

Resistor Sorter

David Gordon Gentry and Charles Timblin Sussman

E90 Final Report

5/5/05

 1

Introduction

The idea for our senior design project stemmed from a list of potential design

projects presented at the first E90 meeting. Since we did not have a particular project in

mind at the time we chose the resistor sorter. It appealed to us because we felt it would

give us a chance to incorporate several different fields of engineering: mechanical,

electrical and computer. The mechanical aspect was designing the system and building it

in the shop; the electrical component consisted of designing a circuit to determine

resistance which we then needed to program with specific outputs for each resistance.

When we began designing the resistor sorter, we hoped its main purpose would be

keeping the electronics laboratory cleaner and providing an easy and efficient method of

sorting resistors. Looking at the electronics lab, there are a plethora of resistors scattered

over the benches, and the only way to determine their values is by their unique color

patterns. Our project aims to eliminate this tedious method. As we progressed we

realized that our project could be used as a way of targeting younger students and getting

them interested in engineering. Consequently, one of the new goals of our project

became making it aesthetically pleasing.

The general design for our system is shown in Figure 1. We start with an

unknown resistor which is then fed into the resistance reader. After the resistance is

 2

determined, the resistor is fed into the sorting structure where it falls down specific tubes

until it ends up in the bottom level of tubes which each hold a different resistor type.

After all the resistors are sorted, they are taken from the tubes and placed into the set of

drawers in the electronics lab.

Theory/System Design

Resistance Reader

Before the resistor enters the tubes, its resistance is determined using a voltage divider.

As shown in Figure 2, a voltage divider is composed of a known resistor and the

unknown resistor linked together in series. The top of the known resistor is connected to

5V, while the other resistor is connected to ground. The voltage between the resistors is

5 unknown
out

upper unknown

RV
R R

=
+

.

Depending on how large the unknown resistor is compared to the known resistor, the

voltage between the resistors will change. For example, if both resistors are the same, the

 3

voltage between them will be 2.5V. Vout can be compared to 2.5V as the known

resistance varies from 1Ω to 1M Ω. If the unknown resistors are always compared to the

same known resistance, the voltage input to the Printed Circuit Board (PCB) will also

vary from 0 to 5V, but it will do so in small enough increments that the resistance reader

will not be able to detect the variations. Therefore, we developed a system where the

resistor to be compared to the unknown resistor would change depending on the unknown

resistance.

As can be seen in Figure 3, the unknown resistor is connected to ground and then

connected to six different resistors of values 10, 100, 1,000, 10,000, 100,000, or

1,000,000Ω in parallel. The other side of these resistors is connected to 5V. Only one of

the switches is in the closed position, while the other five are all open, acting like open

circuits. Whichever resistor is connected to the unknown resistance acts like Rupper in the

voltage divider. The point in between where the unknown resistor is connected to the

known resistors is where the output voltage is taken.

 4

A program loaded onto the PCB decides which one of the switches is closed and

which ones will remain open. Initially, the program connects the largest resistor, the

1MΩ resistor to 5V. If the voltage divider reads something below 2.5V (which it will do

unless the resistor is equivalent to 1MΩ or greater), then the 1MΩ resistor is

disconnected, and the 100kΩ resistor is connected. If the voltage is greater than 2.5V,

the compared resistor will remain 1MΩ. If the compared resistor is changed to 100kΩ,

the voltage input is once again read. If the output voltage is less than 2.5V, the 100kΩ is

disconnected and the 10kΩ resistor is connected. The same process continues, and the

compared resistor continues to decrease by a magnitude of 10 each time until the output

voltage is greater than 2.5V. For resistors less than 10Ω, a special case had to be made

within the program as the output voltage will never fall below 2.5V since the smallest

compared resistor is 10Ω. Basically, once the program reaches the 10Ω it stops changing

the compared resistor, and the unknown resistance is determined based on the output

voltage from the voltage divider even if it is below 2.5V. Overall, this process only takes

a few seconds, and it also does well in separating the resistance values into six groups,

which helped to debug the resistance reader in the earlier stages.

In order to properly separate the resistors based on the input voltage, the voltage

is converted from an analog value of 0 to 5V to a digital value of 0 to 1023, with 512

being the equivalent to 2.5V. This is an automatic function of the PCB, and it did not

require any extra programming beyond determining which pin we are using to input the

voltage from the voltage divider and entering that pin into the program. Once the correct

compared resistor is found, the program itself holds the digital voltage readings that are

used to determine what the resistance is.

 5

These voltage readings are based on a range of digital values that were calculated

using excel. Basically, we entered in the value of all 96 resistors in an excel spreadsheet.

We then determined what voltage would be output from the voltage divider if the voltage

is greater than 2.5V. This voltage was then multiplied by 1023 to find its digital value.

A range of digital values for each of the resistors was made by averaging the output

voltage of a sample resistor with the output voltage of the resistor of the next higher

resistance to find the upper value, and averaging the voltages from the sample resistor

and the next lower resistance to find the lower value. For the resistors whose values are

equivalent to the compared resistors, there are two different resistors that they could be

compared to and still fall within the allowable range. The digital ranges for each resistor

are represented in the program as a sequence of if-then statements, saying that if the

voltage is less than its upper digital value and lower than its lower digital value when

being compared to a certain resistor, then it must be that resistor. The range of digital

values for each of the resistors in the laboratory is shown in Table 5. One example of

how the table works is as follows: if the voltage output by the voltage divider is 3V, and

the known resistor that is connected to 5V is the 1kΩ resistor, the program will

acknowledge the resistor to be 1500Ω.

