an (x,y) pixel
value in an image.

See the detailed comments and schematics associated with each mathematical step of this coordi-
nate mapping.

B.11 rune.h File Reference 126

Parameters:
! cameraSpaceXThe x-coordinate in camera space in meters.

! cameraSpaceYThe y-coordinate in camera space in meters.

 camera The camera whose coordinate space is being used.

 imageSpaceWThe width of the image space in pixels.

 imageSpaceHThe height of the image space in pixels.

! imageSpaceXThe x-coordinate in image space in pixels.

! imageSpaceYThe y-coordinate in image space in pixels.

Author:
Nicolas Ward ’05

*
* Convert from 2-D cartesian in camera space to 3-D polar in camera space
* Angles /_hc and /_vc are measured in radians from the camera mountpoint
* cameraSpaceAngleH is positive left (CCW from straight ahead)
* cameraSpaceAngleV is positive up (CCW from straight ahead)
* Ranges Rxy, and Ryz are measured in meters from the camera mountpoint
* cameraSpaceRadiusH is in the ground plane
* cameraSpaceRadiusV is in the vertical plane through the robot
* Point (x,y) is measured in meters from below the camera’s center point
* cameraSpaceX is positive right
* cameraSpaceY is positive forwards
* Camera height is measured in meters from the ground plane
* height is positive up
*
* (top view) (side view)
* . world point camera .______
* | / |\) -cameraSpaceAngleV
* y|~/ Rxy h | \ Ryz
* |/__ ~cameraSpaceAngleH | \
* ’ x |__(\
* camera ‘world point
* center by Alternate Interior Angle theorem
*
*

*
* Convert from 3-D polar in camera space to radians in image space
* Angles /_h and /_v are measured from the image center
* imageSpaceH is positive left in image
* imageSpaceV is positive up in image
* Angles /_p and /_t are measured to the center of the camera’s image
* pan is positive left (CCW from straight ahead)
* tilt is positive up (CCW from downwards vertical)
* Angles /_hc and /_vc are measured from the camera mountpoint
* cameraSpaceAngleH is positive left (CCW from straight ahead)
* cameraSpaceAngleV is positive up (CCW from straight ahead)
*

B.11 rune.h File Reference 127

* camera . \ |
* |\ \ |
* |~\ /_t /_p |
* | \ \|
* | \ ‘camera
* (side view) (top view)
*
*

*
* Convert from pixels to radians in image space
* Pixel (x,y) is measured from the upper left of the image
* imageSpaceX is positive right
* imageSpaceY is positive down
* The pixel dimensions of the image are imageSpaceW by imageSpaceH
* The image center is at (w/2,h/2)
* Angles /_h and /_v are measured from the image center
* imageSpaceH is positive left in image
* imageSpaceV is positive up in image
* The angular dimensions of the image are HFOV by VFOV
*
* (side view) (top view) (front view)
* /| \ /| \ _________________
* / | | / | | | x | \
* VFOV / | | HFOV / | | y| | /_v | |
* <) | }h <) | }w | ___| | }h
* \ | | \ | | | /_h ‘center | |
* \ | | \ | | | | |
* \| / \| / |_________________| /
* image plane image plane
* ________w________/
*
*

Definition at line 283 of file widget.c.

Referenced by mapWorldToImage(), and visualizeGroundPlane().

B.11.5.51 void mapImageToCamera (doubleimageSpaceX, double imageSpaceY, double
imageSpaceW, double imageSpaceH, GCM_CameraState� camera, double � cameraSpace-
X, double� cameraSpaceY)

Performs a coordinate mapping from an (x,y) pixel value in an image to an (x,y) position value
relative to the ground plane projection of the camera’s axes.

See the detailed comments and schematics associated with each mathematical step of this coordi-
nate mapping.

Parameters:
 imageSpaceXThe x-coordinate in image space in pixels.

 imageSpaceYThe y-coordinate in image space in pixels.

B.11 rune.h File Reference 128

 imageSpaceWThe width of the image space in pixels.

 imageSpaceHThe height of the image space in pixels.

 camera The camera whose coordinate space is being used.

! cameraSpaceXThe x-coordinate in camera space in meters.

! cameraSpaceYThe y-coordinate in camera space in meters.

Author:
Nicolas Ward ’05

*
* Convert from pixels to radians in image space
* Pixel (x,y) is measured from the upper left of the image
* imageSpaceX is positive right
* imageSpaceY is positive down
* The pixel dimensions of the image are imageSpaceW by imageSpaceH
* The image center is at (w/2,h/2)
* Angles /_h and /_v are measured from the image center
* imageSpaceH is positive left in image
* imageSpaceV is positive up in image
* The angular dimensions of the image are HFOV by VFOV
*
* (side view) (top view) (front view)
* /| \ /| \ _________________
* / | | / | | | x | \
* VFOV / | | HFOV / | | y| | /_v | |
* <) | }h <) | }w | ___| | }h
* \ | | \ | | | /_h ‘center | |
* \ | | \ | | | | |
* \| / \| / |_________________| /
* image plane image plane
* ________w________/
*
*

*
* Convert from radians in image space to 3-D polar in camera space
* Angles /_h and /_v are measured from the image center
* imageSpaceH is positive left in image
* imageSpaceV is positive up in image
* Angles /_p and /_t are measured to the center of the camera’s image
* pan is positive left (CCW from straight ahead)
* tilt is positive up (CCW from downwards vertical)
* Angles /_hc and /_vc are measured from the camera mountpoint
* cameraSpaceAngleH is positive left (CCW from straight ahead)
* cameraSpaceAngleV is positive up (CCW from straight ahead)
*
* camera . \ |
* |\ \ |
* |~\ /_t /_p |
* | \ \|

B.11 rune.h File Reference 129

* | \ ‘camera
* (side view) (top view)
*
*

*
* Convert from 3-D polar in camera space to 2-D cartesian in camera space
* Angles /_hc and /_vc are measured in radians from the camera mountpoint
* cameraSpaceAngleH is positive left (CCW from straight ahead)
* cameraSpaceAngleV is positive up (CCW from straight ahead)
* Ranges Rxy, and Ryz are measured in meters from the camera mountpoint
* cameraSpaceRadiusH is in the ground plane
* cameraSpaceRadiusV is in the vertical plane through the robot
* Point (x,y) is measured in meters from below the camera’s center point
* cameraSpaceX is positive right
* cameraSpaceY is positive forwards
* Camera height is measured in meters from the ground plane
* height is positive up
*
* (top view) (side view)
* . world point camera .______
* | / |\) -cameraSpaceAngleV
* y|~/ Rxy h | \ Ryz
* |/__ ~cameraSpaceAngleH | \
* ’ x |__(\
* camera ‘world point
* center by Alternate Interior Angle theorem
*
*

Definition at line 82 of file widget.c.

Referenced by mapImageToWorld().

B.11.5.52 void mapImageToWorld (double imageSpaceX, double imageSpaceY, double
imageSpaceW, double imageSpaceH, Robot � robot, double � worldSpaceX, double � world-
SpaceY)

Performs a coordinate mapping from an (x,y) pixel value in an image to an (x,y) position value on
the global ground plane.

See the detailed comments and schematics associated with each mathematical step of this coordi-
nate mapping.

Parameters:
 imageSpaceXThe x-coordinate in image space in pixels.

 imageSpaceYThe y-coordinate in image space in pixels.

 imageSpaceWThe width of the image space in pixels.

 imageSpaceHThe height of the image space in pixels.

B.11 rune.h File Reference 130

 robot The robot whose coordinate space is being used.

! worldSpaceXThe x-coordinate in world space in meters.

! worldSpaceYThe y-coordinate in world space in meters.

Author:
Nicolas Ward ’05

Definition at line 208 of file widget.c.

References getCapabilityState(), and mapImageToCamera().

Referenced by widgetCorrectLandmark(), widgetSetLandmark(), and widgetSetVictim().

Here is the call graph for this function:

mapImageToWorld

getCapabilityState

mapImageToCamera

getCapabilityName

getCapabilityString

B.11.5.53 void mapWorldToImage (doubleworldSpaceX, double worldSpaceY, Robot �
robot, double imageSpaceW, double imageSpaceH, double � imageSpaceX, double � image-
SpaceY)

Performs a coordinate mapping from an (x,y) position value on the global ground plane to an (x,y)
pixel value in an image.

See the detailed comments and schematics associated with each mathematical step of this coordi-
nate mapping.

Parameters:
 worldSpaceXThe x-coordinate in world space in meters.

 worldSpaceYThe y-coordinate in world space in meters.

 robot The robot whose coordinate space is being used.

 imageSpaceWThe width of the image space in pixels.

 imageSpaceHThe height of the image space in pixels.

! imageSpaceXThe x-coordinate in image space in pixels.

! imageSpaceYThe y-coordinate in image space in pixels.

Author:
Nicolas Ward ’05

B.11 rune.h File Reference 131

Definition at line 407 of file widget.c.

References getCapabilityState(), and mapCameraToImage().

Here is the call graph for this function:

mapWorldToImage

getCapabilityState

mapCameraToImage

getCapabilityName

getCapabilityString

B.11.5.54 void parseControl (Control�� controlPtr, xmlDocPtr doc, xmlNodePtr node)

Parses a<control> element from an XML configuration file.

Parameters:
! controlPtr A pointer to theControl (p.26) data structure being allocated by this function.

 doc A pointer to the XML document being read.

 node A pointer to the current XML node.

Author:
Nicolas Ward ’05

Definition at line 22 of file xml.c.

References Control::calibrate, getJoystickControlType(), Control::index, Control::invert,
JOYSTICK_CONTROL_AXIS, Control::max, Control::min, Control::name, and Control::type.

Referenced by parseJoystick().

Here is the call graph for this function:

parseControl getJoystickControlType

B.11.5.55 void parseDocument (char� filename, Rune� rune)

Parses an XML document, validates it, and loads theRune(p.40) data structure.

Parameters:
 filename The filename of the XML configuration file.

$ rune TheRune(p.40) data structure.

Author:
Nicolas Ward ’05

B.11 rune.h File Reference 132

Definition at line 168 of file xml.c.

References parseFont(), parseJoystick(), parseRobot(), parseView(), and validateDocument().

Referenced by main(), and runRune().

Here is the call graph for this function:

parseDocument

parseFont

parseJoystick

parseRobot

parseView

validateDocument

countControls

parseControl getJoystickControlType

getCapability

getCapabilityName

parseViewport

parseWidget

parseVisualizer getVisualizerBindings

getWidgetHandler

parseEvent

B.11.5.56 void parseEvent (Event�� eventPtr, Rune � rune, xmlDocPtr doc, xmlNodePtr
node)

Parses an<event> element from an XML configuration file.

Parameters:
! eventPtr A pointer to theEvent(p.28) data structure being allocated by this function.

$ rune TheRune(p.40) data structure.

 doc A pointer to the XML document being read.

 node A pointer to the current XML node.

Author:
Nicolas Ward ’05

Definition at line 319 of file xml.c.

References Joystick::config, Event::control, Joystick::controls, Event::event, getButtonState(), get-
EventTypeString(), getKey(), getModifier(), getModifierString(), Control::index, Event::joystick,
JOYSTICK_CONTROL_AXIS, JOYSTICK_CONTROL_BALL, JOYSTICK_CONTROL_-
BUTTON, JOYSTICK_CONTROL_HAT_SWITCH, Control::name, Joystick::nControls,
Event::options, and Control::type.

Referenced by parseWidget().

Here is the call graph for this function:

B.11 rune.h File Reference 133

parseEvent

getButtonState

getEventTypeString

getKey

getModifier

getModifierString

B.11.5.57 void parseFont (Font� font, xmlDocPtr doc, xmlNodePtr node)

Parses a element from an XML state file.

Parameters:
! font A pointer to theFont(p.30) data structure being allocated by this function.

 doc A pointer to the XML document being read.

 node A pointer to the current XML node.

Author:
Nicolas Ward ’05

Definition at line 694 of file xml.c.

Referenced by parseDocument().

B.11.5.58 void parseJoystick (Joystick�� joystickPtr, xmlDocPtr doc, xmlNodePtr node)

Parses a<joystick> element from an XML configuration file.

Parameters:
! joystickPtr A pointer to theJoystick(p.35) data structure being allocated by this function.

 doc A pointer to the XML document being read.

 node A pointer to the current XML node.

Author:
Nicolas Ward ’05

Definition at line 742 of file xml.c.

References Joystick::config, Joystick::controls, countControls(), Joystick::joystick, Con-
trol::joystick, Joystick::nControls, and parseControl().

Referenced by parseDocument().

Here is the call graph for this function:

B.11 rune.h File Reference 134

parseJoystick

countControls

parseControl getJoystickControlType

B.11.5.59 void parseRobot (Robot�� robotPtr, Rune � rune, xmlDocPtr doc, xmlNodePtr
node)

Parses a<robot> element from an XML configuration file.

Parameters:
! robotPtr A pointer to theRobot(p.37) data structure being allocated by this function.

$ rune TheRune(p.40) data structure.

 doc A pointer to the XML document being read.

 node A pointer to the current XML node.

Author:
Nicolas Ward ’05

Definition at line 820 of file xml.c.

References Capability::cap, getCapability(), getCapabilityName(), Robot::haveCaps,
Robot::hostname, Robot::moduleInfo, Robot::name, Capability::query, Capability::ready,
Capability::robot, Capability::state, and Robot::wantCaps.

Referenced by parseDocument().

Here is the call graph for this function:

parseRobot

getCapability

getCapabilityName

B.11.5.60 void parseView (View�� viewPtr, Rune� rune, xmlDocPtr doc, xmlNodePtr node)

Parses the<view> element from an XML configuration file.

Parameters:
! viewPtr A pointer to theView(p.42) data structure being allocated by this function.

$ rune TheRune(p.40) data structure.

 doc A pointer to the XML document being read.

 node A pointer to the current XML node.

B.11 rune.h File Reference 135

Author:
Nicolas Ward ’05

Definition at line 935 of file xml.c.

References View::fullscreen, View::nViewports, View::nWidgets, parseViewport(), parseWidget(),
Viewport::view, Widget::view, View::viewports, View::widgets, View::xsize, and View::ysize.

Referenced by parseDocument().

Here is the call graph for this function:

parseView

parseViewport

parseWidget

parseVisualizer getVisualizerBindings

getWidgetHandler

parseEvent

B.11.5.61 void parseViewport (Viewport�� viewportPtr, Rune� rune, xmlDocPtr doc, xml-
NodePtr node)

Parses a<viewport> element from an XML configuration file.

Parameters:
! viewportPtr A pointer to theViewport (p.45) data structure being allocated by this func-

tion.

$ rune TheRune(p.40) data structure.

 doc A pointer to the XML document being read.

 node A pointer to the current XML node.

Author:
Nicolas Ward ’05

Definition at line 1084 of file xml.c.

References Viewport::nWidgets, parseVisualizer(), parseWidget(), Viewport::robot, View-
port::transparency, Viewport::view, Widget::viewport, Visualizer::viewport, Viewport::visible,
Viewport::visualizer, Viewport::widgets, Viewport::xpos, Viewport::xsize, View::xsize, View-
port::ypos, Viewport::ysize, View::ysize, and Viewport::zpos.

Referenced by parseView().

Here is the call graph for this function:

parseViewport

parseVisualizer

parseWidget

getVisualizerBindings

getWidgetHandler

parseEvent

B.11 rune.h File Reference 136

B.11.5.62 void parseVisualizer (Visualizer�� visualizerPtr, Rune � rune, xmlDocPtr doc,
xmlNodePtr node)

Parses a<visualizer> element from an XML configuration file.

Parameters:
! visualizerPtr A pointer to theVisualizer(p.48) data structure being allocated by this func-

tion.

$ rune TheRune(p.40) data structure.

 doc A pointer to the XML document being read.

 node A pointer to the current XML node.

Author:
Nicolas Ward ’05

Definition at line 1336 of file xml.c.

References Visualizer::data, Visualizer::function, getVisualizerBindings(), Visualizer::option, Vi-
sualizer::surface, Visualizer::viewport, Visualizer::xsize, and Visualizer::ysize.

Referenced by parseViewport().

Here is the call graph for this function:

parseVisualizer getVisualizerBindings

visualizeCameraImage

visualizeGroundPlane

visualizeMapData

visualizeNightMode

visualizePanData

visualizeRangeData

visualizeTiltData

getCapabilityQuery

getCapabilityState

printImage

printVisualizer

resizeImage

getCapabilityName

getCapabilityString

mapCameraToImage

drawPTZData

B.11.5.63 void parseWidget (Widget�� widgetPtr, Rune� rune, xmlDocPtr doc, xmlNode-
Ptr node)

Parses a<widget> element from an XML configuration file.

