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IV. ABSTRACT 

This paper presents an implementation of a visual odometry system as described by David Nistér 
using Videre Design’s STH-DCSG Firewire stereo video head, which runs on an AMD Athlon-
based workstation with 1GB RAM. The system tracks the 3D position of a calibrated stereo head 
as it moves through the environment. Harris corner features are identified in the video stream, 
and are then matched and triangulated into 3D points. A RANSAC implementation with a 
quaternion motion estimation method as its hypothesis generator, is used for pose estimation. 
The system is able to estimate movement in the camera’s x and y planes with a maximum error 
of 12cm for a duration of a minute or longer. A persistent drift in the z dimension (along the 
camera optical ray) prevents the extraction of useful movement data along that axis. 

V. INTRODUCTION 

Accurate localization and mapping is a problem of great significance in the mobile robotics 
community, and especially in the context of Urban Search and Rescue (USR) applications, where 
a teleoperated (or sometimes autonomous) agent is dispatched inside an unknown hazardous 
environment to collect sensory data on a time-critical task. Almost always the environments 
surveyed are unstructured and previously unknown, so creating accurate maps is essential 
should a human rescue effort be necessary. 
 
There are a number of notable localization methods being used today in the robotics community, 
but visual odometry is the only approach that fit our performance needs and cost constraints. We 
considered sonar-based methods, but the results1 obtained by other researchers were not as 
general as we needed. Laser range-finder solutions were definitely very well-suited to our task, 
but the cost of the equipment necessary was prohibitive. Visual odometry, as presented in the 
work2 of David Nistér emerged as a good tradeoff between reliability, cost, and implementation 
complexity. The necessary stereo equipment had already been purchased by Prof. Maxwell using 
grant funds, and this implicit expense has been excluded from the scope of this project. Table 1 
summarizes the advantages and drawbacks of each localization method. 
 
Table 1. Comparison of localization methods 
Method Advantages Drawbacks 
DGPS • Excellent resolution (1cm) 

• Ease of implementation 
• Moderate cost 

• Doesn’t work indoors 

Sonar + IR  • Low cost • Very hard to get robust 
performance 

• Multiple error modes 
Laser range-finder • Excellent resolution 

• Well-understood 
implementation 

• High cost (~$5K) 

Visual odometry • Low cost (~$1K) 
• Potentially very accurate 

• Lots of difficult  implementation 
details 

• Only operates in good light 
conditions 
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VI. SETUP 

6.1 SYSTEM COMPONENTS 

The stereo camera used in this project was Videre Design's STH-DCSG/C Firewire head3 (Figure 
1), used in grayscale mode at a resolution of 320 x 240px. The system was run on a dual-
processor AMD Athlon workstation with 1GB of RAM, running Debian Linux. 
 

 
Figure 1. STH-DCSG/C stereo head 

 
The Small Vision System (SVS)4 C++ libsvs.so library5 was used to transfer images from the 
camera, and to perform some triangulation calculations. To calibrate the camera we used the 
smallvcal utility6, which is also part of SVS. 
 
For fast and efficient implementations of eigenvalue calculation, singular-value decomposition, 
and some basic matrix algebra, the Newmat C++ Matrix Library ver. 107 was used. 
 
In addition, the OpenCV8 goodFeaturesToTrack function was used as an alternative 
implementation of Harris corner feature detector, and the cvPOSIT function was used to 
iteratively solve the 3-ponit pose estimation problem. 
 

6.2 CAMERA CALIBRATION 

  
 

  
 

 

 
Figure 2. Sample calibration images (left) and the calibration target (right) 

 
A camera calibration was performed using the smallvcal utility. Calibration is an automated 
process whereby a variety of intrinsic and extrinsic camera parameters are determined with a 
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high degree of accuracy. This is accomplished by taking pictures of a standard calibration target 
with known dimensions from different viewpoints (Figure 2), and then numerically finding a least 
squares solution. 
 
The calibration parameters computed are shown in Table 2 and Table 3. The latter omits lens 
distortion parameters. A complete calibration file is provided for reference in as an appendix in 
10.1. 
 
Parameter Description Value (mm) 
Tx, Ty, Tz Translation from left to right imager -88.72, -0.3257, 0.4584 
Rx, Ry, Rz Rotation from left to right imager -0.0051, -0.0060, 0.0044 

Table 2. Extrinsic camera calibration parameters 
 
Parameter Description Value Left Value Right 
W, h Imager width, height 640.0, 480.0 px 640.0, 480.0 px 
Cx, Cy Image center 275.9, 242.5 px 326.0, 250.9 px 
f, fy Focal length 6.848, 6.850 mm 6.843, 6.853 mm 

Table 3. Selected intrinsic camera calibration parameters for left and right imagers 
 
After performing the calibration, the first step is to rectify the video images obtained for lens 
distortion. Rectification guarantees that straight lines will not appear curved in the camera image, 
and also that a given real-world object will appear on the same row of the left and right image (a 
property which we will use later during the feature matching step). The rectification is performed 
by a call to the ReadParams(“calibration.ini”) and GetRect() methods of the svsVideoImages 
object.  

VII. ALGORITHM IMPLEMENTATION 

7.1 OVERVIEW 

The visual odometry algorithm can be summarized as the sequence of steps shown in Figure 3: 

 

Figure 3. Visual odometry algorithm overview 

Stereo stream 

Feature 
detection 

Feature tracking 

Disparity 

≡ 
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R, t 
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The first step is to calculate corner features (good points to track in the video stream). Based on 
this, we can calculate disparity information (the difference in location of the same feature between 
the left and right image) for each feature and use it to triangulate features into 3D points in 
camera coordinates. Also, if a feature is tracked from frame to frame in a so-called feature track, 
we can use that information to see which 3D points match up from frame to frame. Finally, based 
on the movement of point clouds between frames, we can estimate the movement of the camera. 
Each step will now be explored in more detail. 
 