Once the resistance is determined, the PCB outputs voltages to the solenoids,

forcing the levels to move in the correct directions at the correct times. The tubes at the

bottom of the pyramid structure are placed in order where the resistors for the first half

(smaller) resistors are in the front and the second half is in the back. Therefore, if the

resistor is in the smaller half of resistance values, the solenoid on the side closest to the

observer will be powered, and the first level will be pulled inward. The values then go

 6

from left to right, where the smaller resistances are on the left. The program determines

which resistor to output voltage using the following algorithm:

1. The resistors are numbered from 1 to 96 based on their value, smallest to

highest.

2. The resistor number is divided by 48 where any remainder is taken out.

3. If the answer is one, output high to the back solenoid of the eighth level and

subtract 48 from the resistor number, if it is zero, output high to the front

solenoid.

4. Divide the resistor number by 24, if the answer is one output high to the right

solenoid of the seventh level, set k=16 and subtract 24 from resistance number,

if zero output high to the left solenoid and set k=8.

5. Divide the resistor number by k (since two-thirds will go one way), if the

answer is equal or greater than one output high to the right solenoid, otherwise

output high to the left solenoid.

Sorting Structure

The initial design we came up with for the sorting structure of our system was to

build a pyramid structure to implement our binary sorting technique. Using this

technique, we limited the motion of each level to shifting left or right depending on the

value of the resistance. Figure 4 shows a section of our proposed structure and how the

resistor would fall down to the next level.

 7

We knew that there were 96 different resistors that we would have to sort, which

meant that we would need to have 128 or 27 tubes on the bottom level, and that we would

need to have eight levels in the system.

Our next concern was how we would move each level. We came up with two

ideas: motors and solenoids. Motors have the advantage of being able to move/rotate an

unlimited distance. On the other hand, converting rotary motion to linear shifts would be

difficult to implement, and the overall accuracy of motors is not extremely high. The

only potential type of motor we could use that had a reasonable accuracy level was a

servo motor which moves in finite steps. The major problem with this motor is that it

was much more expensive and did not move as fast. Solenoids work much more quickly

than motors and are very accurate. Unfortunately, solenoids can only move things very

short distances and the force they supply varies inversely with the distance they can move

an object. Figure 5 depicts a typical solenoid and how it moves.

 8

Since the levels needed to move a large distance in a short amount of time in our initial

design, neither motors nor solenoids presented an easy solution to moving the levels of

the pyramid, and an alternate solution was needed.

In finding a new solution, we did not look for a different device to drive the

motion of the system. Instead, we came up with a means of shortening the distance each

level needed to move so that solenoids would be a viable option. We constructed a

second design in which all of the tubes in the system were angled, thereby minimizing the

distance each level moved. This reduction is illustrated in Figure 6.

 9

Once our new design was established, we investigated several possible ways of

cutting down on the overall size of the system. We were wary of the fact that if the tubes

were angled too severely, the resistors might not be able to pass from one level to the

next without getting stuck. Several solutions became apparent. First, we realized that we

had 32 excess tubes on the bottom level that were not being used at all since there are

only 96 different resistors. We eliminated these tubes and any other tube in the structure

 10

that would have eventually fed a resistor into these bottom tubes. Figure 7 shows how a

section of our system was modified.

We were also able to reduce the size of the bottom level, and thus the whole structure, by

an additional factor of one-third by positioning the bottom tubes so that they were flush

against each other. We were only able to do this in the bottom level because the spacing

and angles of the tubes in all of the other levels were directly determined from that of the

bottom level. This reduction is illustrated in Figure 8. The final and most significant

reduction we made cut the overall size of the system in half. We realized that we could

make two symmetric pyramid structures, each with 48 tubes in the bottom level that

could then be attached to each other. This concept is illustrated in Figure 9.

 11

The system would then function in the same way as originally intended, except that the

first level would move perpendicularly to the rest of the levels. This perpendicular

orientation can be seen clearly in Figure 10.

 12

 13

Procedure/System Construction

Resistance Reader

To put all the electronic components of our project together in one entity, we

decided to put everything on a PCB. In order to do this, we first had to identify all the

components that we needed and make the appropriate connections in MultiSim (see

Appendix). The circuit was then imported into Ultiboard where the components were

placed. Basically we placed the components in a way that the connections were not very

long and similar components were grouped together. The finished circuit board layout

was then sent to a company by Professor Cheever to be produced. When the PCB arrived,

we soldered the components into the appropriate places and tested the circuit.

The main part of the PCB is composed of a PIC chip, labeled PIC 1 in Figure 11,

which is what holds the program that runs the resistance reader as previously described.

The PIC is basically just a microprocessor that can hold programs downloaded into it

using a phone-type jack that hooks into the USB port on a computer. The program was

PIC 2

PIC 1

Diodes

Transistors

To computer

Compared Resistors

Outputs

Power LED

Figure 11 – Picture of our PCB board

 14

written in C in an application entitled PIC-C Compiler. It was using this software that we

were able to debug the program by downloading it onto the chip and checking the chip’s

inputs and outputs with a voltmeter. Also, we could set the program to stop at a certain

line to see the values of the variables and the outputs from the PIC. Because there were

only a few input/output pins that were not being used by compared resistors, the

unknown resistor, etc and we needed to have 14 outputs, we had to add a second PIC chip.