Parameters:
! widgetPtr A pointer to theWidget(p.51) data structure being allocated by this function.

$ rune TheRune(p.40) data structure.

B.11 rune.h File Reference 137

 doc A pointer to the XML document being read.

 node A pointer to the current XML node.

Author:
Nicolas Ward ’05

Definition at line 1451 of file xml.c.

References Widget::events, getWidgetHandler(), Widget::handler, Widget::history, Widget::n-
Events, parseEvent(), Widget::view, and Widget::viewport.

Referenced by parseView(), and parseViewport().

Here is the call graph for this function:

parseWidget

getWidgetHandler

parseEvent

widgetAdjustPan

widgetAdjustPanTilt

widgetAdjustTilt

widgetAdjustZoom

widgetCorrectLandmark

widgetHomePTZ

widgetQuit

widgetSetImageRequest

widgetSetLandmark

widgetSetSpeed

widgetSetVictim

widgetToggleNightMode

checkIPC

getCapabilityState

getModuleWithCapability

interestLandmarkPeek

mapImageToWorld

getCapabilityQuery

interestLandmarkPush

interestVictimPush

handleMessageLocal

getButtonState

getEventTypeString

getKey

getModifier

getModifierString

B.11.5.64 void printImage (GCM_Common_Image� image)

Outputs the text metadata that is stored in a GCM image data structure.

Parameters:
 image The image whose metadata will be output.

B.11 rune.h File Reference 138

Author:
Nicolas Ward ’05

Definition at line 207 of file visualizer.c.

Referenced by visualizeCameraImage().

B.11.5.65 void printVisualizer (Visualizer� visualizer)

Outputs the text metadata that is stored in aVisualizer(p.48) data structure.

Parameters:
 visualizer TheVisualizer(p.48) whose metadata will be output.

Author:
Nicolas Ward ’05

Definition at line 269 of file visualizer.c.

Referenced by visualizeCameraImage().

B.11.5.66 void quitRune (Rune� rune)

Closes IPC connections, deallocates data structures, and quitsRune(p.40).

Called by the SDL main event loop when a quit event is received.

Parameters:
 rune A pointer to theRune(p.40) data strucutre.

Author:
Nicolas Ward ’05

Definition at line 261 of file rune.c.

References checkIPC(), Rune::data, freeRune(), quit(), and Rune::running.

Referenced by handleEvent().

Here is the call graph for this function:

B.11 rune.h File Reference 139

quitRune

checkIPC

freeRune

quit

checkCapabilities

getCapabilityName

getCapabilityStringhandleMessageCapabilities

handleMessageCommon

handleMessageModuleInfo

initCapability

getModuleWithCapability

handleMessageFixed

timerRequestImage

timerRequestMap

timerRequestRobotState

timerSendKeepAlive

timerUpdateView

handleMessageVariable

updateView

freeRobots

freeView

freeRobot

freeCapabilities

freeGCMCapabilities

freeModuleInfo

freeViewport
freeVisualizer

B.11.5.67 void resizeImage (unsigned char� input, int inputW, int inputH, int inputD, un-
signed char� output, int outputW, int outputH, int outputD)

Resizes an PPM-formatted image by interpolating the unsigned character data of the image.

This function cannot scale an image down because it does not do any sampling. It probably isn’t
particularly good or efficient at what it does either. Use sparingly.

This function does not handle color depths correctly, but it does work well enough to convert a
PGM or PPM to a PPM.

Parameters:
 input The character data of the input image.

 inputW The width of the input image in pixels.

 inputH The height of the input image in pixels.

 inputD The color depth of the input image in bytes.

! output A pre-allocated array where the character data of the output image will be written.

 outputW The width of the output image in pixels.

 outputH The height of the output image in pixels.

 outputD The color depth of the output image in bytes.

Author:
Nicolas Ward ’05

B.11 rune.h File Reference 140

Todo
Fix this function or find a replacement that’s fast.

Definition at line 317 of file visualizer.c.

Referenced by visualizeCameraImage(), and visualizeMapData().

B.11.5.68 int runRune (intargc, char �� argv)

The main runtime function.

Checks command line arguments, allocates theRune(p.40) state data structures, parses the XML
configuration file, calls SDL initialization functions, and executes Rune’s main loop.

Parameters:
 argc The number of command line arguments.

 argv The array of command line argument strings.

Returns:
0 on successful execution, -1 on error.

Author:
Nicolas Ward ’05

Definition at line 53 of file rune.c.

References checkIPC(), compareViewports(), Rune::data, Rune::drawingFont, drawText(),
Font::filename, Font::font, View::fullscreen, handleEvent(), Robot::hostname, Rune::info, init-
Joysticks(), Rune::nRobots, View::nViewports, parseDocument(), R_NAME, R_SDL_INIT_-
FLAGS, R_SDL_SURFACE_FLAGS, Rune::robots, Rune::running, Rune::screen, Font::size,
Rune::view, View::viewports, View::xsize, and View::ysize.

Referenced by main().

Here is the call graph for this function:

B.11 rune.h File Reference 141

runRune

checkIPC

compareViewports

drawText

handleEvent

initJoysticks

parseDocument

checkCapabilities getCapabilityName

getCapabilityString

handleMessageCapabilities

handleMessageCommon

handleMessageModuleInfo

initCapability

compareEvents

getEventTypeString

quitRune

calibrateAxis

countControls
parseFont

parseJoystick
parseRobot

parseView

validateDocument

B.11.5.69 Uint32 timerRequestImage (Uint32interval, void � param)

Queries SVM for an image; called by an SDL timer associated with the VIS_VID capability.

Parameters:
 interval The timeout between calls of this function.

 param A pointer to theCapability (p.23) data structure.

Returns:
The unmodified timeout between calls of this function.

Definition at line 24 of file timer.c.

References Robot::context, ImageRequest::handled, handleMessageVariable(), Capability::query,
ImageRequest::request, Capability::robot, Robot::rune, and Rune::running.

Referenced by initCapability().

Here is the call graph for this function:

timerRequestImage handleMessageVariable

B.11.5.70 Uint32 timerRequestMap (Uint32interval, void � param)

Queries SMM for a map image; called by an SDL timer associated with the PRO_MAP capability.

B.11 rune.h File Reference 142

Parameters:
 interval The timeout between calls of this function.

 param A pointer to theCapability (p.23) data structure.

Returns:
The unmodified timeout between calls of this function.

Definition at line 68 of file timer.c.

References Robot::context, CommonRequest::handled, handleMessageVariable(), Capabil-
ity::query, CommonRequest::request, Capability::robot, Robot::rune, and Rune::running.

Referenced by initCapability().

Here is the call graph for this function:

timerRequestMap handleMessageVariable

B.11.5.71 Uint32 timerRequestRobotState (Uint32interval, void � param)

Queries Nav for the robot state; called by an SDL timer associated with the a NAV_� capability.

Parameters:
 interval The timeout between calls of this function.

 param A pointer to theCapability (p.23) data structure.

Returns:
The unmodified timeout between calls of this function.

Definition at line 104 of file timer.c.

References Robot::context, CommonRequest::handled, handleMessageVariable(), Capabil-
ity::query, CommonRequest::request, Capability::robot, Robot::rune, and Rune::running.

Referenced by initCapability().

Here is the call graph for this function:

timerRequestRobotState handleMessageVariable

B.11 rune.h File Reference 143

B.11.5.72 Uint32 timerSendKeepAlive (Uint32interval, void � param)

Sends a keep-alive message; called by an SDL timer associated with the CON_REAL capability.

This message ensures that Robomon does not attempt to shutdownRune(p.40).

Parameters:
 interval The timeout between calls of this function.

 param A pointer to theCapability (p.23) data structure.

Returns:
The unmodified timeout between calls of this function.

Todo
Fix the module update

Definition at line 143 of file timer.c.

References Robot::context, Rune::data, Capability::robot, Rune::robots, Robot::rune, and
Rune::running.

Referenced by initCapability().

B.11.5.73 Uint32 timerUpdateView (Uint32interval, void � param)

Updates the main view; called by an SDL timer associated with the CON_REAL capability.

Parameters:
 interval The timeout between calls of this function.

 param A pointer to theCapability (p.23) data structure.

Returns:
The unmodified timeout between calls of this function.

Definition at line 180 of file timer.c.

References Capability::robot, Robot::rune, Rune::running, and updateView().

Referenced by initCapability().

Here is the call graph for this function:

timerUpdateView updateView

intersectViewports

updateViewport

B.11 rune.h File Reference 144

B.11.5.74 void updateView (Rune� rune)

Updates the entireView(p.42), and all of its children, in back-to-front order.

The many #ifdefs in this function provide for compile-time hooks that select the drawing method
being used. The constants are #defined inrune.h(p.89).

Parameters:
 rune A pointer to theRune(p.40) data structure.

Author:
Nicolas Ward ’05

Todo
Figure out which surface method works best, and then strip out the unused code.

Todo
Optimize!

Definition at line 131 of file view.c.

References intersectViewports(), and updateViewport().

Referenced by timerUpdateView().

Here is the call graph for this function:

updateView

intersectViewports

updateViewport

B.11.5.75 void updateViewport (Viewport� viewport, Rune� rune)

Updates a Viewport’s display with newly visualized data.

The many #ifdefs in this function provide for compile-time hooks that select the drawing method
being used. The constants are #defined inrune.h(p.89).

Parameters:
 viewport TheViewport (p.45) being updated.

 rune A pointer to theRune(p.40) data structure.

Author:
Nicolas Ward ’05

Todo
Figure out which surface method works best, and then strip out the unused code.

B.11 rune.h File Reference 145

Todo
Optimize!

Definition at line 112 of file viewport.c.

References BMASK, Visualizer::surface, and Viewport::visualizer.

Referenced by updateView().

B.11.5.76 void validateDocument (char� filename, xmlDocPtr doc)

Validates an XML document using a parsed XML schema.

Parameters:
 filename The filename of the XML schema file.

 doc A pointer to the XML document being read.

Author:
Nicolas Ward ’05

Definition at line 1542 of file xml.c.

Referenced by parseDocument().

B.11.5.77 void visualizeCameraImage (Visualizer� visualizer)

Uses the appropriate GCM RLE decoding function to convert the compressed image data sent over
IPC into a raw PPM-formatted color image based on the specified size and quality.

Parameters:
 visualizer TheVisualizer(p.48) containing the image data.

Author:
Nicolas Ward ’05

Definition at line 376 of file visualizer.c.

References AMASK, BMASK, getCapabilityQuery(), getCapabilityState(), GMASK, Image-
Request::handled, printImage(), printVisualizer(), resizeImage(), and RMASK.

Referenced by getVisualizerBindings().

Here is the call graph for this function:

visualizeCameraImage

getCapabilityQuery

getCapabilityState

printImage

printVisualizer

resizeImage

getCapabilityName

getCapabilityString

B.11 rune.h File Reference 146

B.11.5.78 void visualizeGroundPlane (Visualizer� visualizer)

Uses incoming camera state data sent over IPC to calculate and draw indicators that approximate
a ground plane in the camera’s view.

Parameters:
 visualizer TheVisualizer(p.48) containing the camera state data.

Author:
Nicolas Ward ’05

Definition at line 566 of file visualizer.c.

References BMASK, getCapabilityState(), GMASK, mapCameraToImage(), R_SDL_-
SURFACE_FLAGS, and RMASK.

Referenced by getVisualizerBindings().

Here is the call graph for this function:

visualizeGroundPlane

getCapabilityState

mapCameraToImage

getCapabilityName

getCapabilityString

B.11.5.79 void visualizeMapData (Visualizer� visualizer)

Uses the appropriate GCM RLE decoding function to convert the compressed map data sent over
IPC into a raw PPM-formatted color image based on the mapping of different types of interest
points.

Parameters:
 visualizer TheVisualizer(p.48) containing the map data.

Author:
Nicolas Ward ’05

Definition at line 672 of file visualizer.c.

References AMASK, BMASK, getCapabilityQuery(), getCapabilityState(), GMASK, Common-
Request::handled, resizeImage(), and RMASK.

Referenced by getVisualizerBindings().

Here is the call graph for this function:

visualizeMapData getCapabilityQuery

getCapabilityState

resizeImage

getCapabilityName

getCapabilityString

B.11 rune.h File Reference 147

B.11.5.80 void visualizeNightMode (Visualizer� visualizer)

Responds to a local R_TOGGLE_NIGHT_MODE message to display an icon as needed.

Parameters:
 visualizer TheVisualizer(p.48) that will draw the icon.

Author:
Nicolas Ward ’05

Definition at line 879 of file visualizer.c.

References BMASK, GMASK, R_SDL_SURFACE_FLAGS, and RMASK.

Referenced by getVisualizerBindings().

B.11.5.81 void visualizePanData (Visualizer� visualizer)

Draws a bar indicating current pan position relative to the center line, as well as the current zoom
setting in terms of angular field-of-view.

Parameters:
 visualizer TheVisualizer(p.48) containing the camera state data.

Author:
Nicolas Ward ’05

Definition at line 962 of file visualizer.c.

References drawPTZData(), and getCapabilityState().

Referenced by getVisualizerBindings().

Here is the call graph for this function:

visualizePanData

drawPTZData

getCapabilityState

getCapabilityName

getCapabilityString

B.11.5.82 void visualizeRangeData (Visualizer� visualizer)

Draws a range data representation. Assumes a circular robot with radial sensors; in other words, a
Magellan.

Parameters:
 visualizer TheVisualizer(p.48) containing the robot state data.

B.11 rune.h File Reference 148

Author:
Nicolas Ward ’05

Definition at line 1021 of file visualizer.c.

References BMASK, FILLED_PIE, getCapabilityQuery(), getCapabilityState(), GMASK,
CommonRequest::handled, R_SDL_SURFACE_FLAGS, and RMASK.

Referenced by getVisualizerBindings().

Here is the call graph for this function:

visualizeRangeData

getCapabilityQuery

getCapabilityState

getCapabilityName

getCapabilityString

B.11.5.83 void visualizeTiltData (Visualizer� visualizer)

Draws a bar indicating current tilt position relative to the center line, as well as the current zoom
setting in terms of angular field-of-view.

Parameters:
 visualizer TheVisualizer(p.48) containing the camera state data.

Author:
Nicolas Ward ’05

Definition at line 1222 of file visualizer.c.

References drawPTZData(), and getCapabilityState().

Referenced by getVisualizerBindings().

Here is the call graph for this function:

visualizeTiltData

drawPTZData

getCapabilityState

getCapabilityName

getCapabilityString

B.11.5.84 void widgetAdjustPan (Widget� widget, Event � event, SDL_Event� sdlEvent)

Adjusts the pan state of the robot’s main camera based on input from a button or key.

Parameters:
 widget This WidgetHandler’s parentWidget(p.51).

B.11 rune.h File Reference 149

 event The configured event that was triggered.

 sdlEvent The SDL_Event that triggered this handler.

Author:
Nicolas Ward ’05

Definition at line 481 of file widget.c.

References checkIPC().

Referenced by getWidgetHandler().

Here is the call graph for this function:

widgetAdjustPan checkIPC

checkCapabilities

getCapabilityName

getCapabilityStringhandleMessageCapabilities

handleMessageCommon

handleMessageModuleInfo

initCapability

getModuleWithCapability

handleMessageFixed

timerRequestImage

timerRequestMap

timerRequestRobotState

timerSendKeepAlive

timerUpdateView

handleMessageVariable

updateView

B.11.5.85 void widgetAdjustPanTilt (Widget�widget, Event� event, SDL_Event� sdlEvent)

Adjusts the pan-tilt state of the robot’s main camera based on input from a hat switch.

Parameters:
 widget This WidgetHandler’s parentWidget(p.51).

 event The configured event that was triggered.

 sdlEvent The SDL_Event that triggered this handler.

Author:
Nicolas Ward ’05

Definition at line 531 of file widget.c.

References checkIPC().

Referenced by getWidgetHandler().

B.11 rune.h File Reference 150

Here is the call graph for this function:

widgetAdjustPanTilt checkIPC

checkCapabilities

getCapabilityName

getCapabilityStringhandleMessageCapabilities

handleMessageCommon

handleMessageModuleInfo

initCapability

getModuleWithCapability

handleMessageFixed

timerRequestImage

timerRequestMap

timerRequestRobotState

timerSendKeepAlive

timerUpdateView

handleMessageVariable

updateView

B.11.5.86 void widgetAdjustTilt (Widget � widget, Event � event, SDL_Event� sdlEvent)

Adjusts the tilt state of the robot’s main camera based on input from a button or key.

