

Design and Construction of an
Underwater Remotely Operated Vehicle

�

 Samantha Brody, Maila Sepri

Swarthmore College Department of Engineering
E90 Final Report

 5 May 2005

 1

Table of Contents:

 Page
Part 1
 A. Introduction and Background...……………………………………4-5

i. What are ROVs and AUVs?
 ii. Types of ROVs
 iii. Introduction to our project
B. Design Goals and Decisions……………………………………….6-17
 i. Frame/Structure, Waterproofing, and Tether
 a. Frame/Structure: Seafox Prototype and Modifications
 b. Frame/Structure: Propulsion System
 c. Frame/Structure: Camera
 d. Waterproofing
 e. Tether

 ii. Electronics and Sensors
a. Component Selection
b. Overall Circuit/System Design
c. PCB

 iii. Joystick Interface and Navigation Module
 iv. PIC and Control Program

C. Experiments (What We Learned Along the Way)…………………17-20
 i. Structural Component Trials
 ii. PIC Program Tests
 iii. Navigation Module Tests
 iv. Accelerometer and Gyroscope Tests
D. Discussion……………………………………………………….…20-1
E. Acknowledgements………………………………………………...22

Appendix A: Component List with Prices…….…………..…………….…23-4
Appendix B: AWG and current carrying capacity for copper wire……...25
Appendix C: Electrical Component Data Sheets (Relevant Sections)........26-31
Appendix D: Multisim Schematic………………………………………..…32
Appendix E: Ultiboard Layout…………………………………………..…33
Appendix F: Nav Module Program……………………………………..….33-47
Appendix G: PIC Program………………………………………………....48-55
References…………………………………………………………………....56

 2

Figures:

1: The Jason II ROV…………………………………………………………..…….….6
2: The Axis of Motion………………………………………………………….…….…6
3: Seafox Prototype…………………………………………………………….……….7
4: Bilge Pump……….………………………………………………………….……..…7
5a: Bilge Pump Layout (translation)…………………………………………………..8
5b. Bilge Pump Layout (rotation)……………………………………………………...8
6: Pulse Width Modulation………………………………………………………….…8
7: Overview of the Flow of Control of the ROV System………………………….….9
8: Picture of the Camera………………………………………………………….…....9
9: Diagram of the Camera……………………………………………………….....….10
10a: Waterproofed Power Box…..………………………………………………….…10
10b: Waterproof Box and Connectors, Opened……………………………….……..10
11: PIC18F4431 Microcontroller……………………………………………...……....12
12: MAX232 Chip……………………………………………………………….….…..12
13: MOSFET……………………………………………………………...………….....12
14: Gyroscope Evaluation Board .………………………………………………….....13
15: Accelerometer Evaluation Board…………………………………………….........13
16: Overall Design of the ROV System………………………………………….…....14
17: Transition from Breadboard to PCB……………………………………………..15

 3

BACKGROUND AND INTRODUCTION:

i. What are ROVs and AUVs?
Underwater Remotely Operated Vehicles are a specific category of underwater robots
that receive instructions from a human controller via a cable that remains attached to the
robot at all times. The method of remote operation contrasts from autonomous operation,
in which the robot itself is preprogrammed to assess particular aspects of the environment
in which it is operating and to respond without the intervention of a human controller.
There are advantages and disadvantages to both control techniques. The advantages of
using an ROV are that complex manipulation can be done as necessary without
increasingly complex code, and they are real-time controllable. AUVs, on the other hand,
have greater flexibility with the spaces that they can explore since their motion is not
limited by a cable. AUVs and ROVs are often used in a complementary manner where
an AUV first surveys a site and determines an appropriate location for the deployment of
an ROV. The applications of underwater ROVs include sub-sea infrastructure
surveillance, inspection and some maintenance, military procedures, search and rescue
missions, fish finding, and exploring and obtaining data about parts of the oceans where
humans cannot go themselves.

ii. Types of ROVs
While all ROVs have tethers linking them to a control center and almost all ROVs have
thrusters, sensors, and cameras and/or hydrophones, the complexity and abilities of ROVs
vary greatly. There are homemade ROVs of all levels constructed by individuals out of
personal interest and curiosity and school projects (like ours). Such projects generally
have lower budgets than the research and commercial ROVs funded by large companies
and/or institutions. Mass-produced commercial ROVs can be subdivided into two
categories: the “working” ROV and the “general” ROV. The working ROVs tend to be
large, heavy and necessarily crew operated. They are used for tasks such as trenching,
repair jobs, and recovery of heavy objects. General ROVs can be operated by fewer
people and are often used for tasks such as ship inspections, search missions, and pipeline
inspections.

A third type of ROV is the research ROV, used for aiding in underwater scientific study.
These are not necessarily different from commercial ROVs (which can be modified to
incorporate specialized sensors), but their application is for research rather than search
and rescue, maintenance, etc. One example of a research ROVs that is currently used for
sea floor observation, imaging, sampling and precision sensing is the ROV system
comprised of the ROV Medea and the ROV Jason II [4] (Figure 1). These were created
by scientists at the Woods Hole Oceanographic Institution and can withstand pressure at
depths up to 6500 meters. A neutrally buoyant cable connects the two ROVs to each
other. Three copper conductors and three single-mode fiber optic cables allow for the
remote control of the vehicles.

 4

Figure 1. The Jason II ROV being lowered into the water
(source: http://www.whoi.edu/marine/ndsf/vehicles/jason/index.html)

iii. Introduction to our project
The goal of our project is to design, construct and test an ROV that responds dependably
to user commands. This task involves designing the physical structure of the ROV, its
propulsion system, and its navigation system. We used the Seafox, a simple ROV whose
designers published instructions for its construction [1], as a basis for our vehicle’s
structure. Our project involves slight modifications to the Seafox’s physical
configuration and great expansion upon its control unit. We have created control
circuitry that operates the ROV’s bilge pump propulsion system and is compatible with a
joystick command interface for real-time control. Our design allows the ROV to
maneuver along 5 axes (forward, backward, right, left, pitch, and yaw – Figure 2)1. An
on-board camera provides visual feedback from the ROV to aid in navigation and
exploration, and sensors such as accelerometers and gyroscopes are included for use in
localization. The ROV serves as a platform upon which other sensors and/or mechanical
components can be mounted for further work in underwater environments.

Figure 2. The five axes over which the ROV has motion capabilities

�
1 The primary motivation for including the ability to pitch was to give the camera versatility in what it
could view.

 5

DESIGN AND DESIGN DECISIONS

Our main goal is to design construct and test a remotely operated vehicle. This task can
be subdivided into the sub-tasks listed below:

i. Frame/Structure, Waterproofing and Tether

a. Frame/Structure: Seafox Prototype and Modifications

We followed the instructions set out in Bohm and Jensen [1] for the frame construction
and pump placement on a Seafox ROV in order to serve as an initial design upon which
we could expand. The parts, prices, and manufacturers of the materials used, as well as
those of the electrical components discussed later in this report, are tabulated in Appendix
A.

Figure 3. A diagram of the Seafox from Bohm and Jensen’s book

Even in the initial assembly, however, we made some changes to the suggested methods
of construction. Instead of using two hollow PVC pipes with end caps as floatation
device for the ROV, we placed foam and weights strategically around the ROV to ensure
that the ROV would remain slightly positively buoyant. Bubble wrap was used for
floatation around the top portion of the frame. This opened up space for the placement of
a power box and an electronics box.

The Seafox system is controlled using a toggle switch for each bilge pump. The operator
of the ROV must decide which pump to turn on based upon his or her knowledge of the
pump configuration and the desired direction of motion. We created control circuitry and
programs for use with a joystick in order to simplify the user’s task in navigation.
Adding an electronics box onboard the ROV was thus the predominant design
modification that we made to the Seafox. It allowed us to reduce the number of wires
connecting the ROV to the land-based controller and to create a more complex control
system.

 6

Another physical alteration we implemented was the addition of two additional pumps

als

back

ra

b. Frame/Structure: Propulsion System

n important part of the frame design and structural layout is the bilge pumps. The ROV

and consequently a rearrangement of the pump placement. Initial tests on the Seafox
using a 7-conductor cable we created out of 16AWG wire in order to pass control sign
between land-based switches and the pumps indicated that more pumps were necessary to
propel the ROV in the z direction (up and down). Two more pumps were ordered and
placed in vertical orientation on the ROV. The pumps controlling motion in the z
directions, which were originally placed in the center, were moved to the front and
edges of the ROV. This option was implemented instead of immediately choosing to
implement a ballast system for vertical motion and buoyancy control in the interest of
simplicity and time. Some other changes that we implemented were addition of a came
to provide visual feedback, use of waterproof cable glands and addition RTV sealant to
ensure sealing of the electronics boxes.

A
supports 8 Rule® 500 gallons per hour bilge pumps, which propel the vehicle by sucking
water through a grid in their bases and expel it in a directed stream from a spout on the
pumps’ sides (Figure 4).

Figure 4. Rule® 500GPH bilge pump

he placement of the pumps was determined in order to allow for all five desired modes

T
of motion. The pumps on the horizontal plane are oriented such that their spouts face at
45˚ angles from the horizontal. When the two shaded pumps in Figure 5.a are turned on,
the vertical components of their forces cancel and the ROV translates towards the right.
The pumps are offset slightly from the corners towards the central axis of the ROV. This
gives the vehicle the capability to rotate when two pumps in opposite corners are turned
on. The offset creates a couple on the body of the vehicle as shown in Figure 5.b. The
up- and down- facing pumps use the same concepts to achieve z-axis translation and
pitch.

 7

 (a) (b)
Figure 5. Bilge pump layout on the ROV: (a) Translation (b) Couple that causes rotation

The pumps nominally operate at 12V and draw 2.5 A to move 500GPH. However, the
pumps are capable of operating at both higher and lower voltages. As the voltage is
decreased the mass flow decreases, and conversely, as the voltage is increased the mass
flow increases. Qualitative measurements as opposed to quantitative measurements were
taken of this characteristic, but it would be useful to measure the actual change in mass
flow and obtain a graphical representation of this pump feature.