This PIC chip, labeled PIC 2 is used as a demultiplexer. A demultiplexer takes in a small

number of inputs and gives out a large number of outputs, which in this case is four

inputs and 14 outputs (see Figure 12). It does this by using binary numbers to choose

which output is high. For example, if the input number is 0000 where all the inputs are

low, no output is turned on. If the input number is 0001, the first output is high and all

the rest are low. If the input number is 0010, the second output is high and the rest are

low. This procedure worked for our system because we only needed to turn one solenoid

on at a time. Therefore, we could choose which solenoid we wanted on and at what time

we wanted it on. Once again, the demultiplexer was programmed into the PIC chip using

if-then statements. The second PIC did not have a jack to connect the PIC to a computer

to download the demultiplexer program. Instead, the PIC was taken out of the PCB and

placed on a different, smaller one to be programmed. Once the program was downloaded,

the PIC was placed back our PCB. In some ways this produced problems as the outputs

and/or inputs of the demultiplexer would be changed, and the only way to change the

settings in the program was to move it back to the smaller PCB and reprogram it.

 15

Once the outputs came out of the demultiplexer each one was connected to the

gate of a logic level transistor as seen in Figure 13. The reason transistors were used is

because the PIC chip can only output a few milliamps, and each solenoid requires

approximately 1A of current. The transistors work by acting as an open circuit when the

gate, or output from PIC 2, is low, and acting as a short circuit when the gate is high.

This way current only flows through the solenoid when the gate is high, and no current is

flowing when the gate is low. Diodes are also placed in parallel with each of the

solenoids so that when the transistor is suddenly shut off, the excess current can be

dissipated through the solenoid instead of having nowhere to go.

 16

Also on the PCB are two LEDs. The green LED is the power LED and is used to

determine if the PCB is in fact receiving power. The red LED is used for debugging

problems, as it is easy to program the output from the chip to make the red LED turn on,

or flash on and off at certain times. All of the inputs and outputs are placed on one of

two 20-pin connectors located at the top of PCB. Since all the diodes are connected to

12V, all of their leads are connected together and used as just one output to the PCB,

which is connected to 12V. There are then 14 other outputs (one for each of the

solenoids), an input for the unknown resistor, approximately four input/output pins from

PIC 1 for debugging purposes, two five volt pins to power the PIC chips, and one ground

pin. The 20 pin connectors are soldered onto another, smaller board with three holes

connected together. Wires are then soldered to the connections to create an easy way to

connect the resistance reader to the rest of the structure. Each of the solenoids is

 17

connected to 12V and then back to the PCB to the appropriate pin (see Figure 13 for

solenoid pinouts).

Output PIC pin # PCB Pinout Working?
1 RB2 3 Yes
2 RB1 4 Yes
3 RB0 5 Yes
4 RA0 6 No
5 RA1 7 No
6 RA2 8 No
7 RA3 9 No
8 RA4 10 No
9 RA5 11 No
10 RC7 12 No
11 RC6 13 No
12 RC5 14 No
13 RC4 15 Yes
14 RC3 16 Yes

Table 1 – This table shows the outputs of the solenoids from PIC 2.

We had to use a wire to add one connection on the PCB because one end of the

connection did not match up with the other end. Also, a few connections were changed

because the outputs from the first PIC were not working properly. The pins that

connected PIC 1 to PIC 2 were replaced as they did not work properly. These changes

are summarized in Table 2, and are represented on the bottom of the PCB by thin, red

wire.

Connection on PIC 1 Old PIC 2 Connection New PIC 2 Connection
A0 B4 Disconnected
B0 B5 C0
B1 B6 C1
B2 B7 C2

Table 2 – This table shows the changes made manually on the PCB board.

A power source that had both a 12V at 1.5A and a 5V wire was purchased for $16

from Jameco. Unfortunately, the power source did not work when we plugged it into a

wall socket. The reasons for this could be that the adapter we used to connect the power

 18

source to the wall was dysfunctional or not the correct type, or it may just have been a

faulty power source. For demonstration purposes, we connected the PCB to a breadboard.

Sorting Structure

 Each of the levels was constructed out of 3 3
4 4

′′ ′′
× wood and plexiglass tubing

which was 1
4

′′
 inner diameter and 3

8

′′
 outer diameter. The size of the plexiglass tubing

was chosen after comparing several different diameters and seeing which allowed the

resistors to move easily without getting too large. We then chose the wood sizing so that

the tubes would fit through the wood with a little bit of extra wood on either side so it

would not break when we drilled holes in it.

 Since the wood came initially in sheets that were 3
4

′′
 thick, we used the table saw

to cut wood rods to our specified parameters. After all of the wood had been cut, we

moved on to drilling all of the holes for the tubes. Drilling holes ended up being one of

the most time consuming aspects of the project. For each piece of wood, the following

steps were taken:

1. Taking a piece of wood and clamping it to the drill press

2. Finding the center of the wood and marking the exact location for each of the

holes we were about to drill using the digital measuring device attached to the

drill

3. Setting the wood to a specific angle (which was different for each of the

roughly 200 holes we had to drill); Table 3 shows the angles we had to drill

 19

4. Align the drill bit with the marked location on the wood and center drill the

hole

5. Remove the center drill bit and insert a bit slightly smaller in diameter

than .375” (the OD of the plexiglass) and drill the hole

6. Remove that bit and insert a third bit that was .377” in diameter to bore the

hole out to make it fit tightly around the plexiglass tubing1

7. Re-insert the center drill bit and repeat steps 3-6

After all of the holes had been drilled, we had to cut the plexiglass tubing into

pieces so that we could assemble the levels. We wanted the levels to be five inches tall

because the length of the resistors was between three and four inches, and because the

taller each level was, the less severe its angles would be. The sizes of the tubes that we

needed are given in Table 4. We cut all of the tubes slightly longer than we needed them

to be, so that there would be extra room for the tubes to extend from the wood.