Parameters:
 widget This WidgetHandler’s parentWidget(p.51).

 event The configured event that was triggered.

 sdlEvent The SDL_Event that triggered this handler.

Author:
Nicolas Ward ’05

Definition at line 585 of file widget.c.

References checkIPC().

Referenced by getWidgetHandler().

Here is the call graph for this function:

B.11 rune.h File Reference 151

widgetAdjustTilt checkIPC

checkCapabilities

getCapabilityName

getCapabilityStringhandleMessageCapabilities

handleMessageCommon

handleMessageModuleInfo

initCapability

getModuleWithCapability

handleMessageFixed

timerRequestImage

timerRequestMap

timerRequestRobotState

timerSendKeepAlive

timerUpdateView

handleMessageVariable

updateView

B.11.5.87 void widgetAdjustZoom (Widget� widget, Event � event, SDL_Event� sdlEvent)

Adjusts the zoom state of the robot’s main camera based on input from a button or key.

Parameters:
 widget This WidgetHandler’s parentWidget(p.51).

 event The configured event that was triggered.

 sdlEvent The SDL_Event that triggered this handler.

Author:
Nicolas Ward ’05

Definition at line 635 of file widget.c.

References checkIPC().

Referenced by getWidgetHandler().

Here is the call graph for this function:

widgetAdjustZoom checkIPC

checkCapabilities

getCapabilityName

getCapabilityStringhandleMessageCapabilities

handleMessageCommon

handleMessageModuleInfo

initCapability

getModuleWithCapability

handleMessageFixed

timerRequestImage

timerRequestMap

timerRequestRobotState

timerSendKeepAlive

timerUpdateView

handleMessageVariable

updateView

B.11 rune.h File Reference 152

B.11.5.88 void widgetCorrectLandmark (Widget� widget, Event � event, SDL_Event� sdl-
Event)

Performs an odometry correction based on the current landmark.

Parameters:
 widget This WidgetHandler’s parentWidget(p.51).

 event The configured event that was triggered.

 sdlEvent The SDL_Event that triggered this handler.

Author:
Nicolas Ward ’05

Definition at line 684 of file widget.c.

References Robot::context, getCapabilityState(), getModuleWithCapability(), interestLandmark-
Peek(), mapImageToWorld(), InterestPoints::nLandmarks, Viewport::robot, InterestPoint::x,
Viewport::xpos, Viewport::xsize, InterestPoint::y, Viewport::ypos, and Viewport::ysize.

Referenced by getWidgetHandler().

Here is the call graph for this function:

widgetCorrectLandmark

getCapabilityStategetModuleWithCapability

interestLandmarkPeek

mapImageToWorld

getCapabilityName

getCapabilityString

mapImageToCamera

B.11.5.89 void widgetHomePTZ (Widget� widget, Event � event, SDL_Event� sdlEvent)

Homes the PTZ state of the robot’s main camera based on any input.

Parameters:
 widget This WidgetHandler’s parentWidget(p.51).

 event The configured event that was triggered.

 sdlEvent The SDL_Event that triggered this handler.

Author:
Nicolas Ward ’05

Definition at line 806 of file widget.c.

References checkIPC().

B.11 rune.h File Reference 153

Referenced by getWidgetHandler().

Here is the call graph for this function:

widgetHomePTZ checkIPC

checkCapabilities

getCapabilityName

getCapabilityStringhandleMessageCapabilities

handleMessageCommon

handleMessageModuleInfo

initCapability

getModuleWithCapability

handleMessageFixed

timerRequestImage

timerRequestMap

timerRequestRobotState

timerSendKeepAlive

timerUpdateView

handleMessageVariable

updateView

B.11.5.90 void widgetQuit (Widget� widget, Event � event, SDL_Event� sdlEvent)

Pushes an SDL_QUIT event onto the queue.

The actual SDL_QUIT event is handled in handleEvent, which calls the quit function, cleans up,
and actually quitsRune(p.40).

Parameters:
 widget This WidgetHandler’s parentWidget(p.51).

 event The configured event that was triggered.

 sdlEvent The SDL_Event that triggered this handler.

Author:
Nicolas Ward ’05

Definition at line 838 of file widget.c.

References InterestPoint::type.

Referenced by getWidgetHandler().

B.11.5.91 void widgetSetImageRequest (Widget� widget, Event � event, SDL_Event � sdl-
Event)

Changes the type, size, and quality of the image being requested.

Parameters:
 widget This WidgetHandler’s parentWidget(p.51).

B.11 rune.h File Reference 154

 event The configured event that was triggered.

 sdlEvent The SDL_Event that triggered this handler.

Author:
Nicolas Ward ’05

Definition at line 857 of file widget.c.

References getCapabilityQuery(), Control::invert, Control::max, Control::min, test, and Con-
trol::type.

Referenced by getWidgetHandler().

Here is the call graph for this function:

widgetSetImageRequest getCapabilityQuery

getCapabilityName

getCapabilityString

B.11.5.92 void widgetSetLandmark (Widget�widget, Event� event, SDL_Event� sdlEvent)

Stores a landmark for future use.

Parameters:
 widget This WidgetHandler’s parentWidget(p.51).

 event The configured event that was triggered.

 sdlEvent The SDL_Event that triggered this handler.

Author:
Nicolas Ward ’05

Definition at line 935 of file widget.c.

References Robot::context, getCapabilityState(), getModuleWithCapability(), interestLandmark-
Push(), mapImageToWorld(), InterestPoints::nLandmarks, Viewport::robot, InterestPoint::type,
InterestPoint::x, Viewport::xpos, Viewport::xsize, InterestPoint::y, Viewport::ypos, and View-
port::ysize.

Referenced by getWidgetHandler().

Here is the call graph for this function:

widgetSetLandmark

getCapabilityStategetModuleWithCapability

interestLandmarkPush

mapImageToWorld

getCapabilityName

getCapabilityString

mapImageToCamera

B.11 rune.h File Reference 155

B.11.5.93 void widgetSetSpeed (Widget� widget, Event � event, SDL_Event� sdlEvent)

Sets rotation and translation speeds for the robot, based on joystick axes.

Normally has the functionality to home the robot’s PTZ camera, but that is disabled until we
integrate some SVM messages into GCM.

Parameters:
 widget This WidgetHandler’s parentWidget(p.51).

 event The configured event that was triggered.

 sdlEvent The SDL_Event that triggered this handler.

Author:
Nicolas Ward ’05

Todo
Remove dual-axis dependency check.

Todo
Remove or fix the automatic camera reset.

Definition at line 1162 of file widget.c.

References checkIPC(), Robot::context, getCapabilityState(), getModuleWithCapability(), Con-
trol::invert, Control::max, Control::min, Control::name, Viewport::robot, and test.

Referenced by getWidgetHandler().

Here is the call graph for this function:

widgetSetSpeed checkIPC

getModuleWithCapability

getCapabilityState

checkCapabilities

getCapabilityName

getCapabilityString

handleMessageCapabilities

handleMessageCommon

handleMessageModuleInfo

initCapability handleMessageFixed

timerRequestImage

timerRequestMap

timerRequestRobotState

timerSendKeepAlive

timerUpdateView

handleMessageVariable

updateView

B.11 rune.h File Reference 156

B.11.5.94 void widgetSetVictim (Widget� widget, Event � event, SDL_Event� sdlEvent)

Stores a victim for future use.

Parameters:
 widget This WidgetHandler’s parentWidget(p.51).

 event The configured event that was triggered.

 sdlEvent The SDL_Event that triggered this handler.

Author:
Nicolas Ward ’05

Definition at line 1042 of file widget.c.

References Robot::context, getCapabilityState(), getModuleWithCapability(), interestVictim-
Push(), mapImageToWorld(), InterestPoints::nVictims, Viewport::robot, InterestPoint::type,
InterestPoint::x, Viewport::xpos, Viewport::xsize, InterestPoint::y, Viewport::ypos, and View-
port::ysize.

Referenced by getWidgetHandler().

Here is the call graph for this function:

widgetSetVictim

getCapabilityStategetModuleWithCapability

interestVictimPush

mapImageToWorld

getCapabilityName

getCapabilityString

mapImageToCamera

B.11.5.95 void widgetToggleNightMode (Widget� widget, Event � event, SDL_Event� sdl-
Event)

Turns the night mode of a camera on or off.

Parameters:
 widget This WidgetHandler’s parentWidget(p.51).

 event The configured event that was triggered.

 sdlEvent The SDL_Event that triggered this handler.

Author:
Nicolas Ward ’05

B.12 sdltest.c File Reference 157

Definition at line 1308 of file widget.c.

References checkIPC(), Robot::context, getModuleWithCapability(), handleMessageLocal(), R_-
TOGGLE_NIGHT_MODE, and Viewport::robot.

Referenced by getWidgetHandler().

Here is the call graph for this function:

widgetToggleNightMode

checkIPC

getModuleWithCapability

handleMessageLocal

checkCapabilities getCapabilityName

getCapabilityString

handleMessageCapabilities

handleMessageCommon

handleMessageModuleInfo

initCapability handleMessageFixed

timerRequestImage

timerRequestMap

timerRequestRobotState

timerSendKeepAlive

timerUpdateView

B.12 sdltest.c File Reference

#include <stdlib.h >

#include <errno.h >

#include <SDL.h >

#include <SDL_rotozoom.h >

#include <SDL_image.h >

#include <GCM.h>

Include dependency graph for sdltest.c:

sdltest.c

stdlib.h

errno.h

SDL.h

SDL_rotozoom.h

SDL_image.h

GCM.h

B.12 sdltest.c File Reference 158

Defines

• #defineARG_SHIFT 4
• #defineRMASK 0xff000000
• #defineGMASK 0x00ff0000
• #defineBMASK 0x0000ff00
• #defineAMASK 0x000000ff
• #defineSCREEN_WIDTH 800
• #defineSCREEN_HEIGHT 600
• #defineIMAGE_WIDTH 160
• #defineIMAGE_HEIGHT 120
• #define SDL_SURFACE_FLAGS SDL_HWSURFACEjSDL_RLEACCELjSDL_-

HWPALETTE
• #defineUSAGE "usage: sdltest<test type><max time><interpolation><ppm images>

...nn"
• #defineGRAYS 256

Enumerations

• enumTestType { TEST_COPY_ARRAY, TEST_MEMCPY_ARRAY , TEST_LOAD_-
ARRAY , TEST_SURFACE }

Functions

• void draw (SDL_Surface��drawing, unsigned char�image)
• void quit (long start, int frames)
• int main (int argc, char��argv)

Variables

• TestType test
• SDL_Colorgrays [GRAYS]

B.12.1 Detailed Description

Performs various speed tests for SDL operations.

Author:
Nicolas Ward ’05

Date:
2005.03.31

B.12 sdltest.c File Reference 159

Definition in filesdltest.c.

B.12.2 Define Documentation

B.12.2.1 #define AMASK 0x000000ff

Definition at line 35 of file sdltest.c.

B.12.2.2 #define ARG_SHIFT 4

The number of non-image arguments, including the name of the program.

Todo
Switch to getopt.

Definition at line 28 of file sdltest.c.

Referenced by main().

B.12.2.3 #define BMASK 0x0000ff00

Definition at line 34 of file sdltest.c.

B.12.2.4 #define GMASK 0x00ff0000

Definition at line 33 of file sdltest.c.

B.12.2.5 #define GRAYS 256

The number of grayscale values allowed in a PGM-formatted image.

Definition at line 64 of file sdltest.c.

Referenced by draw(), and main().

B.12.2.6 #define IMAGE_HEIGHT 120

Definition at line 47 of file sdltest.c.

Referenced by draw(), and main().

B.12.2.7 #define IMAGE_WIDTH 160

Definition at line 46 of file sdltest.c.

Referenced by draw(), and main().

B.12 sdltest.c File Reference 160

B.12.2.8 #define RMASK 0xff000000

Definition at line 32 of file sdltest.c.

B.12.2.9 #define SCREEN_HEIGHT 600

Definition at line 45 of file sdltest.c.

Referenced by main().

B.12.2.10 #define SCREEN_WIDTH 800

Definition at line 44 of file sdltest.c.

Referenced by main().

B.12.2.11 #define SDL_SURFACE_FLAGS SDL_HWSURFACEjSDL_-
RLEACCEL jSDL_HWPALETTE

Surface initialization flags for SDL.

Definition at line 54 of file sdltest.c.

Referenced by main().

B.12.2.12 #define USAGE "usage: sdltest<test type><max time><interpolation><ppm
images> ...nn"

Usage message printed on argument error.

Definition at line 59 of file sdltest.c.

Referenced by main().

B.12.3 Enumeration Type Documentation

B.12.3.1 enum TestType

An enumerated type which defines which SDL test is being performed.

Enumeration values:
TEST_COPY_ARRAY

TEST_MEMCPY_ARRAY

TEST_LOAD_ARRAY

TEST_SURFACE

Definition at line 71 of file sdltest.c.

B.12 sdltest.c File Reference 161

B.12.4 Function Documentation

B.12.4.1 void draw (SDL_Surface�� drawing, unsigned char� image)

Converts an unsigned char array to an SDL_Surface.

Parameters:
! drawing The surface resulting from the conversion.

 image The input grayscale image.

Author:
Nicolas Ward ’05

Definition at line 342 of file sdltest.c.

References AMASK, BMASK, GMASK, GRAYS, grays, IMAGE_HEIGHT, IMAGE_WIDTH,
RMASK, test, TEST_COPY_ARRAY, TEST_LOAD_ARRAY, and TEST_MEMCPY_ARRAY.

Referenced by main().

B.12.4.2 int main (int argc, char �� argv)

The main function; runs the entire specified test for the specified amount of time.

Parameters:
 argc The number of command line arguments.

 argv The array of command line argument strings.

Returns:
-1 on error, 0 otherwise.

Author:
Nicolas Ward ’05

Definition at line 103 of file sdltest.c.

References AMASK, ARG_SHIFT, BMASK, draw(), GMASK, grays, GRAYS, IMAGE_-
HEIGHT, IMAGE_WIDTH, quit(), RMASK, SCREEN_HEIGHT, SCREEN_WIDTH, SDL_-
SURFACE_FLAGS, test, TEST_COPY_ARRAY, TEST_LOAD_ARRAY, TEST_MEMCPY_-
ARRAY, TEST_SURFACE, and USAGE.

Here is the call graph for this function:

main

draw

quit

B.13 timer.c File Reference 162

B.12.4.3 void quit (longstart, int frames)

Calculates the average frame rate over the course of the run and exits.

Parameters:
 start The time in ticks at program start.

 frames The number of frames drawn since program start.

Author:
Nicolas Ward ’05

Definition at line 392 of file sdltest.c.

Referenced by main(), and quitRune().

B.12.5 Variable Documentation

B.12.5.1 SDL_Color grays[GRAYS]

Color lookup table for grayscale values.

Definition at line 88 of file sdltest.c.

Referenced by draw(), and main().

B.12.5.2 TestType test

Stores the current test being performed.

Definition at line 83 of file sdltest.c.

Referenced by draw(), main(), widgetSetImageRequest(), and widgetSetSpeed().

B.13 timer.c File Reference

#include <rune.h >

Include dependency graph for timer.c:

B.13 timer.c File Reference 163

timer.c rune.h

stdio.h

stdlib.h

math.h

stdbool.h

unistd.h

string.h

time.h

SDL.h

SDL_rotozoom.h

SDL_gfxPrimitives.h

SDL_ttf.h

SDL_image.h

libxml/parser.h

libxml/relaxng.h

ipc.h

GCM.h

robomon.h

Functions

• Uint32 timerRequestImage(Uint32 interval, void�param)
• Uint32 timerRequestMap (Uint32 interval, void�param)
• Uint32 timerRequestRobotState(Uint32 interval, void�param)
• Uint32 timerSendKeepAlive(Uint32 interval, void�param)
• Uint32 timerUpdateView (Uint32 interval, void�param)

B.13.1 Detailed Description

Contains timer functions that are called regularly byRune(p.40) to perform some action associated
with aCapability (p.23).

These timers are called by the SDL main loop as scheduled when the timers are initialized to call
these functions.

Author:
Nicolas Ward ’05

B.13 timer.c File Reference 164

Date:
2005.03.31

Definition in file timer.c.

B.13.2 Function Documentation

B.13.2.1 Uint32 timerRequestImage (Uint32interval, void � param)

Queries SVM for an image; called by an SDL timer associated with the VIS_VID capability.

