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introduction / context and purpose 

Within the music-oriented realm of intelligent lighting, there exists a fundamental 
and unforgivable shortcoming. Current lighting devices run pre-programmed 
patterns, which progress based on vibration pulses that the lighting units detect. 
Actuation of these lighting devices is limited to the delayed vibration information 
that is gathered by these sensors. Such a configuration – although quickly 
conceivable – is only crudely effective. Due to this fact, these lighting systems do 
not have the ability to truly respond to music, and much possibility for the 
enhancement of the listener’s experience is overlooked. 

The purpose of completing this project is to create more advanced systems, using a 
perspective that is different from that of the common design. Rather than relying 
on delayed vibration content, these devices have more suitable inputs: they are 
hard-wired to the audio signal. Instead of running through pre-programmed visual 
progressions, their processing schemes use genre-specific decomposition 
algorithms to analyze what has been played. Consequently, they detect and 
appropriately respond to motion within the music. 

tempo / real-time estimation 

Software for producing a real-time tempo estimate of an audio signal. Pages 3 
through 31. 

revision / algorithm correction 

Revisions to the Tempo algorithm. Pages 32 though 47. 

pulser / intelligent strobe system 

A marketable user-controlled intelligent strobe system. Pages 48 through 71. 

dmxer / interactive dmx mixer 

A prototype mixer for controlling a DMX lighting apparatus. Pages 72 though 98. 
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abstract / concept and result 
This portion of the development is concerned with providing an algorithm for 
returning high-precision estimates of the tempo of incoming audio streams. While 
possible improvements were recognized, the selected algorithm proved highly 
successful in accomplishing its task.  

introduction / context and purpose 

The first stage of achieving the Synaesthesia vision is to correctly break an 
incoming audio stream into beat-based segments. By analyzing each segment and 
comparing multiple segments, the overall structure of the incoming audio signal 
may be extracted. This portion of the project focuses on a method for estimating 
the tempo of any music in the electronica genre. 

This report presents a brief discussion of the hardware and software environments 
to be used, and provides a thorough technical description of the tempo extraction 
algorithm. The algorithm is then simulated, and its performance is quantified. A 
real-time implementation of the algorithm is presented, along with a comparison of 
its performance to the simulated results. 

hardware environment / overview 

// hardware 
The Tempo project makes use of existing hardware, rather than existing as a stand-
alone unit. It is being coded on a Linux platform, and uses an M-Audio Delta1010LT 
soundcard to provide the necessary input and output interfaces. A relatively large 
number of inputs are needed, because the final system will take three stereo 
channels of data – the master output from a DJ’s mixer, as well as the two unmixed 
cue channels. 

// use of existing hardware 
In terms of product marketability, it is highly advantageous for the system to 
operate on hardware that the consumer already possesses. This would help to 
reduce the system’s market price, and would allow the consumer to easily 
incorporate the system onto their pre-existing lighting infrastructure. 

 



software environment / overview 

// the jack audio connection kit 

introduction 
JACK is a low-latency audio server, written for POSIX conformant operating 
systems such as Linux. It can connect several client applications to an audio device, 
and allow them to share audio with each other. Clients can run as separate 
processes like normal applications, or within the JACK server as plug-ins. JACK was 
designed from the ground up for professional audio work, and its design focuses on 
two key areas: synchronous execution of all clients, and low latency operation [1]. 

The Tempo software package is being written using the JACK API. Use of the high-
level abstraction layer provided by the API allows all hardware to be managed 
trivially. It is desired that the Tempo engine produce an output with a latency of no 
more than is perceivable by the listener; this is fully supported by the JACK 
environment. 

1. For more information see http://www.jackaudio.org. 

jack client structure 
The structure of JACK client is fairly simple, and can be summarized as follows: 

#include <jack/jack.h> 
... 
jack_port_t *input_port; 
... 
int process (jack_nframes_t nframes, void *arg) { 
  jack_default_audio_sample_t *in = (jack_default_audio_sample_t *) 

jack_port_get_buffer(input_port, nframes); 
  ... 
} 
void jack_shutdown (void *arg) { 
  ... 
  exit (1); 
} 
int main (int argc, char *argv[]) { 
  char *client_name = 0; 
  jack_client_t *client; 
  const char **ports; 
  ... 
  jack_set_process_callback (client, process, 0); 
  jack_on_shutdown (client, jack_shutdown, 0); 
  input_port = jack_port_register(client, "master_in_left", 

JACK_DEFAULT_AUDIO_TYPE, JackPortIsInput, 0); 
  if (jack_activate (client)) { 
    fprintf(stderr, "cannot activate client"); 
    return 1; 
  } 
  ... 
  for (;;) 
} 



The main function is responsible for setting up the client, and is then put to sleep. 
The JACK server calls the process function whenever it needs to send or read data 
to or from the client’s ports. The jack_shutdown function is called in the event that 
the server is shut down, or if the server stops calling the client. 

// fftw 

introduction 
FFTW is a C subroutine library for computing the discrete Fourier transform (DFT) in 
one or more dimensions, of arbitrary input size, and of both real and complex data 
[2]. It is the Fourier transform library of choice in most cases, and is used 
exclusively by this project for such computations. 

The PCM-coded audio signals to be processed are read from the buffer of the 
soundcard. At a sampling rate of 44 kHz, there is more than enough data for the 
desired processing. The typical buffer size is 1024 data points, although this and 
several other relevant values are configurable in the JACK interface. 

2. For more information see http://www.fftw.org. 

referencing the fftw library 
Using the FFTW library is fairly straightforward. To compute a one-dimensional DFT 
of size N, the following code structure is used:  

#include <fftw3.h> 
... 
{ 
  fftw_complex *in, *out; 
  fftw_plan p; 
  ... 
  in = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N); 
  out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N); 
  p = fftw_plan_dft_1d(N, in, out, FFTW_FORWARD, FFTW_ESTIMATE); 
  ... 
  fftw_execute(p); 
  ... 
  fftw_destroy_plan(p); 
  fftw_free(in); 
  fftw_free(out); 
} 

In this case, all of the input data is real, so the following FFTW plan call is used: 
fftw_plan fftw_plan_dft_r2c_1d(int n, double *in, fftw_complex *out, unsigned 

flags); 

Moreover, since JACK presents all of its data as float precision numbers, all 
instances of fftw are replaced by fftwf in the Tempo code. 

 

 



tempo and beat estimation / overview 

// introduction 
Tempo estimation is necessary for most autonomous music processing. Likewise, it 
is essential for the Tempo engine to precisely estimate the tempo of the audio 
streams it will manage. Music of the trance and house genres is quit percussive; 
due to this fact, the tempo tracking algorithm employed by Tempo may overlook 
several steps that are usually involved in this task. Moreover, the tempo of the 
audio stream should not change throughout its duration. It is assumed that the 
tempo lies between 110 and 150 BPM. These assumptions create an advantage in 
terms of computational time, which is highly desirable due to the real-time nature 
of this project. 

There are three stages of the beat tracking algorithm. In the first, the major events 
in the music are extracted. Second, the periodicity of the audio stream is examined, 
and the tempo is found. Finally, the estimated tempo is applied to search the audio 
stream for the instances in time where the beats occur. 

// algorithm description 

event detection 
The key to tempo extraction lies in correctly locating the significant events within 
the temporal waveform. By comparing the onset times of these occurrences, the 
periodicity of the music may be established. As is commonly used, a frequency 
domain approach is taken in order to process the input audio waveform. 

The signal is first converted to a decimated version of its short-time Fourier 
transform (STFT). This is accomplished by taking fixed-length segments of the 
incoming audio stream, and compiling a chronological sequence of their Fourier 
transforms. In most cases, each adjacent segment overlaps by some set amount; 
no such overlapping was employed here. The transform is given by 
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where ( )nx  is the audio signal, ( )nw  is the analysis window of N samples, m is the 

frame index, and f is the frequency. For this application ( )nw   is simply a 
rectangular window. 

One of the more robust approaches to event detection involves using the STFT to 
find the spectral energy flux of the waveform. The spectral energy flux ( )kfE ,  of 
the STFT is defined by [3] as 
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where ( )mh  approximates a differentiator filter, and ( )mfG ,  is obtained by passing 

( )mfX ,  through a low-pass filter and a non-linear compression. This transform 
seeks to approximate the derivative of the signal frequency content with respect to 
time; significant events emerge as peaks in the resulting transform. 

Simplifications occur, once again due to the percussive nature of the particular 
audio signals to be examined. The Tempo algorithm lets ( ) ( )mfXmfG ,, = , thus 
utilizing the full spectrum of the audio signal. One of the main implications of using 
a differentiator filter is to destroy the zero-frequency components of the signal. 
While beneficial, this step proved unnecessary in this application. Tempo uses a 
rather crude approximation of the derivative of the signal frequency for event 
detection, which is given by 

( ) ( ) ( )∑∑ −−=
m f
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The resulting transform is half-rectified and summed for each m to produce a 
temporal waveform ( )kv , where ( )kv  exhibits quick magnitude spikes at the onset 

of significant events in the music. As can be expected, however, the waveform ( )kv  
contains a great amount of spurious noise that obscures the desired information. 

As suggested by [3], a median filter is applied to the function ( )kv  to remove the 
false peaks. The value of the median threshold is found from a moving window of 

12 +i  samples. Letting { }ikkikk vvvg +−= ,,,, …… , it is given by 

( ) ( )kgCkT median⋅=  

where C is a scaling factor that raises each cutoff value. The resulting function ( )kp  
is given by 
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The function ( )kp  is the event detection function used by the Tempo system. 

3. Alonso M., David B. and Richard G., “Tempo and Beat Estimation of Musical Signals,” proceedings 
of ISMIR, 2004. 

tempo estimation 

In many applications, the spectral sum or spectral product of ( )kp  is computed [4]. 
Both of these techniques assume that the power spectrum of an audio signal 
consists of harmonics of its fundamental frequency. If this is the case, summing or 
multiplying recursive temporal compressions of the data leads to datasets of 
strongly reinforced fundamental frequencies. 

By using stringent parameter settings in the steps leading to ( )kp , estimating the 

periodicity of ( )kp  becomes trivial. In this particular case, the FFT of ( )kp  yields 
precision tempo estimates of the audio waveforms. 



4. Simon D., “Onset Detection Revisited,” proceedings of the 9th Int. Conference on Digital Audio 
Effects (DAFx-06), Montreal, Canada, September 2006. 

beat location estimation 
To find the beat, an artificial pulse-train is created, with pulses that are spaced in 
accordance with the extracted tempo (as suggested in [3], referencing others). The 
pulses are given a finite width, to account for inaccuracies in their placement due to 
the resolution of the tempo-estimation algorithm. The pulse-train is then cross-
correlated with the event detection function ( )kp ; a beat is located whenever the 
cross-correlation is above a particular threshold. 

// simulation with controlled input signals 
Before the tempo detection algorithm was applied to any actual waveforms, it was 
applied to a test set. This set of audio samples each consisted of bass drum kicks, 
located on each downbeat in any given measure. The tempos of the test waveforms 
ranged from 125 to 145 BPM, with an interval of 1 BPM. 

The following discussion uses the test waveform with a tempo of 135 BPM. 

event detection 
Figure 1 shows the time waveform of the 135-BPM audio signal over a time period 
of about 3 seconds. 
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Figure 1. Time waveform of a 135-BPM test signal. 



Figure 2 shows a conversion of this waveform to its STFT. 

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

STFT (with 2.9025 ms windows)

Time (sec)

Fr
eq

ue
nc

y 
(k

H
z)

 
Figure 2. STFT off the 135-BPM waveform. 

Figure 3 shows the spectral energy flux of this data. 
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Figure 3. Spectral energy flux by frequency bin. 



Figure 4 shows the summed spectral energy flux function, along with the event 
detection function. 
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Figure 4. Spectral energy flux, and the event detection function. 

tempo estimation 
In order to detect the tempo at an acceptable resolution, the signal is evaluated 
over a longer period of time. Figure 5 shows the Fourier transform of the event 
detection function for a 95-second sampling of the 135-BPM test waveform. 
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Figure 5. FFT of the event detection function. 



The estimated tempo is accurate to within 0.006 percent of the actual tempo, and 
the nearest spike has an attenuation of approximately 40 dB. 

beat location estimation 
Initializing the comb filter at an arbitrary starting time causes it to seek out the 
next maximum. In this case, the comb filter searches the 135-BPM test waveform 
starting at approximately 3.5 seconds from its beginning. As illustrated in Figure 6, 
it correctly latches on to the beginning of the next beat. 
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Figure 6. Application of the comb filter. 

However, since the event detection function is able to extract the onsets of each of 
its beats, this result is to be expected. 

// simulation with real input signals 
The next level of analysis involves the use of real audio waveforms. The following 
discussion uses a waveform representation of the track DJ Tiësto – Close To You 
(Magik Muzik Remix), which also has a tempo of 135 BPM. 

event detection 
Figure 7 shows the time waveform of the audio signal over a time period of about 3 
seconds. This sample begins at an arbitrarily chosen point in time. 
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Figure 7. The waveform. 

Figure 8 shows a conversion of this waveform to its STFT. 
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Figure 8. STFT. 

Figure 9 shows the spectral energy flux of this data. 
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Figure 9. Spectral energy flux by frequency bin. 

Figure 10 shows the summed spectral energy flux function, along with the event 
detection function. 
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Figure 10. Spectral energy flux and the event detection function. 



tempo estimation 
As done before, in order to detect the tempo at an acceptable resolution, the signal 
is evaluated over a longer period of time. Figure 11 shows the Fourier transform of 
the event detection function for a 95-second sampling of the 135-BPM waveform. 

1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
-120

-100

-80

-60

-40

-20

0
FFT, tempo found at 135.0072 BPM

Frequency (Hz)

N
or

m
al

iz
ed

 m
ag

ni
tu

de
 (d

B)

 
Figure 11. Tempo estimation. 

Once again, the estimated tempo is accurate to within 0.006 percent of the actual 
tempo, and the nearest spike has an attenuation of approximately 40 dB. 

beat location estimation 
The comb filter is initialized to start its search at the beginning of the sampling 
window. As illustrated in Figure 12, it correctly latches on to the beginning of the 
next beat. 
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Figure 12. Application of the comb filter. 



// simulation with real input signals [ revisited ] 
It can be seen that the audio segment addressed in section 5.4 closely resembles 
that of section 5.3, and it is therefore not surprising that the algorithm may 
correctly extract the tempo of the waveform. 

The following discussion once again uses a waveform representation of the track DJ 
Tiësto – Close To You (Magik Muzik Remix). This time, however, event detection 
function is unable to detect each beat. 

event detection 
Figure 13 shows the time waveform of the audio signal. 
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Figure 13. Waveform. 