7.2 DETECTING FEATURES 

The first step in the system is to identify corner features in the left and right images. This is done 
using a method developed by Harris and Stephens, 19889. This is done in the harrisDetector 
function, which takes an image and returns the (x, y) locations of up to a given number of features 
found in it. The function supports a fixed offset, which is excluded from the feature detection 
procedure on all four sides of the image. This is done in order to avoid artifacts due to the 
rectification procedure, and due to the camera imager. The implementation of this function was 
done largely by Prof. Bruce Maxwell as part of the Swarthmore Vision Module (SVM), and is 
reused here. 
 
The feature detection process has five main steps, starting from the image in Figure 4: 

1. Calculate derivatives and cross terms (Figure 5) 
2. Calculate horizontal and vertical binomial filter on each derivative map (Figure 6) 
3. Calculate the strength of corners (Figure 7) 
4. Do non-maxima suppression to identify features (Figure 8) 

 

 
Figure 4. Original image 

 

 
Figure 5. Image after derivatives and cross terms 

are calculated 

 
Figure 6. Image after binomial filters 
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Figure 7. Image after determinant, trace, and 

strength calculation 

 
Figure 8. Image after non-maximum suppression 

 
For a more robust implementation, OpenCV’s goodFeaturesToTrack function was used to detect 
Harris corners, and the results were compared to this implementation. In addition to running a 
standard Harris detector, the OpenCV function removes all features that are within some 
threshold of strong features in an attempt to find robust features to track from frame to frame. 
Figure 9 demonstrates similar performance of both feature detectors, with the OpenCV detector 
perhaps exhibiting better accuracy (features are closer to corners in the image).  
 

  
Figure 9. Comparing our Harris detector (left) with OpenCV's (right) 

 

7.3 FEATURE MATCHING 

After the Harris features in the image have been identified, we need to establish a mechanism to 
match a feature to its image in another image, regardless of whether we are working with a left-
right image pair, or two consecutive frames from the left or right imagers. 

The first step in feature matching is to establish a search square of a given size around the 
location where the given feature from the left image would map on to the right image. All the 
features within that square are considered to be potential matches. (Figure 10) The size of the 
square is empirically determined based on assumptions about the difference between the two 
views.  
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Figure 10. Feature matching 

 
The next step is to compare the 11x11px patches surrounding the original feature on the left and 
all of its potential matches on the right. A normalized correlation is computed between all of them 
and the pair with the largest correlation is chosen to be the matching pair, as shown in Figure 11. 

 

 
Figure 11. Calculating normalized correlation 

 
The quantities A, B, and C are pre-computed for each patch according to the following equations: 

 

 

2

2

121
1

AB
C

IB

IA

−
=

=

=

∑
∑

 (1) 

 
where I corresponds to the intensity of a given pixel. At runtime, when comparing two patches, it 
is sufficient to calculate the quantity D 

 
 ∑= 21IID  (2) 
 
and then the normalized correlation n between the two pixels is obtained by 

 
 2121 )121( CCAADn −= . (3) 
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We perform this process from the left to right image and also from right to left, and only keep the 
bi-directional matches. 
 
Feature matching is implemented in the calculateDisparity function. 
 

7.4 FEATURE TRACKING 

After a feature is detected, it is assigned to a so-called feature track. A feature track is a set of 
records of the location of a particular feature from frame to frame, up to some maximum number 
of frames. A track can receive up to a given number of strikes, which is the number of 
consecutive frames the feature may not appear before the entire track is deactivated. In this 
implementation, the feature track was 10 frames long, and it had up to 3 strikes before 
deactivation. 
 
This is realized using the bi-directional feature matching process (7.3) used between consecutive 
frames on the left and on the right, with a search window of size 15x15px. The effect of this 
algorithm is illustrated visually in Figure 12. 
 

  
Figure 12. Feature matching frame-to-frame 

 
This procedure is implemented in the updateTracks function, which in turn calls 
calculateDisparity. 
 
In effect this process performs as follows. Every 10 frames, the feature detector generates up to a 
given number of tracks. As time passes, a large number of these tracks are deactivated, since the 
original feature that caused them to be created has disappeared or has not been visible for more 
than 3 consecutive frames. The number of tracks keeps dropping until it reaches some stable 
level, where most tracks are due to genuine strong features that can be traced for a prolonged 
period of time. At every frame, the feature detector will generate a number of features in excess 
of the number of active tracks, and most of those will not be associated with tracks and will 
subsequently be dropped. So we see that the feature tracking mechanism acts as a de-facto 
filtration system that eliminates spurious features due to noise. Also, it limits the speed at which 
the camera can move, since new feature tracks are generated only every 1/3 seconds, assuming 
a frame rate of 30 fps. 
 

7.5 DISPARITY CALCULATION 

Another necessary step, the importance of which will become obvious in the next section, is 
determining the matching features between the left and right images. Ideally, if we see a 
particular corner in both camera images, we want to know which feature on the left and which 
feature on the right correspond that corner.  
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We use thes bi-directional feature matching approach described above (7.3), only that this time 
we are comparing the left to the right image, instead of successive instances of the left or right 
image. Here a useful property of the rectification process (explained earlier) comes into play: a 
given point in the real world is guaranteed to be on the same row of the left and right images, with 
the only difference being in its horizontal position. This allows us to reduce the square search 
window to (in theory) a 40px-long linear search. However, to account for sub-pixel errors we add 
a pixel on each side and search in a 40x3px box. This concept is illustrated in Figure 13, where 
the right image shows the disparity map. Lighter points correspond to a larger disparity, which 
means the point is closer to the camera. The horizontal distance d ( 11.400 ≤≤ d ), between the 
two features which correspond to the same world point, is called the disparity of that point. The 
significance of this distance is discussed below. 
 

  
Figure 13. Feature matching left-to-right, with left image (left) and disparity map (right) 

 

7.6 TRIANGULATING 3D POINTS  

This step is the heart of the algorithm. Given the camera optical model and the parameters 
determined during the calibration step, we can turn a disparity into a distance in world 
coordinates. 
 

 
 

Figure 14. Triangulating disparity into 3D distance 
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Using similar triangles, and our knowledge of the intrinsic and extrinsic camera parameters (the 
quantities f, b, Cl, and Cr from Figure 14), we can calculate the quantities x and z using the 
following relationships: 

 

f
x

z
x

d
bf

xx
bfz

l

rl

=

=
−

=
 (4) 

 
Applying this idea in the xz and yz planes, we can triangulate the disparity information into a 3D 
point. An implementation of this geometric procedure exists as part of SVS so it was reused in 
order to save time. A svsStereoProcess object was created (an object that performs a variety of 
processing on a set of images), and Calc3D() method was invoked to convert disparity 
information to 3D points.  
 
An example triangulation is shown in Figure 15. 
 

 
Figure 15. Sample triangulation results from a sparse (top) and a dense (bottom) environment 

 

7.7 DETERMINING POINT CORRESPONDENCE IN TIME 

At this point, we are able to triangulate disparity information to 3D points at every frame. For the 
pose estimation step, which will follow, we will need to be able to identify the 3D point 
corresponding to the same feature moving from the past to the current frame. In other words, we 
need to be able associate 3D points from frame to frame to recreate the movement of a particular 
3D point from the point of view of the camera.  
 
Solving this problem is the reason why we developed the feature tracking mechanism from frame 
to frame. Our feature tracks tell us how a feature moves in time, in the right or the left image. 
Identifying 3D point correspondences in time comes down to simply making sure that the points in 
the past and current frame originate from the same tracks. If two 3D points p and p’ have been 
triangulated from features (fL, fR) and (fL’, fR’) (two in the past frame and two in the current one), 
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we can conclude that they show the movement of the same corner in the world in time if and only 
if fL and fL’ belong to the same track in the left image and fR and fR’ also belong to the same track 
in the right image.  
 
This was implemented in the code as part of the updateLocation function. 

7.8 POSE ESTIMATION 

7.8.01 Summary 

So far the implementation is able to triangulate features into 3D points at every frame and also 
determine the corresponding point in the previous frame for each point in the current frame. If 
there is any movement in the camera views, naturally these two point sets will be set off slightly 
from one another. We can also think about this situation as follows: in the past frame we had a 
3D point cloud, which undergoes some movement, and is now visible in a new position in the 
current frame. So far we have been working in the reference frame of the camera, so we assume 
the features in the world are moving around the camera. This might be the case (if there is any 
movement in the scene as seen by the camera, e.g. a person walks by), but for the purposes of 
visual odometry task, we assume that most of the features seen by the camera are fixed with 
respect to the world reference frame. This is a reasonable assumption, as long as the majority of 
the features in the frame belong to stationary objects. Also, we can accommodate for some 
movement in the world, as we will see later. Assuming the 3D points are stationary in the world 
reference frame, any apparent movement of the 3D point clouds between frames, as perceived in 
the camera reference frame, is actually due to the movement of the camera itself. At this point we 
make the plausibility argument that by keeping track of the movement of a static point cloud from 
frame to frame, we can deduce the movement of the camera. We will develop this rigorously after 
developing some of the necessary pieces. 
 

7.8.02 The Quaternion Motion Estimation Method 

To calculate the movement of a point cloud, we need a minimum of three points and their 
positions before and after the move. We can think of the movement problem as the task of 
determining the rotation and translation that takes one triangle from one position to another. An 
important note: the two triangles will ideally be identical (no skewing or scaling), since each point 
corresponds to a feature in the world, and we are not permitting movement, let along shape 
distortion of the surrounding environment. We now formalize the idea of movement as follows 
   
 tpRx ii +=

rr
 (5) 

 
where pi is any point from the point cloud in the past frame, xi is its corresponding point from the 
point cloud in the current frame, R is a rotation matrix, and t is a translation vector. To obtain the 
new location xi of point pi, we rotate it about some point (to be discussed later) by R and then 
translate by t. We can use a method developed by Besl10 to solve for R and t. 
 
Assume P and X are two triangles. First we calculate the “center of mass” of both triangles: 
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The cross-covariance matrix Σpx of the triangles P and X is: 
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We construct the quantities  
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Σ−Σ+ΣΔ
ΔΣ

=Σ
3)(

)(
)(

Itrace
trace

Q
px

T
pxpx

T
px

px  (9) 

 
The unit eigenvector [ ]tR qqqqq 3210=

r
corresponding to the largest eigenvalue of the 

matrix )( pxQ Σ  can be used to yield R and t: 
 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−++−
−−−++
+−−−+

=
2

2
2

1
2

3
2

010322031

1032
2

3
2

1
2

2
2

03021

20313021
2

3
2

2
2

1
2

0

)(2)(2
)(2)(2
)(2)(2

qqqqqqqqqqqq
qqqqqqqqqqqq
qqqqqqqqqqqq

R   (10) 

 
 px Rt μμ rrr

−=  (11) 
 
A reference implementation of this algorithm was developed in MATLAB (Appendix 0) and 
eventually ported to C. A sample calculation is illustrated in Figure 16. 
 

 
Figure 16. Sample movement estimation calculation 

 
This functionality was implemented in the function calculateRandT. 
 
Assuming an ideal point set, Besl’s method would be the solution to the motion problem: pick any 
three points, and calculate R and t. However, our data is highly error-prone (especially along the 
dimension of the camera’s optical ray), so just using this method would result in gross error that 
would render the implementation unusable. Therefore, we introduce RANSAC, a random-sample 
consensus algorithm, which is able to eliminate gross outliers and perform least-squares 
estimation on the valid data points. 
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7.8.03 The RANSAC Parameter Estimation Algorithm 

RANAC was developed by Fischler and Bolles in 198111 as a robust alternative to least-squares 
fitting, which is immune to gross outliers (also known as poisoned data points). Applied to this 
particular problem, the RANSAC algorithm can be presented as the following sequence of steps: 
 

1. Pick three points and use the 3-point problem solution presented above to calculate the R 
matrix and t vector. 

2. Apply R and t to the entire past point cloud. If the transformation is perfect, the two sets 
should now overlap completely. That will not be the case, so we identify the points that 
are within a distance e of their positions in the current point cloud, and call them the 
support set for this particular hypothesis.  

a. If the support set has t or more members, then we call it the optimal set and 
move to step 3. 

b. If the support set has less than t members, we go back to step 1 and pick 
another hypothesis. We repeat this up to k times. If we cannot find a hypothesis 
with more than t members, then we pick the hypothesis with the largest support 
set to be optimal. 

3. Once the optimal hypothesis is determined, we re-solve the model with the entire support 
set for that hypothesis. If we have more than 3 points in the support set, the system will 
be over-constrained, and we use a least-squares technique (described later) to come up 
with the polished R and t.  

 
For this particular implementation, the following values were calculated for the RANSAC 
parameters, following the method outlined in Section II. A. and B. of the RANSAC paper: 
 
Parameter Definition Value 
e Error tolerance in determining support 0.05m 
t Number of gross outliers 6 
N Number of points to select 3 
W Probability of an inlier 88% 
SD(k) Standard deviation on k value 0.83 
K Max. number of RANSAC runs 3 

 
Table 4. RANSAC parameter values 

 
The RANSAC algorithm was implemented as part of the updateLocation function. 
 

7.8.04 SVD for Least Squares Solution of an Over-constrained System 

In the last step of the RANSAC algorithm, we find a least-squares solution to an over-constrained 
system of equations. We set up the problem so we can use the singular-value decomposition 
(SVD) method, presuming the support set has n members: 
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It is apparent that the solution to bAx = will yield the values of the elements of R and t for the full 
support set. Unfortunately, this equation cannot be solved because the system is over-
constrained (it only takes 3 points to solve this uniquely), and the A matrix is not square and 
therefore not invertible.  
 
To obtain an approximate (least-squares) solution, we run a numerical SVD on the A matrix, in 
order to solve the system for x: 
 
 [ ] SVD(A) VU =Σ  (13) 

The diagonal matrix Σ contains the singular values for the matrix as its elements, while U and V 
contain a set of orthogonal output and input base-vector directions as their columns. We obtain 
the solution to the above system as follows: 

 bUVx T+Σ=  (14) 
 
where Σ+ stands for the transpose of Σ with all nonzero entries replaces by their reciprocals. 
 
This equation can be solved, and the elements of x make up R and t as shown in  (12). 
 
A reference implementation was done in MATLAB (Appendix 10.3), and some results are shown 
in Figure 17.  
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Figure 17. SVD implementation 
 
This was implemented in the calculateSVD function. 
 

7.8.05 Software Implementation 

The software was developed in C++, and compiled with gcc 3.2, with the optimization flags –O3 
and –march=athlon. The code is available in the CVS repository on engin.swarthmore.edu. 
 
A pseudocode outline of the operation of the system follows: 
 
(initialize camera and data structures) 
 
(main loop) // runs until program is terminated 
 
 updateTracks // update feature tracks with features in this frame 
  calculateDisparity // used for feature matching between consecutive frames 
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 calculateDisparity // used to do feature matching between left and right frames 
 
 Calc3D // triangulate into 3D points 
 
 updateLocation // run RANSAC 
 
  (figure out point correspondences) 
  (RANSAC loop) 
   calculateRandT // used as RANSAC hypothesis generator 
  (RANSAC loop end) 
  calculateSVD // to solve best hypothesis with entire support set 
 
(main loop end) 
 
A detailed description of the API is provided as an appendix in 10.4. 

VIII. TESTING 

The system was tested in lab conditions, using 
the setup shown in Figure 18.  

The camera was positioned facing a set of 
posters, held upright on pieces of poster board. 
Masking tape was used to create a metric 
coordinate system on the floor, to facilitate 
measurement of the camera position. 

The camera was mounted on a tripod, which 
had an adjustable height bar, which provided 
for easy measurement of vertical displacement 
(along the camera y-axis).   

Instead of looking at a typical lab environment, 
the camera faces a controlled scene, since the 
system relies on good features for tracking and 
triangulation. Through testing we discovered 
that typical lab scene does not provide enough 
good features for tracking, and thus we opted 
for the posters, whose black-on-white corners 
were easy to detect and reliable in tracking. 
The shortcomings of the feature detector will be 

discussed further in the future work section. 

 

8.1 VERIFYING BASIC FUNCTIONALITY 

The first testing task was to make sure the system performs as expected. The system parameters 
were set as shown in Table 5.  

The two most sensitive parameters in this implementation are the number of features used and 
the RANSAC matching distance, and we will later see how the former affects system 
performance. 
 
 

 
Figure 18. Test setup 
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Parameter Value 
Number of featrures 200 
Disparity search width 40px 
Disparity search height 2px 
Tracking search width 15px 
Tracking search height 15px 
Track length 10 frames 
Track strikes 3 
Max camera FPS 30 
RANSAC support matching distance 0.05m 
RANSAC gross outliers 10 
RANSAC maximum iterations 5 

 
Table 5. System parameters used for testing 

 

The first trial aimed at observing the steady-state error accumulated in the system. The camera 
was set facing the posters and the system was run, without causing any camera movement. No 
drift along any of the camera axes (a persistent position of (0, 0, 0)) would indicate good system 
performance. 

No drift was observed along the camera x and y axes, but the position along the z axis drifted 
linearly with time as shown in Figure 19, with 16cm of drift being accumulated over 20 seconds, 
putting the drift velocity at 0.8 cm/s. This was clearly an unacceptable situation, so from this point 
on we only consider movement along the x and y axes. A further discussion of the drift along the 
optical axis is presented in the further work section.  

 

Figure 19. Camera drift along z-dimension 
 

The second trial was conducted by moving the camera just along the x-axis (parallel to the 
ground): first 50 cm in the negative x direction in 10 seconds, followed by a 10-second pause, 
then 100 cm in the positive x direction in 10 seconds, then another 10-second pause, and finally 
back to the origin in 10 seconds. The results are shown in Figure 20. 
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Figure 20. Camera movement along the x direction 
 

We see the system performing adequately in the x direction, with a maximum error of 22cm. A 
persistent drift towards the origin is also noticeable if we look at the times when the camera is 
standing still. The y direction remains close to 0, with a maximum error of 4cm. 

The same test was performed along the y (vertical) camera axis, except that the maximum 
displacement allowed by the tripod was 36cm, and the waiting time was reduced to about 5 
seconds. The results are shown in Figure 21. 

 

Figure 21. Camera movement along the y direction 
 
Similar to the movement along the x axis, we see some noise in the dimension that’s supposedly 
still: the maximum error in x is 5cm. The y-direction exhibits a maximum error of 12 cm, and 
again, we notice a persistent drift toward 0. 
 

8.2 THE EFFECT OF FEATURE NUMBER 

Varying the number of features the system attempts to detect in each image can drastically 
change its performance.  

Actual 
Experimental 

Actual 
Experimental 
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Figure 22. System performance with varying numbers of features and the resulting frame rate 
(clockwise 50/27.1, 100/27.3, 200/23.4, 500/10.5) 

 
Figure 22 compares performance with a different number of features: 50, 100, 200, 500, 1000 
(not shown). There exists an obvious trade-off between the number of features used and the 
frame rate: the more features the system has to process, the slower it goes. In trying to determine 
the optimal number of features, we notice that too low a number (50, 100) results in the system 
failing to stabilize at t=40s. Too many features, on the order of 1000, make the system too slow 
and there are not sufficient matches to run the RANSAC pose estimation. An important balance 
of abundant features, so that enough reliable movement information can be extracted about the 
environment, and a high enough frame rate, so enough many features can be processed at every 
frame: 200 – 600 features seems to be a good range. 
 
The system performance satisfies our initial design constraints, with the exception of the drift in 
the z-dimension, which renders it unusable. 

IX. FUTURE WORK 

There are some clear shortcomings to the system: 

• Slow processing speed, which prevents us from using large numbers of features 

• A relatively slow camera movement speed 

• Drift in the z-dimension, which makes it unusable 
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Some suggested improvements 

• Clean up the code, and rewrite parallelizable components using the MMX instruction set. 
The system has lots of pixel processing, which is ideal for parallel processing. This would 
enable the system to run with more features, and also allow a faster camera movement 
speed. 

• To counteract the drift in the z-dimension, a different method needs to be developed to 
estimate the camera pose. At present we track the movement of a triangle and use that 
to calculate an R and t matrices. However, the triangulated points have a high degree of 
uncertainty due to camera calibration errors and sub-pixel triangulation errors. Thus, that 
uncertainty is propagated to the motion hypothesis and causes drift, especially in the z-
dimension, since triangulation produces the most uncertainty in the depth dimension. An 
alternative pose estimation method based on using a single camera and projections of 
image features (the 3-point problem)12 is suggested in the original visual odometry 
paper2. This method limits the source of error to intrinsic camera parameters and if 
combined with reprojection error to determine the RANSAC support set, can result in 
more robust pose estimation (as explained in Section 4.2 of the paper). The OpenCV 
function cvPOSIT, which uses the POSIT algorithm to solve the 3-point-problem was 
integrated into the code, but there was not sufficient time to fully integrate the new 
method. 
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X. APPENDICES 

10.1 SAMPLE CAMERA CALIBRATION

# SVS Engine v 4.0 Stereo Camera Parameter 

File 

[image] 

have_rect 1  

[stereo] 

frame 1.0  

[external] 

Tx -88.760352  

Ty -0.443364 

Tz 0.960546 

Rx -0.007640 

Ry 0.004283 

Rz -0.000043  

[left camera] 

pwidth 640 

pheight 480 

dpx 0.006000 

dpy 0.006000 

sx 1.000000 

Cx 298.473769 

Cy 256.148193 

f 692.222883 

fy 693.516532 

alpha 0.000000 

kappa1 -0.294415 

kappa2 0.134338 

kappa3 0.000000 

tau1 0.000000 

tau2 0.000000  

proj  

  6.940000e+02 0.000000e+00 3.020274e+02 

0.000000e+00  

  0.000000e+00 6.940000e+02 2.489592e+02 

0.000000e+00  

  0.000000e+00 0.000000e+00 1.000000e+00 

0.000000e+00  

rect  

  9.999658e-01 5.103894e-03 -6.500436e-03  

  -5.079060e-03 9.999797e-01 3.831156e-03  

  6.519859e-03 -3.798009e-03 9.999715e-01  

[right camera] 

pwidth 640  

pheight 480  

dpx 0.006000  

dpy 0.006000  

sx 1.000000  

Cx 333.638377  

Cy 240.948377  

f 692.706797  

fy 694.477177  

alpha 0.000000  

kappa1 -0.311977  

kappa2 0.186123  

kappa3 0.000000  

tau1 0.000000  

tau2 0.000000  

proj  

  6.940000e+02 0.000000e+00 3.020274e+02 -

6.159968e+04  

  0.000000e+00 6.940000e+02 2.489592e+02 

0.000000e+00  

  0.000000e+00 0.000000e+00 1.000000e+00 

0.000000e+00  

rect  

  9.999290e-01 4.995068e-03 -1.082179e-02  

  -5.036313e-03 9.999802e-01 -3.787431e-03  

  1.080265e-02 3.841664e-03 9.999343e-01  

[global] 

GTx 0.000000  

GTy 0.000000  

GTz 0.000000  

GRx 0.000000  

GRy 0.000000  

GRz 0.000000

 

10.2 MATLAB CODE FOR QUATERNION MOTION ESTIMATION  

% This is supposed to solve analytically for the translation and rotation 
% between two triangles in space 
  
clear; 
clc; 
  
% syms p1x p1y p1z p2x p2y p2z p3x p3y p3z; 
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p1x = 0; 
p1y = 0; 
p1z = 0; 
p2x = 2; 
p2y = 0; 
p2z = 0; 
p3x = 0; 
p3y = 1; 
p3z = 0; 
  
% syms x1x x1y x1z x2x x2y x2z x3x x3y x3z; 
x1x = 0; 
x1y = 0; 
x1z = 0; 
x2x = 0; 
x2y = 2; 
x2z = 0; 
x3x = -1; 
x3y = 0; 
x3z = 0; 
  
p1 = [p1x; p1y; p1z]; 
p2 = [p2x; p2y; p2z]; 
p3 = [p3x; p3y; p3z]; 
  
x1 = [x1x; x1y; x1z]; 
x2 = [x2x; x2y; x2z]; 
x3 = [x3x; x3y; x3z]; 
  
plot3(p1x, p1y, p1z, 'kx', p2x, p2y, p2z, 'kx', p3x, p3y, p3z, 'kx'); 
hold; 
plot3(x1x, x1y, x1z, 'kx', x2x, x2y, x2z, 'kx', x3x, x3y, x3z, 'kx'); 
line([p1x; p2x; p3x; p1x], [p1y; p2y; p3y; p1y], [p1z; p2z; p3z; p1z], 'Color', [1 0 0]); 
line([x1x; x2x; x3x; x1x], [x1y; x2y; x3y; x1y], [x1z; x2z; x3z; x1z]); 
  
mup = [(p1x + p2x + p3x); (p1y + p2y + p3y); (p1z + p2z + p3z)]/3; 
mux = [(x1x + x2x + x3x); (x1y + x2y + x3y); (x1z + x2z + x3z)]/3; 
  
sigmapx = ((p1*x1.' - mup*mux.') + (p2*x2.' - mup*mux.') + (p3*x3.' - mup*mux.'))/3; 
  
a = (sigmapx - sigmapx.'); 
  
delta = [a(2,3); a(3,1); a(1,2)]; 
  
q = [trace(sigmapx), delta.'; delta, sigmapx + sigmapx.' - trace(sigmapx)*eye(3)]; 
  
[eigvectors, eigvalues] = eig(q); 
  
[maxvalue, index] = max(max(eigvalues)); 
  
qr = eigvectors(:,index); 
  
R = [qr(1)^2+qr(2)^2-qr(3)^2-qr(4)^2, 2*(qr(2)*qr(3)-qr(1)*qr(4)), 
2*(qr(2)*qr(4)+qr(1)*qr(3)); 
    2*(qr(2)*qr(3)+qr(1)*qr(4)), qr(1)^2+qr(3)^2-qr(2)^2-qr(4)^2, 2*(qr(3)*qr(4)-
qr(1)*qr(2)); 
    2*(qr(2)*qr(4)-qr(1)*qr(3)), 2*(qr(3)*qr(4)+qr(1)*qr(2)), qr(1)^2+qr(4)^2-qr(2)^2-
qr(3)^2] 
  
t = mux - R*mup 
  
p1 = R*p1 + t; 
p2 = R*p2 + t; 
p3 = R*p3 + t; 
  
line([p1(1); p2(1); p3(1); p1(1)], [p1(2); p2(2); p3(2); p1(2)], [p1(3); p2(3); p3(3); 
p1(3)], 'Color', [0 1 0]); 
hold; 
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10.3 MATLAB CODE FOR SVD LEAST SQUARES SOLUTION 

% This does SVD to find a least-squares solution to an overconstrained 
% system. 
  
clear; 
clc; 
  
% DECLARE ALL POINTS  
% These were used to come up with R and t matrix 
p1 = [0; 0; 1]; 
p2 = [1; 0; 1]; 
p3 = [0; 1; 1]; 
  
x1 = [0; 0; 3]; 
x2 = [0; 1; 3]; 
x3 = [-1; 0; 3]; 
      
% These are additional points, that were determined to be part of the 
% support for this particular R and t 
p4 = [1; 1; 1]; 
  
% R*p4 + t = [-1; 1; 3]. Perturb that a little (arbitrarily) 
x4perfect = [-1; 1; 3]; 
x4 = [-1; 1.5; 3.5]; 
  
% Visualize some 
plot3(p1(1), p1(2), p1(3), 'kx', p2(1), p2(2), p2(3), 'kx', p3(1), p3(2), p3(3), 'kx', 
p4(1), p4(2), p4(3), 'kx'); 
hold; 
plot3(x1(1), x1(2), x1(3), 'kx', x2(1), x2(2), x2(3), 'kx', x3(1), x3(2), x3(3), 'kx', 
x4(1), x4(2), x4(3), 'kx'); 
plot3(x4perfect(1), x4perfect(2), x4perfect(3), 'rx'); 
  
line([p1(1); p2(1); p3(1); p1(1)], [p1(2); p2(2); p3(2); p1(2)], [p1(3); p2(3); p3(3); 
p1(3)], 'Color', [1 0 0]); 
line([x1(1); x2(1); x3(1); x1(1)], [x1(2); x2(2); x3(2); x1(2)], [x1(3); x2(3); x3(3); 
x1(3)]); 
  
% DEFINE R AND t - these were calculated between p1-3 and x1-3 
% Rotation matrix 
R = [0 -1 0; 1 0 0; 0 0 1] 
  
% Translation vector 
t = [0; 0; 2] 
  
% DETERMINE REFINED R and t, CONSIDERING THE ADDITIONAL POINTS 
  
% So we have A*x = b; where  
% b is (4*3)x1, and contains all the points x 
% x is 12x1, first 9 entries are the R elements, last 3 are the t elements 
% A is (4*3)x12, and is derived by repeating p every 3 rows 
  
b = [x1; x2; x3; x4]; 
  
% Helper matrices 
p = [p1; p2; p3; p4];  
I = eye(3); 
f = zeros(3, 9); 
A = []; 
  
for i = 1:4, 
     
    % Prepare left portion of matrix 
    f = zeros(3, 9); 
    f(1,1) = p(3*i-2); 
    f(1,2) = p(3*i-1); 
    f(1,3) = p(3*i); 
    f(2,4) = p(3*i-2); 
    f(2,5) = p(3*i-1); 
    f(2,6) = p(3*i); 
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    f(3,7) = p(3*i-2); 
    f(3,8) = p(3*i-1); 
    f(3,9) = p(3*i); 
     
    % Concatenate vertically until you get a (4*3) height 
    A = [A; f, I]; 
     
end; 
  
% Now do SVD on A 
[U, S, V] = svd(A); 
  
% Calculate S transpose... 
S = S'; 
  
% ... and then go through and invert any non-zero elements 
for i = 1:size(S,1), 
    for j = 1:size(S,2), 
        if S(i,j) < 1E-6, 
            S(i,j) = 0; 
        end; 
        if S(i,j) ~= 0, 
            S(i,j) = 1/S(i,j); 
        end; 
    end; 
end;        
  
% Finally, solve for new R and t 
x = V*S*U'*b; 
R = [x(1) x(2) x(3); x(4) x(5) x(6); x(7) x(8) x(9)] 
t = [x(10); x(11); x(12)] 
  
p1 = R*p1 + t; 
p2 = R*p2 + t; 
p3 = R*p3 + t; 
p4 = R*p4 + t; 
  
line([p1(1); p2(1); p3(1); p1(1)], [p1(2); p2(2); p3(2); p1(2)], [p1(3); p2(3); p3(3); 
p1(3)], 'Color', [0 1 0]); 
hold; 

 

10.4 FULL API DESCRIPTION 

/** 

 * This function detects Harris corners 

 * 

 * @param[in] image The grayscale image to be analyzed for Harris corners 

 * @param[in] height The image height 

 * @param[in] width The image width 

 * @param[in] maxFeatures The max number of features to be selected 

 * @param[in] edgeBuffer The pixel offset to ignore from each image edge 

 * @param[out] location The screen coordinates of the top features 

 * @return The number of features detected, up to maxFeatures 

 * @author Bruce Maxwell 

 * @author Yavor Georgiev '06 

**/ 

int harrisDetector(unsigned char *image, const int height, const int width, const int 

maxFeatures, const int edgeBuffer, screenCoord location[]); 

/** 

* This function detects Harris corners and uses OpenCV. 

* 
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* @param[in] image The grayscale image to be analyzed for Harris corners 

* @param[in] height The image height 

* @param[in] width The image width 

* @param[in] maxFeatures The max number of features to be selected 

* @param[in] edgeBuffer The pixel offset to ignore from each image edge 

* @param[out] location The screen coordinates of the top features 

* @return The number of features detected 

* @author Yavor Georgiev 

**/ 

int harrisDetectorCV(unsigned char *image, const int height, const int width, const int 

maxFeatures, const int edgeBuffer, screenCoord location[]); 

/** 

 * This function calculates feature matches between two images, imageleft 

 * and imageRight. You can use it to do either feature tracking or  

 * disparity calculation. 

 * 

 * DISPARITY 

 * The disparity and trackInfo outputs matter - leftMatches must be NULL 

 * 

 * FEATURE TRACKS 

 * The leftMatches output matters - disparity and trackInfo must be NULL 

 * 

 * @param[in] imageLeft The left image 

 * @param[in] imageRight The right image 

 * @param[in] height The image height 

 * @param[in] width The image width 

 * @param[in] numFeaturesLeft The number of features detected in left image 

 * @param[in] locationLeft The screen coordinates of the left features 

 * @param[in] numFeaturesRight The number of features detected in right image 

 * @param[in] locationRight The screen coordinates of the right features 

 * @param[out] disparity The disparity image array 

 * @param[out] trackInfo Track pairs for every disparity in the array 

 * @param[out] leftMatches The coords of the corresponding feature on the right 

 * @author Yavor Georgiev '06 

 * 

 **/ 

void calculateDisparity(unsigned char *imageLeft, unsigned char *imageRight, const long 

height, const long width, const int window_height, const int window_width, const int 

numFeaturesLeft, featureInfo locationLeft[], const int numFeaturesRight, featureInfo 

locationRight[], short disparity[], trackPair trackInfo[], screenCoord leftMatches[]); 

/** 

 * This function updates the robot's location based on the points detected 

 * in two consecutive frames 

 * 

 * @param[out] location The location vector to be updated 

 * @param[in] currentPoints The points array for the current frame 

 * @param[in] currentPointsTracks Tracks they came from 

 * @param[in] currentPointsNum The number of members in the currentPoints array 

 * @param[in] pastPoints The points array for the past frame 

 * @param[in] pastPointsTracks The tracks they came from 



 27

 * @param[in] pastPointsNum The number of members in the pastPoints array 

 * @param[in] R Array of rotation matrices for each hypothesis 

 * @param[in] t Array of translation vectors for each hypothesis 

 * @param[in] fsi The SVS stereo image this came from 

 * @param[in] leftTrack Left feature tracks 

 * @param[in] rightTrack Right feature tracks 

 * @param[in] frame Current frame number 

 * @author Yavor Georgiev '06 

 * 

 **/ 

void updateLocation(ColumnVector &location, svs3Dpoint currentPoints[], trackPair 

currentPointsTracks[], int currentPointsNum, svs3Dpoint pastPoints[], trackPair 

pastPointsTracks[], int pastPointsNum, Matrix **rotations, ColumnVector **translations, 

svsStereoImage *fsi,featureTrack leftTrack[], featureTrack rightTrack[], short frame); 

/** 

 * This function updates the feature tracks given the features in the current  

 * frame, and returns arrays that contain the feature coordinates from the 

 * tracks in the current frame. 

 * 

 * @param[in] fsi Stereo image object, contains new video frame 

 * @param[out] leftTrack The left feature track to update 

 * @param[out] rightTrack The right feature track to update 

 * @param[in] featuresLeft Number of features in the current left frame 

 * @param[in] featuresRight Number of features in the current right frame 

 * @param[in] bestFeaturesLeft Current left frame feature array 

 * @param[in] bestFeaturesRight Current right frame feature array 

 * @param[out] numFiltFeaturesLeft Corrected number of features on left 

 * @param[out] numFiltFeaturesRight Corrected number of features on right 

 * @param[out] filtFeaturesLeft Corrected left frame feature array 

 * @param[out] filtFeaturesRight Corrected right frame feature array 

 * @param[out] frame The current frame 

 *  

 * @author Yavor Georgiev '06 

 * 

 **/ 

void updateTracks(svsStereoImage *fsi, svsStereoImage *fsi_past, featureTrack 

leftTrack[], featureTrack rightTrack[], int *numFiltFeaturesLeft, int 

*numFiltFeaturesRight, featureInfo filtFeaturesLeft[], featureInfo filtFeaturesRight[], 

short *frame); 

/** 

 * This function uses SVD to refine a given R and t hypothesis, considering 

 * the entire support set for that particular hypothesis. There is a reference 

 * MATLAB implementation of this somewhere. 

 * 

 * A haiku: 

 * broken Camera 

 * the World is beyond repair 

 * it will not Work now 

 * 

 * @param[in] supportSize Size of support set 
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 * @param[in] currentPoints Support in current frame 

 * @param[in] pastPoints Support in past frame 

 * @param[out] R The polished rotation hypothesis 

 * @param[out] t The polished translation hypothesis 

 * @author Yavor Georgiev '06 

 * 

 **/ 

static void computeSVD(int supportSize, svs3Dpoint *currentPoints, svs3Dpoint 

*pastPoints, Matrix &R, ColumnVector &t); 

/** 

 * This function uses the algorithm presented by Besl '92: "A Method for  

 * Registration of 3-D Spapes" in section III.C., to find the best 

 * rotation matrix and translation vector between two triangles in 3D space. 

 * 

 * @param[in] t1 An array of three points - the first triangle  

 * @param[in] t1 An array of three points - the second triangle 

 * @param[out] R The best rotation matrix between them 

 * @param[out] t The best translation vector between them 

 * @author Yavor Georgiev '06 

 * 

 **/ 

static void computeRandT(const Matrix t1, const Matrix t2, Matrix &R, ColumnVector &t); 
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