Parameters:
 interval The timeout between calls of this function.

 param A pointer to theCapability (p.23) data structure.

Returns:
The unmodified timeout between calls of this function.

Definition at line 24 of file timer.c.

References Robot::context, ImageRequest::handled, handleMessageVariable(), Capability::query,
ImageRequest::request, Capability::robot, Robot::rune, and Rune::running.

Referenced by initCapability().

Here is the call graph for this function:

timerRequestImage handleMessageVariable

B.13.2.2 Uint32 timerRequestMap (Uint32interval, void � param)

Queries SMM for a map image; called by an SDL timer associated with the PRO_MAP capability.

Parameters:
 interval The timeout between calls of this function.

 param A pointer to theCapability (p.23) data structure.

Returns:
The unmodified timeout between calls of this function.

Definition at line 68 of file timer.c.

References Robot::context, CommonRequest::handled, handleMessageVariable(), Capabil-
ity::query, CommonRequest::request, Capability::robot, Robot::rune, and Rune::running.

B.13 timer.c File Reference 165

Referenced by initCapability().

Here is the call graph for this function:

timerRequestMap handleMessageVariable

B.13.2.3 Uint32 timerRequestRobotState (Uint32interval, void � param)

Queries Nav for the robot state; called by an SDL timer associated with the a NAV_� capability.

Parameters:
 interval The timeout between calls of this function.

 param A pointer to theCapability (p.23) data structure.

Returns:
The unmodified timeout between calls of this function.

Definition at line 104 of file timer.c.

References Robot::context, CommonRequest::handled, handleMessageVariable(), Capabil-
ity::query, CommonRequest::request, Capability::robot, Robot::rune, and Rune::running.

Referenced by initCapability().

Here is the call graph for this function:

timerRequestRobotState handleMessageVariable

B.13.2.4 Uint32 timerSendKeepAlive (Uint32interval, void � param)

Sends a keep-alive message; called by an SDL timer associated with the CON_REAL capability.

This message ensures that Robomon does not attempt to shutdownRune(p.40).

Parameters:
 interval The timeout between calls of this function.

 param A pointer to theCapability (p.23) data structure.

Returns:
The unmodified timeout between calls of this function.

Todo
Fix the module update

B.14 view.c File Reference 166

Definition at line 143 of file timer.c.

References Robot::context, Rune::data, Capability::robot, Rune::robots, Robot::rune, and
Rune::running.

Referenced by initCapability().

B.13.2.5 Uint32 timerUpdateView (Uint32interval, void � param)

Updates the main view; called by an SDL timer associated with the CON_REAL capability.

Parameters:
 interval The timeout between calls of this function.

 param A pointer to theCapability (p.23) data structure.

Returns:
The unmodified timeout between calls of this function.

Definition at line 180 of file timer.c.

References Capability::robot, Robot::rune, Rune::running, and updateView().

Referenced by initCapability().

Here is the call graph for this function:

timerUpdateView updateView

intersectViewports

updateViewport

B.14 view.c File Reference

#include <rune.h >

Include dependency graph for view.c:

B.14 view.c File Reference 167

view.c rune.h

stdio.h

stdlib.h

math.h

stdbool.h

unistd.h

string.h

time.h

SDL.h

SDL_rotozoom.h

SDL_gfxPrimitives.h

SDL_ttf.h

SDL_image.h

libxml/parser.h

libxml/relaxng.h

ipc.h

GCM.h

robomon.h

Functions

• void drawText (SDL_Surface�target, TTF_Font�font, char�text)
• void freeView (View �view)
• void updateView (Rune�rune)

B.14.1 Detailed Description

Contains functions for configuring and displaying aView(p.42) data structure.

Author:
Nicolas Ward ’05

Date:
2005.03.20

Definition in fileview.c.

B.14 view.c File Reference 168

B.14.2 Function Documentation

B.14.2.1 void drawText (SDL_Surface� target, TTF_Font � font, char � text)

Draws some arbitrary text into a surface.

The text can be drawn in any TTF font. Currently the text is drawn in black on a grey background,
which is then blitted into the middle of the target surface.

Parameters:
 target The surface onto which the text will be drawn.

 font The font used to render the text.

 text The string of text to be drawn.

Author:
Nicolas Ward ’05

Todo
Add support for arbitrary text coloring.

Definition at line 25 of file view.c.

Referenced by calibrateAxis(), and runRune().

B.14.2.2 void freeView (View� view)

Frees aView(p.42) data structure and all of its children.

Parameters:
 view TheView(p.42) structure being freed.

Author:
Nicolas Ward ’05

Definition at line 94 of file view.c.

References freeViewport().

Referenced by freeRune().

Here is the call graph for this function:

freeView freeViewport freeVisualizer

B.15 viewport.c File Reference 169

B.14.2.3 void updateView (Rune� rune)

Updates the entireView(p.42), and all of its children, in back-to-front order.

The many #ifdefs in this function provide for compile-time hooks that select the drawing method
being used. The constants are #defined inrune.h(p.89).

Parameters:
 rune A pointer to theRune(p.40) data structure.

Author:
Nicolas Ward ’05

Todo
Figure out which surface method works best, and then strip out the unused code.

Todo
Optimize!

Definition at line 131 of file view.c.

References intersectViewports(), and updateViewport().

Referenced by timerUpdateView().

Here is the call graph for this function:

updateView

intersectViewports

updateViewport

B.15 viewport.c File Reference

#include <rune.h >

Include dependency graph for viewport.c:

B.15 viewport.c File Reference 170

viewport.c rune.h

stdio.h

stdlib.h

math.h

stdbool.h

unistd.h

string.h

time.h

SDL.h

SDL_rotozoom.h

SDL_gfxPrimitives.h

SDL_ttf.h

SDL_image.h

libxml/parser.h

libxml/relaxng.h

ipc.h

GCM.h

robomon.h

Functions

• int compareViewports(const void�viewportPtr1, const void�viewportPtr2)
• void freeViewport (Viewport �viewport)
• bool intersectViewports (Viewport �viewport1,Viewport �viewport2)
• void updateViewport (Viewport �viewport,Rune�rune)

B.15.1 Detailed Description

Contains functions for the configuring and displaying aViewport (p.45) data structure.

Author:
Nicolas Ward ’05

Date:
2005.03.20

Definition in fileviewport.c.

B.15 viewport.c File Reference 171

B.15.2 Function Documentation

B.15.2.1 int compareViewports (const void� viewportPtr1, const void� viewportPtr2)

Compares the z position of two Viewports.

Intended for use with qsort(). 0 is returned if the two Viewports have the same zpos; the result is
positive if the first is in front of the second, and negative if the second is in front of the first.

Parameters:
 viewportPtr1 A void pointer to the firstViewport (p.45).

 viewportPtr2 A void pointer to the secondViewport (p.45).

Returns:
The difference in the z-position of the input Viewports.

Author:
Nicolas Ward ’05

Definition at line 25 of file viewport.c.

References Viewport::zpos.

Referenced by runRune().

B.15.2.2 void freeViewport (Viewport� viewport)

Frees aViewport (p.45) data structure and all of its children

Parameters:
 viewport TheViewport (p.45) structure to be freed.

Author:
Nicolas Ward ’05

Definition at line 42 of file viewport.c.

References freeVisualizer().

Referenced by freeView().

Here is the call graph for this function:

freeViewport freeVisualizer

B.15 viewport.c File Reference 172

B.15.2.3 bool intersectViewports (Viewport� viewport1, Viewport � viewport2)

Checks if oneViewport (p.45) overlaps another, to determine if the overlappedViewport (p.45)
needs to be redrawn.

Checks if the second (overlapping)Viewport (p.45) is in front, and if it is somewhere inside the
first (overlapped) Viewport’s bounding box.

Parameters:
 viewport1 A pointer to the overlappedViewport (p.45).

 viewport2 A pointer to the overlappingViewport (p.45).

Returns:
True if there is any overlap.

Author:
Nicolas Ward ’05

Definition at line 91 of file viewport.c.

Referenced by updateView().

B.15.2.4 void updateViewport (Viewport� viewport, Rune� rune)

Updates a Viewport’s display with newly visualized data.

The many #ifdefs in this function provide for compile-time hooks that select the drawing method
being used. The constants are #defined inrune.h(p.89).

Parameters:
 viewport TheViewport (p.45) being updated.

 rune A pointer to theRune(p.40) data structure.

Author:
Nicolas Ward ’05

Todo
Figure out which surface method works best, and then strip out the unused code.

Todo
Optimize!

Definition at line 112 of file viewport.c.

References BMASK, Visualizer::surface, and Viewport::visualizer.

Referenced by updateView().

B.16 visualizer.c File Reference 173

B.16 visualizer.c File Reference

#include <rune.h >

Include dependency graph for visualizer.c:

visualizer.c rune.h

stdio.h

stdlib.h

math.h

stdbool.h

unistd.h

string.h

time.h

SDL.h

SDL_rotozoom.h

SDL_gfxPrimitives.h

SDL_ttf.h

SDL_image.h

libxml/parser.h

libxml/relaxng.h

ipc.h

GCM.h

robomon.h

Defines

• #defineFILLED_PIE filledpieRGBA

Functions

• void drawPTZData (Visualizer �visualizer, int shift, int size)
• void freeVisualizer (Visualizer �visualizer)
• void getVisualizerBindings(char�name,Visualizer �visualizer)
• void printImage (GCM_Common_Image�image)
• void printVisualizer (Visualizer �visualizer)
• void resizeImage(unsigned char�input, int inputW, int inputH, int inputD, unsigned char
�output, int outputW, int outputH, int outputD)

B.16 visualizer.c File Reference 174

• void visualizeCameraImage(Visualizer �visualizer)
• void visualizeGroundPlane(Visualizer �visualizer)
• void visualizeMapData(Visualizer �visualizer)
• void visualizeNightMode(Visualizer �visualizer)
• void visualizePanData(Visualizer �visualizer)
• void visualizeRangeData(Visualizer �visualizer)
• void visualizeTiltData (Visualizer �visualizer)

B.16.1 Detailed Description

Contains visualizer functions which handle incoming IPC message data and convert that data into
visual data which can be rendered onscreen.

Author:
Nicolas Ward ’05

Date:
2005.03.20

Definition in filevisualizer.c.

B.16.2 Define Documentation

B.16.2.1 #define FILLED_PIE filledpieRGBA

Referenced by visualizeRangeData().

B.16.3 Function Documentation

B.16.3.1 void drawPTZData (Visualizer� visualizer, int shift, int size)

Draws pan and zoom or tilt and zoom data to aVisualizer(p.48) surface.

Parameters:
 visualizer The pan or tiltVisualizer that called this function.

 shift The center of the indicator bar, in pixels from one end of the calling Visualizer’s
surface.

 size The size of the indicator bar in pixels.

Author:
Nicolas Ward ’05

Definition at line 22 of file visualizer.c.

References BMASK, GMASK, R_SDL_SURFACE_FLAGS, and RMASK.

Referenced by visualizePanData(), and visualizeTiltData().

B.16 visualizer.c File Reference 175

B.16.3.2 void freeVisualizer (Visualizer� visualizer)

Frees aVisualizer(p.48) data structure.

Parameters:
 visualizer TheVisualizer(p.48) structure to be freed.

Author:
Nicolas Ward ’05

Definition at line 131 of file visualizer.c.

Referenced by freeViewport().

B.16.3.3 void getVisualizerBindings (char� name, Visualizer � visualizer)

Hashes aVisualizer(p.48) function name to a VisualizerFunction pointer and a string name of an
IPC message.

Parameters:
 name The string name of the function being hashed.

$ visualizer TheVisualizer(p.48) that will be bound to the returned visualization function
and data message.

Author:
Nicolas Ward ’05

Definition at line 159 of file visualizer.c.

References R_TOGGLE_NIGHT_MODE, visualizeCameraImage(), visualizeGroundPlane(),
visualizeMapData(), visualizeNightMode(), visualizePanData(), visualizeRangeData(), and
visualizeTiltData().

Referenced by parseVisualizer().

Here is the call graph for this function:

getVisualizerBindings

visualizeCameraImage

visualizeGroundPlane

visualizeMapData

visualizeNightMode

visualizePanData

visualizeRangeData

visualizeTiltData

getCapabilityQuery

getCapabilityState

printImage

printVisualizer

resizeImage

getCapabilityName

getCapabilityString

mapCameraToImage

drawPTZData

B.16 visualizer.c File Reference 176

B.16.3.4 void printImage (GCM_Common_Image� image)

Outputs the text metadata that is stored in a GCM image data structure.

Parameters:
 image The image whose metadata will be output.

Author:
Nicolas Ward ’05

Definition at line 207 of file visualizer.c.

Referenced by visualizeCameraImage().

B.16.3.5 void printVisualizer (Visualizer � visualizer)

Outputs the text metadata that is stored in aVisualizer(p.48) data structure.

Parameters:
 visualizer TheVisualizer(p.48) whose metadata will be output.

Author:
Nicolas Ward ’05

Definition at line 269 of file visualizer.c.

Referenced by visualizeCameraImage().

B.16.3.6 void resizeImage (unsigned char� input, int inputW, int inputH, int inputD, un-
signed char� output, int outputW, int outputH, int outputD)

Resizes an PPM-formatted image by interpolating the unsigned character data of the image.

This function cannot scale an image down because it does not do any sampling. It probably isn’t
particularly good or efficient at what it does either. Use sparingly.

This function does not handle color depths correctly, but it does work well enough to convert a
PGM or PPM to a PPM.

Parameters:
 input The character data of the input image.

 inputW The width of the input image in pixels.

 inputH The height of the input image in pixels.

 inputD The color depth of the input image in bytes.

! output A pre-allocated array where the character data of the output image will be written.

 outputW The width of the output image in pixels.

B.16 visualizer.c File Reference 177

 outputH The height of the output image in pixels.

 outputD The color depth of the output image in bytes.

Author:
Nicolas Ward ’05

Todo
Fix this function or find a replacement that’s fast.

Definition at line 317 of file visualizer.c.

Referenced by visualizeCameraImage(), and visualizeMapData().

B.16.3.7 void visualizeCameraImage (Visualizer� visualizer)

Uses the appropriate GCM RLE decoding function to convert the compressed image data sent over
IPC into a raw PPM-formatted color image based on the specified size and quality.

Parameters:
 visualizer TheVisualizer(p.48) containing the image data.

Author:
Nicolas Ward ’05

Definition at line 376 of file visualizer.c.

References AMASK, BMASK, getCapabilityQuery(), getCapabilityState(), GMASK, Image-
Request::handled, printImage(), printVisualizer(), resizeImage(), and RMASK.

Referenced by getVisualizerBindings().

Here is the call graph for this function:

visualizeCameraImage

getCapabilityQuery

getCapabilityState

printImage

printVisualizer

resizeImage

getCapabilityName

getCapabilityString

B.16.3.8 void visualizeGroundPlane (Visualizer� visualizer)

Uses incoming camera state data sent over IPC to calculate and draw indicators that approximate
a ground plane in the camera’s view.

B.16 visualizer.c File Reference 178

Parameters:
 visualizer TheVisualizer(p.48) containing the camera state data.

Author:
Nicolas Ward ’05

Definition at line 566 of file visualizer.c.

References BMASK, getCapabilityState(), GMASK, mapCameraToImage(), R_SDL_-
SURFACE_FLAGS, and RMASK.

Referenced by getVisualizerBindings().

Here is the call graph for this function:

visualizeGroundPlane

getCapabilityState

mapCameraToImage

getCapabilityName

getCapabilityString

B.16.3.9 void visualizeMapData (Visualizer� visualizer)

Uses the appropriate GCM RLE decoding function to convert the compressed map data sent over
IPC into a raw PPM-formatted color image based on the mapping of different types of interest
points.

Parameters:
 visualizer TheVisualizer(p.48) containing the map data.

Author:
Nicolas Ward ’05

Definition at line 672 of file visualizer.c.

References AMASK, BMASK, getCapabilityQuery(), getCapabilityState(), GMASK, Common-
Request::handled, resizeImage(), and RMASK.

Referenced by getVisualizerBindings().

Here is the call graph for this function:

visualizeMapData getCapabilityQuery

getCapabilityState

resizeImage

getCapabilityName

getCapabilityString

B.16 visualizer.c File Reference 179

B.16.3.10 void visualizeNightMode (Visualizer� visualizer)

Responds to a local R_TOGGLE_NIGHT_MODE message to display an icon as needed.