1 We wanted to make the holes snug enough so that we wouldn’t have to do any unnecessary gluing to
make the tubes stay in the wood.

Level Angle(s)
7 0
6 9
5 9 4
4 31 19 6
3 40 35 28 21 13 5
2 29 27 24 22 19 17 14 11 9 6 3 0
1 3

Table 3 - This shows the angles for each level of the pyramid. Note that only half of the
angles are shown because the other half of the pyramid is a mirror image.

 20

Level Length(s)
7 5

6 5.06

5 5.06 5.01

4 5.83 5.30 5.03

3 6.52 6.07 5.67 5.36 5.14 5.02

2 5.71 5.59 5.48 5.39 5.30 5.22 5.15 5.10 5.06 5.03 5.01 5.00

1 5
Table 4 - This shows the lengths of the tubes for each level of the pyramid. Note that
only half of the lengths are shown because the other half of the pyramid is a mirror
image.

 Once all of the individual pieces had been prepared, we were ready to begin the

construction of the levels. After fitting all of the tubes into the holes and measuring each

level to ensure that they were all approximately five inches tall, we cutoff the excess

tubing on the tops and bottoms of the levels. Even after the tubes were cut down, the tops

and bottoms of the levels were still pretty rough, so we hit them all on the power sander

to get rid of any potential imperfections in the surface of the wood that might snag the

end of a resistor.

 The next step was to combine the symmetric pieces for each level that we had

built. Unfortunately, our design had not accounted for the natural effects of climate

changes on wood, i.e. many if not all of the pieces of wood had warped and were bowed

in different directions. Figure 14 depicts an example of this type of situation.

 21

To fix the imperfections in the wood, we used all-thread which is just long cylindrical

material that is threaded so it can act like a screw. We cut two inch pieces of the all-

thread and then drilled clearance holes through each of the levels to fit the pieces. We

fastened nuts on either end of the all-thread so that the two pieces of wood were pinched

against each other so the warping was no longer an issue. After each of the levels had

been put together, they were still uneven on the tops and bottoms, so they all had to be

sanded again until they were level and could stand alone.

 22

 The last thing we had to do was reduce the overall amount of friction in the

system so that the levels would not get stuck against each other when they were sliding.

To do this we used Teflon tape, which is a material commonly used in making cooking

utensils because it does not stick to anything and it is nearly frictionless. By putting

Teflon tape with a thickness of only .003” across the top and bottom of each level (as

seen in Figure 15), we were able to minimize the amount of friction in our system. After

the tape was put down, we had to go through and carve out holes for each of the tubes

using an exacto knife.

 After all of the levels had been completed, we were ready to start attaching them

to the solenoids and begin building a support structure for the whole system. To attach

the solenoids to the levels, we again used the all-thread. We drilled clearance holes

through the levels, cut pieces of the all-thread and fastened them on either end,

sandwiching the plunger of the solenoid and the pieces of wood. Figure 16 shows both a

theoretical and actual model of the levels attached to the solenoids.

 23

This method of attaching the solenoids was advantageous for our system because it

allowed us to remove each level individually to make any repairs or to remove any

resistors which got stuck during the sorting process.

 Our design specified that each level only needed to move left or right in the

sorting process, but we also wanted to be able to “hold” a resistor in each level. To do

this, we needed to have three states for each level: left, right and hold. This proposed a

challenge because each solenoid could only pull, so we needed a way to generate a third

state by equipping the plunger of each solenoid with a spring so that after the solenoid

was deactivated, the springs on either end of the level would push/pull the level back into

the middle/hold position. Figure 17 illustrates this spring-reset system.

 24

 25

Support Structure

The main support structure (as seen in Figure 18) was created as a way to hold the

solenoids and levels in place. It consists of two 2x4s placed in the vertical direction

approximately 30” apart from one another, and another 2x4 placed in the horizontal

direction on the bottom attached to the other 2x4s. Also, there is a large piece of

plywood attached to the bottom of the structure to provide a solid base. Another,

secondary piece of wood that is approximately 3 3
4 4

′′ ′′
× is placed in the diagonal direction

Figure 18 – This shows the back of the support structure.

 26

and attached to the back of the vertical 2x4s. Finally, a 3 3
4 4

′′ ′′
× piece is placed across the

top of the structure connecting the two 2x4s. These secondary supports are used to help

prevent the structure from wobbling or becoming misaligned.

The first task was to cut the two vertical 2x4s. We found the 2x4s leftover in

Papazian Basement and decided they would provide firm supports. We cut them into

pieces approximately 36” tall to accommodate the solenoids placed at 5” apart from each

other, as that was the height of each of the levels, and seven solenoids needed to be

attached. Once the wood was cut into the appropriate length, we measured the exact

position of where we wanted each of the solenoids. We wanted the plunger of the first

solenoids to be centered around 54
8

′′
 up from the ground. We found this number by

dividing the 3
4

′′
 pieces by 2 to center them, and then subtracting that number from 5”.