Figure 14 shows the summed spectral energy flux function, along with the event 
detection function. Note that only a small percentage of the beats are detected. 
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Figure 14. Spectral energy flux and the event detection function. 

tempo estimation 
Even though the event detection function has failed for a substantial portion of the 
sampled waveform, the estimated tempo does not falter. It is again accurate to 
within 0.006 percent of the actual tempo, and the nearest spike has an attenuation 
of about 35 dB. 
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Figure 15. Tempo estimation. 



beat location estimation 
Moreover, the comb filter correctly latches on to the beginning of the next beat. 
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Figure 16. Application of the comb filter. 

It is true that this particular comb filter would fail if the window started at, for 
example, 1570 seconds. However, increasing the length of the comb filter 
compensates for this issue. If the comb is able to latch on to a beat that occurs 
before the break in onset detections, then the beat times occurring during the lapse 
may be interpolated – at a negligible loss in accuracy of each timestamp due to the 
precision tempo estimate. 

// real-time system 

introduction 
The operation of the real-time system mirrors the operation of the simulations as 
closely as possible, and is successful in its task almost to the same extent as the 
simulations are. It is highly compact in its structure, which accounts for its 
complexity. The code used may leave some room for improvement, due to my 
inexperience with the language. 

headers and variable declarations 
The majority of the variables used by the Tempo client are declared as globals, due 
to the structure of its operation. 

The following variables mirror parameters which may be set in JACK: 
#define JACK_FRAMES_PER_BUFFER 1024 



#define JACK_SAMPLES_PER_SEC 44100 

The standard number of frames (samples) per JACK buffer cycle is 1024. A 
combination of these particular settings provides a maximum latency of 46.4 ms 
between the time that the sample is passed to the audio card and passed to the 
JACK client. It would be beneficial to have these numbers read directly from JACK; 
however a method for doing so has not been established at the present. 

The following variables are internal to this client, and define the size – and thus 
resolution – of both the STFT stage and the tempo-estimating FFT stage. The first 
of these refers to the sample size of each STFT input; the setting used provides a 
resolution of less than 3 ms per timestamp. The second value defines the number 
of STFT windows to be processed and sent to the tempo-estimating FFT.  

#define STFT_BUFFERS 128 

#define STFT_WINDOW_N 128 

The tempo estimation is limited by upper and lower bounds, these are also 
predefined:  

#define MIN_TEMPO 100 

#define MAX_TEMPO 150 

The parameters for the median filter are defined to be the same as those used in 
simulation. The window extends for MF_N values to either side of the indexed data 
point. 

#define MF_N 10 

#define C 5 

The following values define the JACK ports: 
jack_port_t *input_port_m_l; 

jack_port_t *input_port_m_r; 

jack_port_t *input_port_c1_l; 

jack_port_t *input_port_c1_r; 

jack_port_t *input_port_c2_l; 

jack_port_t *input_port_c2_r; 

jack_port_t *output_port_m_l; 

jack_port_t *output_port_m_r; 

The following variables define the raw audio input arrays: 
float *raw_l; 

float *raw_r; 

float *raw_mixed; 

The following variables are used for the STFT, and the calculation of the spectral 
energy flux: 

float *fft_window_in; 

fftwf_complex *fft_window_out; 

fftwf_plan fft_window_p; 

double *stft_old_mag; 



fftwf_complex *stft_new; 

double *stft_new_mag; 

float stft_old_sum; 

float stft_new_sum; 

float sef_max; 

float *sef; 

The following variables are used for the tempo-estimating FFT. The input to the FFT 
is the event detection function edf. 

float *edf; 

float *fft_tempo_in; 

fftwf_complex *fft_tempo_out; 

fftwf_plan fft_tempo_p; 

double *fft_tempo_mag; 

This variable is used as a counter, for determining how full the tempo-estimation 
FFT input is. This value is sent to the terminal. 

unsigned int edf_fill_count; 

The following variables are for timing, so that events may be time stamped as 
necessary. 

struct timeval tv; 

struct timezone tz; 

float start_time; 

float current_time; 

The tempo is also defined as a global. The value stored in freq_inc is the frequency 
increment between any two adjacent tempo-estimation FFT outputs. 

double tempo; 

double freq_inc; 

Knowledge of these variables is essential for understanding the operation of the 
code. 

the main function 
The main function is called at the start of client execution. It is responsible for 
configuring the client so that it may run solely on its JACK process callback. After 
this function has completed the setup, it is put to sleep.  

The first thing that is done is to record the time at which this program was 
initialized, so that this value may be referenced if desired: 

gettimeofday(&tv, &tz); 

start_time = (double)(tv.tv_sec % 1000) + ((double)tv.tv_usec) / 1000000.0; 

The only argument that may be passed in (at present) is the name for the client. If 
no value is passed in, the client name is defaulted to synaesthesia. 

if (argc < 2) { 



  client_name = (char *) malloc (9 * sizeof (char)); 

  strcpy (client_name, "synaesthesia"); 

} else { 

  client_name = (char *) malloc (9 * sizeof (char)); 

  strcpy (client_name, argv[1]); 

} 

Next, all the required memory space is allocated. FFTW requires the use of 
fftwf_malloc. 

raw_l = (float *) (sizeof(float) * JACK_FRAMES_PER_BUFFER); 

raw_r = (float *) fftwf_malloc(sizeof(float) * JACK_FRAMES_PER_BUFFER); 

raw_mixed = (float *) fftwf_malloc(sizeof(float) * JACK_FRAMES_PER_BUFFER); 

 

fft_window_in = (float *) fftwf_malloc(sizeof(float) * STFT_WINDOW_N); 

fft_window_out = (fftwf_complex *) fftwf_malloc(sizeof(fftwf_complex) * 
((STFT_WINDOW_N / 2) + 1)); 

fft_window_p = fftwf_plan_dft_r2c_1d(STFT_WINDOW_N, fft_window_in, 
fft_window_out, FFTW_ESTIMATE); 

//fft_window_mag = (double *) malloc(sizeof(float) * ((STFT_WINDOW_N / 2) + 
1)); 

 

edf = (float *) fftwf_malloc(sizeof(float) * JACK_FRAMES_PER_BUFFER * 
STFT_BUFFERS); 

fft_tempo_in = (float *) fftwf_malloc(sizeof(float) * JACK_FRAMES_PER_BUFFER * 
STFT_BUFFERS); 

fft_tempo_out = (fftwf_complex *) fftwf_malloc(sizeof(fftwf_complex) * 
((JACK_FRAMES_PER_BUFFER * STFT_BUFFERS / 2) + 1)); 

fft_tempo_p = fftwf_plan_dft_r2c_1d(JACK_FRAMES_PER_BUFFER*STFT_BUFFERS, 
fft_tempo_in, fft_tempo_out, FFTW_ESTIMATE); 

fft_tempo_mag = (double *) malloc(sizeof(double) * ((JACK_FRAMES_PER_BUFFER * 
STFT_BUFFERS / 2) + 1)); 

 

stft_old_mag = (double *) fftwf_malloc(sizeof(double) * ((STFT_WINDOW_N / 2) + 
1)); 

stft_new_mag = (double *) fftwf_malloc(sizeof(double) * ((STFT_WINDOW_N / 2) + 
1)); 

stft_new = (fftwf_complex *) fftwf_malloc(sizeof(fftwf_complex) * 
((STFT_WINDOW_N / 2) + 1)); 

  

sef = (float *) fftwf_malloc(sizeof(float) * ((MF_N * 2) + 1 + 
(JACK_FRAMES_PER_BUFFER / STFT_WINDOW_N))); 

The values in the event detection function are initialized to zero: 
for (i=0; i<JACK_FRAMES_PER_BUFFER * STFT_BUFFERS-1; i++) { 

  edf[i] = 0.0; 

} 



The spectral energy flux values are normalized based on the max value of this 
function, which is updated throughout the duration of the client’s execution. This 
value must also be initialized: 

sef_max = 0.0; 

The tempo increment is defined here, because it is based on parameters that will 
not change: 

freq_inc = 1.0 / ((JACK_FRAMES_PER_BUFFER * STFT_BUFFERS) * (1.0 / 
(JACK_SAMPLES_PER_SEC / STFT_WINDOW_N))); 

Tempo may now attempt to become a client of the JACK server. This is called as 
follows: 

if ((client = jack_client_new (client_name)) == 0) { 

  fprintf (stderr, "Check that the JACK server is running...\n"); 

  return 1; 

} 

The JACK process callback must be specified: 
jack_set_process_callback (client, process, 0); 

If JACK is shutdown, or decides to stop calling the client, it is sent to 
jack_shutdown(): 

jack_on_shutdown (client, jack_shutdown, 0); 

The JACK input and output ports are established as follows: 
input_port_m_l = jack_port_register(client, "master_in_left", 

JACK_DEFAULT_AUDIO_TYPE, JackPortIsInput, 0); 

input_port_m_r = jack_port_register(client, "master_in_right", 
JACK_DEFAULT_AUDIO_TYPE, JackPortIsInput, 0); 

input_port_c1_l = jack_port_register(client, "cue_1_left", 
JACK_DEFAULT_AUDIO_TYPE, JackPortIsInput, 0); 

input_port_c1_r = jack_port_register(client, "cue_1_right", 
JACK_DEFAULT_AUDIO_TYPE, JackPortIsInput, 0); 

input_port_c2_l = jack_port_register(client, "cue_2_left", 
JACK_DEFAULT_AUDIO_TYPE, JackPortIsInput, 0); 

input_port_c2_r = jack_port_register(client, "cue_2_right", 
JACK_DEFAULT_AUDIO_TYPE, JackPortIsInput, 0); 

output_port_m_l = jack_port_register(client, "master_out_left", 
JACK_DEFAULT_AUDIO_TYPE, JackPortIsOutput, 0); 

output_port_m_r = jack_port_register(client, "master_out_right", 
JACK_DEFAULT_AUDIO_TYPE, JackPortIsOutput, 0); 

Finally, the client is able to roll, and JACK is notified:  
if (jack_activate (client)) { 

  fprintf(stderr, "cannot activate client"); 

  return 1; 

} 

The setup is complete, and main goes to sleep. 
for (;;) 



the jack process callback function 
The JACK process callback is called whenever there is a buffer ready to be imported 
from or exported to JACK. 

Only a minimal number of variable declarations must be made during each callback. 
These are all temporary, and will be lost after the completion of the callback. 

int i; 

int j; 

int k; 

double fft_tempo_max; 

int fft_tempo_max_place; 

double tempo_freq; 

double mf_max; 

double mf_thresh; 

int mf_count; 

Each buffer cycle is time stamped: 
gettimeofday(&tv, &tz); 

current_time = (double)(tv.tv_sec % 1000) + ((double)tv.tv_usec) / 1000000.0; 

The following lines define where to get and put the JACK buffers: 
jack_default_audio_sample_t *out_m_l = (jack_default_audio_sample_t *) 

jack_port_get_buffer(output_port_m_l, nframes); 

jack_default_audio_sample_t *out_m_r = (jack_default_audio_sample_t *) 
jack_port_get_buffer(output_port_m_r, nframes); 

jack_default_audio_sample_t *in_m_l = (jack_default_audio_sample_t *) 
jack_port_get_buffer(input_port_m_l, nframes); 

jack_default_audio_sample_t *in_m_r = (jack_default_audio_sample_t *) 
jack_port_get_buffer(input_port_m_r, nframes); 

jack_default_audio_sample_t *in_c1_l = (jack_default_audio_sample_t *) 
jack_port_get_buffer(input_port_c1_l, nframes); 

jack_default_audio_sample_t *in_c1_r = (jack_default_audio_sample_t *) 
jack_port_get_buffer(input_port_c1_r, nframes); 

jack_default_audio_sample_t *in_c2_l = (jack_default_audio_sample_t *) 
jack_port_get_buffer(input_port_c2_l, nframes); 

jack_default_audio_sample_t *in_c2_r = (jack_default_audio_sample_t *) 
jack_port_get_buffer(input_port_c2_r, nframes); 

Passing JACK input streams to JACK output streams is accomplished as follows. 
Tempo passes its master inputs to its master outputs. 

memcpy(out_m_l, in_m_l, sizeof(jack_default_audio_sample_t) * nframes); 

memcpy(out_m_r, in_m_r, sizeof(jack_default_audio_sample_t) * nframes); 

The JACK input buffers are copied: 
memcpy(raw_l, in_m_l, sizeof(jack_default_audio_sample_t) * nframes); 

memcpy(raw_r, in_m_r, sizeof(jack_default_audio_sample_t) * nframes); 



The left and right input channels are combined: 
for (i=0; i<nframes; i++) { 

  raw_mixed[i] = raw_l[i] + raw_r[i]; 

} 

The following code compiles the spectral energy flux vector sef. 
for (i=(JACK_FRAMES_PER_BUFFER * STFT_BUFFERS)-1; i>=0; i--) { 

  if (i > ((JACK_FRAMES_PER_BUFFER / STFT_WINDOW_N) - 1)) { 

    edf[i] = edf[i - (JACK_FRAMES_PER_BUFFER / STFT_WINDOW_N)]; 

    if (i < ((MF_N * 2) + 1 + (JACK_FRAMES_PER_BUFFER / STFT_WINDOW_N))) { 

      sef[i] = sef[i - (JACK_FRAMES_PER_BUFFER / STFT_WINDOW_N)]; 

    } 

  } else { 

    for (k=0; k<STFT_WINDOW_N; k++) { 

      fft_window_in[k] = raw_mixed[k + (STFT_WINDOW_N * i)]; 

    } 

    fftwf_execute(fft_window_p); 

    memcpy(stft_new, fft_window_out, sizeof(fftwf_complex) * ((STFT_WINDOW_N / 
2) + 1)); 

    for (k=0; k<((STFT_WINDOW_N / 2) - 1); k++) { 

      stft_new_mag[k] = sqrt(stft_new[k][0]*stft_new[k][0] + 
stft_new[k][1]*stft_new[k][1]); 

    } 

    sef[i] = 0.0; 

    for (k=0; k<((STFT_WINDOW_N / 2) - 1); k++) { 

      if (stft_new_mag[k] > stft_old_mag[k]) { 

        sef[i] = sef[i] + stft_new_mag[k] - stft_old_mag[k]; 

      } 

    } 

    for (k=0; k<((STFT_WINDOW_N / 2) - 1); k++) { 

      stft_old_mag[k] = stft_new_mag[k]; 

    } 

  } 

} 

Only the new parts of sef must be normalized. This is done after updating the 
normalization reference value sef_max. 

for (i=0; i<((MF_N*2)+1+(JACK_FRAMES_PER_BUFFER / STFT_WINDOW_N)); i++) { 

  if (sef[i] > sef_max) { 

    sef_max = sef[i]; 

  } 

} 



for (i=0; i<(JACK_FRAMES_PER_BUFFER / STFT_WINDOW_N); i++) { 

  sef[i] = sef[i] / sef_max; 

} 

The following code runs the median filter. Note that there is a lag of one process 
callback (about 46.4 ms) from the time that new data enters sef to the time that it 
enters edf. 