Parameters:
 visualizer TheVisualizer(p.48) that will draw the icon.

Author:
Nicolas Ward ’05

Definition at line 879 of file visualizer.c.

References BMASK, GMASK, R_SDL_SURFACE_FLAGS, and RMASK.

Referenced by getVisualizerBindings().

B.16.3.11 void visualizePanData (Visualizer� visualizer)

Draws a bar indicating current pan position relative to the center line, as well as the current zoom
setting in terms of angular field-of-view.

Parameters:
 visualizer TheVisualizer(p.48) containing the camera state data.

Author:
Nicolas Ward ’05

Definition at line 962 of file visualizer.c.

References drawPTZData(), and getCapabilityState().

Referenced by getVisualizerBindings().

Here is the call graph for this function:

visualizePanData

drawPTZData

getCapabilityState

getCapabilityName

getCapabilityString

B.16.3.12 void visualizeRangeData (Visualizer� visualizer)

Draws a range data representation. Assumes a circular robot with radial sensors; in other words, a
Magellan.

Parameters:
 visualizer TheVisualizer(p.48) containing the robot state data.

B.17 widget.c File Reference 180

Author:
Nicolas Ward ’05

Definition at line 1021 of file visualizer.c.

References BMASK, FILLED_PIE, getCapabilityQuery(), getCapabilityState(), GMASK,
CommonRequest::handled, R_SDL_SURFACE_FLAGS, and RMASK.

Referenced by getVisualizerBindings().

Here is the call graph for this function:

visualizeRangeData

getCapabilityQuery

getCapabilityState

getCapabilityName

getCapabilityString

B.16.3.13 void visualizeTiltData (Visualizer� visualizer)

Draws a bar indicating current tilt position relative to the center line, as well as the current zoom
setting in terms of angular field-of-view.

Parameters:
 visualizer TheVisualizer(p.48) containing the camera state data.

Author:
Nicolas Ward ’05

Definition at line 1222 of file visualizer.c.

References drawPTZData(), and getCapabilityState().

Referenced by getVisualizerBindings().

Here is the call graph for this function:

visualizeTiltData

drawPTZData

getCapabilityState

getCapabilityName

getCapabilityString

B.17 widget.c File Reference

#include <rune.h >

Include dependency graph for widget.c:

B.17 widget.c File Reference 181

widget.c rune.h

stdio.h

stdlib.h

math.h

stdbool.h

unistd.h

string.h

time.h

SDL.h

SDL_rotozoom.h

SDL_gfxPrimitives.h

SDL_ttf.h

SDL_image.h

libxml/parser.h

libxml/relaxng.h

ipc.h

GCM.h

robomon.h

Functions

• WidgetHandler getWidgetHandler (char�name)
• void mapImageToCamera (double imageSpaceX, double imageSpaceY, double image-

SpaceW, double imageSpaceH, GCM_CameraState�camera, double�cameraSpaceX, dou-
ble�cameraSpaceY)

• void mapImageToWorld (double imageSpaceX, double imageSpaceY, double imageSpace-
W, double imageSpaceH,Robot �robot, double�worldSpaceX, double�worldSpaceY)

• void mapCameraToImage(double cameraSpaceX, double cameraSpaceY, GCM_Camera-
State�camera, double imageSpaceW, double imageSpaceH, double�imageSpaceX, double
�imageSpaceY)

• void mapWorldToImage (double worldSpaceX, double worldSpaceY,Robot �robot, dou-
ble imageSpaceW, double imageSpaceH, double�imageSpaceX, double�imageSpaceY)

• void widgetAdjustPan (Widget �widget,Event �event, SDL_Event�sdlEvent)
• void widgetAdjustPanTilt (Widget �widget,Event �event, SDL_Event�sdlEvent)
• void widgetAdjustTilt (Widget �widget,Event �event, SDL_Event�sdlEvent)
• void widgetAdjustZoom (Widget �widget,Event �event, SDL_Event�sdlEvent)
• void widgetCorrectLandmark (Widget �widget,Event �event, SDL_Event�sdlEvent)

B.17 widget.c File Reference 182

• void widgetHomePTZ (Widget �widget,Event �event, SDL_Event�sdlEvent)
• void widgetQuit (Widget �widget,Event �event, SDL_Event�sdlEvent)
• void widgetSetImageRequest(Widget �widget,Event �event, SDL_Event�sdlEvent)
• void widgetSetLandmark (Widget �widget,Event �event, SDL_Event�sdlEvent)
• void widgetSetVictim (Widget �widget,Event �event, SDL_Event�sdlEvent)
• void widgetSetSpeed(Widget �widget,Event �event, SDL_Event�sdlEvent)
• void widgetToggleNightMode(Widget �widget,Event �event, SDL_Event�sdlEvent)

B.17.1 Detailed Description

ContainsWidget(p.51) functions which handle SDL events and respond to them by modifying
Rune’s state appropriately.

Author:
Nicolas Ward ’05

Date:
2005.03.20

Definition in filewidget.c.

B.17.2 Function Documentation

B.17.2.1 WidgetHandler getWidgetHandler (char� name)

Hashes aWidget(p.51) handler function name to a WidgetHandler pointer.

Parameters:
 name The string name of the function being hashed.

Returns:
The function pointer.

Author:
Nicolas Ward ’05

Definition at line 20 of file widget.c.

References widgetAdjustPan(), widgetAdjustPanTilt(), widgetAdjustTilt(), widgetAdjustZoom(),
widgetCorrectLandmark(), widgetHomePTZ(), widgetQuit(), widgetSetImageRequest(), widget-
SetLandmark(), widgetSetSpeed(), widgetSetVictim(), and widgetToggleNightMode().

Referenced by parseWidget().

Here is the call graph for this function:

B.17 widget.c File Reference 183

getWidgetHandler

widgetAdjustPan

widgetAdjustPanTilt

widgetAdjustTilt

widgetAdjustZoom

widgetCorrectLandmark

widgetHomePTZ

widgetQuit

widgetSetImageRequest

widgetSetLandmark

widgetSetSpeed

widgetSetVictim

widgetToggleNightMode

checkIPC

checkCapabilities

getCapabilityName

getCapabilityString

handleMessageCapabilities

handleMessageCommon

handleMessageModuleInfo

initCapability

getModuleWithCapability

getCapabilityState

interestLandmarkPeek

mapImageToWorld mapImageToCamera

getCapabilityQuery

interestLandmarkPush

interestVictimPush

handleMessageLocal

B.17.2.2 void mapCameraToImage (doublecameraSpaceX, doublecameraSpaceY, GCM_-
CameraState� camera, double imageSpaceW, double imageSpaceH, double � imageSpaceX,
double� imageSpaceY)

Performs a coordinate mapping from an (x,y) position relative to the robot’s axes to an (x,y) pixel
value in an image.

See the detailed comments and schematics associated with each mathematical step of this coordi-
nate mapping.

Parameters:
! cameraSpaceXThe x-coordinate in camera space in meters.

! cameraSpaceYThe y-coordinate in camera space in meters.

 camera The camera whose coordinate space is being used.

 imageSpaceWThe width of the image space in pixels.

B.17 widget.c File Reference 184

 imageSpaceHThe height of the image space in pixels.

! imageSpaceXThe x-coordinate in image space in pixels.

! imageSpaceYThe y-coordinate in image space in pixels.

Author:
Nicolas Ward ’05

*
* Convert from 2-D cartesian in camera space to 3-D polar in camera space
* Angles /_hc and /_vc are measured in radians from the camera mountpoint
* cameraSpaceAngleH is positive left (CCW from straight ahead)
* cameraSpaceAngleV is positive up (CCW from straight ahead)
* Ranges Rxy, and Ryz are measured in meters from the camera mountpoint
* cameraSpaceRadiusH is in the ground plane
* cameraSpaceRadiusV is in the vertical plane through the robot
* Point (x,y) is measured in meters from below the camera’s center point
* cameraSpaceX is positive right
* cameraSpaceY is positive forwards
* Camera height is measured in meters from the ground plane
* height is positive up
*
* (top view) (side view)
* . world point camera .______
* | / |\) -cameraSpaceAngleV
* y|~/ Rxy h | \ Ryz
* |/__ ~cameraSpaceAngleH | \
* ’ x |__(\
* camera ‘world point
* center by Alternate Interior Angle theorem
*
*

*
* Convert from 3-D polar in camera space to radians in image space
* Angles /_h and /_v are measured from the image center
* imageSpaceH is positive left in image
* imageSpaceV is positive up in image
* Angles /_p and /_t are measured to the center of the camera’s image
* pan is positive left (CCW from straight ahead)
* tilt is positive up (CCW from downwards vertical)
* Angles /_hc and /_vc are measured from the camera mountpoint
* cameraSpaceAngleH is positive left (CCW from straight ahead)
* cameraSpaceAngleV is positive up (CCW from straight ahead)
*
* camera . \ |
* |\ \ |
* |~\ /_t /_p |
* | \ \|
* | \ ‘camera
* (side view) (top view)
*
*

B.17 widget.c File Reference 185

*
* Convert from pixels to radians in image space
* Pixel (x,y) is measured from the upper left of the image
* imageSpaceX is positive right
* imageSpaceY is positive down
* The pixel dimensions of the image are imageSpaceW by imageSpaceH
* The image center is at (w/2,h/2)
* Angles /_h and /_v are measured from the image center
* imageSpaceH is positive left in image
* imageSpaceV is positive up in image
* The angular dimensions of the image are HFOV by VFOV
*
* (side view) (top view) (front view)
* /| \ /| \ _________________
* / | | / | | | x | \
* VFOV / | | HFOV / | | y| | /_v | |
* <) | }h <) | }w | ___| | }h
* \ | | \ | | | /_h ‘center | |
* \ | | \ | | | | |
* \| / \| / |_________________| /
* image plane image plane
* ________w________/
*
*

Definition at line 283 of file widget.c.

Referenced by mapWorldToImage(), and visualizeGroundPlane().

B.17.2.3 void mapImageToCamera (doubleimageSpaceX, double imageSpaceY, double
imageSpaceW, double imageSpaceH, GCM_CameraState� camera, double � cameraSpace-
X, double� cameraSpaceY)

Performs a coordinate mapping from an (x,y) pixel value in an image to an (x,y) position value
relative to the ground plane projection of the camera’s axes.

See the detailed comments and schematics associated with each mathematical step of this coordi-
nate mapping.

Parameters:
 imageSpaceXThe x-coordinate in image space in pixels.

 imageSpaceYThe y-coordinate in image space in pixels.

 imageSpaceWThe width of the image space in pixels.

 imageSpaceHThe height of the image space in pixels.

 camera The camera whose coordinate space is being used.

! cameraSpaceXThe x-coordinate in camera space in meters.

! cameraSpaceYThe y-coordinate in camera space in meters.

B.17 widget.c File Reference 186

Author:
Nicolas Ward ’05

*
* Convert from pixels to radians in image space
* Pixel (x,y) is measured from the upper left of the image
* imageSpaceX is positive right
* imageSpaceY is positive down
* The pixel dimensions of the image are imageSpaceW by imageSpaceH
* The image center is at (w/2,h/2)
* Angles /_h and /_v are measured from the image center
* imageSpaceH is positive left in image
* imageSpaceV is positive up in image
* The angular dimensions of the image are HFOV by VFOV
*
* (side view) (top view) (front view)
* /| \ /| \ _________________
* / | | / | | | x | \
* VFOV / | | HFOV / | | y| | /_v | |
* <) | }h <) | }w | ___| | }h
* \ | | \ | | | /_h ‘center | |
* \ | | \ | | | | |
* \| / \| / |_________________| /
* image plane image plane
* ________w________/
*
*

*
* Convert from radians in image space to 3-D polar in camera space
* Angles /_h and /_v are measured from the image center
* imageSpaceH is positive left in image
* imageSpaceV is positive up in image
* Angles /_p and /_t are measured to the center of the camera’s image
* pan is positive left (CCW from straight ahead)
* tilt is positive up (CCW from downwards vertical)
* Angles /_hc and /_vc are measured from the camera mountpoint
* cameraSpaceAngleH is positive left (CCW from straight ahead)
* cameraSpaceAngleV is positive up (CCW from straight ahead)
*
* camera . \ |
* |\ \ |
* |~\ /_t /_p |
* | \ \|
* | \ ‘camera
* (side view) (top view)
*
*

*
* Convert from 3-D polar in camera space to 2-D cartesian in camera space
* Angles /_hc and /_vc are measured in radians from the camera mountpoint
* cameraSpaceAngleH is positive left (CCW from straight ahead)

B.17 widget.c File Reference 187

* cameraSpaceAngleV is positive up (CCW from straight ahead)
* Ranges Rxy, and Ryz are measured in meters from the camera mountpoint
* cameraSpaceRadiusH is in the ground plane
* cameraSpaceRadiusV is in the vertical plane through the robot
* Point (x,y) is measured in meters from below the camera’s center point
* cameraSpaceX is positive right
* cameraSpaceY is positive forwards
* Camera height is measured in meters from the ground plane
* height is positive up
*
* (top view) (side view)
* . world point camera .______
* | / |\) -cameraSpaceAngleV
* y|~/ Rxy h | \ Ryz
* |/__ ~cameraSpaceAngleH | \
* ’ x |__(\
* camera ‘world point
* center by Alternate Interior Angle theorem
*
*

Definition at line 82 of file widget.c.

Referenced by mapImageToWorld().

B.17.2.4 void mapImageToWorld (double imageSpaceX, double imageSpaceY, double
imageSpaceW, double imageSpaceH, Robot � robot, double � worldSpaceX, double � world-
SpaceY)

Performs a coordinate mapping from an (x,y) pixel value in an image to an (x,y) position value on
the global ground plane.

See the detailed comments and schematics associated with each mathematical step of this coordi-
nate mapping.

Parameters:
 imageSpaceXThe x-coordinate in image space in pixels.

 imageSpaceYThe y-coordinate in image space in pixels.

 imageSpaceWThe width of the image space in pixels.

 imageSpaceHThe height of the image space in pixels.

 robot The robot whose coordinate space is being used.

! worldSpaceXThe x-coordinate in world space in meters.

! worldSpaceYThe y-coordinate in world space in meters.

Author:
Nicolas Ward ’05

B.17 widget.c File Reference 188

Definition at line 208 of file widget.c.

References getCapabilityState(), and mapImageToCamera().

Referenced by widgetCorrectLandmark(), widgetSetLandmark(), and widgetSetVictim().

Here is the call graph for this function:

mapImageToWorld

getCapabilityState

mapImageToCamera

getCapabilityName

getCapabilityString

B.17.2.5 void mapWorldToImage (doubleworldSpaceX, doubleworldSpaceY, Robot� robot,
double imageSpaceW, double imageSpaceH, double � imageSpaceX, double � imageSpaceY)

Performs a coordinate mapping from an (x,y) position value on the global ground plane to an (x,y)
pixel value in an image.

See the detailed comments and schematics associated with each mathematical step of this coordi-
nate mapping.

Parameters:
 worldSpaceXThe x-coordinate in world space in meters.

 worldSpaceYThe y-coordinate in world space in meters.

 robot The robot whose coordinate space is being used.

 imageSpaceWThe width of the image space in pixels.

 imageSpaceHThe height of the image space in pixels.

! imageSpaceXThe x-coordinate in image space in pixels.

! imageSpaceYThe y-coordinate in image space in pixels.

Author:
Nicolas Ward ’05

Definition at line 407 of file widget.c.

References getCapabilityState(), and mapCameraToImage().

Here is the call graph for this function:

mapWorldToImage

getCapabilityState

mapCameraToImage

getCapabilityName

getCapabilityString

B.17 widget.c File Reference 189

B.17.2.6 void widgetAdjustPan (Widget� widget, Event � event, SDL_Event� sdlEvent)

Adjusts the pan state of the robot’s main camera based on input from a button or key.

Parameters:
 widget This WidgetHandler’s parentWidget(p.51).

 event The configured event that was triggered.

 sdlEvent The SDL_Event that triggered this handler.

Author:
Nicolas Ward ’05

Definition at line 481 of file widget.c.

References checkIPC().

Referenced by getWidgetHandler().

Here is the call graph for this function:

widgetAdjustPan checkIPC

checkCapabilities

getCapabilityName

getCapabilityStringhandleMessageCapabilities

handleMessageCommon

handleMessageModuleInfo

initCapability

getModuleWithCapability

handleMessageFixed

timerRequestImage

timerRequestMap

timerRequestRobotState

timerSendKeepAlive

timerUpdateView

handleMessageVariable

updateView

B.17.2.7 void widgetAdjustPanTilt (Widget� widget, Event � event, SDL_Event� sdlEvent)

Adjusts the pan-tilt state of the robot’s main camera based on input from a hat switch.

Parameters:
 widget This WidgetHandler’s parentWidget(p.51).

 event The configured event that was triggered.

 sdlEvent The SDL_Event that triggered this handler.

Author:
Nicolas Ward ’05

B.17 widget.c File Reference 190

Definition at line 531 of file widget.c.

References checkIPC().

Referenced by getWidgetHandler().

Here is the call graph for this function:

widgetAdjustPanTilt checkIPC

checkCapabilities

getCapabilityName

getCapabilityStringhandleMessageCapabilities

handleMessageCommon

handleMessageModuleInfo

initCapability

getModuleWithCapability

handleMessageFixed

timerRequestImage

timerRequestMap

timerRequestRobotState

timerSendKeepAlive

timerUpdateView

handleMessageVariable

updateView

B.17.2.8 void widgetAdjustTilt (Widget � widget, Event � event, SDL_Event� sdlEvent)

Adjusts the tilt state of the robot’s main camera based on input from a button or key.

Parameters:
 widget This WidgetHandler’s parentWidget(p.51).

 event The configured event that was triggered.

 sdlEvent The SDL_Event that triggered this handler.

Author:
Nicolas Ward ’05

Definition at line 585 of file widget.c.

References checkIPC().

Referenced by getWidgetHandler().

Here is the call graph for this function:

B.17 widget.c File Reference 191

widgetAdjustTilt checkIPC

checkCapabilities

getCapabilityName

getCapabilityStringhandleMessageCapabilities

handleMessageCommon

handleMessageModuleInfo

initCapability

getModuleWithCapability

handleMessageFixed

timerRequestImage

timerRequestMap

timerRequestRobotState

timerSendKeepAlive

timerUpdateView

handleMessageVariable

updateView

B.17.2.9 void widgetAdjustZoom (Widget� widget, Event � event, SDL_Event � sdlEvent)

Adjusts the zoom state of the robot’s main camera based on input from a button or key.

Parameters:
 widget This WidgetHandler’s parentWidget(p.51).

 event The configured event that was triggered.

 sdlEvent The SDL_Event that triggered this handler.

Author:
Nicolas Ward ’05

Definition at line 635 of file widget.c.

References checkIPC().

Referenced by getWidgetHandler().

Here is the call graph for this function:

widgetAdjustZoom checkIPC

checkCapabilities

getCapabilityName

getCapabilityStringhandleMessageCapabilities

handleMessageCommon

handleMessageModuleInfo

initCapability

getModuleWithCapability

handleMessageFixed

timerRequestImage

timerRequestMap

timerRequestRobotState

timerSendKeepAlive

timerUpdateView

handleMessageVariable

updateView

B.17 widget.c File Reference 192

B.17.2.10 void widgetCorrectLandmark (Widget� widget, Event � event, SDL_Event� sdl-
Event)

Performs an odometry correction based on the current landmark.

Parameters:
 widget This WidgetHandler’s parentWidget(p.51).

 event The configured event that was triggered.

 sdlEvent The SDL_Event that triggered this handler.

Author:
Nicolas Ward ’05

Definition at line 684 of file widget.c.

References Robot::context, getCapabilityState(), getModuleWithCapability(), interestLandmark-
Peek(), mapImageToWorld(), InterestPoints::nLandmarks, Viewport::robot, InterestPoint::x,
Viewport::xpos, Viewport::xsize, InterestPoint::y, Viewport::ypos, and Viewport::ysize.

Referenced by getWidgetHandler().

Here is the call graph for this function:

widgetCorrectLandmark

getCapabilityStategetModuleWithCapability

interestLandmarkPeek

mapImageToWorld

getCapabilityName

getCapabilityString

mapImageToCamera

B.17.2.11 void widgetHomePTZ (Widget� widget, Event � event, SDL_Event� sdlEvent)

Homes the PTZ state of the robot’s main camera based on any input.

Parameters:
 widget This WidgetHandler’s parentWidget(p.51).

 event The configured event that was triggered.

 sdlEvent The SDL_Event that triggered this handler.

Author:
Nicolas Ward ’05

Definition at line 806 of file widget.c.

References checkIPC().

B.17 widget.c File Reference 193

Referenced by getWidgetHandler().

Here is the call graph for this function:

widgetHomePTZ checkIPC

checkCapabilities

getCapabilityName

getCapabilityStringhandleMessageCapabilities

handleMessageCommon

handleMessageModuleInfo

initCapability

getModuleWithCapability

handleMessageFixed

timerRequestImage

timerRequestMap

timerRequestRobotState

timerSendKeepAlive

timerUpdateView

handleMessageVariable

updateView

B.17.2.12 void widgetQuit (Widget� widget, Event � event, SDL_Event� sdlEvent)

Pushes an SDL_QUIT event onto the queue.

The actual SDL_QUIT event is handled in handleEvent, which calls the quit function, cleans up,
and actually quitsRune(p.40).

Parameters:
 widget This WidgetHandler’s parentWidget(p.51).

 event The configured event that was triggered.

 sdlEvent The SDL_Event that triggered this handler.

Author:
Nicolas Ward ’05

Definition at line 838 of file widget.c.

References InterestPoint::type.

Referenced by getWidgetHandler().

B.17.2.13 void widgetSetImageRequest (Widget� widget, Event � event, SDL_Event � sdl-
Event)

Changes the type, size, and quality of the image being requested.

Parameters:
 widget This WidgetHandler’s parentWidget(p.51).

B.17 widget.c File Reference 194

 event The configured event that was triggered.

 sdlEvent The SDL_Event that triggered this handler.

Author:
Nicolas Ward ’05

Definition at line 857 of file widget.c.

References getCapabilityQuery(), Control::invert, Control::max, Control::min, test, and Con-
trol::type.

Referenced by getWidgetHandler().

Here is the call graph for this function:

widgetSetImageRequest getCapabilityQuery

getCapabilityName

getCapabilityString

B.17.2.14 void widgetSetLandmark (Widget�widget, Event� event, SDL_Event� sdlEvent)

Stores a landmark for future use.

Parameters:
 widget This WidgetHandler’s parentWidget(p.51).

 event The configured event that was triggered.

 sdlEvent The SDL_Event that triggered this handler.

Author:
Nicolas Ward ’05

Definition at line 935 of file widget.c.

References Robot::context, getCapabilityState(), getModuleWithCapability(), interestLandmark-
Push(), mapImageToWorld(), InterestPoints::nLandmarks, Viewport::robot, InterestPoint::type,
InterestPoint::x, Viewport::xpos, Viewport::xsize, InterestPoint::y, Viewport::ypos, and View-
port::ysize.

Referenced by getWidgetHandler().

Here is the call graph for this function:

widgetSetLandmark

getCapabilityStategetModuleWithCapability

interestLandmarkPush

mapImageToWorld

getCapabilityName

getCapabilityString

mapImageToCamera

B.17 widget.c File Reference 195

B.17.2.15 void widgetSetSpeed (Widget� widget, Event � event, SDL_Event� sdlEvent)

Sets rotation and translation speeds for the robot, based on joystick axes.

Normally has the functionality to home the robot’s PTZ camera, but that is disabled until we
integrate some SVM messages into GCM.

Parameters:
 widget This WidgetHandler’s parentWidget(p.51).

 event The configured event that was triggered.

 sdlEvent The SDL_Event that triggered this handler.

Author:
Nicolas Ward ’05

Todo
Remove dual-axis dependency check.

Todo
Remove or fix the automatic camera reset.

Definition at line 1162 of file widget.c.

References checkIPC(), Robot::context, getCapabilityState(), getModuleWithCapability(), Con-
trol::invert, Control::max, Control::min, Control::name, Viewport::robot, and test.

Referenced by getWidgetHandler().

Here is the call graph for this function:

widgetSetSpeed checkIPC

getModuleWithCapability

getCapabilityState

checkCapabilities

getCapabilityName

getCapabilityString

handleMessageCapabilities

handleMessageCommon

handleMessageModuleInfo

initCapability handleMessageFixed

timerRequestImage

timerRequestMap

timerRequestRobotState

timerSendKeepAlive

timerUpdateView

handleMessageVariable

updateView

B.17 widget.c File Reference 196

B.17.2.16 void widgetSetVictim (Widget� widget, Event � event, SDL_Event� sdlEvent)

Stores a victim for future use.

Parameters:
 widget This WidgetHandler’s parentWidget(p.51).

 event The configured event that was triggered.

 sdlEvent The SDL_Event that triggered this handler.

Author:
Nicolas Ward ’05

Definition at line 1042 of file widget.c.

References Robot::context, getCapabilityState(), getModuleWithCapability(), interestVictim-
Push(), mapImageToWorld(), InterestPoints::nVictims, Viewport::robot, InterestPoint::type,
InterestPoint::x, Viewport::xpos, Viewport::xsize, InterestPoint::y, Viewport::ypos, and View-
port::ysize.

Referenced by getWidgetHandler().

Here is the call graph for this function:

widgetSetVictim

getCapabilityStategetModuleWithCapability

interestVictimPush

mapImageToWorld

getCapabilityName

getCapabilityString

mapImageToCamera

B.17.2.17 void widgetToggleNightMode (Widget� widget, Event � event, SDL_Event� sdl-
Event)

Turns the night mode of a camera on or off.

Parameters:
 widget This WidgetHandler’s parentWidget(p.51).

 event The configured event that was triggered.

 sdlEvent The SDL_Event that triggered this handler.

Author:
Nicolas Ward ’05

B.18 xml.c File Reference 197

Definition at line 1308 of file widget.c.

References checkIPC(), Robot::context, getModuleWithCapability(), handleMessageLocal(), R_-
TOGGLE_NIGHT_MODE, and Viewport::robot.

Referenced by getWidgetHandler().

Here is the call graph for this function:

widgetToggleNightMode

checkIPC

getModuleWithCapability

handleMessageLocal

checkCapabilities getCapabilityName

getCapabilityString

handleMessageCapabilities

handleMessageCommon

handleMessageModuleInfo

initCapability handleMessageFixed

timerRequestImage

timerRequestMap

timerRequestRobotState

timerSendKeepAlive

timerUpdateView

B.18 xml.c File Reference

#include <rune.h >

Include dependency graph for xml.c:

B.18 xml.c File Reference 198

xml.c rune.h

stdio.h

stdlib.h

math.h

stdbool.h

unistd.h

string.h

time.h

SDL.h

SDL_rotozoom.h

SDL_gfxPrimitives.h

SDL_ttf.h

SDL_image.h

libxml/parser.h

libxml/relaxng.h

ipc.h

GCM.h

robomon.h

Functions

• void parseControl (Control ��controlPtr, xmlDocPtr doc, xmlNodePtr node)
• void parseDocument(char�filename,Rune�rune)
• void parseEvent(Event ��eventPtr,Rune�rune, xmlDocPtr doc, xmlNodePtr node)
• void parseFont(Font �font, xmlDocPtr doc, xmlNodePtr node)
• void parseJoystick(Joystick ��joystickPtr, xmlDocPtr doc, xmlNodePtr node)
• void parseRobot(Robot ��robotPtr,Rune�rune, xmlDocPtr doc, xmlNodePtr node)
• void parseView(View ��viewPtr,Rune�rune, xmlDocPtr doc, xmlNodePtr node)
• void parseViewport (Viewport ��viewportPtr,Rune �rune, xmlDocPtr doc, xmlNodePtr

node)
• void parseVisualizer(Visualizer ��visualizerPtr,Rune�rune, xmlDocPtr doc, xmlNodePtr

node)
• void parseWidget(Widget ��widgetPtr,Rune�rune, xmlDocPtr doc, xmlNodePtr node)
• void validateDocument(char�filename, xmlDocPtr doc)

B.18 xml.c File Reference 199

B.18.1 Detailed Description

Contains functions for reading, validating, allocating, and loadingRune(p.40) data structures from
a parsed XML configuraiton file.

Author:
Nicolas Ward ’05

Date:
2005.03.19

Definition in filexml.c.

B.18.2 Function Documentation

B.18.2.1 void parseControl (Control�� controlPtr, xmlDocPtr doc, xmlNodePtr node)

Parses a<control> element from an XML configuration file.

Parameters:
! controlPtr A pointer to theControl (p.26) data structure being allocated by this function.

 doc A pointer to the XML document being read.

 node A pointer to the current XML node.

Author:
Nicolas Ward ’05

Definition at line 22 of file xml.c.

References Control::calibrate, getJoystickControlType(), Control::index, Control::invert,
JOYSTICK_CONTROL_AXIS, Control::max, Control::min, Control::name, and Control::type.

Referenced by parseJoystick().

Here is the call graph for this function:

parseControl getJoystickControlType

B.18.2.2 void parseDocument (char� filename, Rune� rune)

Parses an XML document, validates it, and loads theRune(p.40) data structure.

Parameters:
 filename The filename of the XML configuration file.

B.18 xml.c File Reference 200

$ rune TheRune(p.40) data structure.

Author:
Nicolas Ward ’05

Definition at line 168 of file xml.c.

References parseFont(), parseJoystick(), parseRobot(), parseView(), and validateDocument().

Referenced by main(), and runRune().

Here is the call graph for this function:

parseDocument

parseFont

parseJoystick

parseRobot

parseView

validateDocument

countControls

parseControl getJoystickControlType

getCapability

getCapabilityName

parseViewport

parseWidget

parseVisualizer getVisualizerBindings

getWidgetHandler

parseEvent

B.18.2.3 void parseEvent (Event�� eventPtr, Rune � rune, xmlDocPtr doc, xmlNodePtr
node)

Parses an<event> element from an XML configuration file.

Parameters:
! eventPtr A pointer to theEvent(p.28) data structure being allocated by this function.

$ rune TheRune(p.40) data structure.

 doc A pointer to the XML document being read.

 node A pointer to the current XML node.

Author:
Nicolas Ward ’05

Definition at line 319 of file xml.c.

References Joystick::config, Event::control, Joystick::controls, Event::event, getButtonState(), get-
EventTypeString(), getKey(), getModifier(), getModifierString(), Control::index, Event::joystick,
JOYSTICK_CONTROL_AXIS, JOYSTICK_CONTROL_BALL, JOYSTICK_CONTROL_-
BUTTON, JOYSTICK_CONTROL_HAT_SWITCH, Control::name, Joystick::nControls,
Event::options, and Control::type.

B.18 xml.c File Reference 201

Referenced by parseWidget().

Here is the call graph for this function:

parseEvent

getButtonState

getEventTypeString

getKey

getModifier

getModifierString

B.18.2.4 void parseFont (Font� font, xmlDocPtr doc, xmlNodePtr node)

Parses a element from an XML state file.

Parameters:
! font A pointer to theFont(p.30) data structure being allocated by this function.

 doc A pointer to the XML document being read.

 node A pointer to the current XML node.

Author:
Nicolas Ward ’05

Definition at line 694 of file xml.c.

Referenced by parseDocument().

B.18.2.5 void parseJoystick (Joystick�� joystickPtr, xmlDocPtr doc, xmlNodePtr node)

Parses a<joystick> element from an XML configuration file.

Parameters:
! joystickPtr A pointer to theJoystick(p.35) data structure being allocated by this function.

 doc A pointer to the XML document being read.

 node A pointer to the current XML node.

Author:
Nicolas Ward ’05

Definition at line 742 of file xml.c.

References Joystick::config, Joystick::controls, countControls(), Control::joystick, Joy-
stick::joystick, Joystick::nControls, and parseControl().

B.18 xml.c File Reference 202

Referenced by parseDocument().

Here is the call graph for this function:

parseJoystick

countControls

parseControl getJoystickControlType

B.18.2.6 void parseRobot (Robot�� robotPtr, Rune � rune, xmlDocPtr doc, xmlNodePtr
node)

Parses a<robot> element from an XML configuration file.

Parameters:
! robotPtr A pointer to theRobot(p.37) data structure being allocated by this function.

$ rune TheRune(p.40) data structure.

 doc A pointer to the XML document being read.

 node A pointer to the current XML node.

Author:
Nicolas Ward ’05

Definition at line 820 of file xml.c.

References Capability::cap, getCapability(), getCapabilityName(), Robot::haveCaps,
Robot::hostname, Robot::moduleInfo, Robot::name, Capability::query, Capability::ready,
Capability::robot, Capability::state, and Robot::wantCaps.

Referenced by parseDocument().