Each of the next solenoids was then placed 5” up from the one below it. We marked four

holes for each solenoid, one for each of the screw holes. We then determined the size of

the screws that would fit into the solenoids by testing a few and found them to be size 4-

40 screws. Taking a drill bit slightly larger than the diameter of the screw, we drilled the

four holes for each of the solenoids. Because the screws were not long enough to fit

completely through the 2x4s, however, we had to drill another hole, one slightly larger

than the head of the screw, part of the way into the 2x4. We cut into each piece by

approximately 1 to 1
2

′′
′′ , so the end of the screw could come out the other end of the

wood by a small margin. We cut these larger holes on the opposite side of the 2x4s in

 27

which the smaller holes were initially drilled. We did this because the drill tends to drift

when it is drilling, and we wanted the holes to line up perfectly with the solenoids. Once

all the holes were drilled, we screwed in the solenoids to the 2x4s using a screwdriver.

We did not add nuts as the solenoids remained tight without them, and we thought it

would be unnecessary.

After attaching the solenoids to the 2x4s, we put the third 2x4 across the bottom.

We put the two vertical pieces approximately 30” apart to give room to add the solenoids

to the lowest levels. We fastened these pieces together using wood screws and an electric

drill. We drilled small clearance holes into the wood, and then used a flathead drill bit to

drill in the wood screws. Finally, the piece at the diagonal and the piece across the top

were added. They were also drilled in with wood screws, using two for each piece at

each end, for eight wood screws total.

Once the outside structure was complete, we attached the bottom level (see Figure

19). Like the other levels, we wanted to attach the bottom level in a way that it could be

unattached. First, we determined how far away from the 2x4s each of the levels would be

hanging, and we cut a piece of wood to that length. We then cut two pieces to a length

approximate to the height of the first level and nailed the two pieces into the 2x4s at

either end.

 28

 In addition to the previously mentioned supports, we needed separate support for

the top level. Figure 20 shows a picture of these supports. We used two 32
4

′′
′′ × pieces

of wood to hold the solenoids, and then two aluminum “L” brackets at the bottom of each

to attach to the plywood base and provide extra stability. We then added a cross piece of

3 3
4 4

′′ ′′
× wood to stabilize them at the tops. For the top level, the solenoids were mounted

and attached to the bottom of the level as opposed to the top as they had been for every

other level.

Figure 19 – This shows the base of the support system and the
mechanism for attaching the bottom level.

 29

Conclusions and Future Extensions

There are two main problems with the mechanical part of our resistor sorter: the

friction between the levels and the lining up of the levels. First of all, there is a lot of

friction created by the levels pressing against each other as well as friction created by the

hanging of the levels from the solenoids. Therefore, whenever the space between the

levels is small, the levels push against each other, creating friction. This problem is

largest for the levels towards the bottom of the structure as they are carrying the weight

of all the levels above them. Currently, the solenoids are barely able to move these levels,

and even when they do, the springs are unable to shift the levels back to the hold position.

One answer to this problem may be to sand down the levels to create more distance

 30

between each of the levels. We tried this solution, and it did not work because whenever

the space between the levels is large, the levels hang from the solenoids, creating friction

between the solenoid plunger and the solenoid box. Also, because the levels are hanging

from the solenoids, they tend to shift back and forth so that the tubes no longer match.

When resistors are falling down from one level to the next, the resistors often become

stuck unless the levels are moved by hand or the levels are removed entirely. Basically,

both of these problems are caused by the current structure of the resistor sorter. Because

the levels are only held in place by the solenoids and the levels below them, these

problems are created. Figuring out some way to keep the levels in place and taking the

load off of the other levels is essential. This would require building a better support

structure around each of the levels. Perhaps attaching some sort of flat angle-iron to the

2x4s on either side will make the levels slide in the appropriate place while providing

more support.

On the electrical side, the main problems came from the second PIC that was

acting as a demultiplexer. For some reason, only five of the outputs would work (see

Table 1). We know that these are the only ones that work because there are specific

times when our program changed certain outputs when certain inputs changed, and some

outputs simply did not change. The working outputs were used to do our demonstration

and are the only outputs currently hooked up to the solenoids. This may be because we

do not know how to program the chip correctly, or it may be because some of the outputs

can only be used as inputs, or are already set up for a different purpose. To fix this

problem, more research can be done on how PICs work, and how they can be

programmed to produce more functioning output.

 31

Appendix

resistor
resistance state min max

resistor
resistance state Min max

1 1 6 0 323 51 8200 4 909 917
2 10 6 324 537 52 9100 4 918 926
3 12 6 538 589 53 10000 4 927 1023
4 15 6 590 638 53 10000 3 513 537
5 18 6 639 671 54 12000 3 538 589
6 20 6 672 694 55 15000 3 590 638
7 22 6 695 727 56 18000 3 639 671
8 27 6 728 758 57 20000 3 672 694
9 30 6 759 777 58 22000 3 695 727