In order to establish multiple speed functionality for the ROV we wanted the pumps to
operate at three states: (1) ON FAST, (2) ON SLOW, and (3) OFF. The middle speed is
realized using pulse width modulation. Pulse width modulation (PWM) is a powerful
technique for controlling analog circuits with a microprocessor's digital outputs. PWM is
employed in a wide variety of applications, ranging from measurement and
communications to power control. Pulse width modulation essentially works to create a
middle speed by having the pumps pulse on and off at a set duty cycle. The duty cycle is
given in terms of a percentage in which the pumps are in the on state. A diagram of three
different duty cycles is illustrated in Figure 6. We chose to implement a 50% duty cycle
for simplicity in programming.

Figure 6. A diagram of a 10%, a 50% and a 90% duty cycle to illustrate how pulse width modulation
works. (source: http://www.embedded.com/story/OEG20010821S0096)

 8

The pumps are controlled directly by the PIC, which receives information from the
Navigation module running on a computer at the surface. The control system is outlined
in Figure 7 and will be discussed in much greater detail in the circuit design and
programming sections.

joystick PC

PIC

PUMPS

Figure 7. An overview of the control path for the propulsion system, from the person controlling the
joystick to the pumps.

c. Frame/Structure: Camera

The camera provides feedback on what the ROV is “seeing” and is placed on the front of
the ROV outside of the main frame. Placement of the bow’s up/down pumps inside the
frame prevents those pumps from clouding the vision of the camera. The housing of the
camera is a 5’’ long, 2.5’’ outer diameter PVC pipe with clear PVC end caps. The end
caps were machined using a lathe. The camera is placed up against one end cap and
stabilized in place with foam.

Figure 8. A picture of the camera in its housing.

A 50’ RCA cable connects to the camera inside the housing and feeds out of a hole in the
back of the pipe. The rear section of the PVC pipe is potted with toilet seal wax and
encases the RCA cable and the camera’s power and ground wires to the battery. The
potting wax is intended to shield the electronics from water in when the camera is
submerged. The potting of the electronics is a backup safety precaution since the wire

 9

hole and lens cap seams are coated with RTV sealant. The power and ground cables are
fed into a film canister containing a 9V-battery. The separate housing for the battery
provides for the ability to replace the battery without unsealing the PVC camera housing.
Figure 8 is a photograph of the housing and camera described above, and Figure 9 depicts
the components inside of the pipe and the RCA wire connectivity. RCA wires can be
connected to a standard television monitor.

Figure 9. A diagram of the camera and housing.

d. Waterproofing

Waterproofing the electronics was a challenging and crucial task. The waterproofing of
the camera is described above. The other components that needed to be waterproofed
were the PCB and the power box. To do this we ordered project boxes of different sizes
and drilled holes in the boxes to allow penetration of wires to make the appropriate
connections. The wires were fed through Bud® waterproofing glands, and a coating of
RTV sealant was applied around the seam between the connector glands and the box. A
picture of the power box with the connectors and wires hooked up to a terminal strip can
be seen in Figure 10.a, and an empty open project box are shown in Figure 10.b.

(a) (b)

Figure 10. Waterproof boxes with connector glands.

e. Tether

The cables that run down to the ROV to provide power and to control the pumps were an
important part of the design process. The cables needed to be as light and flexible as
possible to allow the ROV to move without being restricted by the cables. Initial tests

 10

with our 7-conductor cable illustrated the effect of a heavy cable on a light vehicle as the
ROV rotated and sank according to the position of the cable. For this reason we tried to
minimize the weight and stiffness of the cable bundle fed to the ROV.

The pump power cables had to be able to carry a maximum of 20A (8 pumps @ 2.5A
max each) and to supply 12 volts. We also needed a cable for serial communication, a
pair of smaller power supply wires for the microcontroller/sensor circuit components, and
an RCA cable for the camera. By placing the power box as well as the PCB on the ROV
itself we eliminated the need for numerous heavy cables, since power from a single pair
of slightly larger power cables could be distributed to individual pumps onboard. The
large power source was connected by the ROV by two 12AWG wires, one for power and
one for ground. The serial communication was done across a 29AWG (AS165 Ultra
Flexible Hookup Wire) wire made by Cooner Wire®. The power and ground for the
PCB was also fed down a 29AWG Cooner Wire. Standard RCA cable was used for the
video feedback. All 5 cables were cut to a length of 50ft to enable the ROV to move
some distance away from the land-based computer. The chart that we used to determine
the necessary gage of the wire can be found in Appendix B.

ii. Electronics and Sensors

a. Component Selection

The major components on the control and sensor circuit are a PIC microcontroller, a
MAX232 chip, 8 MOSFET transistors, a voltage regulator, and gyroscopes and
accelerometers. We selected components with footprints that could be easily inserted and
soldered into a PCB rather than surface mount components. All components are
tabulated with their prices, manufacturers, and suppliers in Appendix A, and the pinouts
from the components’ datasheets can be found in Appendix C.

We initially chose Microchip’s PIC18F4431 microcontroller (Figure 10) for its 8 PWM
outputs (4 complementary pairs), its 9 10-bit high-speed (up to 200K samples per second)
A/D converters and its serial communication abilities. The PIC16F series is currently a
commonly used family of microcontrollers, but they support only 2 PWM pins, so we
chose the newer 18F series with 8 PWM outputs. In the final state of the project we did
not end up using the built-in PWM modules; instead we used regular output pins and
implemented manual PWM by alternating high and low outputs on the selected pin.
There are two main reasons that we opted for the manual PWM. First, although we
decided to use a relatively slow 4MHz resonator as the PIC’s clock, the minimum PWM
pulse frequency possible was much higher than the pumps are able to respond to.2 The
pumps’ motors carry some inductance, and so high-frequency pulses register simply as a
lower mean voltage. Though the pumps can still function at a lower voltage, they are
designed for use at 12V or higher, so we decided it would be better to use slow PWM
rather than an intermediate voltage to achieve slow speeds. Another reason for manual
�
2 The PIC’s PWM frequency is calculated using a formula given in the component’s data sheet. The
variables in these calculations are the master clock frequency and values stored in data registers. Thus the
PWM frequency is limited by the number of bits in each register.

 11

PWM is that the 8 PWM pins do not operate completely independently. There are four
duty cycle generators, so the 8 PWM can be either 4 sets of paired outputs or 4 sets of
complementary outputs. The PIC’s A/D converters are currently used to read the inputs
from the gyroscopes. In the future accelerometers and other sensors can also be read
using the A/D converters.

Figure 11. A Picture of a PIC18F4431

The MAX232 chip (Figure 12) is used to convert the voltage logic levels of the PC to that
of the PIC. On the PIC +5V is defined as logic high, and 0V is logic low. From the
serial port, however, logic low is between -3V and -25V and logic high is between 3V
and 25V. Usually the PC considers anything above 2.5V as high, and anything below
2.5V is seen as low. The MAX232 converts the logic levels so that communication
signals between the PC and the PIC are compatible.

Figure 12. A MAX232 chip
 (source:
http://images.google.com/imgres?imgurl=http://www.sparkfun.com/shop/i
mages/261.jpg&imgrefurl=http://www.sparkfun.com/shop/index.php%3Fsh
op%3D1%26cat%3D80&h=273&w=400&sz=15&tbnid=vxVZTEzHdXQJ:
&tbnh=81&tbnw=119&hl=en&start=184&prev=/images%3Fq%3Dmax232
%26start%3D180%26hl%3Den%26lr%3D%26sa%3DN)

The MOSFETs (metal oxide semi-conductor field effect transistors) that we selected are
made by Vishay Siliconix, and they function as high-speed switches that allow current to
flow through the pumps when they close. We chose to use MOSFETs because of their
low current draw, maximum drain current and the gate threshold current. The PIC’s pins
do not provide high current outputs, so the low current draw was necessary. We selected
an n-type MOSFET so that the pump will turn on when the gate voltage exceeds the gate
threshold voltage, which for this particular MOSFET is 1-3V. When the PIC outputs a
high voltage (5V) to the MOSFET’s gate pin, current flows through the MOSFET from
the source to the drain, causing a voltage drop across a pump connected to 12V and the
drain pin. This turns the pump on. A picture of a MOSFET can be seen in Figure 13.

 12

Figure 13. Vishay/Siliconix MOSFET
The Fairchild Semiconductor LM7805ct voltage regulator is used to send a smooth power
signal to the electronics on the PCB. If 5V were sent through the 50ft 29AWG wire to
the circuit board, some of the input power would be dissipated and the voltage would
drop. This would prevent the components from receiving sufficient power to operate.
The voltage regulator allows us to supply excess voltage levels to the circuit board and to
down-regulate the voltage to a smooth 5V signal. Obtaining a smooth signal is important
to reducing noise in sensors and for correct operation of the microcontroller.

The gyroscopes are sensors that feed back rate of rotation. In order to obtain an absolute
heading from the sensor an integration program must be implemented.3 The sensitivity of
the ADXRS401 gyroscopes that we selected is ±75°/sec. The ROV does not move very
quickly, so the gyroscope must be sensitive enough to detect the motion of the ROV and
be able to feedback useful information. The gyroscopes also feed back the temperature to
correct for drift over time. We ordered gyroscope evaluation boards (Figure 14) for ease
of integrating into our circuit, since the individual components have small surface mount
footprints and require external capacitors.

Figure 14. ADXRS401 gyroscope evaluation board.

An accelerometer is a device for measuring acceleration and the effects of gravity, and
their signals can be used to track the motion of the vehicle over time. The ADXL203
dual-axis accelerometers provide signals proportional to the acceleration of the ROV.
This signal can be integrated to determine information about the velocity and the distance
of the ROV. This is important in localizing the robot within a known space. As in the
case of the gyros, we ordered the accelerometers’ evaluation boards (Figure 15) for easier
implementation.

�
3 The gyroscopes and accelerometers are not yet completely incorporated onto the ROV. They have been
tested and preliminary code has been written for obtaining useful readings from them, but the programs are
not fully developed.

 13

Figure 15. A picture of the accelerometer evaluation board.

 b. Overall Circuit/System Design

The circuit containing all of the components listed above was printed on a PCB that is
mounted on the ROV and connected to a PC through an RS232 interface. The PC,
joystick, and joystick operator, as well as a large power supply for the pumps and a small
power supply for the circuitry, are on land. In the water is the ROV and therefore the
pumps, a waterproof power box which distributes the power to individual pumps from the
large source, and another waterproof box which contains the PCB. The camera is also on
the ROV. A diagram which shows this overall layout of the system can be found in
Figure 16.

Figure 16. An overall view of the entire ROV system. That which is enclosed in the dotted line is
underwater while everything outside the dotted line is on land.

 c. The Printed Circuit Board

The PCB which is enclosed in a waterproof box is an integral part of the ROV system.
When we initially set up the circuit, we connected it on land on a breadboard. While this
method worked and allowed us to fine-tune our circuit design, it also had many
drawbacks. The major problem was that the electronics had to be on land, and
consequently many cables went from the breadboard to the ROV. These cables included

 14

16 16AWG wires (two for each pump). The cables coming up from the ROV were so
thick and inflexible that they impeded the motion of the ROV. Another problem was that
there were so many wires on the breadboard that when the wires were attached to a
moving ROV they were easily pulled out of place. Once the PCB was manufactured and
populated, and the electronics box (the project box which housed the PCB) was
waterproofed, we were able to place the PCB in the electronics box on the ROV and
eliminate the large restrictive wires. Figure 17 shows the transition of the circuit from a
breadboard to the PCB.

Figure 17. These pictures show the transition fro the breadboard circuit to the PCB.

The software that we used to design our PCB schematic and the circuit diagrams were
Multisim7 and Ultiboard7. We sent these diagrams to Alberta Printed Circuits for board
manufacturing. The Multisim schematic can be found in Appendix D and the Ultiboard
layout can be found in Appendix E. Additional components such as capacitors, diodes,
and resistors were added in the Multisim and Ultiboard layouts where necessary.

iii. Joystick Interface and Navigation Module

The ROV is designed to be steered by an operator using a joystick, and its navigation
module is programmed to be compatible with the same joystick command module written
for the Swarthmore College Flying Robot [3] and wheeled Magellan and Nomad robots.
This joystick command module is part of the Robomon library developed by Nicolas
Ward ’05. The module is interfaced with a Logitech® WingmanExtreme joystick, which
supports multiple sets of buttons so that z-axis translation and pitch can be controlled
while x- and y- axis translation and yaw are controlled with the stick. The joystick
module reads five analog signals (one corresponding to the position of the joystick along
each axis of motion). It then converts the analog value to a digital value and assigns the
digital value to one of five speed bins: -FAST, -SLOW, STOP, +SLOW, or +FAST. The
negative speeds correspond to the backwards, left, and downward directions, as well as
leftward turning and bow-down pitching. The positive speeds correspond to the forward,
right, and upwards directions, plus right turning and bow-up pitching. The speed value
for each axis is then stored in an array of doubles to be sent to the Navigation Module.

The Joystick and Navigation Modules communicate using a version of Carnegie Mellon
University’s Inter-Process Communication (IPC). Fritz Heckel ’05 used IPC as the
foundation of the Swarthmore General Communication Module (GCM). GCM defines
structures for passing messages between modules. The message passed between the

 15

Joystick and ROV NAV Module is in the GCM_Common_Command format. The fields
this structure contains include the module’s ID, the desired mode of operation for the
module (ACTIVE, for example), and an array of 6 double data values. The Joystick
Module thus broadcasts a GCM_Common_Command message containing the speed data
onto IPC, and the NAV Module reads all GCM_Common_Command messages on IPC
that are directed to its ID. It then writes the data, module capabilities, process ID, and
operating mode to a structure (named ROV_NavModData) using a common handler
function. This structure is passed to the main function via an IPC-checking function, and
the main function uses it as an argument for a function that interprets the data and sends
serial commands to the PIC.

The data-interpreting function determines which pumps the PIC should activate and
assigns the appropriate speed to each pump. It accomplishes this by first breaking the
speed values passed via the ROV_NavModData structure into directional variables that
store the speed. For example, if the joystick generates a z-axis speed value of -2, the
data-interpreting function assigns 2 (FAST) to “down” and 0 (STOP) to “up.” Since
individual pumps contribute to motion along more than one axis, these assignments allow
the function to then search the relevant directions for each pump to find the maximum
speed required of that pump to move the ROV in the desired direction and speed. The
next step is determining if the current desired speed for each pump is different than the
speed at which it is already operating. This is desirable so that a minimum number of
commands is passed over the serial port to the PIC, which in its current algorithm can
accept a limited number of messages in a short amount of time (on the order of
milliseconds). The NAV Module sends a byte of data over the serial port whenever one
of the pumps’ speeds must be changed.4 This byte contains the address and desired speed
of the pump in question. The NAV module compiles bytes with this information in it
using address and speed bit-masks and performing bitwise operations on the data and
masks. The code for the NAV Module can be found in Appendix F.

iv. PIC and Control Programming

In order to program the PIC we used the PIC-C compiler and PCW/ICD programming
software. The purpose of our program is for the PIC to receive bytes sent over the serial
port form the NAV module and to extract from these bytes the pump identity and the
pump speed. Our program is designed so that most of the complex computation is carried
out on the PC, therefore minimizing the computation done by the PIC which runs on a
much slower clock and has less memory. The actual PIC program can be found in
Appendix G.

The PIC receives bytes when the value of a pump should be changed. The bytes sent
from the NAV module are in the form XXXSSIII, where the X’s are unused bits which
can be utilized in the future, the S’s represent speed bits, and the I’s determine the

�
4 The serial communications and GCM message handling functions were based on programs in the
Swarthmore Vision Module (SVM) and in mod-skeleton, a model module written by Fritz Heckel ’05. The
Mage directory for Magellan Robots also contained useful examples for serial communications.

 16

address of the pump that needs to be changed. Since there are three possible speeds (on,
off, and slow) there are two speed bits, and since there are eight pumps, three identity bits
are needed.

The program works by checking the serial line, and if there is data waiting, the PIC reads
in the bytes. Once there is nothing on the serial line, the program begins to execute by
deciphering each byte and outputting the appropriate logic level to the pump identified in
each byte. If the pump is to be turned on the logic level output of the appropriate pin
should be high, and vice verse for off. In order to achieve the slow speed the PIC sends
out alternating high and low signals every of 500ms. A flag is set high when the speed is
determined to be slow. If the speed is slow and the duty flag is high the output is set
high, and then after 500 ms the program checks to see if the speed is still slow and the
duty flag set high. If this is the case the outputs are low for 500ms and the flag is set low.
This process repeats, creating an alternating high and low cycle every 500 ms.

C. EXPERIMENTS (What We Learned Along the Way)

The development process involved multiple tests of preliminary designs and partial
components of the final system. The tests conducted on both the physical layout and on
predecessors of the final code are detailed in the following sections.

i. Structural Component Trials

To test our SeaFox prototype, we assembled a 7-conductor, 16AWG cable by threading
10-foot-long wires through clear heat shrink tubing and sealing them together. We tested
the ROV’s 6 bilge pumps by inserting their ground lead wires into the waterproofing
glands that we screwed into one of the project boxes. Then we inserted the ground wire
from the cable into the same box and connected them all on a terminal strip such that a
star-configuration node was created. In the power project box we connected each of the 6
remaining wires from the cable to a power lead wire from one of the pumps. We screwed
the boxes closed and attached the topside ends of the cable to switches powered by a 30A
power source. This allowed us to manually turn on each pump and to test the system’s
movement.

This test revealed to us that one pump would not be sufficient to propel the ROV along
the z-axis, so we decided to add 2 more vertically-facing pumps to our design We also
discovered that the bilge pumps do not draw a full 2.5A (their max current rating) at 12V.
Since they drew only 1.9A, we could operate the pumps at a higher power to achieve
greater mass flow.

The test also exposed shortcomings in our waterproofing methods. Although undetected
until we re-opened the project boxes, they had totally filled with water. Luckily, this did
not affect the pumps’ performance, but it became clear that simple gasket tightening

 17

would not be sufficient. Consequently, we removed the rubber gaskets from the glands
and added a lining of RTV silicone sealant around any penetrations of our project boxes.

In preparing the pumps for the final sea trials, we also ran tests which powered the pumps
through MOSFETs located on a breadboard. The MOSFETs replaced the switches and
the pumps were connected to individual power supplies. The pumps were then turned ton
and off according to the voltage level of the gate pin on the MOSFET. The
pump/MOSFET combination operated as expected.

ii. PIC Programming Tests

In order to program the PIC and test code we had to set up a circuit for interfacing the 40-
pn PIC with an RJ12 serial cable socket using the wiring instructions on the CCS FAQ
webpage [2].

The first step in developing PIC programs was to test the microcontroller’s output pins
with a simple control signal. We wrote an Analog-to-Digital conversion display function
that read an analog signal from the PIC’s ADC pins (PortA) and put out the 8-bit digital
value on the PortB pins. We then displayed this value on the 8 LEDs on the breadboard
and verified that the ADC and outputs worked by feeding square and sine waves into the
ADC pins and watching the output vary on the LEDs.

Next we wrote a program to control the output of a single pin based on a command
received serially. This involved development of the bit masks used in the final code and
connecting the PIC’s Rx and Tx lines to those of the computer’s serial port. For this we
inserted breadboard wires into the female connector of a DB9 null modem cable.5 Like
the final program, this test program accepted bytes over the serial port, and we used
HyperTerminal to send individual characters for testing the code. We determined the
ASCII binary values of keyboard characters and observed the output based on our
knowledge of the individual bits that HyperTerminal transmitted. In this way we were
able to output the stop, slow (square wave), and fast speed commands on the LEDs.
This test revealed to us the necessity of using a MAX232 chip to convert the computer’s
logic levels to the PIC’s logic levels.

In the third test, the code was expanded to accommodate 8 pumps. Our manual PWM
code was modified in this step because the preliminary design did not set the slow speed
pumps’ output values at every pass through the loop. Therefore, when a pump was
assigned a slow speed, it was either turned on or off, but the value did not alternate. The
new design alternated the signal between high and low, creating a slow speed. Once this
was completed the PIC was ready to accept commands for changing pumps’ speeds form
the NAV Module.

�
5 Pin 2 on the cable is the PC’s Tx and therefore connects to the PIC18F4431’s Rx pin
26, and pin 3 on the null modem is the PC’s Rx, which connects to the PIC’s Tx pin 27.
The cable’s ground pin, 5, was also tied to the breadboard ground.

 18

iii. Navigation Module Tests

Since the NAV Module accepts IPC messages and sends commands over the serial port,
the primary tests conducted upon it dealt with these capabilities. Its pump and speed
assignment code was tested with the standard print-statement fashion.

In order to test the message-reading capabilities without the joystick command module,
we wrote a program to generate GCM_Common_Command messages with data values
entered from the command line. When this program is run, five speed commands in the
range [-2, 2] must be entered. The order of the speed commands is: y-, yaw, z-, pitch,
and x-, as specified in the header file for GCM IPC messaging.6 Passing values with this
program allowed us to print speed values as the program ran to verify that the pump
assignment worked correctly.

We used a serial test program to debug our program’s ability to write to the serial port.
The test program writes command line- characters to the serial port, and we initially
tested it by connecting a null modem cable from the computer running the NAV module
to another computer running HyperTerminal. When those characters successfully
transmitted, we tested our NAV module’s address- and speed-mask compilation by
pasting the same byte-generation code into the serial test program and printing the hex
value. Next the code was incorporated into the NAV module, and the hex values of the
commands to the PIC were displayed in HyperTerminal. Finally the null modem cable
was connected to the PIC on a breadboard, and LEDs were used to evaluate the pump
command performance.

During the NAV module test we encountered problems with the PIC not responding to
commands fed to it in rapid succession. This problem was dealt with by adding a 1000ms
delay into the loop that sends the pump commands.

iv. Accelerometer and Gyroscope Testing

We connected the accelerometer and gyroscope evaluation boards to a breadboard circuit
and then moved the breadboard at approximately the translation speed of the ROV. This
was done to ensure that the accelerometer was sensitive enough to output a change in
voltage at speeds similar to the ROV speed. The ADXL203 accelerometers did output a
changing voltage in response to the movement of the breadboard, so they will be useful in
determining the acceleration of the ROV and the distance traveled by the ROV.

Similar test were done with the gyroscopes. The circuit was set up on a breadboard and
the breadboard was rotated at rotation speeds similar to those exhibited by the ROV. The

�
6 A note on running “manualCommand” for testing IPC messaging to the NAV Module:
Three terminals in the localhost’s directory must be open, and the localhost computer
must be configured for IPC. One terminal must run “central”, another must run
“bin./ROV_NavMod”, and the other must run “bin/manualCommand ROV_JOYSTICK
y yaw z p x”, where the axis values are speeds between –2 and 2.

 19

voltage output of the gyroscope did change in response to the rotating breadboard, so it
will be useful and informative when integrated into the control circuit of the ROV. The
PIC program contains an integration routine with a 10-bit A/D converter. Data collection
begins one pump duty cycle after power is turned on since turning on the power causes a
voltage jump. A pump duty cycle’s data is averaged for calibration. Currently the duty
cycle is set to 500ms, and the gyroscope data is sampled every 5ms, averaging 100 data
points. This value is then subtracted from the current voltage along with 255 (the binary
equivalent of 2.5 volts -- the "zero" of the sensor). After this initial calibration
calculation, data is integrated integrates continuously, sampling every 5ms.

In order to calibrate the gyroscope, first a 10ms sample time was used. At that point the
integration in volts was essentially equal to the degrees rotated. However, if the board
was turned too quickly, the output voltage was no longer accurate. In order to avoid this,
the sampling frequency was increased to 5ms. At this point, calibration was done by trial
and error. The board was turned 90°, and the voltage output was noted and then
converted to degrees. The final conversion factor was .687 degrees/volt. This is not the
best method of obtaining the rate of rotation because the integration may depend on the
speed of the code.

The gyroscope also contains a temperature sensor which is necessary to calibrate the
output of the gyroscope since it has a tendency to drift with temperature. The
temperature output can also serve as an additional sensor. The datasheet for the
gyroscope provides some of the specs for the conversion of voltage to temperature. The
sensor nominally outputs 2.5 volts at 27°C and the conversion is 8.4 mV/°C.

DISCUSSION

Our final ROV has achieved control about five axes of motion with all of the electronics
submerged and a working joystick interface. The NAV Module readily accepts
GCM_Common_Command messages and is therefore completely capable of reading
commands sent from a joystick module. An initial obstacle that we faced in serial
communications between the NAV Module and the PIC was allowing for sufficient time
for the PIC to accept and store one byte of data before the next byte appeared on the line.
This bug was overcome, however, and now both the programs on the PIC and on the PC
work well. These programs allow for basic operations, and there is room to modify them
if additional sensors or functionality are desired.

At this point the basic ROV is functional, but there are many improvements that can be
made to increase the capabilities of the ROV. One important improvement that can be
made is the integration of a ballast system so that the ROV can have more control over its
buoyancy and stability. Currently a combination of floats and weights are placed
strategically on the ROV to balance out the weight distribution and to strive for neutral
buoyancy. This method is not long-term or reliable, and any changes that are made to the
ROV will quickly offset this precarious method of achieving neutral buoyancy and
balance. Another improvement upon the vehicle’s stability would be adding floatation

 20

devices to the tether to ensure that the cable’s weight does not interfere with the ROV’s
motion.

There are also some of the aspects of the programming that can be changed to make the
ROV code a little more efficient and to increase the number of possible speeds of the
ROV. An interrupt handler can be utilized as data is sent from the Nav module, and
variable PWM can allow for greater speed control.

As of now, the PIC program responds to data being put on the serial line, and therefore is
constantly checking the serial port to see if any pumps have changed. An alternate way
of implementing code that responds to data being sent over the serial line is to make an
interrupt handler to deal with the pumps that need to be changed. This way the program
will run in its current state until an interrupt is detected. Once the interrupt is recognized
a subprogram will run to determine the identity of the pump and the new speed. Once the
appropriate pumps are change the ROV will return to its main program until another
interrupt is received. Variable PWM is another change that could be implemented in the
code to the ROV to achieve a greater number of possible speeds. Currently the PWM
operates only on a 50% duty cycle allowing for one intermediate speed.

One improvement that is already underway is the addition of a navigation system to
determine how fast the ROV is rotating, its acceleration, and distance traveled. Once this
feedback can be obtained a higher degree of control can be asserted over the ROV. For
example, a command such as “move forward three feet”—as opposed to now when we
can just say “move forward”—will be possible. The beginning of a program to
implement the gyroscope is already present in the PIC program. This information can
also be sent back to a PC where the ROV’s motion can be simulated, so if the ROV
travels out of sight, some visual reference will still remain available.

Another major improvement that can be made is the implementation of a more efficient
propulsion system. While the bilge pumps are simple, reliable and get the job done, they
are not primarily designed to function as elements in a propulsion system. Thrusters with
propellers designed specifically for maximizing propulsion may offer stronger and more
efficient propulsion through the water.

Additional sensors, such as salinity sensors, depth and pressure sensors, water samplers
and any other instruments that can be used to gather information can be integrated into
the existing system. Additional capabilities such as a manipulator arm will also increase
the dexterity of the ROV.

The physical structure of our ROV can also be improved, and although ROVs are not
necessarily sleek there are definitely ways of improving the hydrodynamic quality of the
frame.

As a result of the strong foundation that resulted from this project, there are many
directions in which this project can go.

 21

ACKNOWLEDGEMENTS

Our project would not have been possible without the advice, help and time of various
people. First and foremost we would like to recognize Alexey Rostapshov ’05 for his
hard work on the programming and construction of the ROV and for his help in
developing our presentations. Bruce Maxwell, our main advisor, kept us on track and
moving forward while providing new design ideas and alternate implementation methods
for various tasks throughout the entire process. Other professors, including Carr
Everbach, Fred Orthlieb, and Erik Cheever also provided assistance on various parts of
the design and construction. Grant Smith helped with the machining and the physical
construction of the ROV. Ed Jaoudi helped us in figuring out what parts we needed, what
parts we had, where to order the parts from, obtaining and installing the necessary
software, and much more. Fellow students Nick Ward and Fritz Heckel are working with
us and allowing us to use and modify their previously written code to interface the
joystick with the control of the ROV.

 22

APPENDIX A: COMPONENTS LIST

Component Manufacturer Manufacturer Part

Amount
Ordered/Used on

final ROV

Unit
Price

Supplier

 FRAME

½’’ Schedule 40
PVC -- -- 12’ $2.00 Home

Depot

½’’ PVC 90° elbow -- -- 8 $1.50 Home
Depot

½” PVC tees -- -- 8 $1.75 Home
Depot

12” x 12” plastic
grid -- -- 1 -- --

Zip ties -- -- 40 -- --
Screws, washers,

nuts
-- -- -- -- --

Floatation/weights -- -- -- -- --
Clear PVC endcaps -- -- -- -- --

 PUMPS

Bilge Pumps RULE Rule 500GPH 9/8 $18.00 Grainger

 WATERPROOFING

Project Box
(6.3’’x 6.3‘’x 3.5’’)

BUD PN-1339-DG 1/1 $17.80 Mouser

Project Box
(4.7’’x 2.6‘’x 2.4’’)

Hammond 1554D2GYCL 1/1 $10.00 Mouser

Project Box
(4.5’’x 2.5‘’x 1.5’’)

BUD PN-1321-DG 1/0 $6.56 Mouser

Project Box
(6.3’’x 6.3‘’x 3.5’’)

BUD PN-1322-DG 1/0 $7.38 Mouser

Waterproofing
Glands (16 AWG)

BUD NG-9511 28/21 $1.17 Mouser

Shrink Tubing ½’’ 3M FP-301 100ft/0ft $37.04 Mouser
Shrink Tubing ¾’’ Aloha Wire FIT1003/4 CL008 25ft/0ft $33.58 Mouser

 ELECTRONICS

PIC microchip 18F4431 3/1 $10.08 Digi-Key
PIC microchip 18F4331 3/0 $9.50 Digi-Key

MOSFETS Vishay/Siliconix 781-SUP45N03-13L 10 $2.00 Mouser
2-axis

Accelerometer
(Eval. Board)

Analog Devices ADXL203EB 3/0 $10.00
Analog
Devices

Yaw Rate
Gyroscope (Eval.

Board)
Analog Devices ADXL401EB 2/2 --

Analog
Devices

 23

4MHz Resonator -- -- 1 -- --
Component Manufacturer Manufacturer Part

Amount

Ordered/Used on
final ROV

Unit
Price

Supplier

RS232 logic level
converter MAXIM MAX232 1 --

--

PCB AP Circuits -- 2/1 $80.00 AP
Circuits

 CABLES

12 AWG Alpha Wire 3080 BK005 100ft/100ft $50.00 Mouser
2-conductor, 29

AWG flexible cable Cooner Wire AS165 100ft/100ft -- Cooner

RCA Cable Cables to go 29105 50ft/50ft $28.00 Govcon-
nection

Construction Materials/Machines:
Lathe
Bridgeport Milling Machine
Band Saw
Sander/Sandpaper
Files

Software
PICC Compiler with IDE
MultiSim/UltiBoard7 PCB Design Software
HyperTerminal Serial Command Interface

 24

APPENDIX B: WIRE GAGE AND CURRENT CAPACITY

Table 1.AWG and current carrying capacity for copper wire.7

Copper Wire TFE Insulated AWG

AWG Current Carrying

00 169
0 147
2 108
4 81
6 60
8 44
10 33
12 25
14 19
16 13
18 9.2
20 6.5
22 4.5
24 3.3
26 2.5
28 1.8
30 1.3

�
7 http://www.interfacebus.com/Reference_Cable_AWG_Sizes.html

 25

APPENDIX C: ELECTRONICS DATA SHEETS AND PINOUTS

Figure AC1: MAX232 chip pinout, internal connections, and circuitry 8

�
8 http://pdfserv.maxim-ic.com/en/ds/MAX220-MAX249.pdf

 26

Figure AC2: MOSFET Transistor pinout and connection diagram9.

Figure AC3. The circuit designed to control the MOSFET

�
9 http://www.vishay.com/docs/70804/70804.pdf

 27

Figure AC4: LM7805 Voltage Regulator Pinout10

�
10 http://cache.national.com/ds/LM/LM341.pdf

 28

Figure AC5: PIC18F4431pinout11

�
11 http://ww1.microchip.com/downloads/en/DeviceDoc/39616b.pdf

 29

Figure AC6: The accelerometer evaluation board.12

�
12 http://www.analog.com/UploadedFiles/Evaluation_Boards_Tools/285969913ADXL320EB_0.pdf

 30

Figure AC7: The gyroscope evaluation board13

�
13 http://www.analog.com/en/prod/0,,764_801_ADXRS401%2C00.html

 31

APPENDIX D: MULTISIM SCHEMATIC

 32

APPENDIX E: ULTIBOARD LAYOUT

APPENDIX F: NAVIGATION MODULE CODE

main.c

/*******
 * ROV Navigation module
 * Maila Sepri, Samantha Brody
 * April 2005
 * based on model skeleton module by Frederick Heckel
 * main.c : main loop
 * ------------------
 * This module is compatible with both GCM
 * and Robomon
 ******/
#include "ROVfuncs.h"
#include "GCM_IPC.h"

int main(int argc, char *argv[]){

 int option, i;
 int serialFile;
 int currentSpeeds[numPumps];
 GCM_Module_IPC_Data mid; //for containing pid and module name

 33

 time_t lastKeepAlive=0;
 char buffer[512];
 bool running=true;
 ROV_NavModData md; //for containing pid, name, caps, #caps, state,
 //and data from IPC messaging

 /* initialize module data */
 GCM_log2("Initializing module data",INFO,false);
 initModule(&md); //sets state, capabilities, and name, and zeros all data

 /**** Parse options ****/

 /* use getopt to parse command line options */
 while(1){
 option=getopt(argc,argv,"hc");

 if(option==-1){
 break;
 }

 switch(option){

 case 'c':
 printCaps(md);
 return 0;
 break;

 case 'h':
 printUsage();
 return 0;

 default:
 printUsage();
 return 1;
 break;
 }

 }

 /**** GCM Log setup ****/

 /* be sure to set the module name */
 GCM_setModuleName(STRINGID);

 /*you should at least set this logfile name*/
 GCM_logSetFilename("ROV.log");

 /* uncomment to send WARNING/FATAL to a separate file */
 // GCM_logSetErrFilename("ROV-errors.log");

 /* uncomment to send GDEBUG to a separate file */
 // GCM_logSetDebugFilename("ROV-debug.log");

 /* uncomment to send DATA to a separate file */
 // GCM_logSetDataFilename("ROV-data.log");

 /* uncomment to get messages on stdout */
 // GCM_logToggleStdout();

 /* uncomment to get GCM to log GDEBUG messages */

 34

 GCM_logToggleDebug();

 /**** Module/Communications setup ****/

 sprintf(buffer,"Process id is %d\n",md.ROVpid);
 GCM_log2(buffer,GDEBUG,false);

 /* connect to IPC, define IPC types, and subscribe to messages */
 GCM_log2("Initializing IPC",INFO,false);
 RovCheckIPC(&md); //uses IPC_subscribeData to handle GCM_COMON_COMMANDs

 /*set up serial port communications */
 serialFile = openSerialPort("/dev/ttyS0", 9600);

 //initialize the currentSpeeds array to zero since all pumps will start
 //out stopped.
 for(i=0; i<numPumps; i++){
 currentSpeeds[i] = 0;
 }

 /**** Main Loop ****/

 /* false indicates the message will not be sent over IPC */
 GCM_log2("Entering Main Loop",INFO,false);

 printf("entering main loop\n");

 while(running){

 /* make sure IPC is still connected */
 if(!RovCheckIPC(&md)){
 usleep(20000);
 continue;
 }

 //this is where subscribed commands are detected and handlers are called;
 IPC_listenClear(0);

 /* send a keepalive if it's time */
 if((time(NULL)-lastKeepAlive)>=KEEPALIVEINTERVAL){
 GCM_log2("Sending keepalive",INFO,false);

 mid.threadID=md.ROVpid;
 strncpy(mid.moduleName,STRINGID,sizeof(char)*64);
 IPC_publishData(GCM_COMMON_KEEPALIVE, &mid);

 lastKeepAlive=time(NULL);
 }

 switch(md.RovState){

 //State = ACTIVE if just initialized or if message's mode = GCM_NAV_MOVE
 case STATE_ACTIVE:
 printf("STATE_ACTIVE\n");

 /*set up serial port communications */
 IPC_to_pic(&md, serialFile, currentSpeeds);
 break;

 case STATE_IDLE:

 35

 GCM_log2("Idling...",INFO,false);
 break;

 case STATE_SHUTDOWN:
 running=false;
 break;

 default:
 break;
 }

 /* set this to an appropriate value */
 usleep(20000);
}

 /**** Shutdown ****/

 close(serialFile);
 terminateModuleIPC();
 GCM_log2("Shutting down normally",INFO,false);
 return 0;
}

ROVfuncs.c

/* Defines the functions for distributing direction and speed values to
individual pumps and sending bytes over the serial port to the PIC.*/

#include <math.h>
#include <time.h>
#include <stdlib.h>
#include <stdbool.h>
#include <ROVfuncs.h>
#include <termios.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <sys/time.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <signal.h>
#include <ctype.h>

/* masks for PIC to handle serial byte data; defined in ROVfuncs.h
#define speedMask 0x18
#define pumpAddrMask 0x07
*/

#define LO 0
#define HI !LO

//The following three functions are for handling serial port communications
//They were originally written for the svm library

/***
 openRaw

 Opens passed filename and sets its device to raw mode.
 Returns file descriptor.

 36

 raw mode is defined as:
 Off: echo, canonical input, extended processing,
 signals, break key, parity, 8th bit strip,
 flow control, output post processing
 On: 8 bit size
**/

int openRaw(const char * filename, mode_t io_flags)
{
 struct termios term_info;
 int fd;

 fd = open(filename,io_flags);
 if (fd == -1) {
 /* maybe complain if TRACE is on */
 return 0;
 }

 if(tcgetattr(fd,&term_info) <0) {
 /* complain - fd is not a terminal */
 return 0;
 }

 /* turn off echo, canonical mode, extended processing, signals */
 term_info.c_lflag &= ~(ECHO | ICANON | IEXTEN | ISIG);

 /* turn off break sig, cr->nl, parity off, 8 bit strip, flow control */
 term_info.c_iflag &= ~(BRKINT | ICRNL | INPCK | ISTRIP | IXON);

 /* clear size, turn off parity bit */
 term_info.c_cflag &= ~(CSIZE | PARENB);

 /* set size to 8 bits */
 term_info.c_cflag |= CS8;

 /* turn output processing off */
 term_info.c_oflag &= ~(OPOST);

 /* Set time and bytes to read at once */
 term_info.c_cc[VTIME] = 0;
 term_info.c_cc[VMIN] = 0;

 if(tcsetattr(fd,TCSAFLUSH,&term_info) <0)
 return -1;

 return fd;
}

/**
 setBaudRate

 Set the baud rate of an open device.

 Baud rate constants are found in <termios.h>.
 B9600 == 9600 baud
***/

int setBaudRate (int fd, speed_t baudRate)
{
 struct termios terminfo;
 int error;

 37

 error = tcgetattr(fd, &terminfo);
 if (error) {
 perror("tcgetattr()");
 return 1;
 }

 error = cfsetospeed(&terminfo, baudRate);
 if (error) {
 fprintf(stderr, "cfsetospeed(%ld): ",
 (long)baudRate);
 perror(NULL);
 return 1;
 }

 error = cfsetispeed(&terminfo, baudRate);
 if (error) {
 fprintf(stderr, "cfsetispeed(%ld): ",
 (long)baudRate);
 perror(NULL);
 return 1;
 }

 error = tcsetattr(fd, TCSANOW, &terminfo);
 if (error) {
 perror("tcsetattr()");
 return 1;
 }

 return 0;
}

int openSerialPort (char *fileName, int baudRate)
{
 int fd;
 speed_t baud = B9600;
 if (baudRate == 115200) baud= B115200;
 if (baudRate == 9600) baud= B9600;

 fd = openRaw(fileName, O_RDWR | O_NONBLOCK);
 if (fd<0) {
 fprintf(stderr, "unable to open port\n");
 exit(1);
 }
 if (setBaudRate(fd, baud)) {
 fprintf(stderr, "unable to set baud rate on port\n");
 exit(1);
 }
 return fd;
}
/***/

//Nav Module Functions

void printUsage(void){
 printf("Usage: ROV_NAV [-h][-c]\n");
 printf("Version %s, %s\n",VERSION, DATE);
 printf("\t -h: Show this message.\n");
 printf("\t -c: Print out the module capabilities\n");

}

void printCaps(ROV_NavModData md){

 38

 printf("%d %d %d %d",md.ROV_capabilities[0],
 md.ROV_capabilities[1], md.ROV_capabilities[2],
 md.ROV_capabilities[3]);

}

void initModule(ROV_NavModData *md){

 int i;

 md->ROVpid=getpid();

 md->RovState=STATE_ACTIVE;

 md->numCapabilities=1;
 md->ROV_capabilities=malloc(sizeof(GCM_Capability)*1);

 md->ROV_capabilities[0]=NAV_MOVE;
 // md->ROV_capabilities[1]=NAV_SWIM;

 for(i=0; i<5; i++){ //data is an array of 5 ints
 md->messageData[i] = 0;
 }
 printf("initModule() successful\n");
}

int greatest_speed(int cmd1, int cmd2, int cmd3){
 int i;
 int max = 0;
 int commands[3];

 commands[0] = cmd1;
 commands[1] = cmd2;
 commands[2] = cmd3;

 for(i=0; i<3; i++){
 if(abs(commands[i])> abs(max))
 max = commands[i];
 }
 return max;
}

//look up how to pass arrays again
void initializeArray(int array[numPumps], int initValue){
 int i;

 for(i=0; i<numPumps; i++){
 array[i] = initValue;
 }
}

//this function is called once each time the robot goes through the main loop
in the ACTIVE state
int IPC_to_pic(ROV_NavModData *md, int stream, int currSpeeds[numPumps]){

 /* md->messageData[0:4] gives y, yaw, z, pitch, x speeds, in that
 order, as defined by the GCM_NAV_MOVE mode data.
 */

 int i;
 //these ints store the speed value desired for each direction
 int back, fwd, left, right, turnR, turnL, up, down, noseUp, noseDown;
 int pumpSpeeds[numPumps]; //desired speed from new joystick message

 39

 int PICmsg[numPumps]; //holds pump addr and speed info
 int sendFlag[numPumps];

 printf("in IPC_to_pic()\n");
 initializeArray(pumpSpeeds, 0);
 initializeArray(PICmsg, 0);
 initializeArray(sendFlag, 0);

 /*
//This works as planned (all arrays initialize to zero), so I'm commenting it
out
 printf("checking initializer function:\n");
 for(i=0; i<numPumps; i++){
 printf("PICmsg[%d]=%d\n", i, PICmsg[i]);
 }
 */

 //need to initialize these and md at the beginning
 //back = fwd = left = right = turnR = turnL = up = down = noseUp = noseDown =
0;

 for(i=0; i<5; i++){
 printf(" joystick command[%d]: %d\n", i, md->messageData[i]);
 }

 /*These if statements distribute the speed commands just
 received over an IPC message to variables that describe the
 direction of desired motion.
 */
 //for each of the 5 axes, assign speeds: STOP=0, SLOW=1, FAST=2

 //y-axis (translation)
 if((md->messageData[0])< 0){ //backward = negative speeds
 back = md->messageData[0];
 fwd = 0;
 printf("BACK=%d, fwd=%d\n", back, fwd);
 }
 else{
 fwd = md->messageData[0]; //forward = positive speeds
 back = 0;
 printf("FWD=%d, back=%d\n", fwd, back);
 }

 //yaw (rotation)
 if((md->messageData[1])< 0){ //rot. L = negative speeds
 turnL = md->messageData[1];
 turnR = 0;
 printf("TURN L=%d, turnR=%d\n", turnL, turnR);
 }
 else{
 turnR = md->messageData[1]; //rot. R = positive speeds
 turnL = 0;
 printf("TURN R=%d, turnL=%d\n", turnR, turnL);
 }

 //z-axis (rise)
 if((md->messageData[2])< 0){ //down = negative speeds
 down = md->messageData[2];
 up = 0;
 printf("DOWN=%d, up=%d\n", down, up);
 }

 40

 else{
 up = md->messageData[2]; //up = positive speeds
 down = 0;
 printf("UP=%d, down=%d\n", up, down);
 }

 //pitch
 if((md->messageData[3])< 0){ //nose down = negative speeds
 noseDown = md->messageData[3];
 noseUp = 0;
 printf("NOSE DOWN=%d, nose up=%d\n", noseDown, noseUp);
 }
 else{
 noseUp = md->messageData[3]; //nose up = positive speeds
 noseDown = 0;
 printf("NOSE UP=%d, nose down=%d\n", noseUp, noseDown);
 }

 //x-axis; assign speed to correct dir
 if((md->messageData[4])< 0){ //left = negative speeds
 left = md->messageData[4];
 right = 0;
 printf("LEFT=%d, right=%d\n", left, right);
 }
 else{
 right = md->messageData[4]; //right = positive speeds
 left = 0;
 printf("RIGHT=%d, left=%d\n", right, left);
 }

 //Distribute speed values to appropriate pumps based on direction
 pumpSpeeds[0] = greatest_speed(fwd, left, turnR); //PumpA
 pumpSpeeds[1] = greatest_speed(fwd, right, turnL); //PumpB
 pumpSpeeds[2] = greatest_speed(back, left, turnL); //PumpC
 pumpSpeeds[3] = greatest_speed(back, right, turnR); //PumpD
 pumpSpeeds[4] = greatest_speed(down, noseUp, 0); //PumpE
 pumpSpeeds[5] = greatest_speed(up, noseDown, 0); //PumpF
 pumpSpeeds[6] = greatest_speed(up, noseUp, 0); //PumpG
 pumpSpeeds[7] = greatest_speed(down, noseDown, 0); //PumpH

 for(i=0; i<8; i++){
 printf("pump[%d] speed = %d\n", i, pumpSpeeds[i]);
 }

/*Check if speed per pump has changed during this cycle. Compile the
 speed and address values into an 8-bit int, store an array of the
 ints, and send the compiled sets of 8 bits over the serial port if
 the speeds have changed*/
 for(i=0; i<numPumps; i++){
 if(pumpSpeeds[i] == currSpeeds[i]){
 sendFlag[i] = LO;
 }
 else{ //speed no longer the same...
 currSpeeds[i] = pumpSpeeds[i];
 sendFlag[i] = HI;
 }

 PICmsg[i] = (((currSpeeds[i]<<3) & speedMask) | (i & pumpAddrMask));
 if(sendFlag[i]){
 printf("PICmsg[%d]=0x%02hhx\n", i, PICmsg[i]);
 write(stream, &(PICmsg[i]),1);
 usleep(10000); //delay for 10ms to allow PIC to process last byte

 41

 }
 }
 return(1);
}

RovIPCFuncs.c

/* Defines functions for accepting and handling IPC messages, which
ll be broadcasted by the Joystick Module.*/ wi

#include <ROVfuncs.h>
#include <ipc.h>

/*checks to make sure that IPC is connected.
 if it isn't, attempts to connect and do all
 necessary initialization */

bool RovCheckIPC(ROV_NavModData *md){

 GCM_Module_IPC_Data mid; //gets pid and name

 if(!IPC_isConnected()){
 GCM_log2("IPC disconnected. Attempting to reconnect", WARNING,false);

 if(IPC_connectModule(STRINGID,"localhost") !=IPC_OK){
 return false;
 }

 GCM_log2("IPC [re]connected\n",INFO,false);

 GCM_defineCommonIPCTypes();

 mid.threadID = md->ROVpid;
 strncpy(mid.moduleName, STRINGID,64);

 IPC_publishData(GCM_COMMON_STARTUP, &mid);

 /*Give NAV Module the capacity to receive and recognize messages
 in the GCM_COMMON_COMMAND format. The message data is stored
 in md using the handler and thus passed to the main function
 through md when ROVCheckIPC is called.*/
 IPC_subscribeData(GCM_COMMON_COMMAND,RovCommonHandler,md);
 GCM_log2("Subscribed to messages.",INFO,false);

 return true;

 }else{
 return true;
 }

 return false;
}

/* if you want to send a termination notice,
 do it here. */
int terminateModuleIPC(void) {

 IPC_disconnect();

 return(0);
}

 42

void RovCommonHandler(MSG_INSTANCE msgInstance, void *callData,void
*clientData) {
 //callData used to store data from message
 //clientData used to pass any needed info to/from the main loop

 //typedef in ROVfuncs.h (pid, capabs, state, data)
 ROV_NavModData *md = clientData;

 //typedef in GCM_IPC.h (mode, pid, name, data, cdata)
 GCM_Common_Command *mode = callData;

 //typedef in GCM_IPC.h (threadID and module name)
 GCM_Module_IPC_Data mid;

 //typedef in GCM_IPC.h (pid, name, variable cap, bool cap)
 GCM_Common_Capabilities caps;

 int i;

 GCM_log2("In RovCommonHandler",GDEBUG,false);
 if(strncmp(mode->name,STRINGID,64)==0
 ||strncmp(mode->name,"all",64)==0){
 GCM_log2("In RovCommonHandler still",GDEBUG,false);
 switch(mode->mode){

 case GCM_NAV_MOVE:
 md->RovState=STATE_ACTIVE;
 printf("received IPC message: mode=GCM_NAV_MOVE\n");
 //pass data from message to struct accessible from main loop
 for(i=0; i<5; i++){
 md->messageData[i]=(int)(mode->data[i]);
 printf(" joystick data[%d]= %d\n", i, md->messageData[i]);
 }
 break;

 //prob not used
 case GCM_COMMON_IDLE:
 md->RovState=STATE_IDLE;
 break;

 case GCM_COMMON_QUIT:
 md->RovState=STATE_SHUTDOWN;
 break;

 case GCM_COMMON_PING:
 mid.threadID=md->ROVpid;
 strncpy(mid.moduleName,STRINGID,64);
 IPC_publishData(GCM_COMMON_STARTUP,
 &mid);
 break;

 case GCM_COMMON_BCAST_CAP:
 strncpy(caps.name,STRINGID,64);
 caps.pid=md->ROVpid;
 caps.caps.size=md->numCapabilities;
 caps.caps.data=malloc(sizeof(GCM_Capability)*md->numCapabilities);
 for(i=0;i<md->numCapabilities;i++){
 caps.caps.data[i]=md->ROV_capabilities[i];
 }
 caps.active.size=0;

 IPC_publishData(GCM_COMMON_CAPABILITIES,
 &caps);

 43

 break;

 // case GCM_SET_PARAM:
 // break;

 default:
 GCM_log2("Unhandled command received, addressed to us or
all",WARNING,false);
 }
 }else{
 return;
 }

 IPC_freeData(IPC_msgFormatter(GCM_COMMON_COMMAND), callData);

 return;

}

testSerial.c

/* Allows us to send GCM_COMMON_COMMAND messages to the ROV Nav Module using
the command line to write the messages.*/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <unistd.h>
#include <time.h>
#include <ipc.h>
#include <GCM_IPC.h>
#include <GCM_Log.h>

//the command line shoud read "./manualCommand ROV_JOYSTICK y yaw z pitch x"
int main(int argc, char *argv[]) {
 char type[512];
 int i;

 // this is a common command format
 GCM_Common_Command mode;

 // init IPC with the name of the process
 GCM_initIPC("UserCommand");

 strcpy(type, argv[1]);

 if(strcmp(type, "ROV_JOYSTICK") == 0){

 mode.mode = GCM_NAV_MOVE;
 mode.data[0] = atoi(argv[2]);
 mode.data[1] = atoi(argv[3]);
 mode.data[2] = atoi(argv[4]);
 mode.data[3] = atoi(argv[5]);
 mode.data[4] = atoi(argv[6]);
 mode.data[5] = 0; //unused

 printf("after assignment:\n");
 for(i=0; i<6; i++){
 printf(" joystick data[%d] = %e\n", i, mode.data[i]);

 44

 }
 } else {

 // they didn't follow the syntax :(
 exit(-1);

 }

 // send to all modules
 strcpy(mode.name, "all");

 // call IPC_publishData(message type, message data) to send the message
 IPC_publishData(GCM_COMMON_COMMAND, &mode);

 // terminate the IPC connection
 GCM_terminateIPC("UserCommand");

 return(0);
}

manualCommand.c

/* Allows us to send GCM_COMMON_COMMAND messages to the ROV Nav Module using
the command line to write the messages.*/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <unistd.h>
#include <time.h>
#include <ipc.h>
#include <GCM_IPC.h>
#include <GCM_Log.h>

//the command line shoud read "./manualCommand ROV_JOYSTICK y yaw z pitch x"
int main(int argc, char *argv[]) {
 char type[512];
 int i;

 // this is a common command format
 GCM_Common_Command mode;

 // init IPC with the name of the process
 GCM_initIPC("UserCommand");

 strcpy(type, argv[1]);

 if(strcmp(type, "ROV_JOYSTICK") == 0){

 mode.mode = GCM_NAV_MOVE;
 mode.data[0] = atoi(argv[2]);
 mode.data[1] = atoi(argv[3]);
 mode.data[2] = atoi(argv[4]);
 mode.data[3] = atoi(argv[5]);
 mode.data[4] = atoi(argv[6]);
 mode.data[5] = 0; //unused

 printf("after assignment:\n");
 for(i=0; i<6; i++){
 printf(" joystick data[%d] = %e\n", i, mode.data[i]);

 45

 }
 } else {

 // they didn't follow the syntax :(
 exit(-1);

 }

 // send to all modules
 strcpy(mode.name, "all");

 // call IPC_publishData(message type, message data) to send the message
 IPC_publishData(GCM_COMMON_COMMAND, &mode);

 // terminate the IPC connection
 GCM_terminateIPC("UserCommand");

 return(0);
}

ROVfuncs.h

/* Header file for ROV Module*/

#ifndef ROVFUNCS_H
#define ROVFUNCS_H

#include <GCM.h>
#include <stdio.h>
#include <string.h>
#include <getopt.h> //We need this for getting cmd line args in main.c
#include <unistd.h>

/* Simple serial port interface */
#include <stdlib.h>
#include <termios.h>
#include <unistd.h>
#include <sys/time.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <signal.h>
#include <ctype.h>

#define VERSION "1.0.0"
#define DATE "April 22, 2005"
#define KEEPALIVEINTERVAL 6
#define STRINGID "ROV_NAV"

#define numPumps 8

//Serial port opening/config functions
int openRaw(const char * filename, mode_t io_flags);
int setBaudRate (int fd, speed_t baudRate);
int openSerialPort (char *fileName, int baudRate);

/*This struct contains the following fields:
process ID for the ROV; changes each time the Nav Module is run
prob only NAV_SWIM, defined in GCM_IPC.c
so, prob 1 capability
usually STATE_ACTIVE...we check for the STATE_SHUTDOWN msg; def'd in GCM_IPC.c

 46

this is the message sent to our module over IPC
*/
typedef struct {
 pid_t ROVpid;
 GCM_Capability *ROV_capabilities;
 int numCapabilities;
 GCM_ModuleState RovState;
 int messageData[5];
} ROV_NavModData;

//These functions are used in the main loop to deal with IPC commands
void printUsage(void);
void printCaps(ROV_NavModData md);
void initModule(ROV_NavModData *md);

/*these fctns written by Fritz to check for messages, end messaging,
and handle messages. I changed their names to specify that they're
internal to the rov nav module*/
bool RovCheckIPC(ROV_NavModData *md); //defined in RovIPCFuncs.c
int terminateModuleIPC(void);
void RovCommonHandler(MSG_INSTANCE msgInstance, void *callData, void
*clientData);

//these definitions used in the Nav Modlule, not GCM
//typedef enum{ ROV_STOP, ROV_SLOW, ROV_FAST} GCM_RovSpeed;
//typedef enum{ ROV_X, ROV_Y, ROV_Z, ROV_P, ROV_YAW} GCM_RovAxis;

/*//ROVCommonHandler reads GCM_Common_Command struct (which looks like this):

typedef struct{
 GCM_Common_Mode mode;
 long pid;
 char name[64];
 double data[6];
 char cdata[64];
} GCM_Common_Command;

and passes the data/settings into an ROV_NavModData struct
*/

//masks for handling Nick's Joystick variables
#define speedMask 0x18
#define pumpAddrMask 0x07

//functions for distributing pump speeds
int greatest_speed(int cmd1, int cmd2, int cmd3);
void initializeArray(int array[numPumps], int initValue);
int IPC_to_pic(ROV_NavModData *md, int fd,int currSpeeds[numPumps]);

#endif

 47

APPENDIX G: PIC PROGRAM CODE

/***
 This program is intended to read a PortA analog input pin,
 perform A/D conversion, and output the 8-bit digital value
 on the one of the PIC pins in the B Port.
**
 Maila Sepri, Samantha Brody, Alexey Rostapshov
 Swarthmore College
 April 2005
**/

#include "\\Data-software\classes\Natural Sciences +
Engineering\Engineering\Transfer\ROV\pump1\pump1.h"
//#include <math.h>
//#include <stdio.h>
#include <stdlib.h>

#define ORIENTPRINT TRUE
#define TEMPPRINT TRUE
#define PUMPPRINT TRUE
#define LO 0
#define HI 1
#define AddrMask 0x07 //00000111
#define SpeedMask 0x18 //00011000
#define DELAYTIME 5
#define DUTYCYCLETIME 500
#define MAXTEMP 80
typedef enum{stop, slow, fast} speed_type;
typedef enum{first, second} duty_type;
#use fixed_io(b_outputs = PIN_B0, PIN_B1, PIN_B2, PIN_B3, PIN_B4,
PIN_B5, PIN_B6, PIN_B7)

speed_type identify_speed(int speed){
 speed_type speed_value;

 switch((speed & SpeedMask)>>3){
 case(0): {speed_value = stop;
 break;
 }
 case(1): {speed_value = slow;
 break;
 }
 case(2): {speed_value = fast;
 break;
 }
 default: {speed_value=stop;
 break;
 }
 }
 return speed_value;
}

void main() {

 48

 int running=TRUE;
 int j=0, k=0, z=0; // assorted
loop counters

 // Tx/Rx variables.
 int num_changes=0; // the
number of changes received
 int pump_commands[8]; // for storing
commands of up to 8 pumps

 // Duty cycle variables.
 int duty_delays = DUTYCYCLETIME/DELAYTIME; // The number of cycles
we need to wait before updating pump duty cycle states
 int delay_count=0; // The
number of delays since last duty cycle update
 duty_type duty_flag=first; // Initialize the
duty_flag value

 // Speed variables.
 int slow_pumps[8]={0,0,0,0,0,0,0,0}; // the pump number of
the slow pumps
 int slow_pump_cycle[8]={0,0,0,0,0,0,0,0}; // the duty cycle
location of each pump
 speed_type speed = stop;

 // Variables associated with the gyros.
 int gyro_configed=TRUE, first_cycle=TRUE; // Whether or not gyro
has been calibrated.
 long gyro1temp_raw, rateout1_raw; // The raw A/D
values from sensors
 float gyro1temp, gyro1_volts; // The shifted
and converted raw values.
 float gyro1calib_volts = 0;// Used for calibrating the gyro during
the first duty cycle.
 long gyro1_volts_int=0, gyro1calib_int=0, gyro1calib_final=0;

 // Summation of turns
 float turn_sum=0;
 int to_sum=FALSE;

 //Initialize A/D conversion
 setup_adc(ADC_CLOCK_DIV_2);
 set_adc_channel(0);

 // Setup the A/D pins
 setup_adc_ports(sAN0); //pin 2
 setup_adc_ports(sAN1); //pin 3
 setup_adc_ports(sAN2); //pin 4
 setup_adc_ports(sAN3); //pin 5
 setup_adc_ports(sAN4); //pin 6

 // Configure the digital I/O; use pins (RB0:RB7) for outputs to
MOSFETs
 output_low(PIN_B0);
 output_low(PIN_B1);
 output_low(PIN_B2);

 49

 output_low(PIN_B3);
 output_low(PIN_B4);
 output_low(PIN_B5);
 output_low(PIN_B6);
 output_low(PIN_B7);
 printf("Initialized... all pumps off\n\r");

 do{
 while(kbhit()){ //possible problem: continuous movement means
never executing commands
 pump_commands[num_changes]=getc(); //reads commands from Rx
line in bytes
 num_changes++;
 }

 for(j=0; j<num_changes; j++){
 speed=identify_speed(pump_commands[j]);
 if(speed==stop){
 switch(pump_commands[j] & AddrMask){
 case(0): {output_low(PIN_B0); //PumpA
 slow_pumps[0] = 0;
 if(PUMPPRINT){printf("PumpA=STOP \n\r");}
 break;
 }
 case(1): {output_low(PIN_B1); //PumpB
 slow_pumps[1] = 0;
 if(PUMPPRINT){printf("PumpB=STOP \n\r");}
 break;
 }
 case(2): {output_low(PIN_B2); //PumpC
 slow_pumps[2] = 0;
 if(PUMPPRINT){printf("PumpC=STOP \n\r");}
 break;
 }
 case(3): {output_low(PIN_B3); //PumpD
 slow_pumps[3] = 0;
 if(PUMPPRINT){printf("PumpD=STOP \n\r");}
 break;
 }
 case(4): {output_low(PIN_B4); //PumpE
 slow_pumps[4] = 0;
 if(PUMPPRINT){printf("PumpE=STOP \n\r");}
 break;
 }
 case(5): {output_low(PIN_B5); //PumpF
 slow_pumps[5] = 0;
 if(PUMPPRINT){printf("PumpF=STOP \n\r");}
 break;
 }
 case(6): {output_low(PIN_B6); //PumpG
 slow_pumps[6] = 0;
 if(PUMPPRINT){printf("PumpG=STOP \n\r");}
 break;
 }
 case(7): {output_low(PIN_B7); //PumpH
 slow_pumps[7] = 0;

 50

 if(PUMPPRINT){printf("PumpH=STOP \n\r");}
 break;
 }
 default: {printf("invalid pump address for STOP
command.\n\r");
 break;
 }
 }
 }

 else if(speed==fast){
 switch(pump_commands[j] & AddrMask){
 case(0): {output_high(PIN_B0); //PumpA
 slow_pumps[0] = 0;
 if(PUMPPRINT){printf("PumpA=FAST \n\r");}
 break;
 }
 case(1): {output_high(PIN_B1); //PumpB
 slow_pumps[1] = 0;
 if(PUMPPRINT){printf("PumpB=FAST \n\r");}
 break;
 }
 case(2): {output_high(PIN_B2); //PumpC
 slow_pumps[2] = 0;
 if(PUMPPRINT){printf("PumpC=FAST \n\r");}
 break;
 }
 case(3): {output_high(PIN_B3); //PumpD
 slow_pumps[3] = 0;
 if(PUMPPRINT){printf("PumpD=FAST \n\r");}
 break;
 }
 case(4): {output_high(PIN_B4); //PumpE
 slow_pumps[4] = 0;
 if(PUMPPRINT){printf("PumpE=FAST \n\r");}
 break;
 }
 case(5): {output_high(PIN_B5); //PumpF
 slow_pumps[5] = 0;
 if(PUMPPRINT){printf("PumpF=FAST \n\r");}
 break;
 }
 case(6): {output_high(PIN_B6); //PumpG
 slow_pumps[6] = 0;
 if(PUMPPRINT){printf("PumpG=FAST \n\r");}
 break;
 }
 case(7): {output_high(PIN_B7); //PumpH
 slow_pumps[7] = 0;
 if(PUMPPRINT){printf("PumpH=FAST \n\r");}
 break;
 }

 default:{printf("invalid pump address for FAST
command.\n\r");
 break;
 }

 51

 }
 }

 else if(speed==slow){
 switch(pump_commands[j] & AddrMask){
 case(0): {output_high(PIN_B0); //PumpA
 slow_pumps[0] = 1;
 slow_pump_cycle[0] = duty_flag;
 if(PUMPPRINT){printf("PumpA=SLOW \n\r");}
 break;
 }
 case(1): {output_high(PIN_B1); //PumpB
 slow_pumps[1] = 1;
 slow_pump_cycle[1] = duty_flag;
 if(PUMPPRINT){printf("PumpB=SLOW \n\r");}
 break;
 }
 case(2): {output_high(PIN_B2); //PumpC
 slow_pumps[2] = 1;
 printf("PumpC=SLOW \n\r");
 if(PUMPPRINT){slow_pump_cycle[2] = duty_flag;}
 break;
 }
 case(3): {output_high(PIN_B3); //PumpD
 slow_pumps[3] = 1;
 slow_pump_cycle[3] = duty_flag;
 if(PUMPPRINT){printf("PumpD=SLOW \n\r");}
 break;
 }
 case(4): {output_high(PIN_B4); //PumpE
 slow_pumps[4] = 1;
 slow_pump_cycle[4] = duty_flag;
 if(PUMPPRINT){printf("PumpE=SLOW \n\r");}
 break;
 }
 case(5): {output_high(PIN_B5); //PumpF
 slow_pumps[5] = 1;
 slow_pump_cycle[5] = duty_flag;
 if(PUMPPRINT){printf("PumpF=SLOW \n\r");}
 break;
 }
 case(6): {output_high(PIN_B6); //PumpG
 slow_pumps[6] = 1;
 slow_pump_cycle[6] = duty_flag;
 if(PUMPPRINT){printf("PumpG=SLOW \n\r");}
 break;
 }
 case(7): {output_high(PIN_B7); //PumpH
 slow_pumps[7] = 1;
 slow_pump_cycle[7] = duty_flag;
 if(PUMPPRINT){printf("PumpH=SLOW \n\r");}
 break;
 }
 default:{printf("invalid pump address for SLOW
command.\n\r");
 break;
 }

 52

 }

 }

 } // End for updating pump states

num_changes=0;

// This loop updates the duty cycle for the slow pumps.
for(k=0; k < 8; k++){
 if((slow_pumps[k]==1) & (slow_pump_cycle[k] == duty_flag)){
 switch(k){
 case(0): {output_high(PIN_B0); //PumpA
 break;
 }
 case(1): {output_high(PIN_B1); //PumpB
 break;
 }
 case(2): {output_high(PIN_B2); //PumpC
 break;
 }
 case(3): {output_high(PIN_B3); //PumpD
 break;
 }
 case(4): {output_high(PIN_B4); //PumpE
 break;
 }
 case(5): {output_high(PIN_B5); //PumpF
 break;
 }
 case(6): {output_high(PIN_B6); //PumpG
 break;
 }
 case(7): {output_high(PIN_B7); //PumpH
 break;
 }
 default:{printf("Duty cycle error on HI!\n\r");
 break;
 }
 }
 }
 else if((slow_pumps[k]==1)){
 switch(k){
 case(0): {output_low(PIN_B0); //PumpA
 break;
 }
 case(1): {output_low(PIN_B1); //PumpB
 break;
 }
 case(2): {output_low(PIN_B2); //PumpC
 break;
 }
 case(3): {output_low(PIN_B3); //PumpD
 break;
 }
 case(4): {output_low(PIN_B4); //PumpE
 break;

 53

 }
 case(5): {output_low(PIN_B5); //PumpF
 break;
 }
 case(6): {output_low(PIN_B6); //PumpG
 break;
 }
 case(7): {output_low(PIN_B7); //PumpH
 break;
 }
 default:{printf("Duty cycle error on LO!\n\r");
 break;
 }
 }
 }
 } // end of duty cycle handle loop

 // Read RATEOUT value from Gyroscope 1
 set_adc_channel(0);
 rateout1_raw = read_adc();
 gyro1_volts = rateout1_raw>>1;
 gyro1_volts = (gyro1_volts-gyro1calib_final-255)*5/512;
 // Adjust for noise
 if((gyro1_volts<=.03)&(gyro1_volts>=-.02)){
 gyro1_volts=0;
 }

 // Read TEMP value from Gyroscope 1
 set_adc_channel(1);
 gyro1temp_raw = read_adc();
 gyro1temp = gyro1temp_raw>>1;
 gyro1temp = 27.0 + ((gyro1temp*5/512-2.5)/.0084);

 if(gyro1temp>=MAXTEMP){
 printf("WARNING! TEMPERATURE IS %d CELCIUS! SHUTTING
DOWN...\n\r", (int)gyro1temp);
 running = FALSE;
 }

 delay_ms(DELAYTIME);
 delay_count++;
 if(delay_count == duty_delays){
 duty_flag = duty_flag+1;
 delay_count = 0;
 if(!gyro_configed){
 gyro_configed=TRUE;
 gyro1calib_int=gyro1calib_int/duty_delays;
 gyro1calib_final = gyro1calib_int;
 printf("Gyroscope calibrated (Adjusting by -%f Volts) \n\r",
(float)gyro1calib_final*5/512);
 gyro1_volts=rateout1_raw>>1;
 gyro1_volts = 0;
 to_sum=TRUE;
 }

 54

if(first_cycle){first_cycle=FALSE;gyro_configed=FALSE;printf("Calibrati
ng gyroscope...\n\r");} // Gyro powered up... now calibrate.
 else{
 if(ORIENTPRINT){printf("Temperature (Celcius): %d ",
(int)gyro1temp);}
 if(TEMPPRINT){printf("Orientation (degrees): %d\n\r",
(int)turn_sum);}
 }
 }

 if(to_sum){
 turn_sum=turn_sum-gyro1_volts*.687;
 }

 if(!gyro_configed){gyro1calib_int=gyro1calib_int+((rateout1_raw>>1)-
255);}

} while(running);

} // end main

 55

References

[1] Bohm, Harry, and Jensen, Vickie. Build Your Own Underwater Robot and Other Wet

Projects

[2] “CCS-FAQ: How do I connect the CCS ICD to my own hardware?”

http://www.ccsinfo.com/faq/?45, 2004.

[3] Flurie, Hollinger, and Pezzementi. “Design and Construction of an Indoor Robotic

Blimp for Urban Search and Rescue Tasks,” E90 Final Report, 2005.

[4] “WHOI Marine Operations – Jason II/Medea Virtual Control Van,”

http://www.whoi.edu/marine/ndsf/vehicles/jason/van_cruises.html, 21-Mar-2005.

 56

	�
	Samantha Brody, Maila Sepri
	Software