Here is the call graph for this function:

parseRobot

getCapability

getCapabilityName

B.18.2.7 void parseView (View�� viewPtr, Rune� rune, xmlDocPtr doc, xmlNodePtr node)

Parses the<view> element from an XML configuration file.

Parameters:
! viewPtr A pointer to theView(p.42) data structure being allocated by this function.

B.18 xml.c File Reference 203

$ rune TheRune(p.40) data structure.

 doc A pointer to the XML document being read.

 node A pointer to the current XML node.

Author:
Nicolas Ward ’05

Definition at line 935 of file xml.c.

References View::fullscreen, View::nViewports, View::nWidgets, parseViewport(), parseWidget(),
Widget::view, Viewport::view, View::viewports, View::widgets, View::xsize, and View::ysize.

Referenced by parseDocument().

Here is the call graph for this function:

parseView

parseViewport

parseWidget

parseVisualizer getVisualizerBindings

getWidgetHandler

parseEvent

B.18.2.8 void parseViewport (Viewport�� viewportPtr, Rune � rune, xmlDocPtr doc, xml-
NodePtr node)

Parses a<viewport> element from an XML configuration file.

Parameters:
! viewportPtr A pointer to theViewport (p.45) data structure being allocated by this func-

tion.

$ rune TheRune(p.40) data structure.

 doc A pointer to the XML document being read.

 node A pointer to the current XML node.

Author:
Nicolas Ward ’05

Definition at line 1084 of file xml.c.

References Viewport::nWidgets, parseVisualizer(), parseWidget(), Viewport::robot, View-
port::transparency, Viewport::view, Visualizer::viewport, Widget::viewport, Viewport::visible,
Viewport::visualizer, Viewport::widgets, Viewport::xpos, View::xsize, Viewport::xsize, View-
port::ypos, View::ysize, Viewport::ysize, and Viewport::zpos.

Referenced by parseView().

B.18 xml.c File Reference 204

Here is the call graph for this function:

parseViewport

parseVisualizer

parseWidget

getVisualizerBindings

getWidgetHandler

parseEvent

B.18.2.9 void parseVisualizer (Visualizer�� visualizerPtr, Rune � rune, xmlDocPtr doc,
xmlNodePtr node)

Parses a<visualizer> element from an XML configuration file.

Parameters:
! visualizerPtr A pointer to theVisualizer(p.48) data structure being allocated by this func-

tion.

$ rune TheRune(p.40) data structure.

 doc A pointer to the XML document being read.

 node A pointer to the current XML node.

Author:
Nicolas Ward ’05

Definition at line 1336 of file xml.c.

References Visualizer::data, Visualizer::function, getVisualizerBindings(), Visualizer::option, Vi-
sualizer::surface, Visualizer::viewport, Visualizer::xsize, and Visualizer::ysize.

Referenced by parseViewport().

Here is the call graph for this function:

parseVisualizer getVisualizerBindings

visualizeCameraImage

visualizeGroundPlane

visualizeMapData

visualizeNightMode

visualizePanData

visualizeRangeData

visualizeTiltData

getCapabilityQuery

getCapabilityState

printImage

printVisualizer

resizeImage

getCapabilityName

getCapabilityString

mapCameraToImage

drawPTZData

B.18 xml.c File Reference 205

B.18.2.10 void parseWidget (Widget�� widgetPtr, Rune� rune, xmlDocPtr doc, xmlNode-
Ptr node)

Parses a<widget> element from an XML configuration file.

Parameters:
! widgetPtr A pointer to theWidget(p.51) data structure being allocated by this function.

$ rune TheRune(p.40) data structure.

 doc A pointer to the XML document being read.

 node A pointer to the current XML node.

Author:
Nicolas Ward ’05

Definition at line 1451 of file xml.c.

References Widget::events, getWidgetHandler(), Widget::handler, Widget::history, Widget::n-
Events, parseEvent(), Widget::view, and Widget::viewport.

Referenced by parseView(), and parseViewport().

Here is the call graph for this function:

parseWidget

getWidgetHandler

parseEvent

widgetAdjustPan

widgetAdjustPanTilt

widgetAdjustTilt

widgetAdjustZoom

widgetCorrectLandmark

widgetHomePTZ

widgetQuit

widgetSetImageRequest

widgetSetLandmark

widgetSetSpeed

widgetSetVictim

widgetToggleNightMode

checkIPC

getCapabilityState

getModuleWithCapability

interestLandmarkPeek

mapImageToWorld

getCapabilityQuery

interestLandmarkPush

interestVictimPush

handleMessageLocal

getButtonState

getEventTypeString

getKey

getModifier

getModifierString

B.19 xmltest.c File Reference 206

B.18.2.11 void validateDocument (char� filename, xmlDocPtr doc)

Validates an XML document using a parsed XML schema.

Parameters:
 filename The filename of the XML schema file.

 doc A pointer to the XML document being read.

Author:
Nicolas Ward ’05

Definition at line 1542 of file xml.c.

Referenced by parseDocument().

B.19 xmltest.c File Reference

#include <rune.h >

Include dependency graph for xmltest.c:

xmltest.c rune.h

stdio.h

stdlib.h

math.h

stdbool.h

unistd.h

string.h

time.h

SDL.h

SDL_rotozoom.h

SDL_gfxPrimitives.h

SDL_ttf.h

SDL_image.h

libxml/parser.h

libxml/relaxng.h

ipc.h

GCM.h

robomon.h

B.19 xmltest.c File Reference 207

Functions

• int main (int argc, char��argv)

B.19.1 Detailed Description

Contains a simple main loop to parse aRune(p.40) XML configuration file.

Author:
Nicolas Ward ’05

Date:
2005.03.20

Definition in filexmltest.c.

B.19.2 Function Documentation

B.19.2.1 int main (int argc, char �� argv)

The main joystick querying function.

Checks command line arguments, allocates theRune(p.40) state data structures, and parses the
XML configuration file.

Parameters:
 argc The number of command line arguments.

 argv The array of command line argument strings.

Returns:
0 on successful execution, -1 on error.

Author:
Nicolas Ward ’05

Definition at line 23 of file xmltest.c.

References parseDocument().

Here is the call graph for this function:

B.19 xmltest.c File Reference 208

main parseDocument

parseFont

parseJoystick

parseRobot

parseView

validateDocument

countControls

parseControl getJoystickControlType

getCapability

getCapabilityName

parseViewport

parseWidget

parseVisualizer getVisualizerBindings

getWidgetHandler

parseEvent

Index
-A-
AMASK

rune.h,96
sdltest.c,158

ArchMage,15
ARG_SHIFT

sdltest.c,158

-B-
blimp, seeIndoor Aerial Robot
BMASK

rune.h,96
sdltest.c,158

Bruce Maxwell,seeMaxwell, Dr. Bruce A.

-C-
calibrate

Control,26
calibrateAxis

joystick.c,72
rune.h,100

cap
Capability,23

Capability,22
cap,23
nTimers,23
query,23
ready,23
robot,23
rune.h,98
state,23
timers,24

capability,12, 15, 16, 19, 20
capability.c,52

checkCapabilities,54
freeCapabilities,54
freeCapability,55
freeGCMCapabilities,55
getCapability,55
getCapabilityName,56
getCapabilityQuery,56
getCapabilityState,57

getCapabilityString,57
getModuleWithCapability,58
initCapability,58

Carnegie-Mellon University,seeCMU
checkCapabilities

capability.c,54
rune.h,101

checkIPC
robot.c,83
rune.h,101

CommonRequest,24
rune.h,98

CommonRequest
handled,24
request,24

compareEvents
event.c,61
rune.h,102

compareViewports
rune.h,103
viewport.c,170

config
Joystick,35

context
Robot,37

Control,25
calibrate,26
index,26
invert,26
joystick,26
max,26
min, 27
name,27
rune.h,98
type,27

control
Event,28

controls
Joystick,36

ControlType
rune.h,100

countControls

INDEX 210

joystick.c,72
rune.h,103

-D-
data

Rune,40
Visualizer,48

down
HatSwitchBindings,30

draw
sdltest.c,160

drawingFont
Rune,40

drawPTZData
rune.h,104
visualizer.c,173

drawText
rune.h,104
view.c,167

-E-
Event,27

control,28
event,28
joystick,29
options,29
rune.h,98

event
Event,28

event.c,59
compareEvents,61
getEventTypeString,61
handleEvent,61

events
Widget,51

-F-
filename

Font,29
FILLED_PIE

visualizer.c,173
first-person shooter,seeFPS
Font,29

filename,29
font, 30
rune.h,98

size,30
font

Font,30
Frederick Heckel,seeHeckel, Frederick
freeCapabilities

capability.c,54
rune.h,105

freeCapability
capability.c,55
rune.h,105

freeGCMCapabilities
capability.c,55
rune.h,106

freeInterestPoints
interest.c,69
rune.h,106

freeModuleInfo
robot.c,83
rune.h,106

freeRobot
robot.c,84
rune.h,107

freeRobots
robot.c,84
rune.h,107

freeRune
rune.c,86
rune.h,108

freeView
rune.h,108
view.c,167

freeViewport
rune.h,109
viewport.c,170

freeVisualizer
rune.h,109
visualizer.c,173

Fritz, seeHeckel, Frederick
Fritz Heckel,seeHeckel, Frederick
fullscreen

View, 43
function

Visualizer,49

-G-

INDEX 211

GCM, 15, 16, 19, 21
General Communication Module,seeGCM
getButtonState

keyboard.c,78
rune.h,109

getCapability
capability.c,55
rune.h,110

getCapabilityName
capability.c,56
rune.h,110

getCapabilityQuery
capability.c,56
rune.h,111

getCapabilityState
capability.c,57
rune.h,111

getCapabilityString
capability.c,57
rune.h,112

getEventTypeString
event.c,61
rune.h,112

getJoystickControl
joystick.c,73
rune.h,112

getJoystickControlType
joystick.c,73
rune.h,113

getKey
keyboard.c,78
rune.h,113

getKeyString
keyboard.c,78
rune.h,114

getModifier
keyboard.c,79
rune.h,114

getModifierString
keyboard.c,79
rune.h,114

getModuleWithCapability
capability.c,58
rune.h,115

getVisualizerBindings

rune.h,115
visualizer.c,174

getWidgetHandler
rune.h,116
widget.c,181

GIMP ToolKit, seeGTK+
GMASK

rune.h,96
sdltest.c,158

graphical user interface,seeGUI
GRAYS

sdltest.c,158
grays

sdltest.c,161
GTK+, 9
GTK+, 7
GUI, 2, 3, 7

-H-
handled

CommonRequest,24
ImageRequest,31

handleEvent
event.c,61
rune.h,117

handleMessageCapabilities
handler.c,64
rune.h,118

handleMessageCommon
handler.c,64
rune.h,119

handleMessageFixed
handler.c,65
rune.h,119

handleMessageLocal
handler.c,65
rune.h,120

handleMessageModuleInfo
handler.c,66
rune.h,120

handleMessageVariable
handler.c,66
rune.h,120

handler
Widget,51

INDEX 212

handler.c,62
handleMessageCapabilities,64
handleMessageCommon,64
handleMessageFixed,65
handleMessageLocal,65
handleMessageModuleInfo,66
handleMessageVariable,66

HatSwitchBindings,30
rune.h,98

HatSwitchBindings
down,30
left, 30
right, 31
up,31

haveCaps
Robot,37

HCI, 3
Heckel, Frederick,2
history

Widget,51
Holly Yanco,seeYanco, Dr. Holly A.
hostname

Robot,38
HRI, 2–4, 20
human-computer interaction,seeHCI
human-robot interaction,seeHRI

-I-
Idaho National Labs,seeINEEL
IMAGE_HEIGHT

sdltest.c,158
IMAGE_WIDTH

sdltest.c,158
ImageRequest,31

rune.h,98
ImageRequest

handled,31
request,31

index
Control,26

Indoor Aerial Robot,5, 16, 20, 21
INEEL, 9
info

Rune,40
initCapability

capability.c,58
rune.h,121

initJoysticks
joystick.c,73
rune.h,122

INL, seeINEEL
inter-process communication,seeIPC
interest.c,67

freeInterestPoints,69
interestLandmarkPeek,69
interestLandmarkPush,69
interestVictimPeek,69
interestVictimPush,70

interestLandmarkPeek
interest.c,69
rune.h,122

interestLandmarkPush
interest.c,69
rune.h,123

InterestPoint,32
rune.h,98

InterestPoint
type,32
x, 32
y, 32

InterestPoints,33
rune.h,99

InterestPoints
landmarks,33
nLandmarks,33
nVictims,34
victims,34

interestVictimPeek
interest.c,69
rune.h,123

interestVictimPush
interest.c,70
rune.h,123

interface module,seeRune
intersectViewports

rune.h,124
viewport.c,170

invert
Control,26

IPC,13, 18, 19

INDEX 213

-J-
Jean Scholtz,seeScholtz, Dr. Jean
Jill Drury, seeDrury, Dr. Jill L.
Joystick,34

config,35
controls,36
joystick,36
nControls,36
rune,36
rune.h,99

joystick,3, 12
joystick

Control,26
Event,29
Joystick,36

joystick.c,70
calibrateAxis,72
countControls,72
getJoystickControl,73
getJoystickControlType,73
initJoysticks,73

JOYSTICK_CONTROL_AXIS
rune.h,100

JOYSTICK_CONTROL_BALL
rune.h,100

JOYSTICK_CONTROL_BUTTON
rune.h,100

JOYSTICK_CONTROL_HAT_SWITCH
rune.h,100

JOYSTICK_CONTROL_NONE
rune.h,100

joysticks
Rune,40

joytest.c,74
main,75

-K-
keyboard.c,77

getButtonState,78
getKey,78
getKeyString,78
getModifier,79
getModifierString,79

-L-

landmarks
InterestPoints,33

left
HatSwitchBindings,30

-M-
Mage,15
Magellan,seeMagellan Pro
Magellan Pro,6, 10, 15
main

joytest.c,75
main.c,81
sdltest.c,160
xmltest.c,206

main.c,80
main,81

mapCameraToImage
rune.h,124
widget.c,182

mapImageToCamera
rune.h,126
widget.c,184

mapImageToWorld
rune.h,128
widget.c,186

mapping module,seeSMM
mapWorldToImage

rune.h,129
widget.c,187

max
Control,26

Maxwell, Dr. Bruce A.,5, 15
message

Visualizer,49
min

Control,27
module manager,seeRobomon
moduleInfo

Robot,38

-N-
name

Control,27
Robot,38

National Institute of Standards and Technol-
ogy,seeNIST

INDEX 214

Nav,seeSNM
navigation module,seeSNM
nControls

Joystick,36
nEvents

Widget,51
Nick, seeWard, Nicolas C.
Nick Ward,seeWard, Nicolas C.
Nicolas Ward,seeWard, Nicolas C.
NIST, 6, 10
nJoysticks

Rune,40
nLandmarks

InterestPoints,33
nRobots

Rune,40
nTimers

Capability,23
nVictims

InterestPoints,34
nViewports

View, 43
nWidgets

View, 43
Viewport,45

-O-
option

Visualizer,49
options

Event,29

-P-
pan/tilt/zoom,seePTZ
parseControl

rune.h,130
xml.c, 198

parseDocument
rune.h,130
xml.c, 198

parseEvent
rune.h,131
xml.c, 199

parseFont
rune.h,132

xml.c, 200
parseJoystick

rune.h,132
xml.c, 200

parseRobot
rune.h,133
xml.c, 201

parseView
rune.h,133
xml.c, 201

parseViewport
rune.h,134
xml.c, 202

parseVisualizer
rune.h,134
xml.c, 203

parseWidget
rune.h,135
xml.c, 203

Pinky,14
printImage

rune.h,136
visualizer.c,174

printVisualizer
rune.h,137
visualizer.c,175

Prof. Maxwell,seeMaxwell, Dr. Bruce A.