10 33 6 778 801 59 27000 3 728 758
11 39 6 802 830 60 30000 3 759 777
12 47 6 831 850 61 33000 3 778 801
13 51 6 851 862 62 39000 3 802 830
14 56 6 863 881 63 47000 3 831 850
15 68 6 882 898 64 51000 3 851 862
16 75 6 899 908 65 56000 3 863 881
17 82 6 909 917 66 68000 3 882 898
18 91 6 918 926 67 75000 3 899 908
19 100 6 927 1023 68 82000 3 909 917
19 100 5 513 537 69 91000 3 918 926
20 120 5 538 589 70 100000 3 927 1023
21 150 5 590 638 70 100000 2 513 537
22 180 5 639 671 71 120000 2 538 589
23 200 5 672 694 72 150000 2 590 638
24 220 5 695 727 73 180000 2 639 671
25 270 5 728 758 74 200000 2 672 694
26 300 5 759 777 75 220000 2 695 727
27 330 5 778 801 76 270000 2 728 758
28 390 5 802 830 77 300000 2 759 777
29 470 5 831 850 78 330000 2 778 801
30 510 5 851 862 79 390000 2 802 830
31 560 5 863 881 80 470000 2 831 850
32 680 5 882 898 81 510000 2 851 862
33 750 5 899 908 82 560000 2 863 881
34 820 5 909 917 83 680000 2 882 898
35 910 5 918 926 84 750000 2 899 908
36 1000 5 927 1023 85 820000 2 909 917
36 1000 4 513 537 86 910000 2 918 926
37 1200 4 538 589 87 1000000 2 927 1023
38 1500 4 590 638 87 1000000 1 513 568
39 1800 4 639 671 88 1500000 1 569 651
40 2000 4 672 694 89 2000000 1 652 694
41 2200 4 695 727 90 2200000 1 695 738
42 2700 4 728 758 91 3000000 1 739 793
43 3000 4 759 777 92 3900000 1 794 830
44 3300 4 778 801 93 4700000 1 831 850
45 3900 4 802 830 94 5100000 1 851 862
46 4700 4 831 850 95 5600000 1 863 875
47 5100 4 851 862 96 6200000 1 876 887
48 5600 4 863 881 97 6800000 1 888 898
49 6800 4 882 898 98 7500000 1 899 908
50 7500 4 899 908 99 8200000 1 909 922

 100 10000000 1 923 1023

Table 5 – Digital Ranges of Input Voltages to the PCB Board

 32

Resistance Reader Programs:

PIC 1

#include "PIC_A_D.h"

main() {
 signed int16 m;
 long int charlie;
 int w=0;
 int res;
 int h=0;
 int g=0;
 int k=0;

 //These next 6 lines set certain hardware on the processor.
 //Ignore them for now.
 setup_adc_ports(NO_ANALOGS);
 setup_adc(ADC_OFF);
 setup_spi(FALSE);
 setup_counters(RTCC_INTERNAL,RTCC_DIV_2);
 setup_timer_1(T1_DISABLED);
 setup_timer_2(T2_DISABLED,0,1);

 //Set up adc port to read from channel 1 (pin AN1)
 setup_adc(ADC_CLOCK_INTERNAL);
 setup_adc_ports(ALL_ANALOG);
 set_adc_channel(1);

 //Blink PIC LED (sanity check to make sure all is working).
 output_low(pin_c4);
 output_low(pin_c5);
 output_low(pin_b4);
 delay_ms(500);
 output_high(pin_b4);
 delay_ms(500);
 output_low(pin_b4);
 delay_ms(500);
 output_high(pin_b4);
 delay_ms(500);
 output_high(pin_c7);
 output_low(pin_a0);
 output_low(pin_b0);
 output_low(pin_b1);
 output_low(pin_b2);

 //Main loop
 while (h<7) {

 charlie = read_adc();
 h=h+1;
 if (charlie > 512)
 w=w;
 else
 w=w+1;

 33

 if (w==0) {
 delay_ms(500);
 //output_low(pin_c4);
 //output_low(pin_c5);
 //Outputs "00" or state 0 on LEDs
 output_float(pin_c0);
 output_float(pin_c1);
 output_float(pin_c2);
 output_float(pin_a2);
 output_float(pin_c4);
 output_high(pin_c5);

 delay_ms(500);
 if (charlie >= 923) { res= 100; }
 else if (charlie >=909) { res=99; }
 else if (charlie >=899) { res=98; }
 else if (charlie >=888) { res=97; }
 else if (charlie >=876) { res=96; }
 else if (charlie >=863) { res=95; }
 else if (charlie >=851) { res=94; }
 else if (charlie >=831) { res=93; }
 else if (charlie >=794) { res=92; }
 else if (charlie >=739) { res=91; }
 else if (charlie >=695) { res=90; }
 else if (charlie >=652) { res=89; }
 else if (charlie >=569) { res=88; }
 else { res=87; }

 }
 else if (w==1) {
 delay_ms(500);
 //output_low(pin_c4);
 //output_high(pin_c5);
 //Outputs "01" or state 1 on LEDs
 output_float(pin_c0);
 output_float(pin_c1);
 output_float(pin_c2);
 output_float(pin_a2);
 output_high(pin_c4);
 output_float(pin_c5);

 delay_ms(500);
 if (charlie >= 927) { res= 87; }
 else if (charlie >=918) { res=86; }
 else if (charlie >=909) { res=85; }
 else if (charlie >=899) { res=84; }
 else if (charlie >=882) { res=83; }
 else if (charlie >=863) { res=82; }
 else if (charlie >=851) { res=81; }
 else if (charlie >=831) { res=80; }
 else if (charlie >=802) { res=79; }
 else if (charlie >=778) { res=78; }
 else if (charlie >=759) { res=77;}