for (i=(MF_N + (JACK_FRAMES_PER_BUFFER / STFT_WINDOW_N)); i>(MF_N-1); i--) { 

  mf_count = 1; 

  mf_max = 0.0; 

  mf_thresh = 0.0; 

  for (j=(i-MF_N); j<(i+MF_N+1); j++) { 

    if (sef[j] > mf_thresh) { 

      mf_thresh = sef[j]; 

    } 

  } 

  while (mf_count < (MF_N + 2)) { 

    for (j=(i-MF_N); j<(i+MF_N+1); j++) { 

      if ((sef[j] > mf_max) && (sef[j] < mf_thresh)) { 

        mf_max = sef[j]; 

      } 

    } 

    mf_count++; 

    mf_thresh = mf_max; 

  } 

  if (sef[i-MF_N] > C*mf_max) { 

    edf[i-MF_N] = sef[i-MF_N]; 

  } else { 

    edf[i-MF_N] = 0; 

  } 

} 

The compiled edf vector is sent to FFTW in order to estimate the tempo: 
memcpy(fft_tempo_in, edf, sizeof(float) * JACK_FRAMES_PER_BUFFER * 

STFT_BUFFERS); 

fftwf_execute(fft_tempo_p); 

The following code searches for the maximum FFT value, over a range specified by 
MIN_TEMPO and MAX_TEMPO:  

fft_tempo_max = 0.0; 

for (i=0; i<(JACK_FRAMES_PER_BUFFER*STFT_BUFFERS/2)+1; i++) { 

  fft_tempo_mag[i] = sqrt(fft_tempo_out[i][0]*fft_tempo_out[i][0] + 
fft_tempo_out[i][1]*fft_tempo_out[i][1]); 



  if ((fft_tempo_mag[i] > fft_tempo_max) && (i > MIN_TEMPO/60.0/freq_inc) && (i 
< MAX_TEMPO/60.0/freq_inc)) { 

    fft_tempo_max = fft_tempo_mag[i]; 

    fft_tempo_max_place = i; 

  } 

} 

tempo_freq = fft_tempo_max_place * freq_inc; 

The following increments the counter that tells how full the event detection function 
is: 

if (edf_fill_count < STFT_BUFFERS) { 

  edf_fill_count++; 

} 

Finally, the estimated tempo is printed to the terminal: 
if (tempo_freq*60 > MAX_TEMPO) tempo_freq = 0; 

if (tempo_freq * 60.0 > MAX_TEMPO) { 

  printf("\r   tempo: ---.--- bpm (fft buffer at %1.1f%%)        ", 
100.0*(float)edf_fill_count/(float)STFT_BUFFERS); 

} else { 

  printf("\r   tempo: %7.3f bpm (fft buffer at %1.1f%%)        ", tempo_freq * 
60.0, 100.0*(float)edf_fill_count/(float)STFT_BUFFERS); 

} 

fflush(stdout); 

limits to precision 
The performance of the real-time implementation of the tempo estimation 
algorithm was limited primarily by the processing capacity of the computer. The 
tempo-locating FFT is the largest contributor to the computational complexity of the 
algorithm. Increasing the STFT windows used for this computation would most 
likely improve its accuracy; however, the value chosen above is near the upper 
limit of achievable FFT size. 

// real-time performance with controlled input signals 
As done in simulation, the real-time tempo estimation algorithm was first tested 
with a controlled input signal. Figure 17 presents the spectral energy flux of the 
incoming audio stream, as found by the Tempo engine. Comparing this plot of that 
of Figure 4, it can be seen that the real-time performance of this function closely 
matches the simulated results. 
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Figure 17. Spectral energy flux. 

Figure 18 depicts an application of the real-time event detection function to the 
incoming audio signal. It can be seen that, similar to the simulated results, the 
event detection function is able to recognize the onset of each beat.  
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Figure 18. The event detection function. 

Figure 19 shows a plot of the estimated tempo, starting at the beginning of the 
audio signal playback. It can be seen that the real-time tempo estimation algorithm 
comes within three quantization intervals of the true value within 2 seconds. By 5 
seconds, the error in the estimated value has fallen to one quantization interval. 
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Figure 19. Tempo estimation. 

// real-time performance with real input signals 
The performance of the Tempo tempo estimation algorithm was tested for a 
number of waveforms, varying over the range of attainable tempos. 

In order to further compare the real-time implementation of the algorithm to the 
simulated results, it was tested using track DJ Tiësto – Close To You (Magik Muzik 
Remix). Figure 20 presents a plot of the estimated tempo over the duration of the 
track. It takes the algorithm approximately 25 seconds to come within a reasonable 
estimate of the tempo. The tempo is estimated to be less than its true value (135 
BPM) by one quantization interval for the majority of the track’s length (from 50 to 
275 seconds). It then drops by another quantization level, most likely due to a 
failure in the event detection function over that interval. Finally, towards the end of 
the track, the tempo raises to a value that is one quantization level above where it 
should be. 
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Figure 20. Tempo estimation over the duration of DJ Tiësto – Close To You (Magik Muzik Remix). 

The track Skin – Faithfulness (DJ Tiësto Remix) was recorded at a tempo of 
precisely 140 BPM; this tempo is towards the upper limit of music in this genre. 
Figure 21 depicts the performance of the tempo estimation algorithm over the 
duration of this track. The performance of the Tempo engine is similar in this case – 
the estimated tempo stays within one quantization level for a majority of the track’s 
length. However, this time there are more fluctuations in the estimated tempo 
towards the end of the track. 
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Figure 21. Tempo estimation over the duration of Skin – Faithfulness (DJ Tiësto Remix). 



The track Bounce Back by Armin van Buuren (featuring DJ Remy and Roland 
Klinkenberg) was recorded at a tempo of precisely 130 BPM. This is one of the 
slower tempos seen by the genre. Figure 22 presents the performance of the tempo 
estimation algorithm over the duration of this track. It can be seen that in this 
case, Tempo is quite effective in estimating the tempo over the duration of the 
track. The algorithm comes within one quantization level of the true tempo after 
only 10 seconds, and stays within two quantization levels for the remainder of the 
track. 
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Figure 22. Tempo detection over the duration of Armin van 

Buuren (feat. DJ Remy and Roland Klinkenberg) – Bounce Back. 

One of the ways in which to improve the estimation algorithm would be to use a 
Kalman filter to control the value of the estimated tempo. The Kalman filter is a 
recursive estimator for the state of a dynamic system. Kalman filters are especially 
useful when the data is incomplete or noisy, which is the case in this particular 
situation. When applied to the above waveforms, the Kalman filter would eliminate 
the presence of unwanted fluctuations, and would capitalize on the fact that the 
tempo estimation should not change during the duration of any given track. 

It may also be noted that for each of these waveforms (and the controlled 
waveform) the estimated tempo is slightly less than the true tempo. This fact could 
be used in order to further refine the accuracy of the tempo estimation. 

conclusions / successes and shortcomings 
Initially, this project was to be prepared as a stand-alone module, using a PCB-
mount computer. The time taken to set up the PCB computer – and realize its 
failure to operate as needed – hindered the amount of progress that could be made 



during this semester. However, the work that was completed is a large step 
towards the completion of the project as a whole. 

This semester’s work familiarized me with a large variety of issues pertaining to 
software development. Prior to beginning my project, I had little experience with 
hardware management, programming in C, and the use of third-party coding 
libraries. While much time was spent in coding the final product, I had to spend a 
large portion of the semester preparing myself to code in the necessary 
environment. This preparation is extremely valuable in reference to the work I will 
do next semester, because now I am fully prepared to tackle the tasks I hope to 
complete. 
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abstract / overview and result 
In revisiting the work done for the Tempo software, severe errors were found. This 
portion of the project development addresses these errors, and provides corrected 
software. 

alterations / quick summary 

The main modification that was made to the Tempo source code was to reorient 
each of its temporally-based vectors. Originally, each of these vectors was oriented 
as follows, where t0 is the oldest time and tn is the most recent time: 

x0 x1 x2 x3 x4 x5 x6 x7 x8 ... xn-2 xn-1 xn 
tn tn-1 tn-2 tn-3 tn-4 tn-5 tn-6 tn-7 tn-8 ... t2 t1 t0 

This representation is counterintuitive, because a plot of the vector would be 
reversed in the time domain. 

The Tempo source code was rewritten, with the following vector orientation: 

x0 x1 x2 x3 x4 x5 x6 x7 x8 ... xn-2 xn-1 xn 
t0 t1 t2 t3 t4 t5 t6 t7 t8 ... tn-2 tn-1 tn 

In addition to the vector reorientation, the code was completely overhauled to 
produce a much more finished and concise final program. 

code / complete documentation 
The following is the complete revised source code for the real-time tempo 
estimation algorithm. 

#include <stdio.h> 

#include <errno.h> 

#include <unistd.h> 

#include <stdlib.h> 

#include <string.h> 

#include <sys/types.h> 

#include <sys/stat.h> 

#include <fcntl.h> 

#include <unistd.h> 

#include <math.h> 

#include <jack/jack.h> 

#include <fftw3.h> 

#include <sys/time.h> 

#include <time.h> 



 

#define JACK_FRAMES_PER_BUFFER 1024 

#define JACK_SAMPLES_PER_SEC 44100 

 

#define STFT_BUFFERS 128 

#define STFT_WINDOW_N 128 

 

#define MIN_TEMPO 100 

#define MAX_TEMPO 150 

 

#define MF_N 10 // Number to count on either side. 

#define C 1.2 // No more than about 1.25 

 

#define COMB_N 2000 

#define COMB_WIDTH 3 // Half-1 

#define COMB_THRESH 5 // About 9 beats per 

 

#define RESET  0 

#define BRIGHT  1 

#define DIM     2 

#define UNDERLINE  3 

#define BLINK  4 

#define REVERSE 7 

#define HIDDEN   8 

#define BLACK     0 

#define RED     1 

#define GREEN    2 

#define YELLOW    3 

#define BLUE    4 

#define MAGENTA 5 

#define CYAN    6 

#define WHITE    7 

 

// JACK variables. 

jack_port_t *input_port_l; 

jack_port_t *input_port_r; 

jack_port_t *output_port_l; 

jack_port_t *output_port_r; 

 

// Raw audio input variables. 

float *in_mixed; 

 

float *inv_out; 



 

// STFT variables for FFTW. 

float *fft_window_in; 

fftwf_complex *fft_window_out; 

fftwf_plan fft_window_p; 

double *stft_old_mag; 

fftwf_complex *stft_new; 

double *stft_new_mag; 

float stft_old_sum; 

float stft_new_sum; 

 

float sef_max; 

float *sef; // Spectral energy function. 

 

// Tempo variables for FFTW. 

float *edf; // Event detection function. 

float *fft_tempo_in; 

fftwf_complex *fft_tempo_out; 

fftwf_plan fft_tempo_p; 

double *fft_tempo_mag; 

 

// Comb filter variables. 

float *edf_mem; 

float *comb; 

short int windows_per_beat; 

 

// For telling how full  

unsigned int edf_fill_count; 

 

// Timing variables 

struct timeval tv; 

struct timezone tz; 

double start_time; 

double current_time; 

double run_time; 

double new_tempo_time; 

double const_tempo_time; 

double buffer_cycle_duration; 

 

// The tempo. 

double tempo; 

double freq_inc; 

double prev_tempo; 



double previous_beat_time; 

double next_beat_time; 

 

// =============================================================================== 

 

void textcolor (int attr, int fg, int bg) { 

char command[13]; 

sprintf(command, "%c[%d;%d;%dm", 0x1B, attr, fg + 30, bg + 40); 

printf("%s", command); 

} 

 

// =============================================================================== 

 

void move_cursor (int row, int col) { 

 printf("\033[%d;%dH", row, col); 

} 

 

// =============================================================================== 

 

int process (jack_nframes_t nframes, void *arg) { 

 

 // Variable declarations. 

 int i; 

 int j; 

 int k; 

 int l; 

 double fft_tempo_max; 

 int fft_tempo_max_place; 

 double tempo_freq; 

 short int event_place; 

 float event_val; 

 short int event_bool; 

 short int beat_bool; 

 float comb_cc; 

 

 // Median filter variables. 

 double mf_max; 

 double mf_thresh; 

 int mf_count; 

 

 // Timestamp each buffer cycle. 

 gettimeofday(&tv, &tz); 



 buffer_cycle_duration = (double)(tv.tv_sec % 1000) + ((double)tv.tv_usec) / 1000000.0 
- current_time; 

 current_time = (double)(tv.tv_sec % 1000) + ((double)tv.tv_usec) / 1000000.0; 

   run_time = current_time-start_time; 

 

 // Define where to get and put JACK buffers. 

 jack_default_audio_sample_t *out_l = (jack_default_audio_sample_t *) 
jack_port_get_buffer(output_port_l, nframes); 

 jack_default_audio_sample_t *out_r = (jack_default_audio_sample_t *) 
jack_port_get_buffer(output_port_r, nframes); 

 jack_default_audio_sample_t *in_l = (jack_default_audio_sample_t *) 
jack_port_get_buffer(input_port_l, nframes); 

 jack_default_audio_sample_t *in_r = (jack_default_audio_sample_t *) 
jack_port_get_buffer(input_port_r, nframes); 

 

   // Pass JACK input streams to JACK output streams. 

   memcpy(out_l, in_l, sizeof(jack_default_audio_sample_t) * nframes); 

   memcpy(out_r, in_r, sizeof(jack_default_audio_sample_t) * nframes); 

 

   // Mix the left and right input channels. 

   for (i=0; i<nframes; i++) { 

  in_mixed[i] = in_l[i] + in_r[i]; 

 } 

   

   // --------------------------------------------------------------------------- 

 

 // Compile the sef[] vector. 

 for (i=0; i<(JACK_FRAMES_PER_BUFFER * STFT_BUFFERS); i++) { 

 

  // If i < total - 8... 

  if (i < ((JACK_FRAMES_PER_BUFFER * STFT_BUFFERS) - (JACK_FRAMES_PER_BUFFER / 
STFT_WINDOW_N))) { 

       

   // Shift the values in edf[] to the left by 8. 

   edf[i] = edf[i + (JACK_FRAMES_PER_BUFFER / STFT_WINDOW_N)]; 

 

   // If i < 29 - 8 

   if (i < ((MF_N * 2) + 1)) { 

 

    // Also shift the values in sef[] to the left by 8. 

    sef[i] = sef[i + (JACK_FRAMES_PER_BUFFER / STFT_WINDOW_N)]; 

 

   } 

       

  // If i references the newest 8 data points... 



  } else { 

 

   // Take the FFT of each segment of data. i should range from 0 to 7... 

   for (k=0; k<STFT_WINDOW_N; k++) { 

    fft_window_in[k] = in_mixed[k + (STFT_WINDOW_N * (i - 
((JACK_FRAMES_PER_BUFFER * STFT_BUFFERS) - 
(JACK_FRAMES_PER_BUFFER / STFT_WINDOW_N))))]; 

   } 

   fftwf_execute(fft_window_p); 

       

   // Copy to stft_new[]. 

   memcpy(stft_new, fft_window_out, sizeof(fftwf_complex) * ((STFT_WINDOW_N / 2) 
+ 1)); 

       

   // Find its magnitude. 

   for (k=0; k<((STFT_WINDOW_N / 2) - 1); k++) { 

    stft_new_mag[k] = sqrt(stft_new[k][0]*stft_new[k][0] + 
stft_new[k][1]*stft_new[k][1]); 

   } 

       

   // Initialize sef[] place. The median filter is run on sef[]. sef[] ranges 
from 0 to 28, initialize from 21 to 28. 

   l = ((MF_N * 2) + 1) + (i - ((JACK_FRAMES_PER_BUFFER * STFT_BUFFERS) - 
(JACK_FRAMES_PER_BUFFER / STFT_WINDOW_N))); 

   sef[l] = 0.0; 

            

   // Compile sef[]. This runs from 21 to 28 (the new values). 

   //for (k=0; k<((STFT_WINDOW_N / 2) - 1); k++) { 

   for (k=0; k<8; k++) { // LPF @ 1050 Hz 

    if (k > 14 && k < 20) { 

   //printf("%f,", stft_new_mag[k]); 

  } 

  if (stft_new_mag[k] > stft_old_mag[k]) { 

     sef[l] = sef[l] + stft_new_mag[k] - stft_old_mag[k]; 

  } 

        } 

       

        // Shift stft_new[] to stft_old[]. 

        for (k=0; k<((STFT_WINDOW_N / 2) - 1); k++) { 

          stft_old_mag[k] = stft_new_mag[k]; 

        } 

       

     } 

  } 

   



   // Update sef_max. 

   for (i=0; i<((MF_N*2)+1+(JACK_FRAMES_PER_BUFFER / STFT_WINDOW_N)); i++) { 

     if (sef[i] > sef_max) { 

        sef_max = sef[i]; 

     } 

   } 

   

   // Normalize the new parts of sef[]. The new parts are 21 to 28. 

   for (i=((MF_N * 2) + 1); i <= ((MF_N*2)+1+(JACK_FRAMES_PER_BUFFER / STFT_WINDOW_N)); 
i++) { 

     sef[i] = sef[i] / sef_max; 

     //printf("%f\n", sef[i]); 

   } 

   

   // --------------------------------------------------------------------------- 

 

   // Assume that there is no beat in this buffer cycle (initialize). 

   beat_bool = 0; 

   event_bool = 0; 

   event_place = -1; 

   event_val = 0; 

 

   // Run the median filter, oldest to newest (10 to 17). 

   for (i=MF_N; i<(MF_N + (JACK_FRAMES_PER_BUFFER / STFT_WINDOW_N)); i++) { 

 

     // Initialize 

     mf_count = 1; 

     mf_max = 0.0; 

     mf_thresh = 0.0; 

 

     // Initialize mf_thresh (search from i-10 to i+10). 

     for (j=(i-MF_N); j<(i+MF_N+1); j++) { 

   if (sef[j] > mf_thresh) { 

      mf_thresh = sef[j]; 

   } 

     } 

 

     // Count down 11 max values to find the middle one (aka while < 12). 

     while (mf_count < (MF_N + 2)) { 

 

        // Seach from i-10 to i+10. 

        for (j=(i-MF_N); j<(i+MF_N+1); j++) { 

    if ((sef[j] > mf_max) && (sef[j] < mf_thresh)) { 



      mf_max = sef[j]; 

    }  

        } 

        mf_count++; 

        mf_thresh = mf_max; 

        //printf("%f,", mf_thresh); 

     } 

     printf("%f,%f\n", sef[i], C*mf_max); 

     if (sef[i] > C*mf_max) { 

        edf[(JACK_FRAMES_PER_BUFFER * STFT_BUFFERS)-(JACK_FRAMES_PER_BUFFER / 
STFT_WINDOW_N)+i-MF_N] = sef[i]; 

        event_bool = 1; // There is a beat detected in this buffer cycle.  

        if (sef[i] > event_val) { // Find the highest event (maybe search each, if 
this isn't good enough?). 

    event_place = i-MF_N; 

    event_val = sef[i]; 

        } 

     } else { 

        edf[(JACK_FRAMES_PER_BUFFER * STFT_BUFFERS)-(JACK_FRAMES_PER_BUFFER / 
STFT_WINDOW_N)+i-MF_N] = 0; 

     } 

   } 

 

   // --------------------------------------------------------------------------- 

   

   // Shift edf_mem[], add new values. 

   for (i=0; i<COMB_N; i++) { 

     if (i < COMB_N-(JACK_FRAMES_PER_BUFFER/STFT_WINDOW_N)) { 

        edf_mem[i] = edf_mem[i+(JACK_FRAMES_PER_BUFFER/STFT_WINDOW_N)]; 

     } else { 

        edf_mem[i] = edf[(i-(COMB_N-(JACK_FRAMES_PER_BUFFER/STFT_WINDOW_N))) + 
(JACK_FRAMES_PER_BUFFER * STFT_BUFFERS)-
(JACK_FRAMES_PER_BUFFER / STFT_WINDOW_N)]; 

     } 

   } 

 

   if (windows_per_beat > 0) { 

     for (j=COMB_N-1; j>=0; j--) { 

        comb[j] = 0.0; 

     } 

     j = 0; 

     while (j*windows_per_beat < COMB_N) { 

        for (k=COMB_N-j*windows_per_beat-((JACK_FRAMES_PER_BUFFER/STFT_WINDOW_N)-
event_place)+COMB_WIDTH; k>=COMB_N-j*windows_per_beat-
((JACK_FRAMES_PER_BUFFER/STFT_WINDOW_N)-event_place)-
COMB_WIDTH; k--) { 



    if (k >= 0) { 

       comb[k] = 1.0; 

    } 

        } 

        j++; 

     } 

     comb_cc = 0.0; 

     for (j=0; j<COMB_N; j++) { 

        comb_cc = comb_cc + comb[j]*edf_mem[j]; 

     } 

     if (comb_cc > COMB_THRESH) { 

        printf("\n"); 

        beat_bool = 1; 

        previous_beat_time = 
current_time+(buffer_cycle_duration/(JACK_FRAMES_PER_BUFFER
/STFT_WINDOW_N))*event_place; 

        next_beat_time = 
previous_beat_time+windows_per_beat*buffer_cycle_duration/(
JACK_FRAMES_PER_BUFFER/STFT_WINDOW_N); 

     } 

   } 

 

   // --------------------------------------------------------------------------- 

   

   // Send the compiled tempo vector to the FFTW input vector. 

   memcpy(fft_tempo_in, edf, sizeof(float) * JACK_FRAMES_PER_BUFFER * STFT_BUFFERS); 

   

   // Execute the tempo FFT. 

   fftwf_execute(fft_tempo_p); 

   

   // Initialize. 

   fft_tempo_max = 0.0; 

   

   // Determine the magnitude of each tempo FFT datapoint, and find the peak FFT value. 

   for (i=0; i<(JACK_FRAMES_PER_BUFFER*STFT_BUFFERS/2)+1; i++) { 

 

     // Determine the magnitude of each tempo FFT datapoint. 

     fft_tempo_mag[i] = sqrt(fft_tempo_out[i][0]*fft_tempo_out[i][0] + 
fft_tempo_out[i][1]*fft_tempo_out[i][1]); 

 

     // Search for the max value, but only up to the 6th place. 

     if ((fft_tempo_mag[i] > fft_tempo_max) && (i > MIN_TEMPO/60.0/freq_inc) && (i < 
MAX_TEMPO/60.0/freq_inc)) { 

        fft_tempo_max = fft_tempo_mag[i]; 

        fft_tempo_max_place = i; 



     } 

   } 

 

   // Calculate the freqeuncy accociated with the max value. 

   tempo_freq = fft_tempo_max_place * freq_inc; 

   tempo = tempo_freq * 60; 

 

   // Check to see if the estimated tempo has changed. 

   if (tempo != prev_tempo) { 

     new_tempo_time = current_time; 

     windows_per_beat = JACK_SAMPLES_PER_SEC * 60.0 / STFT_WINDOW_N / tempo; 

 

     

     if (windows_per_beat > 0) { 

        for (j=COMB_N-1; j>=0; j--) { 

    comb[j] = 0.0; 

        } 

        j = 0; 

        while (j*windows_per_beat < COMB_N) { 

    for (k=COMB_N-j*windows_per_beat-((JACK_FRAMES_PER_BUFFER/STFT_WINDOW_N)-
event_place)+COMB_WIDTH; k>=COMB_N-j*windows_per_beat-
((JACK_FRAMES_PER_BUFFER/STFT_WINDOW_N)-event_place)-
COMB_WIDTH; k--) { 

       if (k >= 0) { 

         comb[k] = 1.0; 

       } 

    } 

    j++; 

        } 

        comb_cc = 0.0; 

        for (j=0; j<COMB_N; j++) { 

    comb_cc = comb_cc + comb[j]*edf_mem[j]; 

        } 

        if (comb_cc > COMB_THRESH) { 

    beat_bool = 1; 

    previous_beat_time = 
current_time+(buffer_cycle_duration/(JACK_FRAMES_PER_BUFFER
/STFT_WINDOW_N))*event_place; 

    next_beat_time = 
previous_beat_time+windows_per_beat*buffer_cycle_duration/(
JACK_FRAMES_PER_BUFFER/STFT_WINDOW_N); 

        } 

    } 

     

    // ----------------------------------------------------------------------- 

 



  /*printf("\n\n\n"); 

   for (i=0; i<COMB_N; i++) { 

        printf("%f,%f\n", comb[i], edf_mem[i]); 

   }*/ 

   } else { 

     const_tempo_time = floorf(current_time)-floorf(new_tempo_time); 

   } 

   

   if (edf_fill_count < STFT_BUFFERS) { 

     edf_fill_count++; 

   } 

 

   if (beat_bool == 0) { // If beat times were not already defined during the comb filter 
code... 

     if (current_time + buffer_cycle_duration > next_beat_time) { 

        beat_bool = 1; // There is a beat during this buffer cycle. 

        previous_beat_time = next_beat_time; 

        next_beat_time = 
previous_beat_time+windows_per_beat*buffer_cycle_duration/(
JACK_FRAMES_PER_BUFFER/STFT_WINDOW_N); 

     } 

     if (current_time < next_beat_time - (next_beat_time-previous_beat_time)/2) { 

        //beat_bool = 1; 

     } 

   } 

 

   if (tempo > MAX_TEMPO) tempo = 0; 

 

   // Print to the terminal. 

   printf("\033[2J"); 

   move_cursor(2, 0); 

   textcolor(RESET, WHITE, BLACK); 

   printf("  Synaesthesia, Build 0.0\n"); 

   textcolor(RESET, RED, BLACK); 

   printf("  Engine uptime: %1.0f seconds\n\n", run_time); 

   printf("  Estimated tempo: %1.1f BPM ", tempo); 

   if (const_tempo_time >= 2) { 

     printf("(constant for %1.0f seconds) ", const_tempo_time); 

   } else if (const_tempo_time >= 1) { 

     printf("(constant for 1 second) "); 

   } 

   if (100.0*(float)edf_fill_count/(float)STFT_BUFFERS < 100) { 

     printf("(FFT buffer at %1.1f%%) ", 
100.0*(float)edf_fill_count/(float)STFT_BUFFERS); 

   } 



    printf("\n  Beat detection:"); 

   if (event_bool) { 

     printf(" %c", 164); 

    } else printf("  "); 

   if (beat_bool) { 

     printf(" %c", 164); 

   } 

   printf("\n\n  "); 

   fflush(stdout); 

 

   prev_tempo = tempo; 

 

   return 0;      

 

} 

 

// =============================================================================== 

 

void jack_shutdown (void *arg) 

{ 

 fftwf_destroy_plan(fft_window_p); 

   fftwf_free(fft_window_in);  

   fftwf_free(fft_window_out); 

 

   fftwf_destroy_plan(fft_tempo_p); 

   fftwf_free(fft_tempo_in);  

   fftwf_free(fft_tempo_out); 

 

   exit (1); 

} 

 

// =============================================================================== 

 

int main (int argc, char *argv[]) 

{ 

   char *client_name = 0; 

   jack_client_t *client; 

   const char **ports; 

   int i; 

 

    gettimeofday(&tv, &tz); 

   start_time = (double)(tv.tv_sec % 1000) + ((double)tv.tv_usec) / 1000000.0; 

 



   printf("\033[2J"); 

 

   if (argc < 2) { 

     client_name = (char *) malloc (9 * sizeof (char)); 

     strcpy (client_name, "synaesthesia"); 

   } else { 

     client_name = (char *) malloc (9 * sizeof (char)); 

     strcpy (client_name, argv[1]); 

   } 

 

   // Input streams. 

   in_mixed = (float *) fftwf_malloc(sizeof(float) * JACK_FRAMES_PER_BUFFER); 

 

   // FFTW variables for STFT. 

   fft_window_in = (float *) fftwf_malloc(sizeof(float) * STFT_WINDOW_N); 

   fft_window_out = (fftwf_complex *) fftwf_malloc(sizeof(fftwf_complex) * 
((STFT_WINDOW_N / 2) + 1)); 

   fft_window_p = fftwf_plan_dft_r2c_1d(STFT_WINDOW_N, fft_window_in, fft_window_out, 
FFTW_ESTIMATE); 

  

   // FFTW variables for tempo. 

   edf = (float *) fftwf_malloc(sizeof(float) * JACK_FRAMES_PER_BUFFER * STFT_BUFFERS); 

   fft_tempo_in = (float *) fftwf_malloc(sizeof(float) * JACK_FRAMES_PER_BUFFER * 
STFT_BUFFERS); 

   fft_tempo_out = (fftwf_complex *) fftwf_malloc(sizeof(fftwf_complex) * 
((JACK_FRAMES_PER_BUFFER * STFT_BUFFERS / 2) + 1)); 

   fft_tempo_p = fftwf_plan_dft_r2c_1d(JACK_FRAMES_PER_BUFFER*STFT_BUFFERS, fft_tempo_in, 
fft_tempo_out, FFTW_ESTIMATE); 

   fft_tempo_mag = (double *) malloc(sizeof(double) * ((JACK_FRAMES_PER_BUFFER * 
STFT_BUFFERS / 2) + 1)); 

 

   stft_old_mag = (double *) fftwf_malloc(sizeof(double) * ((STFT_WINDOW_N / 2) + 1)); 

   stft_new_mag = (double *) fftwf_malloc(sizeof(double) * ((STFT_WINDOW_N / 2) + 1)); 

   stft_new = (fftwf_complex *) fftwf_malloc(sizeof(fftwf_complex) * ((STFT_WINDOW_N / 2) 
+ 1)); 

  

   sef = (float *) fftwf_malloc(sizeof(float) * ((MF_N * 2) + 1 + (JACK_FRAMES_PER_BUFFER 
/ STFT_WINDOW_N))); 

 

   // Comb filter variables. 

   edf_mem = (float *) fftwf_malloc(sizeof(float) * COMB_N); 

   comb = (float *) fftwf_malloc(sizeof(float) * COMB_N); 

 

   // Initialize the tempo FFT input. 

   for (i=0; i<JACK_FRAMES_PER_BUFFER * STFT_BUFFERS-1; i++) { 

    edf[i] = 0.0; 



   } 

 

   sef_max = 0.0; 

 

   // Find the frequency increment between each FFT value. 

   freq_inc = 1.0 / ((JACK_FRAMES_PER_BUFFER * STFT_BUFFERS) * (1.0 / 
(JACK_SAMPLES_PER_SEC / STFT_WINDOW_N))); 

   

   // Try to become a client of the JACK server. 

   if ((client = jack_client_new (client_name)) == 0) { 

     fprintf (stderr, "Check that the JACK server is running...\n"); 

     return 1; 

   } 

 

   // Tell the JACK server to call process() whenever there is work to be done. 

   jack_set_process_callback (client, process, 0); 

 

   // Tell the JACK server to call jack_shutdown(). 

  // This is done if it ever shuts down, either entirely, or if it just decides to stop 
calling us. 

   jack_on_shutdown (client, jack_shutdown, 0); 

 

   // Create the JACK ports. 

   input_port_l = jack_port_register(client, "left", JACK_DEFAULT_AUDIO_TYPE, 
JackPortIsInput, 0); 

   input_port_r = jack_port_register(client, "right", JACK_DEFAULT_AUDIO_TYPE, 
JackPortIsInput, 0); 

   output_port_l = jack_port_register(client, "left", JACK_DEFAULT_AUDIO_TYPE, 
JackPortIsOutput, 0); 

   output_port_r = jack_port_register(client, "right", JACK_DEFAULT_AUDIO_TYPE, 
JackPortIsOutput, 0); 

 

   // Tell the JACK server that we are ready to roll. 

   if (jack_activate (client)) { 

     fprintf(stderr, "cannot activate client"); 

     return 1; 

   } 

 

   for (;;) 

 

   sleep (10); 

   jack_client_close(client); 

 

   // Free memory used by FFTW. 

   fftwf_destroy_plan(fft_window_p); 



   fftwf_free(fft_window_in);  

   fftwf_free(fft_window_out); 

 

   fftwf_destroy_plan(fft_tempo_p); 

   fftwf_free(fft_tempo_in);  

   fftwf_free(fft_tempo_out); 

 

   exit (0); 

 

} 

conclusions / successes and shortcomings 
The modifications made to the Tempo source code produced highly desirable 
results. Firstly, the code structure is much more intuitive. More importantly, the 
correction of errors led to a drastically increased tempo recognition timeframe. Prior 
to the corrections, the algorithm would need approximately 30 seconds to reach its 
final tempo estimation for an incoming audio signal. The revised version of the 
algorithm produces the same tempo estimation values in the time needed to fill the 
tempo-estimating FFT buffer – about 5 seconds. 
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abstract / concept and result 
The purpose of this project was to create a fully functional and marketable 
intelligent strobe light system. The completed system uses basic signal processing 
techniques to trigger light pulses based on an incoming audio signal. The audio 
signal is low-pass filtered, and passed to a PIC microcontroller. The microcontroller 
constructs a logic-level output signal based on the audio signal and inputs from 
numerous user-adjusted parameters. The logic-level outputs are routed through 
solid-state relay circuitry to convert them into a mains-level signal. 

While possible improvements were recognized, the selected configuration proved 
highly successful in accomplishing its task. The system is capable of detecting audio 
events and passes them to the mains-level outputs to create the desired effect. To 
cover for instances where the automated algorithm fails, the processing device may 
also run user-programmed lighting patterns. 

The system was tested in a club-like situation, and was extremely well received. 
Even when placed alongside professional lighting equipment, the system was 
preferred in many occasions. 

introduction / context and purpose 

In club and lounge settings, there is a high demand for the ambience created by 
intelligent lighting. This system is geared towards DJs who aspire to further control 
of their audience by setting the visual aspect of their shows. It also addresses the 
market for consumers building traveling lighting rigs or desiring powerful low-end 
lighting solutions. 

product overview / functionality and use 
The Pulser system is fully functional, and has been tested for a large variety of 
audio inputs. It operates best with music suited for its application – namely, music 
that would be found in a club or lounge environment. 

// components 
The Pulser system is comprised of four discrete components. Its peripherals may be 
substituted in order to better suit a particular application. 

control interface 
The control interface is in a standard 19-inch rack-mount package, so that is may 
be easily integrated into an existing lighting rig. 



Figure 1 shows a depiction of the front side of the unit: 

 
Figure 1. Control interface design – front side. 

The controls are placed very intuitively, with screws doubling as a means to divide 
the different sections of control. Moving from right to left, the first section consists 
of the power switch and an LED that shows when the unit is powered. 

The next section consists of a bar graph display of the incoming audio signal, along 
with a dial for controlling the gain applied to the signal. Under the desired 
operation, the input signal is amplified to span across the entirety of the bar graph 
display. 

The following two sections correspond to the two output channels. For each section, 
the right knob sets the channel’s mode of operation, and the left knob sets the hold 
time of each strobe signal. The right-hand channel is called the leader, and the left-
hand channel is called the follower. (These are discussed in detail below.) A 
feedback LED is provided for each channel so that the user may better see and 
control each output. 

The last (leftmost) section is for the external control switch. A stereo quarter-inch 
jack is provided for plugging the peripheral into the control unit, and an LED is 
provided for user feedback of the remote operation. 

Figure 2 depicts the rear side of the unit: 

 
Figure 2. Control interface design – rear side. 

The inputs and outputs of the unit are placed in accordance with their counterparts 
on the front side. Moving again from right to left, the first port is an extra jack for 
the external override switch. This jack is provided in addition to the front-side jack 
because it may be desired depending on the selected application for the system. 

Next are four mono quarter-inch jacks – two for each channel of output. 

To the left of these are right- and left-channel RCA inputs for the audio signal. 

The last port is for the 5-volt DC power input. 

power 
The control interface is powered by an AC-DC converter with a 5-volt output. It 
draws less than 300 mA of current, and leaves all high power handling to 
peripherals. 

 



external control switch 
For certain types of operation, the unit relies on the presence of an external control 
switch. This is a dual pushbutton device, which can plug into the stereo quarter-
inch jacks on the control unit. 

At present, a dual guitar footswitch is used. This is advantageous for the performing 
DJ who whishes to control their lighting – control of the lights leaves their hands 
free for playing music. 

Note that the external control switch is not needed for the automated operation 
mode of the control unit. 

breakout boxes 
Breakout boxes are used to convert the logic-level signal from the control unit to a 
mains-level signal. 

The control signal is inputted into a mono quarter-inch jack – the same way that it 
comes from the control unit. Each has a parallel quarter-inch output jack, so that 
the units may be chained together. Standard instrument cables are suggested for 
connecting the units. 

The breakout boxes draw their power from a mains-level outlet. They each have 
four outlets of output available. They may source a maximum of 10 A, as per the 
specifications of the solid-state relays they house. 

Note that any number of possible breakout box configurations and applications are 
conceivable. The described boxes were fabricated for their versatility. 

 

// modes of operation 
The system may operate in any of three modes, as set by the mode knob of the 
leader channel on the control unit. 

mode one [ automated beat detection ] 
In this mode, the control unit derives an automated output based on an analysis of 
the input signal. The sensitivity of the output pulses are set by controlling the gain 
of the audio. Once set correctly, the gain knob may be left for the duration of 
operation. 

The user may induce a manual blackout or whiteout by pressing the buttons on the 
external controller. 

mode two [ user-defined hits ] 
In this mode, the output of the device is off by default. The user may induce a 
strobe by pressing one of the buttons in the external control unit, or may 
enable/disable a whiteout by pressing the other button. 



mode three [ programmable strobe pattern ] 
In this mode, the user may tap a desired strobe pattern on the peripheral controller 
unit. This is extremely useful in situations where the automatic detection algorithm 
fails. 

The user begins to set a pattern by tapping one of the buttons on the external 
controller, and continues to press that button at time intervals corresponding to the 
desired strobe pattern. The program is ended when the user presses the other 
button. Pressing the termination button also initiates playback of the program. 

The program will continue to loop over the time interval between the initial tap and 
the termination tap. Repressing the termination tap will re-sync the program at the 
instant when it is tapped. 

Up to 16 different pulse placements may be programmed for a given lighting 
program. A given program is erased when a new program is recorded. 

// output channels 
The Pulser system drives two output channels, for increased functionality. 

 channel one [ the leader ] 
The leader channel operated precisely as described above. Main venue lighting 
should be tied to this channel. 

channel two [ the follower ] 
The follower channel may be considered an accessory to the first. It has three 
modes of operation, as set by its mode knob. 

In its first mode, the follower channel simply follows the output of the leader 
channel. Both channels produce the same lighting patterns. 

In its second mode, the output from the follower channel is turned off. 

In its third mode, the follower channel will follow the leader channel only when the 
leader is in hit mode. 

The follow channel should be tied to lighting reserved for special emphasis.  

 

 

 

 

 

 



hardware / design and implementation 

Although it consumed much time, the hardware design and implementation was 
relatively straightforward. 

// circuit design 
The first step in building the system was to design the circuitry for the control unit. 
The majority of the circuit consisted of digital components, and thus it was fairly 
simple to design. 

The control unit is based around a PIC 16F877 microcontroller. The microcontroller 
comes in a 40-pin DIP package, which simplifies circuit board construction. A pin 
diagram for the device is shown below: 

  
Figure 3. PIC16F873/877 pin diagram. 

The software for the device was coded using the PIC C IDE, and programmed using 
an RJ12 connector. The following diagram shows the basic programming setup for 
the microcontroller: 

 
Figure 4. PIC16F873/877 programming circuit. 



Since the microcontroller is powered by a 5-volt DC source, the entire circuit was 
designed to be powered in the same way. 

The first portion of the circuit was used to input the stereo audio signal. The signals 
are mixed to create one channel of input. The resulting signal is then AC-coupled 
around 2.5 volts, so that it may be inputted into an ADC of the microcontroller in its 
entirety. The signal is buffered and then passed through a second-order low-pass 
filter with a cutoff at 228 Hz. This portion of the circuit is shown in the figure below: 

 
Figure 5. Input stage circuit diagram. 

The remainder of the circuit includes the microcontroller and the circuitry needed 
for the desired input and output functionality. 

The following is a diagram of the entire circuit: 

 
Figure 6. Complete circuit diagram. 



Note that the output channels are driven by operational amplifiers in a follower 
configuration, so that they are responsible for sourcing all the current to the 
peripheral units. 

// printed circuit board layout 
Once the circuit design was complete, the circuit board was drawn. This task was 
accomplished using Ultiboard. The following is a diagram of the circuit board layout: 

 
Figure 7. Printed circuit board layout. 

This layout includes connections to ground on each of its output headers. These 
were unnecessary since the enclosure was grounded, but were included for 
debugging purposes. 

There are two mistakes present in this layout. Firstly, the 0- and 5-volt connections 
to the RJ12 programmer were reversed. This was corrected by cutting trances and 
manually rewiring the connections. 

Secondly, the microcontroller’s decoupling capacitor (C1) should have been placed 
closer to the microcontroller’s power connections. However, this did not cause any 
detectable errors in operation. 

// enclosure design and fabrication 
The enclosure design was chosen to maximize its ergonomics and ease of 
fabrication. The only necessary machining was the drilling of holes for each of the 
interface components. An inner mount was necessary for properly attaching the 
potentiometers and control knobs. The selected enclosure was purposefully 
oversized to simplify fabrication. 

An inside view of the completed control unit can be seen in Figure 8. 



 
Figure 8. Control unit – inside view. 

Figures 9 and 10 respectively show views of the front and rear of the finished 
enclosure. 

 
Figure 9. Control unit – front view. 



 
Figure 10. Control unit – rear view. 

No major problems arose while fabricating this piece of hardware. Unfortunately, 
the holes were not drilled in a perfect line as desired due to the speed of the unit’s 
production.  

// breakout box construction 
The breakout boxes are used to house the solid-state relays, and package the 
mains-level signals in a safe and robust manner. Their wiring was straightforward. 
Two holes were drilled in the top face of each for the parallel control line 
connections. 

Figure 11 shows the completed breakout boxes.  

 
Figure 11. Breakout boxes. 



software / structure and code 
The general structure of the code is as follows: 

main () {  

 declare variables 

 initialize hardware 

 while (1) { 

  read audio input 

  read user-adjusted inputs 

  update bar graph display 

  if (mode one is selected) { // automated beat detection 

   if (whiteout) { 

    set output 

   } else if (blackout) { 

    set output 

   } else { 

    process and set automated beat detection output 

   } 

  } else if (mode three is selected) { // programmable strobe pattern 

   if (programming started) { 

    record program 

    if (programming terminated) { 

     begin running program 

    } 

   } 

   if (running program ended) { 

    start running program from beginning 

   } 

   if (programmed beat on current timer count) { 

    set output 

   } 

  } else if (default mode selected) { // user-defined hits 

   if (whiteout) { 

    set output 

   } 

   if (hit) { 

    set output 

   } 

  } 

 } 

} 



The coding was fairly straightforward. The structure and functionality of the 
program was limited by the ROM size of the microcontroller. This limit was 
exceeded on numerous occasions, and the program was altered to account for this 
limitation. 

The audio input is digitally amplified by a value taken from the gain potentiometer 
and then displayed on the bar graph of LED’s. 

The same basic structure was used to produce the lighting pulses in each of the 
three modes. A counter variable beat_counter was created to increment by one on 
each program cycle. If the value of this variable is under a certain value, the 
lighting output is set. The simplest example of this exists in the case of the default 
(user-defined hits) state. In this case, the value of beat_counter is reset to zero 
whenever the external switch is triggered. If its value is less then a certain 
threshold, the lighting output is turned on. 

In automated detection mode, the value of beat_counter is set to zero whenever 
the audio input is over a certain threshold. This allows the automated detection 
algorithm output fixed-length pulses, and gives the lighting display a very clean 
feel. 

The algorithm for the programmable strobe pattern mode works in a similar 
fashion. The array beat_array holds timestamps for each of the beats in a given 
program. The first beat always occurs at time zero, as the timing counter is reset at 
the start of programming. If the master timing counter is within a certain range of a 
programmed beat time, the lights are set on. The length of a recorded program is 
recorded in the variable beat_count and the number of beats in a program is stored 
in prog_step. 

There are independent threshold values for each output channel. These are set by 
the user – variables cut1 and cut2 are read from the potentiometer inputs of each 
channel and adjusted to extend over a suitable range. These values may be set 
differently to account for the differing startup times needed for various types of 
lights. 

// hardware configuration and initializations 
The first portion of the code was used to configure the microprocessor hardware, 
and declare and initialize variables. The following code accomplishes this task: 

#define SAFE 45 

 

main () { 

signed int16 ad_audio_center; 

signed int16 ad_audio; 

signed int16 ad_gain; 

signed int16 ad_cut1; 

signed int16 ad_cut2; 

float audio; 

float gain; 



float cut1; 

float cut2; 

float beat_counter = SAFE; // safe is good enough 

float beat_counter_temp; 

float beat_count = 0; 

signed int beat_state = 0; 

signed int prog_enabled = 0; 

signed int restart_state = 0; 

float beat_array[] = {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1}; // 16 

int prog_step = 0; 

int i; 

int beat_set; 

int program_state; 

signed int follow; 

 

setup_adc(ADC_CLOCK_INTERNAL); 

setup_adc_ports(AN0_AN1_AN2_AN3_AN4); 

setup_spi(FALSE); 

setup_psp(PSP_DISABLED); 

setup_spi(FALSE); 

setup_timer_0(RTCC_INTERNAL|RTCC_DIV_1); 

setup_timer_1(T1_DISABLED); 

 

portc = 0xFF; 

set_adc_channel(0); 

delay_ms(500); 

ad_audio_center = read_adc(); 

portc = 0x00; 

delay_ms(500); 

 

while (1) { 

The value of the audio input is read after the power supply is given time to settle. 
This registers the center value for the audio ADC, and ensures that the entire LED 
bar graph will be off when there is no audio signal. Therefore, it is assumed that 
there is zero audio input until this value has been read. 

The program is put in an eternal while loop, so that the remainder of the code will 
loop as long as the unit is powered. 

// parameter readings 
The first part of the continuous program loop is spent reading the parameters from 
the microprocessor inputs. 



The following code reads the value of the audio from its ADC, half-wave rectifies the 
signal, and subtracts the remaining DC offset: 

set_adc_channel(0); 

delay_us(20); 

ad_audio = read_adc(); 

if (ad_audio > ad_audio_center) { 

 audio = (float)(ad_audio - ad_audio_center); 

} else { 

 audio = (float)(ad_audio_center - ad_audio); 

} 

The next portion of the code reads the ADC value of the gain potentiometer. The 
audio signal is then amplified by this value. 

set_adc_channel(2); 

delay_us(20); 

ad_gain = read_adc(); 

gain = (float)(255 - ad_gain) / 10; // amplify up to 27.5x 

audio = audio * gain; 

Next, the values of cut1 and cut2 are read from their respective ADC’s: 
set_adc_channel(4); 

delay_us(30); 

ad_cut1 = read_adc(); 

cut1 = (float)(255 - ad_cut1) / 6; // up to 43 loop cycles 

 

set_adc_channel(3); 

delay_us(30); 

ad_cut2 = read_adc(); 

cut2 = (float)(255 - ad_cut2) / 6; // up to 43 loop cycles 

Finally, the mode of operation for the follower channel is read from its rotary knob: 
follow = 0; 

if (!input(pin_d4)) { 

 follow = 1; 

} else if (!input(pin_d6)) { 

 follow = 2; 

} 

The 20- to 30-ms delays are needed after setting the ADC channels to ensure that 
the correct data is read. 

// bar graph display 
The following code is used to set the bar graph LED display: 

if (audio > 120*.03) { // -32 dB 

 output_high(pin_c0); 



} else { 

 output_low(pin_c0); 

} 

if (audio > 120*.16) { // -16 dB 

 output_high(pin_c3); 

} else { 

 output_low(pin_c3); 

} 

if (audio > 120*.40) { // -8 dB 

 output_high(pin_c4); 

} else { 

 output_low(pin_c4); 

} 

if (audio > 120*.63) { // -4 dB 

 output_high(pin_c5); 

} else { 

 output_low(pin_c5); 

} 

if (audio > 120*.79) { // -2 dB 

 output_high(pin_c6); 

} else { 

 output_low(pin_c6); 

} 

if (audio > 120) { // 0 dB 

 output_high(pin_c7); 

} else { 

 output_low(pin_c7); 

} 

The program arbitrarily assumes that an audio value of 120 is an appropriate 
threshold, and uses this value for both the LED display and the automated beat 
extraction mode.  

// state one [ automated beat detection ] 
The following code constructs the output signal, if the system is running in 
automated beat detection mode: 

if (!input(pin_d0)) { 

 program_state = 0; 

 if (!input(pin_e0)) { // whiteout, trumps blackout 

output_high(pin_c1); 

  output_high(pin_c2); 

  output_high(pin_e2); 

 } else if (!input(pin_e1)) { // blackout 

  output_low(pin_c1); 



  output_low(pin_c2); 

  output_high(pin_e2); 

 } else { // output 

  output_low(pin_e2); 

  beat_counter = beat_counter + 1; 

  if (audio > 120) { 

   beat_counter = 0; 

  } 

  if (beat_counter < cut1 && follow == 1) { 

   output_high(pin_c1); 

  } else { 

   output_low(pin_c1); 

  } 

  if (beat_counter < cut2) { 

   output_high(pin_c2); 

  } else { 

   output_low(pin_c2); 

  } 

 } 

Although the code algorithm for this mode of operation is straightforward, it 
produces the desired results. 

// state three [ programmable strobe pattern ] 
The following code is used to process the system’s operation if it is running in 
programmable strobe pattern mode: 

} else if (!input(pin_d2)) { 

 if (input(pin_e1)) { // if unpressed 

  if (beat_state == 0) { // if it was previously unpressed 

   if (program_state != 2) { // if moving from another state 

    program_state = 2; 

    beat_counter = 0; 

   } else { 

    if (prog_enabled == 0) { 

     output_high(pin_e2); 

     prog_enabled = 1; 

     beat_counter_temp = 0; // start rec 

     beat_counter = 0; // run new program 

     prog_step = 0; 

     beat_count = 0; 

     for (i = 0; i < 16; i++) { 

      beat_array[i] = -1; 

     } 



    } 

    beat_state = 1; 

    beat_array[prog_step] = beat_counter_temp; 

    prog_step++; // increment num events in program 

   } 

  } 

 } else { // if pressed 

  if (beat_state == 1) { // if it was previously unpressed 

   if (program_state != 2) { // if moving from another state 

    program_state = 2; 

    beat_counter = 0; 

   } else { 

    if (prog_enabled == 0) { 

     output_high(pin_e2); 

     prog_enabled = 1; 

     beat_counter_temp = 0; // start new rec 

     beat_counter = 0; // run new program 

     prog_step = 0; 

     beat_count = 0; 

     for (i = 0; i < 16; i++) { 

      beat_array[i] = -1; 

     } 

    } 

    beat_state = 0; 

    beat_array[prog_step] = beat_counter_temp; 

    prog_step++; // increment num of events in program 

   } 

  } 

 } // end if 

 beat_counter_temp = beat_counter_temp + 1; 

 if (input(pin_e0)) { // if unpressed 

  if (restart_state == 0) { // if it was previously unpressed 

   if (prog_enabled == 1) { 

    output_low(pin_e2); // signal program termination 

    beat_count = beat_counter_temp; // set prog length 

    prog_enabled = 0; // allow for reprogramming 

   } 

   restart_state = 1; 

   beat_counter = 0; // restart program 

  } 

 } else { // if pressed 

  if (restart_state == 1) { // if it was previously unpressed 

   if (prog_enabled == 1) { 



    output_low(pin_e2); // signal program termination 

    beat_count = beat_counter_temp; // set prog length 

    prog_enabled = 0; // allow for reprogramming 

   } 

   restart_state = 0; 

   beat_counter = 0; // restart program 

  } 

 } // end if 

 if (beat_counter >= beat_count &&  beat_count > 1) { 

  beat_counter = 0; 

 } else { 

  beat_counter = beat_counter + 1; 

 } 

 if (program_state == 2) { 

  beat_set = 0; 

  i = 0; 

  while (i < 16 && beat_set == 0) { 

   if ((beat_counter - beat_array[i]) >= 0 && beat_array[i] > -1) { 

    if ((beat_counter - beat_array[i]) < cut1 && follow == 1) { 

     output_high(pin_c1); 

    } else { 

     output_low(pin_c1); 

    } 

    if ((beat_counter - beat_array[i]) < cut2) { 

     output_high(pin_c2); 

    } else { 

     output_low(pin_c2); 

    } 

   } 

   i++; 

  } 

 } 

This code is dramatically complicated by the fact that the external control switches 
are not simply pushbuttons. Rather, they are toggle switches – they change from 
an open to a short circuit and back again. This causes a need to run a symmetrical 
rising and falling edge detection algorithm. 

// state two [ user-defined hits ] 
The following code is used to construct the output for the default (user-defined hits) 
mode of operation: 

 } else { 

  if (program_state != 1) { 

   program_state = 1; 



   beat_counter = SAFE; 

   if (!input(pin_e1)) { 

    beat_state = 1; 

   } else { 

    beat_state = 0; 

   } 

  } 

  if (!input(pin_e1)) { // if pressed 

   if (beat_state == 0) { // if it was previously unpressed 

    beat_state = 1; 

    beat_counter = 0; 

    output_high(pin_e2); 

   } 

  } else { // if unpressed 

   if (beat_state == 1) { // if it was previously pressed 

    beat_state = 0; 

    beat_counter = 0; 

   } 

  } // end if 

  if (beat_counter < SAFE) { 

   beat_counter = beat_counter + 1; 

  } 

  if (input(pin_e0)) { // if no whiteout override 

   if (input(pin_e1)) { 

    output_low(pin_e2); 

   } 

   if (beat_counter < cut1 && follow > 0) { 

    output_high(pin_c1); 

   } else { 

    output_low(pin_c1); 

   } 

   if (beat_counter < cut2) { 

    output_high(pin_c2); 

   } else { 

    output_low(pin_c2); 

   } 

  } else { // if whiteout override 

   output_high(pin_e2); 

   output_high(pin_c2); 

   if (follow > 0) { 

    output_high(pin_c1); 

   } 

  } 



 } // end if 

 } // end while 

} // end main() 

Once again, the code is complicated by the physical operation of the external 
control switch. 

testing / installation and reactions 
This product was thoroughly tested at a recent campus event. Figure 12 depicts the 
control unit, as set up for the event. 

 
Figure 12. Control unit. 

Figure 13 shows the complete DJ setup. The control unit is situated to the right of 
the turntables. The footswitch (external control switch) can be seen on the floor 
below the setup. The follower channel was linked to four high-intensity floodlights, 
which can be seen attached to the tables and in front of the turntables. 



 
Figure 13. View from behind the DJ booth. 

Figure 14 shows an aerial view of the DJ booth, from the balcony above. The 
floodlights can be seen facing outwards toward the dance floor. 

 
Figure 14. View from above the DJ booth. 

Figure 15 shows a view of the main lighting truss. The leader channel was linked to 
six spotlights, which were placed at regular intervals along the length of the lighting 
truss. Three of these can be seen in Figure 15, along with the breakout box that is 
used to drive them (located to the left of the truss’s support cable). One of the 
professional lighting devices may also be seen, slightly to the left. 



 
Figure 15. Lighting truss. 

Figure 16 shows the spotlights turned on for testing. They were arranged so that 
they each pointed to a different place on the dance floor. 

 
Figure 16. Lighting test. 

The floodlights linked to the follower channel were tested in a similar fashion. These 
were not used very extensively during the event, because they were quite bright 
and flooded the entire venue with light. 

Figure 17 shows the same view as Figure 16, except as the room appeared during 
the event. The fog helps the audience to capture the effects of the lighting. In this 



case, the fog allows the audience to see the path of light beam as it descends from 
its respective source. 

 
Figure 17. View from the floor. 

Figure 18 shows a view of the lighting from the DJ booth. Once again, the fog helps 
the viewer to capture the path of each light. 

 
Figure 18. View from the DJ booth. 

The Pulser system was very well received by those attending the event. In many 
instances, switching from the professional lighting devices to the lighting provided 
by the Pulser system was greeted with much enthusiasm. 



From the perspective of the DJ, the Pulser system was an extremely accessible way 
of controlling the audience. The footswitch-based overrides and programming 
capabilities proved to be convenient, as blackouts and program synchronizations 
could be signaled while busy cueing or mixing tracks. 

The handiness of the footswitch control also emphasized the difficulty of controlling 
the professional lighting devices. They could only be controlled by moving away 
from the DJ’s table, and by pushing the buttons found on a master rack-mount 
controller unit. 

conclusions / successes and shortcomings 
Although this system was relatively simple to imagine, creating each of its 
components was fairly time consuming. 

The only major setback encountered was the ROM limit of the PIC microcontroller. 
This caused the system’s functionality to be more limited than was originally 
desired. However, the system still accomplishes its most important task – it is an 
automated and intelligent means for controlling lights. 

The main improvement to be made is to build a better external controller. If this 
device was to house two pushbuttons (rather than toggle switches), the coding 
structure could be greatly simplified – possibly allowing for the integration of 
increased functionality. 

In conclusion, the creation and testing of this system was an extremely enjoyable 
and rewarding experience.  
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abstract / concept and result 
The purpose of this project was to build a DMX512 mixer, capable of providing 
intelligent lighting output synchronized with an audio signal. The mixer was 
intended to become a part of a DJ’s performance setup to allow the performer full 
control of venue lighting. The completed system was designed to provide real-time 
manipulation of four adjacent DMX channels, which was configured to interface with 
the Chauvet Lighting COLORmist system. Hardware from a Behringer DJX400 mixer 
was reconfigured to produce the prototype system. 

While many components of the system were realized, the selected design did not 
prove fully successful in accomplishing its task. The DMX protocol conversion board 
did not function as expected, which hindered the completion of the project. 

introduction / purpose and background 

In club and lounge settings, there is a high demand for the ambience created by 
intelligent lighting. This system is geared towards DJs who aspire to further control 
of their audience by fully manipulating the visual aspect of their shows. 

 // dmx 
DMX512 is an RS485-based lighting protocol used for venue lighting systems. It 
was developed by the Engineering Commission of USITT. 

Devices are linked in a daisy chain configuration, and devices have both input and 
output DMX connections. The connectors are five-pin XLR, although only three pins 
are always used. The pin connections are as follows: 

1. Data Link Common 

2. Data 1- (Primary Data Link) 

3. Data 1+ (Primary Data Link) 

4. Data 2- (Secondary Data Link) 

5. Data 2+ (Secondary Data Link) 

Each DMX data link may control up to 512 addresses, which means that multiple 
networks must be used in large applications. 

Data is transmitted serially at 250 kilobaud and is grouped into packets. Bytes are 
sent with one start bit and two stop bits. The start of a packet is signaled by a 
break of at least 88 microseconds. After a mark after break (MAB) signal, up to 512 
bytes are sent. 

Data is sent starting with the values to be written at address 0. Although the 
transmitter must send data for at only 24 channels, all 512 packets of data are sent 
in most cases. This corresponds to a minimum refresh rate of 44 Hz. There is no 
error detection or correction in DMX. 



Many devices used adjacent DMX channels to support complete remote control of 
their functionalities. 

hardware / design and implementation 

Although it consumed much time, the hardware design and implementation was 
relatively straightforward. 

// lighting output 
The Chauvet COLORmist system was chosen in order to produce a full-spectrum 
lighting output. This system consists of three components – the RGB LED lights, a 
control interface, and a power converter. The lights are shown in Figure 1.  

  
Figure 1. RGB LED lamps. 

Figure 2 shows the control interface. This is used to set the operation mode of the 
lights when the system is running without external control. The control unit also 
serves as the interface for accepting an incoming DMX signal. The base DMX 
address of the system is set on this unit.  

  
Figure 2. COLORmist controller. 

Figure 3 shows a diagram of the COLORmist setup, as connected to a controlling 
DMX line. 



 
Figure 3. COLORmist connectivity. 

The COLORmist system is controlled by four adjacent DMX channels. Table 1 lists 
the functionality of each control channel, as specified in the user manual. 

DMX Address Value Function 
 Programs 
000 ↔ 009 Black 
010 ↔ 019 Red 
020 ↔ 029 Green 
030 ↔ 039 Blue 
040 ↔ 049 Yellow 
050 ↔ 059 Purple 
060 ↔ 069 Light Blue 
070 ↔ 079 White 
080 ↔ 089 Color Change 
090 ↔ 099 Slow Flow 1 
100 ↔ 109 Slow Flow 2 
110 ↔ 119 Roll Chase 1 
120 ↔ 129 Roll Chase 2 
130 ↔ 139 Multi Color 
140 ↔ 149 Fast Flow 1 
150 ↔ 159 Fast Flow 2 
160 ↔ 169 Fast Flow 3 
170 ↔ 179 Fast Flow 4 
180 ↔ 189 2 Color Chase 
190 ↔ 199 2 Color Flow 
200 ↔ 209 Any Color: Activates Red, Green & Blue Intensity controls 
210 ↔ 219 Color Fade 

Address 

220 ↔ 255 Auto Run 
Run Speed 
Slow > Fast, (1 step/Minute) > (100 steps/Second) 
Any Color (Active) 

Address + 1 000 ↔ 255 

Red: Intensity: 0% > 100 
 Flash Speed 
000 ↔ 002 Always On 
003 ↔ 249 Slow > Fast 
250 ↔ 255 Blackout 

Any Color (Active) 

Address + 2 

000 ↔ 255 
Green: Intensity: 0% > 100 

 Color Combinations 
000 ↔ 012 Red & Green 
013 ↔ 025 Red & Yellow 
026 ↔ 038 Red & Blue 
039 ↔ 051 Red & Purple 
052 ↔ 064 Red & Cyan 
065 ↔ 077 Red & White 
078 ↔ 090 Green & Yellow 
091 ↔ 103 Green & Blue 
104 ↔ 116 Green & Purple 
117 ↔ 129 Green & Cyan 
130 ↔ 142 Green & White 
143 ↔ 155 Yellow & Blue 
156 ↔ 168 Yellow & Purple 
169 ↔ 181 Yellow & Cyan 
182 ↔ 194 Yellow & White 
195 ↔ 207 Blue & Purple 
208 ↔ 220 Blue & Cyan 
221 ↔ 233 Blue & White 
234 ↔ 246 Purple & Cyan 
247 ↔ 255 Purple & White 

Any Color (Active) 

Address + 3 

000 ↔ 255 
Blue: Intensity: 0% > 100 

Table 1. COLORmist program modes. 

Table 2 provides a more concise summary of the functionalities controlled by each 
of the unit’s DMX channels. 



DMX Address Function 

Address Program Mode 

Address + 1 Red / Run Speed 

Address + 2 Green / Flash Speed 

Address + 3 Blue / Select Color 

Table 2. Summary of COLORmist program modes. 

 

// dmx conversion 
Converting the control signals to the DMX512 protocol is accomplished using a 
commercial protocol converter. 

 
Figure 4. DMX protocol converter. 

The converter accepts two different types of inputs. It can be programmed using an 
RS232 connection, which allows the programming of any channel on the DMX 
stream. The board also takes 4 analog voltages, and converts these to four 
adjacent DMX addresses (as set by DIP switches on the board). The suggested 
wiring diagram for the analog inputs is shown in Figure 5. 

 
Figure 5. Analog input wiring diagram. 

For this application, the analog inputs are used. The Chauvet system is controlled 
by setting the values of four adjacent DMX channels, which coincides with this 
functionality of the converter board.  



 

// mixer hardware remapping 
The first step in designing the system was to remap the hardware from the 
Behringer mixer. Figure 1 shows the mixer, as viewed from above. 

 
Figure 6. Top view of the mixer. 

The majority of the mixer’s functionality was stripped. The only parts that remained 
as originally intended were the CH-1 (channel 1), the channel 1 Beat Assist, the 
Master Level, and MIC (microphone) sections. 

The reason for choosing this particular mixer was for its automatic BPM estimation 
functionality. Under normal operating conditions, the mixer would estimate the 
tempo of each incoming channel to facilitate easy mixing by an inexperienced DJ. 
The estimated tempos are displayed by seven-segment numeric LED displays. The 
critical part of this functionality is that an LED on the mixer blinks on the mixer’s 
estimation of the beat. The blinks of this LED are used to synchronize the intelligent 
lighting output. 

The following mapping was selected for the remainder of the mixer: 

1. The monitor section functions as the overrides. The CH-1 switch selects a blackout, the CH-2 
switch selects a whiteout, and the MASTER switch selects a beat-synchronized strobe. The 
gain knob selects the strobe rate to be used when in the strobe override mode. The user may 
select from a range of strobe rates – from once per measure up to four times per beat. 

2. The TEMPO DIFFERENCE and TIME OFFSET LED’s are used to display the current phrase 
position of the audio track. There are 16 possible positions, which correspond to 4 measures of 
4 beats each. The CH-2 tempo assist button may be pressed to reset the phrase position. The 
CH-2 tempo assist LED flashes when the music is at the top of a phrase. 



3. The crossfader is used to navigate between lighting output modes, just as it was originally 
intended to switch from one track to the next. This gives the DJ the ability to “mix” between 
modes of lighting output. 

4. The CF CURVE button is used to set the output in an automatic progression mode. When this 
switch is set, the lighting output will change at the top of every phrase. 

5. The channel 2 PHONO/CD selector is used to toggle between program-set and user-set output 
modes. 

6. The channel 2 gain (slide) potentiometer is used to set the lighting output program. In manual 
(user-set) mode, the selected program will be immediately displayed on the lighting output. In 
program-set mode, this will be the next program set when the user slides the crossfader. 

7. The channel 2 trim knob sets the overall brightness of the lighting output. 

8. The channel 2 HIGH, MID, and LOW trim potentiometers are used to set the values of the red, 
green, and blue outputs when the mixer is in manual mode. Alternatively, they may be used 
to set their designated control parameters for another user-selected operation mode. 

This mixer was also selected because of the prototyping space available in its 
interior.  

// circuit design 
The first step in building the system was to design the circuitry for the control unit. 
The majority of the circuit consisted of digital components, and thus it was fairly 
simple to design. 

microcontroller 
The control unit is based around a PIC 16F877 microcontroller. The microcontroller 
comes in a 40-pin DIP package, which simplifies circuit board construction. A pin 
diagram for the device is shown in Figure 7. 

  
Figure 7. PIC16F873/877 pin diagram. 

The software for the device was coded using the PIC C IDE, and programmed using 
an RJ12 connector. Figure 8 shows the basic programming setup for the 
microcontroller. 



 
Figure 8. PIC16F873/877 programming circuit. 

Since the microcontroller is powered by a 5-volt DC source, the entire circuit was 
designed to be powered in the same way. 

audio input 
The first portion of the circuit was used to input the stereo audio signal. The signals 
are mixed to create one channel of input. The resulting signal is then AC-coupled 
around 2.5 volts, so that it may be inputted into an ADC of the microcontroller in its 
entirety. This portion of the circuit is shown in Figure 9. 

 
Figure 9. Input stage circuit diagram. 

seven-segment display 
In order to reduce the I/O requirements for the microcontroller used for compiling 
the output program, an I2C (Inter-Integrated Circuit) chip was used to control the 
seven-segment display. I2C is a multi-master serial bus developed by Philips 
Semiconductor that uses only two data lines – serial data (SDA) and serial clock 
(SCL). An SAA1064 chip was used for this task. 

The SAA1064 has the capability of functioning in either static or dynamic mode. In 
static mode, the chip produces outputs capable of driving two seven-segment 
displays. In dynamic mode, the chip multiplexes between two sets of two seven-
segment displays to control a total of four displays. 



In either mode, the IC is used to drive a common anode display. A common anode 
display ties the anodes of each LED segment to the same pin. 

Since the circuit was designed before the operation of the seven-segment display 
was known, the chip was wired to run in dynamic mode. This was done because the 
display to be driven had a total of three displays. A wiring diagram for the dynamic 
mode of operation of the SAA1064 is shown in Figure 10. 

 
Figure 10. Dynamic mode wiring of the SAA1064. 

The value of capacitor C10 is used to set the clock rate of the multiplexer circuit, 
and the value of capacitor C11 is used to decouple the IC from the rest of the 
circuit. The transistors are used to provide the multiplexing functionality of the 
circuit. Extra VDD and VSS connections were provided for debugging purposes. 

The address (ADR) line is tied to ground, which means that the device is referenced 
at an address of 0x70. 

architecture 
The circuit includes three microcontrollers, which communicate asynchronously by 
means of numerous control lines. Each of the microcontrollers was assigned a 
specific task – one controls the phrase position LEDs, one compiles the lighting 
output, and one tells the output compiler when to progress from one program to 
the next. Table 3 lists the control lines sent to and from each of the 
microcontrollers. 



Microcontroller Inputs Outputs 

Phrase Position 
Beat 
Phrase Position Reset 

Phrase Position LEDs (16) 
Phrase Start LED 
Phrase Start 

Event Detector 

Beat 
Phrase Start 
Audio 
Program Auto Step 
Program Lock 
 

Program Step 
Blackout 
Beat 

Output Compiler 

Program Search 
Crossfader 
Strobe Rate 
Program Step 
Beat 
Blackout 
Input Selector 
Manual Blackout 
Manual Whiteout 
Manual Strobe 

7-Segment Display (2) 
Blackout LED 
Whiteout LED 
Strobe LED 
Red 
Green 
Blue 

Table 3. Microcontroller I/O. 

dmx control board 
As stated earlier, the inputs to the DMX protocol converter board are analog. In 
order to produce suitable output signals from the microcontroller, these signals are 
pulse-width modulated and then passed through low-pass filters. Second-order low-
pass filters with a cutoff of 200 Hz were used. Figure 11 shows a diagram of one of 
the filters. 

  

Figure 11. Second-order low-pass filter. 

The DMX protocol conversion board requires a power supply of 9 volts. In order to 
produce an appropriate supply, a DC/DC converter was used to convert the 15-volt 
supply from the mixer to a 9-volt supply for the board. 

The device used was an NDL1209SC isolated wide input single output DC/DC 
converter, provided by C&D Technologies. The device comes in a 7-pin SIP 
package, and produces a 9-volt output voltage from a 9- to 18-volt input voltage. 
The wiring diagram for the device is shown in Figure 12. 



 
Figure 12. Wiring diagram for the DC/DC conversion. 

The capacitors Cin and Cout are not necessary, but are used to reduce the presence 
of voltage ripples. 

complete circuit 
Figure 13 shows a diagram of the entire circuit. 

 
Figure 13. Complete circuit diagram. 

// printed circuit board layout 
Once the circuit design was complete, the circuit board was drawn. This task was 
accomplished using Ultiboard. Figure 14 depicts the circuit board layout. 



 
Figure 14. Printed circuit board layout. 

// mixer board reconfiguration 
There are two printed circuit boards on the interior of the Behringer DJX400 Mixer. 
The first of these, which is mounted to the rear of the unit, is used for power 
handling and to process the audio inputs and outputs. The second board, which is 
mounted to the top of the unit, is connected to all of the user controls, and is 
responsible for implementing the functionalities of the mixer. There was ample 
space inside the enclosure to mount both the DMX conversion board and the DMXer 
control board. 

Almost all modifications were made to the main processing board of the mixer. The 
following list summarizes the alterations that took place: 

1. All LED’s were originally set flush to the control panel by spacers.  These were removed, and 
mounted flush to the circuit board. The spacers were then shortened, placed over the original 
LED’s, and used to hold new LED’s flush to the control panel. This process left the original LED 
functionalities of the mixer board intact. 



2. The traces leading to each of the pushbuttons were cut. Wires were soldered to the exposed 
pins of the buttons on the bottom side of the board. This meant that the buttons would appear 
to the main mixer board as if they were never pressed. 

3. The seven-segment LED display was cut from the board, and remounted so that its pins were 
no longer connected to the original circuitry. Rather, the pins were connected to wires leading 
to the DMXer control board. 

4. The leads from the potentiometers were cut to disconnect them from the original board. Wires 
were then soldered to the remainder of the potentiometer legs. 

5. The main board is powered by sources of +5, +15, and -15 volts. Connections were made to 
the pins for the ground, +5, and +15 lines. 

6. The bar graph display of the mixer was rewired so that it always displays the master output 
levels. 

7. A three-pin female XLR connector was mounted to the rear of the unit. 

8. In order to match the gain of the mixer’s phono input, the beat feedback signal was 
transferred through a potentiometer mounted to the phono inputs. The left and right phono 
channels were tied together. 

The reverse engineering of the mixer was quite laborious, but nonetheless produced 
desirable results. 

Figures 15 through 20 illustrate various aspects of the fabrication process. Figure 
15 shows a view of the completed interior of the mixer. The mixer’s main circuit 
board may be seen attached to the underside of the top panel. 

 
Figure 15. Fabrication – complete view. 



Figure 16 shows an alternate view of the completed mixer interior. The wired 
connections to the underside of the mixer’s main board may be seen. 

 
Figure 16. Fabrication – view of the main mixer board. 

Figure 17 shows a view of the DMXer board (left) and the DMX protocol conversion 
board (right). 

 
Figure 17. Fabrication – view of the DMXer board (left) and the DMX conversion board (right). 



Figure 18 shows a view of the DMX output port. Note that a 3-pin XLR connection 
was used, in conflict with the protocol standard. This was used to interface with the 
3-pin XLR connection of the COLORmist system. 

 
Figure 18. Fabrication – view of the DMX output. 

Figure 18 shows a closer view of the DMX protocol conversion board. The board’s 
analog inputs may be seen to the back right of the board.  

 
Figure 19. Fabrication – view of the DMX converter board. 



Figure 20 shows the connections made to the mixer’s audio inputs. Both the DMXer 
audio input connections (right) and the feedback loop connections (left) may be 
seen. 

 
Figure 20. Fabrication – view of the audio inputs, phono feedback, and DMX output. 

software / structure and code 
The general structure of the code is as follows: 

// microcontroller one [ phrase position ] 
The first microcontroller is dedicated for tracking the phrase position of the 
incoming audio signal. There are two inputs to the microcontroller, which include a 
signal taken from the beat synchronization LED and a switch for allowing the user 
to rest the phrase position. 

The first portion of the code is used to establish and initialize variables: 
main() { 

 
 float ad_beat; 

 float ad_beat_p; 

 int8 beat = 0; 

 int8 safe = 500; // at least 84 to cover the duration of the multiplexed pulse 

 int8 ad_t_min = 100; 

 int8 ad_t_max = 112; 

 



 int8 phrase_state = 1; 

 
 ... 

The software keeps track of the current phrase position, and uses phrase_state to 
store this value. This is initialize to 1, which corresponds to the first beat of the 
phrase. 

Some difficulty was encountered with the handling of the signal from the mixer’s 
beat synchronization LED. It was found that the LED’s on the mixer board were all 
multiplexed. Although they appeared to be either continuously on or continuously 
off, the LEDs were in fact flickering between states at a rate faster than perceivable 
by the human eye. Each pulse of the beat synchronization LED in fact consists of 
about a dozen pulses. 

In order for the phrase position state machine to function as desired, it would have 
to change states at the onset of a train of pulses, rather than at the onset of each 
pulse. This was done using a debouncing counter, which assumes that the pulses 
last for a certain duration, and that each beat of the music occurs after a certain 
period of time. The value of safe stores the length of each debouncing period. When 
the first pulse of the LED is detected, the value of beat is initialized to this value, 
and must count all the way to zero before another beat may be detected. 

In order to correctly detect each multiplexed pulse, the signal from the LED is taken 
into an 8-bit ADC of the microcontroller. Using an oscilloscope, it was determined 
that each pulse corresponds to an ADC input voltage of about 2 volts. The software 
looks for inputs between ad_t_min and ad_t_max to find these pulses. 

Each individual pulse detection is also debounced, to account for the fact that the 
input signal to the ADC often switches from 0 to 5 volts. This is done so that the 
algorithm will not detect instantaneous crossings through the input range as the 
onset of an LED pulse. This debouncing is accomplished simply by searching for 
values within the specified window over two adjacent code execution cycles.  

The next segment of the code initializes each of the phrase position LEDs to a low 
(off) state. 

 output_low(pin_c0); 

 output_low(pin_c1); 

 output_low(pin_c2); 

 output_low(pin_c3); 

 output_low(pin_c4); 

 output_low(pin_c5); 

 output_low(pin_c6); 

 output_low(pin_c7); 

 output_low(pin_d0); 

 output_low(pin_d1); 

 output_low(pin_d2); 

 output_low(pin_d3); 

 output_low(pin_d4); 

 output_low(pin_d5); 



 output_low(pin_d6); 

 output_low(pin_d7); 

The program is then sent into its execution loop, which executes as long as the 
microcontroller is powered. 

 while (1) { 

A delay is used to slow the clock rate of each execution cycle. A delay of 400 
microseconds was chosen so that the ADC input would be sampled at least twice 
over the time that each multiplexed LED pulse is within the specified input range. 

  delay_us(400); 

The ADC data is then collected. The value of beat is reset to its debounced safe 
value if both the current and previous ADC inputs are within the specified range. 

  set_adc_channel(0); 

  delay_us(20); 

  ad_beat = read_adc(); 

  if (beat == 0 && ad_beat > ad_t_min && ad_beat < ad_t_max && ad_beat_p > ad_t_min 
&& ad_beat_p < ad_t_max) {  

   beat = safe; 

  } 

If the value of beat is safe, then the state machine should switch states. 

The output pin e1 is set to quickly pulse on each beat. (It pulses for one execution 
cycle, or approximately 400 microseconds.) This is the signal that is then sent to 
the mixer’s channel 1 phono input to create a feedback loop. If the mixer’s input is 
set to this phono signal, then the current tempo will perpetuate itself until it is 
changed by the user. This occurs because the mixer assumes that the tempo will 
not change until it registers a change from its audio signal. 

This feedback override functionality is extremely useful in situations where the 
mixer’s tempo detection functionality fails. The override gives the user the ability to 
correctly define the tempo and phrase position of the music. 

  if (beat == safe) { 

   phrase_state = phrase_state + 1; 

   output_high(pin_e1);  

   if (phrase_state > 16) { 

    phrase_state = 1; 

   } 

  } else { 

   output_low(pin_e1); 

  } 

If the phrase reset button is pressed by the user, the phrase position state machine 
is reset. 

  if (!input(pin_a1)) { 

   phrase_state = 1; 

   output_low(pin_c0);  

   output_low(pin_c1); 



   output_low(pin_c2); 

   output_low(pin_c3); 

   output_low(pin_c4); 

   output_low(pin_c5);  

   output_low(pin_c6);  

   output_low(pin_c7); 

   output_low(pin_d0); 

   output_low(pin_d1); 

   output_low(pin_d2);  

   output_low(pin_d3); 

   output_low(pin_d4); 

   output_low(pin_d5); 

   output_low(pin_d6); 

   output_low(pin_d7);  

  } 

The value of beat decrements by 1 each execution cycle. A beat may only be 
detected when the value of beat is 0. 

  if (beat > 0) { 

   beat = beat - 1; 

  } 

The remainder of the code executes the state machine. The machine assumes that 
the phrase position LED from the previous state is the only LED to be reset to low 
(off). 

  if (phrase_state == 1) { 

   output_high(pin_e0); 

  } else { 

   output_low(pin_e0); 

  } 

 

  if (phrase_state == 1) { 

   output_low(pin_c7); 

   output_high(pin_d0); 

  } 

  if (phrase_state == 2) { 

   output_low(pin_d0); 

   output_high(pin_d1);  

  } 

  if (phrase_state == 3) {  

   output_low(pin_d1); 

   output_high(pin_d2); 

  } 

 

  ... 



 

  if (phrase_state == 15) { 

   output_low(pin_c5);  

   output_high(pin_c6); 

  } 

  if (phrase_state == 16) { 

   output_low(pin_c6);  

   output_high(pin_c7); 

  } 

 
  ad_beat_p = ad_beat;  

 
 } // end while 

 

} // end main 

The software algorithm utilized by this microcontroller worked as designed, and 
produced the desired functionality for its portion of the user interface. 

// microcontroller two [ event processor ] 
This microprocessor is used to determine when the output compiling microprocessor 
should change the program being displayed. 

The final functionality of the second microprocessor was more limited than initially 
designed. This occurred because the microprocessor was damaged before the full 
software implementation could be completed. 

As with the phrase position microcontroller, the signal from the mixer’s beat 
synchronization LED was inputted through one of the microcontroller’s ADC ports. 
The same algorithm is used to track the phrase position of the audio signal. The 
signal from the phrase start LED of the phrase position microcontroller was also 
input into this microcontroller, so that the algorithm could appropriately respond to 
user-defined phrase position resets. 

The following code executes functionalities associated with all user interface 
handling:  

main() { 

 

 float ad_beat; 

 float ad_beat_p; 

 float ad_phrase; 

 int8 beat = 0; 

 int8 safe = 500; // at least 84 to cover 

 int8 ad_t_min = 100; 

 int8 ad_t_max = 112; 

 
 int8 phrase_state = 1; 

 



 setup_adc(ADC_CLOCK_INTERNAL); 

 setup_adc_ports(AN0_AN1_AN2_AN3_AN4); 

 setup_spi(FALSE);  

 setup_psp(PSP_DISABLED); 

 setup_spi(FALSE); 

 setup_timer_0(RTCC_INTERNAL|RTCC_DIV_1); 

 setup_timer_1(T1_DISABLED); 

 
 while (1) { 

 

  delay_us(400); 

 

  set_adc_channel(2); 

  delay_us(20); 

  ad_beat = read_adc(); 

  if (beat == 0 && ad_beat > ad_t_min && ad_beat < ad_t_max && ad_beat_p > ad_t_min  

        && ad_beat_p < ad_t_max) { 

   beat = safe; 

  } 

  if (phrase_state == 1 && !input(pin_a4)) { // if auto step on phrase 

   output_high(pin_e0); 

  } 

 

  if (beat == safe) { 

   phrase_state = phrase_state + 1;  

   output_high(pin_d0); // clean beat for U8 

   if (phrase_state > 16) { 

    phrase_state = 1; 

   } 

  } else { // automatically assume 

   output_low(pin_d0); 

   output_low(pin_e0);  

  } 

 

  set_adc_channel(3); 

  delay_us(20); 

  ad_phrase = read_adc(); 

  if (ad_phrase > 100) { 

   phrase_state = 1; 

  } 

 
  if (beat > 0) { 

   beat = beat - 1; 

  } 



 
  if (!input(pin_c0)) { // pass through 

   output_high(pin_e1);  

  } else { 

   output_low(pin_e1); 

  } 

 

  ad_beat_p = ad_beat; 

 
 } // end while 

 

} // end main 

This code also passes a cleaned beat synchronization signal to the output compiler 
(pin d0). 

// microcontroller three [ output compiler ] 
The final microcontroller is used to compile the output for controlling the lighting 
system. 

Work on the software for this microcontroller was also terminated prematurely due 
to damage incurred to the microcontroller, and due the improper functioning of the 
DMX protocol converter. However, several portions of the microcontroller’s 
functionality were coded. 

override management 
During runtime, the user has the ability to override the normal operation of the 
system to produce a whiteout, a blackout, or a strobe pattern. The following code 
manages these three override states of the lighting output: 

main() { 

 

float ad_gain; 

float ad_crossfade; 

float ad_strobe; 

 

int1 blackout_state = 0; 

int1 strobe_state = 0; 

int1 whiteout_state = 0;  

 

... 

 

while (1) { 

 

if (!input(pin_d6)) { // strobe 

output_high(pin_d1); 



while(!input(pin_d6)) { 

} 

strobe_state++; 

} 

if (strobe_state) { 

output_high(pin_d1); 

} else { 

output_low(pin_d1); 

} 

 

if (!input(pin_d5)) { // whiteout 

output_high(pin_d2); 

while(!input(pin_d5)) { 

} 

whiteout_state++; 

} 

if (whiteout_state) { 

output_high(pin_d2); 

output_high(pin_e0); 

output_high(pin_e1); 

output_high(pin_e2); 

} else { 

output_low(pin_d2); 

} 

 

if (!input(pin_d4)) { // blackout 

output_high(pin_d3); 

while(!input(pin_d4)) { 

} 

blackout_state++; 

} 

if (blackout_state) { 

output_high(pin_d3); 

output_low(pin_e0); 

output_low(pin_e1); 

output_low(pin_e2); 

} else { 

output_low(pin_d3); 

} 

 

delay_ms(20); 

 

} // end while 



 

} // end main 

seven-segment display 
Code was also implemented for driving the seven-segment display by means of the 
I2C chip. 

Figure 21 depicts the serial data format for writing to the IC. 

 

 
Figure 21. SAA1064 data writing format. 

Table 4 shows the meanings of the subaddressing values that can be set in the 
instruction byte. 

SC SB SA Subaddress Function 
0 0 0 00 Control Register 
0 0 0 01 Digit 1 
0 1 0 02 Digit 2 
0 1 1 03 Digit 3 
1 0 0 04 Digit 4 
1 0 1 05 Reserved 
1 1 0 06 Reserved 
1 1 1 07 Reserved 

Table 4. SAA1064 subaddressing. 

Table 5 shows the various settings available for the control byte. 

Bit Setting Meaning 
C0 = 0 Static mode. 
C0 = 1 Dynamic mode. 
C1 = 0/1 Digits 1 and 3 are blanked / not blanked. 
C2 = 0/1 Digits 2 and 4 are blanked / not blanked. 
C3 = 1 All segments on for segment test. 
C4 = 1 Adds 3 mA to segment output current. 
C5 = 1 Adds 6 mA to segment output current. 
C6 = 1 Adds 12 mA to segment output current. 

Table 5. SAA1064 control bits. 

The C compiler used to program the microcontrollers comes with built-in I2C 
functionality. This is initialized using the following preprocessor command: 

#use I2C(master, sda=PIN_C4, scl=PIN_C3) 

The following code initializes variables and the processor hardware settings. 
main() { 

 



 float ad_gain;  

 int gain; 

 
... 

 

 delay_ms(10); 

The SAA1064 chip must then be initialized. The following commands are aimed at 
completing the initialization. All segments are briefly turned on, and then turned off 
again. 

 i2c_start(); 

 i2c_write(0x70); 

 i2c_write(0x00); 

 i2c_write(0b00011110); 

 i2c_stop(); 

 

 delay_ms(10); 

 
i2c_start(); 

 i2c_write(0x70); 

i2c_write(0x00); 

i2c_write(0b00000110); 

i2c_write(0x00); 

i2c_write(0x00); 

i2c_stop(); 

The following execution loop reads the input from the mixer’s channel 2 volume 
potentiometer, and displays a corresponding numeric value (from 0 to 9) on the 
seven-segment display.  

while (1) { 

 

set_adc_channel(0); 

delay_us(20); 

ad_gain = read_adc(); 

ad_gain = (ad_gain / 255 * 10) - 0.5; 

gain = (int)ad_gain; 

 

i2c_start(); 

i2c_write(0x70); 

i2c_write(0x01); 

if (gain == 9) { 

i2c_write(0b00111111); 

} 

if (gain == 8) { 

i2c_write(0b00000011); 

} 



if (gain == 7) { 

i2c_write(0b01101101); 

} 

if (gain == 6) { 

i2c_write(0b01100111); 

} 

if (gain == 5) { 

i2c_write(0b01010011); 

} 

if (gain == 4) { 

i2c_write(0b01110110); 

} 

if (gain == 3) { 

i2c_write(0b01111110); 

} 

if (gain == 2) { 

i2c_write(0b00100011); 

} 

if (gain == 1) { 

i2c_write(0b01111111); 

} 

if (gain == 0) { 

i2c_write(0b01110111); 

} 

i2c_stop(); 

 

} // end while 

 

} // end main 

Difficulty was encountered while programming the microcontroller to utilize the 
seven-segment display control chip. It would work on occasion, after attempting 
numerous initialization bit streams. However, no fixed method of initialization could 
be established. Assuming the IC can be correctly initialized, the above program loop 
will work as designed. 

conclusions / successes and shortcomings 
Although this system was relatively simple to imagine, creating each of its 
components was fairly time consuming. 

The main setback encountered was the improper functioning of the DMX protocol 
conversion board. The board was chosen in part due to cost considerations; future 
revisions to the design should incorporate a protocol converter of a higher quality.  



The main improvement to be made is changing the method used to communicate 
with the protocol converter. This design relied on the creation of analog signals, 
which proved difficult to produce. Using a serial data communication scheme (such 
as an RS232 link) would be much easier to incorporate. Moreover, this would allow 
for a more configurable product that could control a variety of DMX compliant 
lighting systems.  

In conclusion, the creation of this system was an extremely educational and 
rewarding experience.  
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