-Q-
query

Capability,23
quit

sdltest.c,160
quitRune

rune.c,86
rune.h,137

-R-
R_ALIVE_INTERVAL

rune.h,96
R_DATE

rune.h,96
R_IMAGE_INTERVAL

rune.h,96
R_MAP_INTERVAL

INDEX 215

rune.h,96
R_NAME

rune.h,96
R_NAV_INTERVAL

rune.h,97
R_SDL_INIT_FLAGS

rune.h,97
R_SDL_SURFACE_FLAGS

rune.h,97
R_TOGGLE_NIGHT_MODE

rune.h,97
R_VERSION

rune.h,97
ready

Capability,23
Real World Interface,seeRWI
real-time control,14
real-time control module,seePinky
remotely-operated vehicle,seeROV
request

CommonRequest,24
ImageRequest,31

resizeImage
rune.h,138
visualizer.c,175

right
HatSwitchBindings,31

RMASK
rune.h,97
sdltest.c,158

Robomon,10, 15, 19, 21
Robot,36

context,37
haveCaps,37
hostname,38
moduleInfo,38
name,38
rune,38
rune.h,99
wantCaps,38

robot
Capability,23
Viewport,45
Widget,51

Robot-User Nexus,seeRune

robot.c,81
checkIPC,83
freeModuleInfo,83
freeRobot,84
freeRobots,84

robots
Rune,40

ROV, 5, 16, 20, 21
Rune,1, 6, 11–13, 15–21
Rune,39

data,40
drawingFont,40
info, 40
joysticks,40
nJoysticks,40
nRobots,40
robots,40
rune.h,99
running,41
runNumber,41
screen,41
view, 41

rune
Joystick,36
Robot,38
View, 43

rune.c,85
freeRune,86
quitRune,86
runRune,87

rune.h,88
AMASK, 96
BMASK, 96
calibrateAxis,100
Capability,98
checkCapabilities,101
checkIPC,101
CommonRequest,98
compareEvents,102
compareViewports,103
Control,98
ControlType,100
countControls,103
drawPTZData,104
drawText,104

INDEX 216

Event,98
Font,98
freeCapabilities,105
freeCapability,105
freeGCMCapabilities,106
freeInterestPoints,106
freeModuleInfo,106
freeRobot,107
freeRobots,107
freeRune,108
freeView,108
freeViewport,109
freeVisualizer,109
getButtonState,109
getCapability,110
getCapabilityName,110
getCapabilityQuery,111
getCapabilityState,111
getCapabilityString,112
getEventTypeString,112
getJoystickControl,112
getJoystickControlType,113
getKey,113
getKeyString,114
getModifier,114
getModifierString,114
getModuleWithCapability,115
getVisualizerBindings,115
getWidgetHandler,116
GMASK, 96
handleEvent,117
handleMessageCapabilities,118
handleMessageCommon,119
handleMessageFixed,119
handleMessageLocal,120
handleMessageModuleInfo,120
handleMessageVariable,120
HatSwitchBindings,98
ImageRequest,98
initCapability,121
initJoysticks,122
interestLandmarkPeek,122
interestLandmarkPush,123
InterestPoint,98
InterestPoints,99

interestVictimPeek,123
interestVictimPush,123
intersectViewports,124
Joystick,99
JOYSTICK_CONTROL_AXIS,100
JOYSTICK_CONTROL_BALL,100
JOYSTICK_CONTROL_BUTTON,100
JOYSTICK_CONTROL_HAT_-

SWITCH,100
JOYSTICK_CONTROL_NONE,100
mapCameraToImage,124
mapImageToCamera,126
mapImageToWorld,128
mapWorldToImage,129
parseControl,130
parseDocument,130
parseEvent,131
parseFont,132
parseJoystick,132
parseRobot,133
parseView,133
parseViewport,134
parseVisualizer,134
parseWidget,135
printImage,136
printVisualizer,137
quitRune,137
R_ALIVE_INTERVAL, 96
R_DATE,96
R_IMAGE_INTERVAL, 96
R_MAP_INTERVAL, 96
R_NAME, 96
R_NAV_INTERVAL, 97
R_SDL_INIT_FLAGS,97
R_SDL_SURFACE_FLAGS,97
R_TOGGLE_NIGHT_MODE,97
R_VERSION,97
resizeImage,138
RMASK, 97
Robot,99
Rune,99
runRune,139
timerRequestImage,140
timerRequestMap,140
timerRequestRobotState,141

INDEX 217

timerSendKeepAlive,141
timerUpdateView,142
updateView,142
updateViewport,143
validateDocument,144
View, 99
Viewport,99
visualizeCameraImage,144
visualizeGroundPlane,145
visualizeMapData,145
visualizeNightMode,145
visualizePanData,146
Visualizer,99
visualizeRangeData,146
VisualizerFunction,99
visualizeTiltData,147
Widget,100
widgetAdjustPan,147
widgetAdjustPanTilt,148
widgetAdjustTilt,149
widgetAdjustZoom,150
widgetCorrectLandmark,151
WidgetHandler,100
widgetHomePTZ,151
widgetQuit,152
widgetSetImageRequest,152
widgetSetLandmark,153
widgetSetSpeed,153
widgetSetVictim,154
widgetToggleNightMode,155

running
Rune,41

runNumber
Rune,41

runRune
rune.c,87
rune.h,139

RWI, 6, 9, 15

-S-
screen

Rune,41
SCREEN_HEIGHT

sdltest.c,159
SCREEN_WIDTH

sdltest.c,159
SDL, 10, 17, 19
SDL_SURFACE_FLAGS

sdltest.c,159
sdltest.c,156

AMASK, 158
ARG_SHIFT,158
BMASK, 158
draw,160
GMASK, 158
GRAYS,158
grays,161
IMAGE_HEIGHT, 158
IMAGE_WIDTH, 158
main,160
quit, 160
RMASK, 158
SCREEN_HEIGHT,159
SCREEN_WIDTH,159
SDL_SURFACE_FLAGS,159
test,161
TEST_COPY_ARRAY,159
TEST_LOAD_ARRAY,159
TEST_MEMCPY_ARRAY,159
TEST_SURFACE,159
TestType,159
USAGE,159

Simple DirectMedia Layer,seeSDL
size

Font,30
SMM, 15
smmd,seeSMM
SNM, 10, 15, 16
snmd,seeSNM
state

Capability,23
submarine,seeROV
surface

Visualizer,49
SVM, 10, 15
Swarthmore Mapping Module,seeSMM
Swarthmore Navigation Module,seeSNM
Swarthmore Robotics Team,1, 2, 5–7, 9, 10,

16, 20, 21
Swarthmore Vision Module,seeSVM

INDEX 218

-T-
teleoperation,1–3, 11, 16, 21
test

sdltest.c,161
TEST_COPY_ARRAY

sdltest.c,159
TEST_LOAD_ARRAY

sdltest.c,159
TEST_MEMCPY_ARRAY

sdltest.c,159
TEST_SURFACE

sdltest.c,159
TestType

sdltest.c,159
timer.c,161

timerRequestImage,163
timerRequestMap,163
timerRequestRobotState,164
timerSendKeepAlive,164
timerUpdateView,165

timerRequestImage
rune.h,140
timer.c,163

timerRequestMap
rune.h,140
timer.c,163

timerRequestRobotState
rune.h,141
timer.c,164

timers
Capability,24

timerSendKeepAlive
rune.h,141
timer.c,164

timerUpdateView
rune.h,142
timer.c,165

transparency
Viewport,45

type
Control,27
InterestPoint,32

-U-
underwater ROV,seeROV

up
HatSwitchBindings,31

updated
Viewport,46

updateView
rune.h,142
view.c,167

updateViewport
rune.h,143
viewport.c,171

Urban Search & Rescue,seeUSR
USAGE

sdltest.c,159
user interface,seeGUI
USR,5, 8, 10, 11, 16, 20

-V-
validateDocument

rune.h,144
xml.c, 204

victims
InterestPoints,34

View, 41
fullscreen,43
nViewports,43
nWidgets,43
rune,43
rune.h,99
viewports,43
widgets,43
xsize,43
ysize,44

view, 8, 17, 18
view

Rune,41
Viewport,46
Widget,51

view.c,165
drawText,167
freeView,167
updateView,167

Viewport,44
nWidgets,45
robot,45
rune.h,99

INDEX 219

transparency,45
updated,46
view, 46
visible,46
visualizer,46
widgets,46
xpos,46
xsize,47
ypos,47
ysize,47
zpos,47

viewport,12, 17–20
viewport

Visualizer,49
Widget,52

viewport.c,168
compareViewports,170
freeViewport,170
intersectViewports,170
updateViewport,171

viewports
View, 43

visible
Viewport,46

vision module,seeSVM
visualization function,18, 19
visualizeCameraImage

rune.h,144
visualizer.c,176

visualizeGroundPlane
rune.h,145
visualizer.c,176

visualizeMapData
rune.h,145
visualizer.c,177

visualizeNightMode
rune.h,145
visualizer.c,177

visualizePanData
rune.h,146
visualizer.c,178

Visualizer,47
data,48
function,49
message,49

option,49
rune.h,99
surface,49
viewport,49
xsize,49
ysize,49

visualizer,12, 18–20
visualizer

Viewport,46
visualizer.c,172

drawPTZData,173
FILLED_PIE,173
freeVisualizer,173
getVisualizerBindings,174
printImage,174
printVisualizer,175
resizeImage,175
visualizeCameraImage,176
visualizeGroundPlane,176
visualizeMapData,177
visualizeNightMode,177
visualizePanData,178
visualizeRangeData,178
visualizeTiltData,179

visualizeRangeData
rune.h,146
visualizer.c,178

VisualizerFunction
rune.h,99

visualizeTiltData
rune.h,147
visualizer.c,179

-W-
wantCaps

Robot,38
Widget,50

events,51
handler,51
history,51
nEvents,51
robot,51
rune.h,100
view, 51
viewport,52

INDEX 220

widget,7, 9, 12, 17–19
widget.c,179

getWidgetHandler,181
mapCameraToImage,182
mapImageToCamera,184
mapImageToWorld,186
mapWorldToImage,187
widgetAdjustPan,187
widgetAdjustPanTilt,188
widgetAdjustTilt,189
widgetAdjustZoom,190
widgetCorrectLandmark,191
widgetHomePTZ,191
widgetQuit,192
widgetSetImageRequest,192
widgetSetLandmark,193
widgetSetSpeed,193
widgetSetVictim,194
widgetToggleNightMode,195

widgetAdjustPan
rune.h,147
widget.c,187

widgetAdjustPanTilt
rune.h,148
widget.c,188

widgetAdjustTilt
rune.h,149
widget.c,189

widgetAdjustZoom
rune.h,150
widget.c,190

widgetCorrectLandmark
rune.h,151
widget.c,191

WidgetHandler
rune.h,100

widgetHomePTZ
rune.h,151
widget.c,191

widgetQuit
rune.h,152
widget.c,192

widgets
View, 43
Viewport,46

widgetSetImageRequest
rune.h,152
widget.c,192

widgetSetLandmark
rune.h,153
widget.c,193

widgetSetSpeed
rune.h,153
widget.c,193

widgetSetVictim
rune.h,154
widget.c,194

widgetToggleNightMode
rune.h,155
widget.c,195

-X-
x

InterestPoint,32
XML, 12
xml.c, 196

parseControl,198
parseDocument,198
parseEvent,199
parseFont,200
parseJoystick,200
parseRobot,201
parseView,201
parseViewport,202
parseVisualizer,203
parseWidget,203
validateDocument,204

xmltest.c,205
main,206

xpos
Viewport,46

xsize
View, 43
Viewport,47
Visualizer,49

-Y-
y

InterestPoint,32
Yanco, Dr. Holly A.,20

INDEX 221

ypos
Viewport,47

ysize
View, 44
Viewport,47
Visualizer,49

-Z-
zpos

Viewport,47

	1 Introduction
	1.1 Goals
	1.1.1 Team Goals
	1.1.2 Project Goals

	1.2 Tasks
	1.3 Definitions
	1.3.1 Graphical User Interface
	1.3.2 Human Robot Interaction
	1.3.3 Mobile Robot
	1.3.4 Situational Awareness
	1.3.5 Swarthmore Robotics Team
	1.3.6 USR Test Arena

	1.4 Report Organization

	2 Related Work
	2.1 Project History
	2.1.1 Before 2003
	2.1.2 Summer 2003
	2.1.3 Winter 2004
	2.1.4 Summer 2004
	2.1.5 Fall 2004

	2.2 Inspiration
	2.2.1 Look and Feel
	2.2.2 Control
	2.2.3 Philosophy

	3 System Architecture
	3.1 Communication Layer
	3.1.1 CMU IPC
	3.1.2 GCM
	3.1.3 Robomon

	3.2 Standard Modules
	3.2.1 Mapping Module
	3.2.2 Navigation Module
	3.2.3 Vision Module

	3.3 Capabilities
	3.4 Other Robots

	4 Rune
	4.1 Objects
	4.1.1 View
	4.1.2 Viewport
	4.1.3 Visualizer
	4.1.4 Widget

	4.2 Processes

	5 Future Work
	5.1 Interface Testing
	5.2 Multi-Robot Teleoperation
	5.3 Distribution
	5.4 Updates

	6 Conclusion
	7 Bibliography
	A Rune Data Structure Reference
	A.1 Capability Struct Reference
	A.1.1 Detailed Description
	A.1.2 Field Documentation

	A.2 CommonRequest Struct Reference
	A.2.1 Detailed Description
	A.2.2 Field Documentation

	A.3 Control Struct Reference
	A.3.1 Detailed Description
	A.3.2 Field Documentation

	A.4 Event Struct Reference
	A.4.1 Detailed Description
	A.4.2 Field Documentation

	A.5 Font Struct Reference
	A.5.1 Detailed Description
	A.5.2 Field Documentation

	A.6 HatSwitchBindings Struct Reference
	A.6.1 Detailed Description
	A.6.2 Field Documentation

	A.7 ImageRequest Struct Reference
	A.7.1 Detailed Description
	A.7.2 Field Documentation

	A.8 InterestPoint Struct Reference
	A.8.1 Detailed Description
	A.8.2 Field Documentation

	A.9 InterestPoints Struct Reference
	A.9.1 Detailed Description
	A.9.2 Field Documentation

	A.10 Joystick Struct Reference
	A.10.1 Detailed Description
	A.10.2 Field Documentation

	A.11 Robot Struct Reference
	A.11.1 Detailed Description
	A.11.2 Field Documentation

	A.12 Rune Struct Reference
	A.12.1 Detailed Description
	A.12.2 Field Documentation

	A.13 View Struct Reference
	A.13.1 Detailed Description
	A.13.2 Field Documentation

	A.14 Viewport Struct Reference
	A.14.1 Detailed Description
	A.14.2 Field Documentation

	A.15 Visualizer Struct Reference
	A.15.1 Detailed Description
	A.15.2 Field Documentation

	A.16 Widget Struct Reference
	A.16.1 Detailed Description
	A.16.2 Field Documentation

	B Rune Function Reference
	B.1 capability.c File Reference
	B.1.1 Detailed Description
	B.1.2 Function Documentation

	B.2 event.c File Reference
	B.2.1 Detailed Description
	B.2.2 Function Documentation

	B.3 handler.c File Reference
	B.3.1 Detailed Description
	B.3.2 Function Documentation

	B.4 interest.c File Reference
	B.4.1 Detailed Description
	B.4.2 Function Documentation

	B.5 joystick.c File Reference
	B.5.1 Detailed Description
	B.5.2 Function Documentation

	B.6 joytest.c File Reference
	B.6.1 Detailed Description
	B.6.2 Function Documentation

	B.7 keyboard.c File Reference
	B.7.1 Detailed Description
	B.7.2 Function Documentation

	B.8 main.c File Reference
	B.8.1 Detailed Description
	B.8.2 Function Documentation

	B.9 robot.c File Reference
	B.9.1 Detailed Description
	B.9.2 Function Documentation

	B.10 rune.c File Reference
	B.10.1 Detailed Description
	B.10.2 Function Documentation

	B.11 rune.h File Reference
	B.11.1 Detailed Description
	B.11.2 Define Documentation
	B.11.3 Typedef Documentation
	B.11.4 Enumeration Type Documentation
	B.11.5 Function Documentation

	B.12 sdltest.c File Reference
	B.12.1 Detailed Description
	B.12.2 Define Documentation
	B.12.3 Enumeration Type Documentation
	B.12.4 Function Documentation
	B.12.5 Variable Documentation

	B.13 timer.c File Reference
	B.13.1 Detailed Description
	B.13.2 Function Documentation

	B.14 view.c File Reference
	B.14.1 Detailed Description
	B.14.2 Function Documentation

	B.15 viewport.c File Reference
	B.15.1 Detailed Description
	B.15.2 Function Documentation

	B.16 visualizer.c File Reference
	B.16.1 Detailed Description
	B.16.2 Define Documentation
	B.16.3 Function Documentation

	B.17 widget.c File Reference
	B.17.1 Detailed Description
	B.17.2 Function Documentation

	B.18 xml.c File Reference
	B.18.1 Detailed Description
	B.18.2 Function Documentation

	B.19 xmltest.c File Reference
	B.19.1 Detailed Description
	B.19.2 Function Documentation