 34

 else if (charlie >=728) { res=76;}
 else if (charlie >=695) { res=75;}
 else if (charlie >=672) { res=74;}
 else if (charlie >=639) { res=73; }
 else if (charlie >=590) { res=72; }
 else if (charlie >=538) { res=71; }
 else { res=70; }

 }
 else if (w==2) {
 delay_ms(500);
 //output_high(pin_c4);
 //output_low(pin_c5);
 //Outputs "10" or state 2 on LEDs
 output_float(pin_c0);
 output_float(pin_c1);
 output_float(pin_c2);
 output_high(pin_a2);
 output_float(pin_c4);
 output_float(pin_c5);
 output_high(pin_c6);
 output_low(pin_a5);
 delay_ms(500);
 if (charlie >= 927) { res= 70; }
 else if (charlie >=918) { res=69; }
 else if (charlie >=909) { res=68; }
 else if (charlie >=899) { res=67; }
 else if (charlie >=882) { res=66; }
 else if (charlie >=863) { res=65; }
 else if (charlie >=851) { res=64; }
 else if (charlie >=831) { res=63; }
 else if (charlie >=802) { res=62; }
 else if (charlie >=778) { res=61; }
 else if (charlie >=759) { res=60; }
 else if (charlie >=728) { res=59; }
 else if (charlie >=695) { res=58; }
 else if (charlie >=672) { res=57; }
 else if (charlie >=639) { res=56;}
 else if (charlie >=590) { res=55; }
 else if (charlie >=538) { res=54; }
 else { res=53; }

 }
 else if (w==3) {
 delay_ms(500);
 //output_high(pin_c4);
 //output_high(pin_c5);
 //Outputs "11" or state 3 on LEDs
 output_float(pin_c0);
 output_float(pin_c1);
 output_high(pin_c2);
 output_float(pin_a2);
 output_float(pin_c4);
 output_float(pin_c5);
 output_high(pin_a5);
 delay_ms(500);

 35

 if (charlie >= 927) { res= 53; }
 else if (charlie >=918) { res=52; }
 else if (charlie >=909) { res=51; }
 else if (charlie >=899) { res=50; }
 else if (charlie >=882) { res=49; }
 else if (charlie >=863) { res=48; }
 else if (charlie >=851) { res=47;}
 else if (charlie >=831) { res=46;}
 else if (charlie >=802) { res=45; }
 else if (charlie >=778) { res=44; }
 else if (charlie >=759) { res=43; }
 else if (charlie >=728) { res=42; }
 else if (charlie >=695) { res=41; }
 else if (charlie >=672) { res=40; }
 else if (charlie >=639) { res=39; }
 else if (charlie >=590) { res=38; }
 else if (charlie >=538) { res=37; }
 else { res=36; }

 }
 else if (w==4) {
 delay_ms(500);
 //output_high(pin_c4);
 //output_high(pin_c5);
 //Outputs "11" or state 3 on LEDs
 output_float(pin_c0);
 output_high(pin_c1);
 output_float(pin_c2);
 output_float(pin_a2);
 output_float(pin_c4);
 output_float(pin_c5);
 delay_ms(500);
 if (charlie >= 927) { res= 36; }
 else if (charlie >=918) { res=35; }
 else if (charlie >=909) { res=34; }
 else if (charlie >=899) { res=33; }
 else if (charlie >=882) { res=32; }
 else if (charlie >=863) { res=31; }
 else if (charlie >=851) { res=30; }
 else if (charlie >=831) { res=29; }
 else if (charlie >=802) { res=28; }
 else if (charlie >=778) { res=27; }
 else if (charlie >=759) { res=26; }
 else if (charlie >=728) { res=25; }
 else if (charlie >=695) { res=24; }
 else if (charlie >=672) { res=23; }
 else if (charlie >=639) { res=22; }
 else if (charlie >=590) { res=21; }
 else if (charlie >=538) { res=20; }
 else { res=19; }

 }
 else {
 delay_ms(500);
 //output_high(pin_c4);
 //output_high(pin_c5);

 36

 //Outputs "11" or state 3 on LEDs
 output_high(pin_c0);
 output_float(pin_c1);
 output_float(pin_c2);
 output_float(pin_a2);
 output_float(pin_c4);
 output_float(pin_c5);
 delay_ms(500);
 if (charlie >= 927) { res= 19; }
 else if (charlie >=918) { res=18; }
 else if (charlie >=909) { res=17; }
 else if (charlie >=899) { res=16; }
 else if (charlie >=882) { res=15; }
 else if (charlie >=863) { res=14; }
 else if (charlie >=851) { res=13; }
 else if (charlie >=831) { res=12; }
 else if (charlie >=802) { res=11; }
 else if (charlie >=778) { res=10; }
 else if (charlie >=759) { res=9; }
 else if (charlie >=728) { res=8; }
 else if (charlie >=695) { res=7; }
 else if (charlie >=672) { res=6; }
 else if (charlie >=639) { res=5; }
 else if (charlie >=590) { res=4; }
 else if (charlie >=538) { res=3; }
 else if (charlie >=460) { res=2; }
 else { res=1; }
 w=7;

 }
 }
 delay_ms(3000);
 g=res/48;
 if (g == 1) { output_low(pin_a0); output_low(pin_b0); output_low(pin_b1);
output_high(pin_b2); k=48;}
 else { output_low(pin_a0); output_low(pin_b0); output_high(pin_b1);
output_low(pin_b2);k=0;}
 delay_ms(2000);
 res=res-k;

 g=res/24;
 if (g == 1) { output_low(pin_a0); output_low(pin_b0); output_high(pin_b1);
output_high(pin_b2); k=24;}
 else { output_low(pin_a0); output_high(pin_b0); output_low(pin_b1);
output_low(pin_b2);k=0;}
 delay_ms(2000);
 res=res-k;

 g=res/16;
 if (g == 1) { output_low(pin_a0); output_high(pin_b0); output_low(pin_b1);
output_high(pin_b2); k=48;}
 else { output_low(pin_a0); output_high(pin_b0); output_high(pin_b1);
output_low(pin_b2);k=0;}
 delay_ms(2000);
 res=res-k;
}

 37

PIC 2:

#include "PIC_A_D.h"

main() {
 signed int16 m;
 long int charlie;
 int w=0;
 int res;
 int h=0;
 int g=0;
 int k=0;

 //These next 6 lines set certain hardware on the processor.
 //Ignore them for now.
 setup_adc_ports(NO_ANALOGS);
 setup_adc(ADC_OFF);
 setup_spi(FALSE);
 setup_counters(RTCC_INTERNAL,RTCC_DIV_2);
 setup_timer_1(T1_DISABLED);
 setup_timer_2(T2_DISABLED,0,1);

 //Set up adc port to read from channel 1 (pin AN1)
 setup_adc(ADC_CLOCK_INTERNAL);
 setup_adc_ports(ALL_ANALOG);
 set_adc_channel(1);

 //Blink PIC LED (sanity check to make sure all is working).
 output_low(pin_c4);
 output_low(pin_c5);
 output_low(pin_b4);
 delay_ms(500);
 output_high(pin_b4);
 delay_ms(500);
 output_low(pin_b4);
 delay_ms(500);
 output_high(pin_b4);
 delay_ms(500);

 //Main loop
 while (1) {
 h=input(pin_c0);
 g=input(pin_c1);
 k=input(pin_c2);

 if (input(pin_c0)==0 && input(pin_c1)==0 && input(pin_c2)==0)
 {output_low(pin_b2); output_low(pin_b1); output_low(pin_b0); output_low(pin_a0);
output_low(pin_a1);
 output_low(pin_a2); output_low(pin_a3); output_low(pin_a4); output_low(pin_a5);
output_low(pin_c7);
 output_low(pin_c6); output_low(pin_c5); output_low(pin_c4); }

 else if (input(pin_c0)==0 && input(pin_c1)==0 && input(pin_c2)==1)

 38

 {output_high(pin_b2); output_low(pin_b1); output_low(pin_b0); output_low(pin_a0);
output_low(pin_a1);
 output_low(pin_a2); output_low(pin_a3); output_low(pin_a4); output_low(pin_a5);
output_low(pin_c7);
 output_low(pin_c6); output_low(pin_c5); output_low(pin_c4); output_low(pin_c3);}

 else if (input(pin_c0)==0 && input(pin_c1)==1 && input(pin_c2)==0)
 {output_high(pin_b2); output_low(pin_b1); output_low(pin_b0); output_low(pin_a0);
output_low(pin_a1);
 output_low(pin_a2); output_low(pin_a3); output_low(pin_a4); output_low(pin_a5);
output_low(pin_c7);
 output_low(pin_c6); output_low(pin_c5); output_low(pin_c4); output_low(pin_c3);}

 else if (input(pin_c0)==0 && input(pin_c1)==1 && input(pin_c2)==1)
 {output_low(pin_b2); output_high(pin_b1); output_low(pin_b0); output_low(pin_a0);
output_low(pin_a1);
 output_low(pin_a2); output_low(pin_a3); output_low(pin_a4); output_low(pin_a5);
output_low(pin_c7);
 output_low(pin_c6); output_low(pin_c5); output_low(pin_c4); output_low(pin_c3);}

 else if (input(pin_c0)==1 && input(pin_c1)==0 && input(pin_c2)==0)
 {output_low(pin_b2); output_low(pin_b1); output_high(pin_b0); output_low(pin_a0);
output_low(pin_a1);
 output_low(pin_a2); output_low(pin_a3); output_low(pin_a4); output_low(pin_a5);
output_low(pin_c7);
 output_low(pin_c6); output_low(pin_c5); output_low(pin_c4); output_low(pin_c3);}

 else if (input(pin_c0)==1 && input(pin_c1)==0 && input(pin_c2)==1)
 {output_low(pin_b2); output_low(pin_b1); output_low(pin_b0); output_low(pin_a0);
output_low(pin_a1);
 output_low(pin_a2); output_high(pin_a3); output_low(pin_a4); output_low(pin_a5);
output_low(pin_c7);
 output_low(pin_c6); output_low(pin_c5); output_high(pin_c4); output_low(pin_c3);}

 else if (input(pin_c0)==1 && input(pin_c1)==1 && input(pin_c2)==0)
 {output_low(pin_b2); output_low(pin_b1); output_low(pin_b0); output_low(pin_a0);
output_low(pin_a1);
 output_low(pin_a2); output_low(pin_a3); output_low(pin_a4); output_low(pin_a5);
output_low(pin_c7);
 output_low(pin_c6); output_low(pin_c5); output_low(pin_c4); output_high(pin_c3);}
 }
}

 39

Ultiboard File:

Multisim File:

