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Abstract 
This final report summarizes the work done by Emery Ku ’05 on a 
‘Helicopter’ Control Theory Demonstrator in the spring of 2005.  Much 
of the content of this document is dedicated to the discussion of the 
design procedure and the documentation of system components.  The 
system was built to resemble a helicopter and requires a two-input, two-
output controller.  One of the primary goals was to construct a new and 
unique structure which would ultimately be used as an educational tool 
for those studying control theory; it is currently in working condition.  A 
fully successful controller has yet to be implemented, but a great deal of 
progress has been made in understanding the system’s inherent 
complications. 
 

 
Introduction 

   
 Hundreds of years before Leonardo da Vinci was even born, the idea of vertical flight had 
already been implemented.  A Chinese toy known as a "bamboo dragonfly" became widespread 
circa 400 BC:  "the earliest versions of the Chinese top consisted of feathers at the end of a stick, 
which was rapidly spun between the hands to generate lift and then released into free flight," 
(http://centennialofflight.com/history/helicopter.html).  More than two thousand years later, this 
simple toy would serve as a great inspiration for several key contributors to early modern 
helicopter design.   
 
 A component common to all modern helicopters is an advanced control system.  The 
propeller that is responsible for 'lift' simultaneously generates a torque which causes the body of 
the aircraft to rotate.  This is counteracted by the tail rotor.  To have a pilot try to manually 
compensate for this constantly varying characteristic of the system while trying to stay in the air 
would be incredibly dangerous.  Thus, a controller is required to counteract the natural tendency 
to horizontal rotation or 'yaw'.  This challenge was the inspiration for my E90 Senior Design 
Project. 
 
 The primary goals of my E90 project are 1) to produce a system which emulates the 
functionality of a helicopter to be used as an educational tool for future classes of engineers, 2) to 
implement a two-input/two-output controller to govern the motion of the 'helicopter', and 3) 
serve as a demonstration of control theory principles. 
 
 While the system has been fully constructed and developed, a number of issues have 
come up along the way.  Some have been addressed and resolved while others remain a barrier to 
the utmost realization of my project goals.  At this point in time, parallel PID controllers have 
been implemented for both Theta (yaw) and Phi (pitch) directions.  The system went through a 
serious redesign after which progress has been difficult.  Before that modification, results were 
respectable for the Phi direction.  However, due to time varying behavior in the system, 
consistent results have yet to be achieved. 
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System Design Overview 
 
 The salient features of a helicopter are its ability to hover vertically and rotate 
horizontally.  In keeping with a system analogous to a real helicopter, I decided to use two 
motors/propellers, the larger of which would be responsible for generating lift.  Given that the 
primary purpose of this project is to create a system which will be applied in an educational 
setting, safety and especially system hardiness are of great concern. 
 
 The idea of a counter-balanced arm which is free to rotate horizontally and vertically is 
an appealing adaptation of a true helicopter for a number of reasons: 1) the two degrees of 
freedom available in my system create the necessity of a two-input/two-output controller; 2) 
because the lever-arm rotates about a fixed point, there is no danger of the apparatus 'flying 
away' and doing damage to itself or to a student; 3) counter-balancing the lever allows for 
reduced power requirements for the motor responsible for generating lift. 
 
 With the general vision of a counter-balanced swinging arm propelled by ‘fans’ in mind, 
the first step to realizing the project was to order motors and propellers.  Once acquired and 
tested, the mechanical capabilities these components dictated the design and weighting of the 
arm.  In addition, the electrical requirements and characteristics of the motors determined the 
specifications of the amplification component.  The details of the rotating parts of the arm were 
finalized when rotary sensors were purchased.  The electrical characteristics and requirements of 
the electrical components (amplifier and sensors) determined the functionality of the 
microcontroller; this chip facilitates communication to and from the computer.  Only with all of 
these components in place was it possible to begin designing a controller in MATLAB. 
 

A graphical outline of the components’ prerequisites in the design process is shown in the 
flow chart below: 

 

Figure 1.  Flow chart outlining system design. 
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System Components 
 
 The system can be broken down into three primary domains: Mechanical, Electrical and 
Computer (or software).  Each component is outlined here in terms of its function within the 
context of the entire system.  The following flow chart summarizes the path of information 
through the system.  Note that there are two arrows into and out of each component because the 
system moves in both theta and phi directions. 
 
 

Figure 2.  Flow of information within the system.  Computer components are diamond-shaped, 
electrical components are rectangular, mechanical components are octagonal. 
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Mechanical 
 The primary components of my project that fall under the mechanical category are the 
motors/propellers, and the physical apparatus which consists of the swinging arm and its support 
structure.  The latter allows for the physical freedoms and restrictions of the system, while the 
former drives its motion. 
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pair of identical ±12V motors as this input range is very common.  In addition, I consciously 
selected motors with the ability to spin in either direction as I felt it would leave fewer 
restrictions later in the design process. 
 
 After ordering several different propellers, I adapted the motor shafts to be able to hold 
and swap out these different models.  In the end, a three-rotor 12" diameter by 6" pitch plastic 
propeller was selected for the phi-direction, and a dual-rotor 6" diameter by 3" pitch was fixed 
permanently to its motor shaft for the theta-direction.  These choices were made through a 
process of measuring the ranges of force that could be easily produced by the various 
motor/propellers combinations without overtaxing the motor. 
  
 Once both motors and propellers were acquired, they were fitted to each other in the 
shop.  The tail rotor was fixed permanently to its motor because I did not anticipate the need for 
a great deal of force in the theta direction.  However, I was less certain about the output force 
requirements of the motor/propeller ‘fan’ which would produce lift (motion in the phi direction).  
As a result, I designed the motor shaft such that different propellers would be interchangeable. 
 
 The electrical input and mechanical output characteristics of the variously configured 
‘fans’ were measured by holding the fans in a block which was then taped to a digital scale.  The 
following figures illustrate the various Force vs. Input Current functions for different 
motor/propeller combinations: 
 
 

Forces Generated by Motor with Various Propellers
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Figure 3.1.  Force vs. Voltage curves for DC motor with two different propellers. 
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Figure 3.2.  Force vs. Current curves for DC motor with two different propellers. 
 
I performed a similar test on the combination of the motor with the 12x6 rotor.  However, the 
results were much noisier towards the upper end of the voltage range; this was likely due to the 
higher air flow over the digital scale.  What was significant was that the combination of the 
motor with the 12x6 rotor was able to produce a force of ~0.25 lbs at 8V.  This option was 
chosen as the higher force at lower voltages allowed for a wider range of potential forces. 
 
Swinging Arm and Support Structure 
 The swinging arm and its support structure constitute the body of the system.  I decided 
to build a metal support system because it was my opinion that a PVC base would be more prone 
to damage and appear less attractive.  The aluminum components of the support structure were 
shaped to fit the theta direction encoder (which would simultaneously allow for free rotation 
horizontally and measure its angle) and also the swinging arm.  The set screw that holds the 
upper aluminum support piece to the encoder shaft is prevented from rotating past one revolution 
by a perpendicular machine screw.  This is to prevent the wires from becoming entangled.  
 

The swinging lever arm is constructed from 2”x3/4” cross-section pine.  This wood was 
selected because of its low weight and ease of construction.  My initial design specified an arm 
35 inches long, and 2 inches wide with the pivot at 19 inches distant to the end where the phi 
direction motor was held.  This would accommodate the range of forces that the phi direction 
motor could output.  Wood was glued to the two ends to produce two-cubic inches of pine which 
were then drilled out hold the motors (one pointing upwards, the other pointing horizontally). 

 
The transfer function of the phi direction motion of the arm was determined by sending 
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step inputs to the system and recording the steady state values.  The result was then fitted to an 
exponential function.  In turn, this function was solved for the required input voltage given a 
desired output angle for application in the PID controller. 

 

Exponential Fit of Vin vs Vout
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Figure 4.  Numerical solution and exponential of transfer function in phi direction given 

step inputs. 
 
The arm was eventually redesigned to new physical specifications (for reasons that will 

become apparent later: see System Development: Hardware).  The final arm was 14.5” long 
with a ¾” x ¾” square cross-section.  The motors are fixed to the ends with adjustable metal 
straps.  This arm also has the ability to slide along the board which rotates in the support 
structure.  This makes varying the arm’s balancing much more convenient. 
 
Electrical 
 The electrical components of this system consist of the rotary sensors, microcontroller, 
and the amplifier (with power supply).  These are responsible for facilitating communication 
between the computer and the physical apparatus. 
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Sensors:  Optical Rotary Encoders 

    
 

There are numerous ways to measure rotation.  One common method is using a dial-
based potentiometer.  I chose to use digital rotary encoders in order to minimize noise and 
maximize accuracy and precision.  The two encoders I chose were BEI Duncan’s EX-11 and 
MX-15 (male and female versions).  These encoders output 1024 pulses per revolution in two 
channels (90 degrees offset to discern direction of rotation); see figure below: 
 

 
Figure 5.  Output from rotary encoders. 
 
I opted for this level of precision in order to acquire better data, and I felt confident that the 
microcontroller decoding its output would be fast enough to catch these cycles without missing 
any pulses.  For complete technical specifications, please refer to Appendix A: Datasheets, 
Rotary Optical Encoders. 
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Amplifiers for Motors 

   
 
 In order to power the motors, an amplification system is necessary.  The requirements of 
this component were set by the motors.  I anticipated (given prior measurements) that the 
absolute maximum continuous current that would be drawn by both motors was close to 7 or 8 
amps.  In addition, the motors are designed for 12V continuous (max), so it made sense to use a 
power supply that would be able to match these characteristics.  The chosen power supply 
outputs a continuous 13.8V, with a max continuous current rating of 10A.  In addition to the fuse 
internal to the power supply, I added a single 8A fuse between the power supply and the motors 
in order to prevent potential damage to the apparatus. 
 
 In order to maximize efficiency and simplicity, a pulse-width modulation (PWM) mode 
of operation was chosen to power the motors.  This method minimizes the energy wasted in heat 
in the amplifier circuit.  In my implementation of PWM, a MOSFET (Metal Oxide 
Semiconductor Field-Effect Transistor) turns on and off quickly which determine how much 
current flows through the motor.  A ‘flyback’ diode is placed in parallel with the motor to reduce 
the effect of the motor’s internal inductance (see figure 6 below). 
 

 
Figure 6.  Amplifier circuit.  V1 is the power supply. 
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The components that I eventually chose as permanent additions were the 10CTQ-150 
Schottky diode and the RFD16N05L logic-level MOSFET.  For complete technical details, 
please see Appendix A: Datasheets.  The design processes that led up to the selection of these 
particular are discussed in System Development: Hardware. 
 
Microcontroller for D/A and A/D Conversions 

 
 
 The microcontroller is responsible for performing the critical function of converting the 
signals between the computer and the system into readable data.  There are two microcontrollers: 
one for the phi direction and the other responsible for the theta direction.  The microcontroller is 
a necessary component because the computer’s data acquisition board (accessed through 
MATLAB) is only capable of sending and receiving 0-5V data, and the amplifier must use 
PWM. 
 

Given that the rotary encoders each output two channels of pulses, the microcontrollers 
must take this information, track the change in angle, and convert this data to a readable signal 
from between 0-5V.  At the same time, the MOSFET in the amplifier only accepts TTL 
(transistor-transistor logic, a signal of either 0V or 5V); the microcontroller must convert a 
controller voltage from the computer to a PWM signal operating between 0V and 5V.  For 
details on how this is accomplished, see System Components: Computer, C-Code for 
Microcontroller. 

 
The microcontroller I chose for this purpose is the PIC16F873A.  I chose it in part due to 

its availability and convenience; more importantly, it met the I/O requirements for my system.  
In particular, there are three inputs (two channels from the rotary encoders, the third is the 
computer’s controller voltage) and two outputs (one to the amplifier, the other to the computer).  
The I/O functions of the PIC microcontroller is summarized below. 
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I/O Function I/O Pin Type Micro-Controller 

Pin Address 
Pin Number on 

PCB 
(Pin 1 = 5V) 

Input Encoder Channel A Digital Input RB0 4 
Input Encoder Channel B Digital Input RB1 5 
Input Motor Control 
Voltage 

10-bit Analog-to-
Digital 

RA0 7 

Output Angle Voltage PWM RC2/P1 16 
Output Motor Control  PWM RC1/P2 17 
 
Figure 7.  Table of microcontroller I/O functions and pin locations. 
 

One important matter to keep in mind is that the microcontroller does not have analog 
outputs.  Subsequently it cannot strictly output an analog voltage.  However, the PWM channels 
can be low-pass filtered to provide a varying analog signal.  This is done with a simple R-C 
circuit. 

 

 
Figure 8.  R-C low-pass Filter to convert PWM to a DC signal. 
 
 Through an iterative process, it was determined that optimal values for the resistor and capacitor 
would be R = 10kΩ and C = 33µF, given a 51.2 µs period. 
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A schematic of the circuit is shown here: 
 

 
Figure 9.  Microcontroller schematic. 
 
The power supply circuit for the microcontrollers is not shown in Figure 9 (it is understood as 
internal to VCC); it is a very simple circuit: 
 

 
 
Figure 10.  Power supply for microcontrollers.  +V is 6VDC, VO is 5VDC. 
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Computer 
 The computer and software components of the system are what determine how the 
system reacts. The microcontroller code determines how the chip parses the incoming signals 
and how to output appropriate information.  The exact code can be found in Appendix B: 
Computer Code.  The following section describes the processes that the code executes. 
 
C-Code for Microcontroller 
 As discussed above, the microcontroller must provide important I/O functions for the 
system (see Figure 7 for details).  I will discuss the functions of the code in the order that they 
appear, as divided by commented section headers: 
 
//Things we need. 
  The #include and #use lines simply tell the compiler what components are necessary for 
this PIC chip.  Note that the library 16F873.h was modified to use 10-bit analog-to-digital 
conversion. 
 
//Define quadrature-based states as grey-code. 
 Here the 4 possible states of the two channels from the encoder are defined.  They are: 1) 
both A and B low, 2) A high, B low, 3) A and B high, 4) A low, B high.  A grey code (only one 
bit flip at a time) is used to reduce potential errors. 
 
//Inputs 
 This section defines which pins are used as inputs by default.  The fixed_io setting saves 
processing time later. 
 
//Outputs  
 This section is commented out because the PWM channels are set as such by default. 
 
//Keep track of the angular position (10-bit) 
 The angular position variable ‘angle’ is stored as a 10-bit integer, as is the ‘control’ 
variable.  This is setup in this manner so that the output to the PWM channel can be easily 
determined (it also ensures that there is enough resolution to accommodate the output format). 
 
main{} 
 This is where the ‘program’ operates.  More I/O pins are setup at the top, and the PWM 
pins initialized.  The timer responsible for PWM outputs is set to a 20 kHz cycle and the angle 
variable is initialized to 0.  Finally, an infinite loop is started which compares the current state 
with the last to determine which way the encoder is turning, redefines the old state for the next 
cycle, reads the input from the motor control channel (the 10-bit A/D conversion takes places 
there) and sends outputs according to which way the encoder is turning and what input the 
microcontroller is receiving. 
 

In order to maximize the resolution available for each direction, the amount added to 
angle with each pulse and how much it is divided by in determining the PWM output is carefully 
chosen.  For example, the phi direction has a range of rotation of approximately 70 degrees, 
whereas the theta direction is closer to 330 degrees.  As a result, the incremental step-size for the 
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theta direction is ¼ the size of the incremental step-size for the phi direction.  This maximizes 
the resolution available given a 10-bit variable. 
 
MATLAB Script to Implement Controller Algorithm 

The MATLAB script is critical for both administering data I/O and also implementing the 
controller.  As with the above C-code, I will describe the functionality of the script which is 
delimited by the comment titles.  For specific code and detailed comments, refer to Appendix B: 
Computer Code, MATLAB Script. 
 
%%Setup the input channel 
 Here the input channel is initialized.  The number of seconds of the run is set at the top, 
in addition to the Sample Rate.  While there is no hard upper limit, there is no great benefit of 
running the test at a very high sample rate.  Anything above 20Hz will probably yield good 
results as that should be fast enough to simulate a continuously sampled system.  In fact, setting 
the Sample Rate too high can quickly fill the input buffer and cause trouble.  However, the 
greatest irritation will probably be the increase processor usage at the end of the data run when it 
has to plot a great many data points. 
 
%%Setup the output channel 
 The National Instruments Data Acquisition (‘nidaq’) communication protocol still 
remains standard with the boards Swarthmore College’s Department of Engineering currently 
uses.  To avoid timing problems, the output sample rate is equal to the input sample rate. 
 
%%Initialize I/O 
 Here we add channels and set acceptable ranges.  The input range should be set to ±5V; 
other settings seem to upset MATLAB or the NIDAQ board. 
 
%%Pre-Set Output 
 An initial output is sent to the motors in order to break past the static friction of the 
motors.  This also slightly decreases the time delay at the start of the data acquisition run. 
 
%%Predefine variables & Initialize Arrays 
 Arrays which do not have a defined size must be initialized as empty before they can be 
dynamically filled.  Some variables have to be zeroed. 
 
%%Goal Angles (and voltages) 
 Here the goal angles are entered.  This angle is then converted to a goal voltage to be 
compared with the angle output from the microcontroller. 
 
%%Set Controller Parameters 
 In my PID controller, I have two different proportional gain constants.  The 
implementation is as follows:  

(Error)*[abs(Kp_a*sin(phi_desired)) + Kp_b*cos(phi_absolute)] 
This helps account for the tendency of the system to get stuck at the top (see System 
Development for details on this problem).  Kp_a diminishes with the sine of the angular 
difference between the current position and the goal angle.  The Kp_b term varies with the 
cosine of the angle of the current position as measured from horizontal (zero degrees). 
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%%Get ready... 
 Trigger the data acquisition object. 
 
%%Loop until time t 
 This is the main loop that governs data acquisition, controller calculations and sending 
output signals.  Inputs and outputs are stored in pre-defined arrays, in addition to the components 
of the PID controller.  Outputs are checked for sanity; if they exceed safe values, they are clipped 
and set to the maximum or minimum allowable value. 
 
%%Post Data-Acquisition Outputs 
 This is an attempt at preventing the system from doing undue damage to itself, and also 
an attempt at resetting it to a ‘zero’ position. 
 
%%Free up any memory that we used. 

MATLAB’s data acquisition code (when used with NIDAQ) seems problematic in that if 
you try to generate a new analog input or output object before the old one has been cleared, the 
I/O hangs altogether and requires that you restart your shell.  Nonetheless, a short script at the 
beginning of my code looks for and tries to deal with the problem ahead of time. 

 
%%Plot the data 
 This set of plots I have found very useful to debugging the controller’s output.  In this 
figure, each component of the controller is plotted against time along with the total error and the 
total output. 
 
%%Optional plots 
 In this figure, angular positions and goals versus time are displayed, in addition to the 
total output of the controller.  This set of commands is generally not executed to save processor 
time. 
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System Integration 
 
 This section describes in detail the working relationships between the components of 
each domain necessary to the functioning of the apparatus.  This system is in some ways 
analogous to a biological organism: the mechanical components represent the muscles and bones 
that are critical for motion, the electrical circuits can be thought of as the nervous and circulatory 
systems which convey information, while the computer acts like a brain controlling these bodily 
functions.  The following diagram shows how communication takes places within the system and 
by what means: 
 

 
Figure 11.  System flow chart in detail. 
 
 
Mechanical 
 The skeletal and muscular structure of this system can summarized as the following 
components: 
 

1. base platform 
2. threaded steel pipe and connector 
3. machined aluminum holder for theta direction encoder 
4. theta direction encoder 
5. machined aluminum ‘tuning fork’ to couple theta direction encoder shaft with arm 
6. balanced rotating arm 
7. motors and propellers 
8. phi direction encoder 

 
The physical relationships of these parts are illustrated on the next page. 
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Figure 12.  Mechanical Apparatus 
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Electrical 
 The electrical components of this system are shown in the figures below.   
 

 
Figure 13.  Physical realization of electrical components: 1) Amplifiers, 2) Voltage regulator for 
power supply to microcontrollers, 3) Microcontrollers; phi microcontroller on left, theta 
microcontroller on right. 
 

 
Figure 14.  Faceplate to electrical components.  From left to right: analog input BNC terminals 
(2), analog output BNC terminals (2), phi and theta motor terminals (2 sets), phi and theta 
encoder terminals (4 each). 
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Figure 15.  Additional electrical connectors: 1) high power supply connectors (13.8VDC, 10A), 
2) low power supply jack (6VDC), 3) on/off switch for microcontrollers. 
 
Computer 
 The following diagram outlines the PID controllers that I implemented in my system: 

 
Figure 16.  Basic PID controller flow chart. 
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Note that Figure 16 does not detail the augmentations that were applied to the Phi direction 
controller.  For a detailed discussion of controller implementation and the motivations behind 
design choices, see System Development: Software, MATLAB Controller for details. 
 

System Development 
Hardware 
 I encountered a number of hardware problems during the course of this project.  To 
simplify the explanation of the design revisions that took place, I will discuss the difficulties and 
subsequent changes to the system that I made in chronological order. 
 
MATLAB Data Acquisition 
 A great deal of time was spent trying to get the data acquisition code to work properly 
beyond the 2000 point buffer.  Eventually this was easily overcome by leaving all settings alone 
but adding the line ‘Ain.TriggerRepeat=inf.’  However, it was rare that I would ever need to 
take more than 2000 data points as most test runs were short and designed to diagnose or 
improve the controller. 
 
Insufficient Vertical Forces Generated by Lift-propeller 
 Early on in the building process, my only power source available was only capable of 
outputting 6V/5A max.  This was quite a constraint on the amount of lift I could generate, so I 
modified the system by adding weights to the shorter end of the arm.  This reduced the amount 
of power needed to lift the arm, though the weights were eventually removed when my new 
power supply arrived. 
 
Power Supply 
 The new power supply with its greater power output capabilities (max 13.8V/10A 
continuous) immediately solved the torque issues I was having, but it also created a few serious 
problems.  My MOSFETs and diodes had been perfectly functional until I installed the new 
power supply, but after a couple trial runs, the MOSFETs went up in smoke (literally) and my 
diodes melted. 
 
MOSFETs 
 I had been using some lower-power logic-level MOSFETs before the new power supply 
arrived.  Logic-level MOSFETs were required because the other MOSFETs available in the lab 
were not turning on and off quickly enough, given the 20 kHz cycle which my PWM was based 
upon.  However, the greater loads induced by the new power supply was more than my old 
MOSFETs could handle.  In addition, the variety that I had obtained were surface mount chips, 
thus precluding the addition of heat sinks which might have prolonged their active lives. 
 
 The new MOSFETs I chose were also logic-level, with a low Gate to Threshold Voltage 
level (1-2V typical).  This simply means that the transistor will turn on more readily even given a 
lower or slower PWM signal.  In addition, a max drain current of 10A (per channel) was more 
than sufficient to ensure that they would function properly even under extreme conditions in my 
system.  Lastly, heat sinks were attached to these chips to further reduce the danger of damage. 
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Diodes 
 Even more surprising to me than the failure of the MOSFETs was the melting of several 
Schottky diodes I had been using.  Schottky diodes are well-known for their low forward voltage 
drops (~0.3V) which means they are wasting less energy and generating less heat.  The fact that 
they were being destroyed suggests to me that quite a bit of current flows through them during 
the off-cycle of the MOSFETs.  The replacements I ordered were heat-sinkable dual-channel 
10A Schottky diodes.  Even with (comparatively) large heat sinks attached, these diodes still get 
quite warm, but they have not failed even with the highest of currents. 
 
Encoders 

Perhaps with the increased current flow to and from the motors, a greater EMF was being 
generated in the vicinity of the encoders.  It was not uncommon to observe a rise (or decrease) in 
the angular position voltage while the motors were on, even though there was no actual 
movement of the arm.  However, this never occurred when the motors were off, so I attributed 
the problem to EMF disturbance.  This problem was largely solved by twisting the pairs of 
cables carrying the encoder outputs.  This physical arrangement of cables has the tendency to 
cause a reduction in sensitivity to nearby fields as they cancel their inductive effects in the 
twisted pair when the first cable loops around again.  If values continue to drift, the angle values 
can be reset to zero by turning the microcontrollers off and the on again. 
 
Time Variation of Motor Response due to Heat 
 This particular failing of the first design of my system was the most severe.  For a long 
time, I attributed the day-to-day inconsistencies of my system to misbehavior of the electrical 
components, most notably the diodes.  However, with the new diodes installed, I had no choice 
but to consider alternative sources of the system’s variability.  I eventually discovered that the 
motors were producing so much heat (while dissipating so little of it) that the blocks of wood 
surrounding them were getting hot to the touch.  It seemed that the motors were producing so 
much heat that their electrical characteristics were being significantly altered (the electrical 
resistance of a conductor rises with temperature due to the physics of electron transport).  The 
solution required a re-design of the arm mechanism, thus invalidating a significant portion of 
time spent perfecting the phi direction controller. 
 
Swinging Arm and Support Structure 
 The time variability of the motors due to heat was one of two significant reasons that led 
to the redesigning of the arm.  The second was the fact that the phi direction propeller was so far 
out from the arm’s central axis of rotation that it was producing very little torque in the theta 
direction.  This was problematic because the theta direction motor would only be unable to move 
the arm in one direction.  Thus the redesigned arm served two primary purposes: to allow the 
motor to ‘breathe’ more and dissipate heat faster, and to bring the phi direction fan closer in to 
the center thus creating a restoring torque.  All of these goals were met by the new design. 
 
Software 
 The two pieces of software that this project relies upon are the C code that runs on the 
PIC Microcontrollers and the MATLAB script which is responsible for implementing the 
controller algorithm.  The PIC-C code worked without much difficulty, though some trial and 
error was involved in maximizing the resolution for each encoder. 
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MATLAB Controller 
 Although successfully coded and applied, the PID controllers I implemented never 
attained full success in both theta and phi directions simultaneously.  However, there were a 
number of ways that I worked to improve the reliability of the PID controller.  The two most 
significant modes of modification to the classical PID controller were 1) adding in an asymmetry 
to the controller to minimize any overshoot, and 2) modifying the weights of the contributions of 
the controller components based on various functions of the angle. 
 
 The asymmetry in my PID controller directly addresses one mode of (open-loop) 
instability in the system.  The arm is balanced about a central pivot; this can be idealized as a 
single rod free to rotate in a vertical plane, fixed at one end.  The limit of the amount of torque 
required to lift this rod an incremental angle eventually goes to zero as the rod approaches a 
perpendicular posture.  Though my system’s swinging arm can never reach a vertical position (at 
most close to 40 degrees above horizontal), the aforementioned relation still remains true.  Thus 
any overshoot past the desired angle can be dangerous as it will quickly lead to an almost 
irrecoverable state where the phi direction fan is barely on, but the arm is stuck at its maximum 
vertical angle and does not fall back down (or does so very quickly). 
 
 The asymmetrical solutions that I used in my code apply primarily to an increase in the 
rate of integration and the proportionality constants once the system overshoots past the goal 
angle.  This faster integration and stronger proportionality constant cause a fairly quick reaction 
that usually counteracts the natural upwards tendency of the system.  Balancing these constants 
with the rest of the system so that the motor does not lose too much speed if it overshoots is 
crucial. 
 
 The second mode of adapting a classical PID controller to my system involved weighting 
controller components by sine and cosine relations based upon the angle to the goal.  For 
example, proportionality constants are applied both to the sine of the angle to the goal (thus more 
quickly decreasing this controller component when the system approaches its goal) and to the 
cosine of the absolute angle measured against horizontal (thus retaining some level of a ‘normal’ 
proportional controller).  Perhaps most significant is the weighting of the integral component of 
the controller by the square (or higher) of the cosine of the angle to the goal.  This restricts the 
sensitivity of the (already very small) integral component of the controller to the region near the 
target angle.  This serves the purpose of retaining the integral controller’s ability to drive the 
error to zero without first slowing the system way down before it gets near its goal, while 
avoiding potential over- and under-shoot problems. 
 
 In general, I tweaked the PID constants first by aiming for some amount of overshoot and 
then slowly increasing the derivative constant in order to increase system speed and reduce 
dangerous overshoot.  My iterative cycle seemed consistent with most published methods of 
tuning PID controllers. 
 

Results 
Before Redesigning the Arm 

Before redesigning of the arm, I attained a fairly high degree of success in controlling the 
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phi direction position for a variety of goal angles.  The major difficulty at this point was related 
to the time variability of the motors.  However, if I settled into a fairly steady rhythm of trails 
and system cooling, the motors would respond fairly consistently and I would get good results.  
The most readily attainable angles were those very near to horizontal, and slightly below.  
Figures 17.1 and 17.2, and 18 illustrate two such favorable tests. 
 

 
 

 
Figures 17.1 and 17.2.  Phi goal angle of 0 degrees (horizontal) trials.  17.1 shows the rise in 
position and the total output of the controller.  17.2 shows the various contributions to the total 
output of the controller from proportional, derivative and integral components. 
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Of particular note here is the slight system overshoot at 10s, which is quickly corrected by the 
integral controller (which can be very slightly discerned as the red line dipping below 0 in figure 
17.2). 
 

Figure 18.  Output for goal angle of 2 degrees above horizontal. 
 
 While the controller tended to work fairly well for a variety of angles in those ranges, the 
fact that it would be impossible to design a functional theta direction controller coupled with the 
time variability of the motors necessitated that I redesign the arm.  The severity of the 
inconsistency of the motors is illustrated by Figures 19.1 and 19.2. 
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Figure 19.1 and 19.2.  The first graphic illustrates the response of a system whose goal angle is 
nearly horizontal.  The second figure shows with increasingly thick lines the progression of the 
system response with time (no changes to controller or other hardware were made during this 
time).  By the ninth trial, the response peaks at an angle nearly 30 degrees less than the first run. 
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After Redesigning the Arm 
 Though redesigning the arm solved the dilemmas of creating a restoring torque in the 
theta direction and increasing the rate of heat dissipation, it also made the system more unstable.  
By moving motors closer to the center, the overall moment of inertia went down significantly 
(the moment of inertia for a bar rotating through its midpoint is given by I = 1/12*ML2).  This 
means that the system became more prone to high angular accelerations and greater angular 
velocities.  In a system that has an inherent time delay, this modification works to make a 
stablizing controller more difficult to implement.   
 
 Nonetheless, a Simulink model of the system was generated and a potentially stable 
controller implemented.  The model was generated by doing a very basic fit of a step response to 
a first order system with a time delay. 
 

 
Figure 20.  Here a step response of a first-order model with a time delay (red x’s) was fit to the 
system step response in the phi direction (blue *s). 
 
While it is evident that my system is of a higher order, and the two responses diverge fairly 
significantly after 3 seconds, it useful nonetheless to examine a simplified theoretical model with 
a time delay to consider potential controllers. 
 
In order to model the time-delayed system in Simulink, it is necessary to perform a Pade 
approximation.  
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>> pade(sys, 1) %perform a first-order Pade approximation. 
  
Transfer function: 
   -0.5 s + 0.5714 
--------------------- 
s^2 - 1.982 s - 3.571 
Figure 21.  First order Pade approximation of theoretical system with time delay. 
 
This system is then input into Simulink and analyzed for stability. 

 
Figure 22.1 and 22.2.  Before controller is applied, and after application of a lead controller.  
Note that the system is now stable. 
 
The lead controller implemented above takes the form: 

s
s

32.1
63.1*62.5

−
+  

 
The new system response is shown below: 
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Figure 23.  Simulated system response with a lead controller.  Though oscillatory and relatively 
slow, this system does eventually stabilize. 
 

In summary, though the controller is not 100% operational, the system is fully 
constructed and the controller code is in place.  If the next person decides to try their hand at a 
modified PID controller such as mine, they simply have to load the code that has already been 
written and tweak the values. 
 

Discussion 
 
 Perhaps the greatest impediment to implementing a successful controller in this system 
was the significant time delay inherent to the physical apparatus.  The motors took a significant 
amount of time to spin up to speed, and then there was a slight delay before the rotors would 
catch the air to produce lift.  I feel there are several possible directions to go from here: 1) accept 
the time lag as is and work on a complex controller (or accept a slow response) possibly by first 
developing a rigorous system model or 2) work on a mechanical solution to decrease the time 
lag. 
  
 If I were to redesign the system with the goal of reducing the time lag in mind, I would 
certainly try new motors or propellers.  I don’t believe these motors were designed to produce 
the levels of torque that they are generating at high currents.  Part of the reason for the slow spin-
up time is that these motors simply are not very powerful.  Another alternative would be to try 
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smaller propellers.  This would lighten the load on the motors and increase system 
responsiveness, though the apparatus would have to be more finely balanced due to the decrease 
in the amount of lift generated (thus making it even more unstable!). 
 

The primary goal of my first PID controller was to get as close as possible to the target 
based upon the prior knowledge of the system’s transfer function (based upon the exponential fit 
of step inputs versus steady state solutions) and then to move as slowly as possible to make any 
corrections necessary.  The slow speed of correction was required by the instabilities of the 
system and the time lag.   
 

Designing a finely crafted controller designed to compensate for the time-lag would be 
quite a feat.  Even a basic physical model of the system may shed light on potential solutions.  
The method of PID control I implemented for the first arm simply does not work very well for 
the redesigned system.  This is largely due to the fact that the moment of inertia is so 
significantly decreased; the range of voltages that will keep the system at a more or less stable 
angle has become frighteningly thin.  As a result, it is extremely difficult to produce a transfer 
function of the system in the phi direction using step inputs. 
 
 While the first-order model with a time delay fails to match the physical system’s 
response after a period of time, the Simulink lead-controller does give us hope that a controller 
can be designed to combat large time delays and system instabilities.  I would strongly 
recommend against using this system as a general lab experiment for control theory students, due 
to its current unstable condition.  I do however have great faith in the technical abilities of 
Swarthmore Engineering students; my apparatus may be more appropriate for a final project or 
E90 that would involve research and design of experimental or exotic control techniques. 
 

Future Work 
 
 In its current state, the system is prone to damage from the repetitive 'falls.'  This is a 
serious condition as it is possible that the arm will in time incur permanent damage to the theta 
direction encoder shaft.  This could be fairly easily remedied by constructing a downwards 
pointing conic support attached at the first machined aluminum piece which would ‘catch’ the 
arm. 
  
 Another important safety concern is that of the propellers.  Before being used in a 
laboratory setting, I would recommend constructing fan cages around the plastic blades as to 
prevent curious fingers from getting cut. 
 

Beyond these basic changes, there is only the simple matter of implementing a controller.   
I look forward to hearing about the various methods that are implemented on my apparatus when 
they meet with success! 
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Appendices 
Appendix A: Datasheets 
 
Rotary Optical Encoders 
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MOSFETs 
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Diodes 
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Appendix B: Computer Code 
PIC-C Code: Phi 
/* 
   Emery Ku, E90 
 
   This file details the I/O for a PIC microcontroller (16F873A) which is 
   connected to an angular encoder (1024 pulses/revolution) and outputs a pulse- 
   width modulated signal to convert angular position to a voltage. 
*/ 
 
//Things we need. 
#include <16F873.h>  //ADC set to 10 (open 16F873.h) 
#include <STDLIB.H>  //Required by read_adc() 
#fuses HS,NOWDT,NOPROTECT,NOLVP 
#use delay(clock=10000000) 
#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7, BRGH1OK) // Jumpers: 8 to 11, 7 to 12 
 
//Define quadrature-based states as grey-code. 
#define  state_0 0   //Both encoder outputs A and B are low 
#define  state_1 1   //A is high, B is low 
#define  state_2 3   //Both encoder outputs A and B are high 
#define  state_3 2   //A is low, B is high 
 
//Inputs 
#use fast_io(A)      //this requires the set_tris_X command 
//#use fixed_io(a_inputs=PIN_A0)               //A0 is the motor control voltage 
//#use fixed_io(b_inputs=PIN_B0, PIN_B1)       //B0 and B1 are encoder inputs 
                                                //B0 is A from encoder 
                                                //B1 is B from encoder 
 
//Outputs  << I'm not sure we need this any more? CCP is separate from RCX >> 
//#use fixed_io(c_outputs=PIN_C1,PIN_C2)       //Pin C1 is PWM output (DAQ) 
                                             //Pin C2 is PWM output (motors) 
 
 
long int angle;  //Keep track of the angular position (10-bit) 
//int angle;  //Keep track of the angular position (10-bit) 
long int control; 
int cur_state; 
int old_state; 
 
void main() 
{ 
   SET_TRIS_A( 0x0F ); 
   // A7,A6,A5,A4 are outputs 
   // A3,A2,A1,A0 are inputs 
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   SET_TRIS_B( 0x0F ); 
   // B7,B6,B5,B4 are outputs 
   // B3,B2,B1,B0 are inputs 
 
   setup_ccp1(CCP_PWM);   // Configure CCP1 and CCP2 as a PWM 
   setup_ccp2(CCP_PWM); 
          //   The cycle time will be (1/clock)*4*t2div*(period+1) 
        //   In this program clock=10000000 and period=127 (below) 
          //   For the three possible selections the cycle time is: 
      //     (1/10000000)*4*1*128 =  51.2 us or 19.5 khz 
   setup_timer_2(T2_DIV_BY_1, 127, 1); //  20 KHz signal 
 
   setup_port_a(ALL_ANALOG); 
   setup_adc(adc_clock_internal); 
   set_adc_channel( 0 );   //A0 is the motor control voltage pin 
 
   angle = 0; 
 
   //Loop to collect/output data 
   do { 
      control=read_adc();  //Control should be a 10-bit long int, set in #device 
 
      cur_state = input(PIN_B0) + 2*input(PIN_B1); 
 
      if (cur_state != old_state) 
      { 
         if (cur_state == state_1 && old_state == state_0 && angle > 200) //65400 for theta 
         { 
            //angle+=64; //Encoder shaft is turning clockwise (theta) 
            angle-=256; //Use this for the phi-direction encoder 
         } 
         if (cur_state == state_3 && old_state == state_0 && angle < 65200) 
         { 
            //angle-=64; //Encoder shaft is turning CCW (theta) 
            angle+=256;  //The max output comes to 1.04V if left @ +/-64 (phi) 
         } 
      } 
 
      old_state = cur_state;  //For the next cycle... 
 
//////////////////////////////////////////////////////////////////////////////// 
/////////////////////////////////  Outputs  //////////////////////////////////// 
//////////////////////////////////////////////////////////////////////////////// 
 
      //Need to convert angle to a voltage to output to DAQ 
      set_pwm1_duty(angle/128); 
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            //This should be okay... angle is a long int 
 
      //Need to output our motor control voltage as PWM: 
      set_pwm2_duty(control/2); 
            //control reads in from 0 to 1024 :-) 
            //value*(1/clock)*t2div 
            //value may be an 8 or 16 bit constant or variable 
            //want duty cycle to be some fraction of 51.2 us 
            //What is the range of control??  I think I set it to 10 bits 
    } while(1); 
} 
 
PIC-C Code: Theta 
/* 
   Emery Ku, E90 
 
   This file details the I/O for a PIC microcontroller (16F873A) which is 
   connected to an angular encoder (1024 pulses/revolution) and outputs a pulse- 
   width modulated signal to convert angular position to a voltage. 
*/ 
 
//Things we need. 
#include <16F873.h>  //ADC set to 10 (open 16F873.h) 
#include <STDLIB.H>  //Required by read_adc() 
#fuses HS,NOWDT,NOPROTECT,NOLVP 
#use delay(clock=10000000) 
#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7, BRGH1OK) // Jumpers: 8 to 11, 7 to 12 
 
//Define quadrature-based states as grey-code. 
#define  state_0 0   //Both encoder outputs A and B are low 
#define  state_1 1   //A is high, B is low 
#define  state_2 3   //Both encoder outputs A and B are high 
#define  state_3 2   //A is low, B is high 
 
//Inputs 
#use fast_io(A)      //this requires the set_tris_X command 
//#use fixed_io(a_inputs=PIN_A0)               //A0 is the motor control voltage 
//#use fixed_io(b_inputs=PIN_B0, PIN_B1)       //B0 and B1 are encoder inputs 
                                                //B0 is A from encoder 
                                                //B1 is B from encoder 
 
//Outputs  << I'm not sure we need this any more? CCP is separate from RCX >> 
//#use fixed_io(c_outputs=PIN_C1,PIN_C2)       //Pin C1 is PWM output (DAQ) 
                                             //Pin C2 is PWM output (motors) 
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long int angle;  //Keep track of the angular position (10-bit) 
//int angle;  //Keep track of the angular position (10-bit) 
long int control; 
int cur_state; 
int old_state; 
 
void main() 
{ 
   SET_TRIS_A( 0x0F ); 
   // A7,A6,A5,A4 are outputs 
   // A3,A2,A1,A0 are inputs 
   SET_TRIS_B( 0x0F ); 
   // B7,B6,B5,B4 are outputs 
   // B3,B2,B1,B0 are inputs 
 
   setup_ccp1(CCP_PWM);   // Configure CCP1 and CCP2 as a PWM 
   setup_ccp2(CCP_PWM); 
          //   The cycle time will be (1/clock)*4*t2div*(period+1) 
        //   In this program clock=10000000 and period=127 (below) 
          //   For the three possible selections the cycle time is: 
      //     (1/10000000)*4*1*128 =  51.2 us or 19.5 khz 
   setup_timer_2(T2_DIV_BY_1, 127, 1); //  20 KHz signal 
 
   setup_port_a(ALL_ANALOG); 
   setup_adc(adc_clock_internal); 
   set_adc_channel( 0 );   //A0 is the motor control voltage pin 
 
   angle = 0; 
 
   //Loop to collect/output data 
   do { 
      control=read_adc();  //Control should be a 10-bit long int, set in #device 
 
      cur_state = input(PIN_B0) + 2*input(PIN_B1); 
 
      if (cur_state != old_state) 
      { 
         if (cur_state == state_1 && old_state == state_0 && angle < 65400) //65400 for theta 
         { 
            angle+=64; //Encoder shaft is turning clockwise (theta) 
            //angle-=64; //Use this for the phi-direction encoder 
         } 
         if (cur_state == state_3 && old_state == state_0 && angle != 0) 
         { 
            angle-=64; //Encoder shaft is turning CCW (theta) 
            //angle+=64;  //The max output comes to 1.04V if left @ +/-64 (phi) 
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         } 
      } 
 
      old_state = cur_state;  //For the next cycle... 
 
//////////////////////////////////////////////////////////////////////////////// 
/////////////////////////////////  Outputs  //////////////////////////////////// 
//////////////////////////////////////////////////////////////////////////////// 
 
      //Need to convert angle to a voltage to output to DAQ 
      set_pwm1_duty(angle/128); 
            //This should be okay... angle is a long int 
 
      //Need to output our motor control voltage as PWM: 
      set_pwm2_duty(control/2); 
            //control reads in from 0 to 1024 :-) 
            //value*(1/clock)*t2div 
            //value may be an 8 or 16 bit constant or variable 
            //want duty cycle to be some fraction of 51.2 us 
            //What is the range of control??  Set it to 10 bits 
    } while(1); 
} 
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MATLAB Script 

Ku_E90_MIMO.m 
 Written by Emery Ku 
 E90 Data Acquisition and Control Algorithm 
 

%=========================================================================% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%% Emery's Script %%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%% Two-Input/Two-Output Control %%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%=========================================================================% 
clear;                                          %Clean up from last time 
clc; 
close all; 
%=========================================================================% 
InChans=[0 1];                                  %DAQ Board Input channels 
OutChans=[0 1];                                 %DAQ Board Output channels 
%=========================================================================% 

 

Setup the input channel 
NumSecs = 6; 
Ain = analoginput('nidaq'); 
Ain.SampleRate=100; 
NumPts = Ain.SampleRate*NumSecs; 
Ain.SamplesPerTrigger=NumPts; 
Ain.InputType='SingleEnded'; 
Ain.BufferingConfig=[1  2000]; 
Ain.TransferMode='Interrupts'; 
Ain.TriggerRepeat=inf; 
DT = 1/Ain.SampleRate; 
%=========================================================================% 

Setup the output channel 
Aout = analogoutput('nidaq'); 
Aout.SampleRate=Ain.SampleRate; 
%=========================================================================% 

 

Initialize I/O 
Inputs = addchannel(Ain,InChans); 
Outputs = addchannel(Aout,OutChans); 
 
% For whatever reason, NIDAQ insists on setting its input range to +/-5V. 
% Other settings (even those allowed by hardware) give anomalous results. 
set(Inputs, {'Units', 'UnitsRange'}, {'Volts', [-5 5]}) 
%=========================================================================% 

 

Pre-Set Output 
Phi_Pre = 1;            Theta_Pre = 0; 
 
putsample(Aout,[Phi_Pre Theta_Pre]);            %for now, no change in theta 
pause(1.5);                                     %Spin up 
%=========================================================================% 
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Predefine variables & Initialize Arrays 
Phi=[];                 Theta=[];               %Acquired Data (degrees) 
Phi_Vs=[];              Theta_Vs=[];            %Acquired Data (V) 
 
Time=[];                counter=0;              %Time vector & counting 
 
Phi_Error = [];         Theta_Error = [];       %Save calculated errors 
Phi_Error_Int = [];     Theta_Error_Int = []; 
Phi_Error_Der = [];     Theta_Error_Der = []; 
 
Out0=[];                Out1=[];                %Save outputs 
 
Phi_Out_p = [];         Theta_Out_p = [];       %Save outputs of each 
Phi_Out_i = [];         Theta_Out_i = [];       %part of the PID controller 
Phi_Out_d = [];         Theta_Out_d = []; 
 
Phi_IntError=0;         Theta_IntError=0;       %Initialize Integral 
Phi_IntError1=0;        Theta_IntError1=0;      %Controller 
%=========================================================================% 

 

Goal Angles (and voltages) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Phi Voltage-Angle Conversion %%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% ~75-degree Range of motion   %%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% ~2V = 0 degrees              %%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Phi_Goal_Angle = -15;                           %Range from [-37 ~20] deg 
Phi_Goal = 2.2*(Phi_Goal_Angle)/37.5 + 2.2; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%% Theta Voltage-Angle Conversion %%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% ~75-degree Range of motion   %%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% ~2V = 0 degrees              %%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Theta_Goal_Angle = 180;                         %Range from [0 to 345] deg 
Theta_Goal = (Theta_Goal_Angle/345)*4.65; 
%=========================================================================% 

 

Set Controller Parameters 
%/\/\/\/\/\/\/\/\/\/\ Phi Controller Parameters /\/\/\/\/\/\/\/\/\/\/\/\/\% 
Kp_a=0.3;                                      %For proportional control: 
Kp_b=0.2;   %(Error)*[abs(Kp_a*sin(phi_desired)) + Kp_b*cos(phi_absolute)] 
%-------------------------------------------------------------------------% 
 
%Different Ranges implies Diff. Control Factors.  Want a more aggressive 
%integral control factor at smaller angles: less chance of dangerous 
%overshoot. 
if Phi_Goal_Angle < -2 
    Ki = 0.00;                                 %Int(Error) Control Factor 
    Kd = .3;                                    %Der(Error) Control Factor 
else 
    Ki = 0.005; 
    Kd = .23; 
end 
%-------------------------------------------------------------------------% 
%"Modelling the System" 
%%% V0      Vchan1  %%% 
%   2.0     0.15 
%   2.1     0.3 
%   2.2     0.5 
%   2.3     0.85 
%   2.4     1 
%   2.5     1.9 
%   2.52    2.35 
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%   Excel says Phi in V = 9e-6*exp(4.9159*V_to_PIC) 
%   This suggests: V0_phi = 
%                         100       V 
%                         --- log(------) 
%                         492      9e-6 
%-------------------------------------------------------------------------% 
 
if Phi_Goal_Angle < 6 
    %V0_Phi = 1/4.92*log(Phi_Goal/9e-6)-.05;     %This model isn't perfect. 
    V0_Phi = 1.62; 
else 
    V0_Phi = 1/4.92*log(Phi_Goal/9e-6)-.08; 
end 
%=========================================================================% 
 
%/\/\/\/\/\/\/\/\/\/\ Theta Controller Parameters /\/\/\/\/\/\/\/\/\/\/\/\% 
Qp_a=1;                                     %For proportional control: 
Qp_b=0.3;     %(Err)*[abs(Qp_a*sin(theta_desired)) + Qp_b*cos(theta_abs)] 
%-------------------------------------------------------------------------% 
Qi = 0.0003;                                    %Int(Error) Control Factor 
%-------------------------------------------------------------------------% 
Qd = 2;                                        %Der(Error) Control Factor 
%=========================================================================% 

 

Get ready... 
start(Ain); 
%=========================================================================% 

 

Loop until time t 
while counter < NumPts 
    counter=counter+1;                      %Keep track of cycles 
    [InData, InTime]=getdata(Ain,1);        %Get the Data 
    Theta=[Theta InData(:,1)];              %Who knows why Chan 1 is the 
    Phi=[Phi InData(:,2)];                  %first row of data 
    Time=[Time InTime];                     %Time vector 
%-------------------------------------------------------------------------% 
    Phi_V = Phi(counter);                   %Remember raw voltages 
    Theta_V = Theta(counter); 
 
    Phi_Vs = [Phi_Vs Phi_V];                %Collect Phi(V)s 
    Theta_Vs = [Theta_Vs Theta_V];          %Collect Theta(V)s 
%-------------------------------------------------------------------------% 
    Phi(counter) = ( (Phi(counter)-2)/2 )*37.5;     %Convert Phi to degrees 
    Theta(counter) = ( (Theta(counter)/4.74)*345 ); %and the same for Theta 
%-------------------------------------------------------------------------% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%<<<<<<<<<<<<<<<<<% Begin Phi Controller Algorithm %>>>>>>>>>>>>>>>>>>>>>>% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %Phi Angle error in rad 
    angle_error = (Phi_Goal_Angle - Phi(counter))*pi/180; 
%Phi----------------------------------------------------------------------% 
    %Proportional Error Calculation 
    Phi_Error_now = (Phi_Goal - Phi_V);     %Proportional Error Factor 
    Phi_Error = [Phi_Error Phi_Error_now];  %Save Error 
 
    if Phi_Error_now < 0                    %If past goal angle, increase 
        Kp_aa = 2*Kp_a;                    %proportional correction factors 
        Kp_bb = 2*Kp_b; 
    else 
        Kp_aa = Kp_a; 
        Kp_bb = Kp_b; 
    end 
%Phi----------------------------------------------------------------------% 
    %Integrated Error Calculation 
    if Phi(counter) > -35       %Is the helicopter at least 2 degrees up? 
 
        %         if -4 < (Phi(counter) - Phi_Goal_Angle) && (Phi(counter) - 
Phi_Goal_Angle) < 10 
        %             Phi_IE1 = (Phi_Goal - Phi_Vs(counter-1)); 
        %             %         elseif abs(Phi(counter) - Phi_Goal_Angle) < 4 
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        %             %             Phi_IE1 = 0; 
        %         else 
        %             Phi_IE1 = 0; 
        %         end 
        %         Phi_IntError = Phi_IntError + (Phi_Error_now + Phi_IE1)*(DT/2); 
 
        if Phi_Error_now > 0 
            Phi_IntError = Phi_IntError + (Phi_Error(counter))*(DT)*cos(angle_error)^3; 
        else 
            if Phi_Goal_Angle < 5 
                Phi_IntError = Phi_IntError + 
5*(Phi_Error(counter))*(DT)*cos(angle_error); 
            else 
                Phi_IntError = Phi_IntError + 10*(Phi_Error(counter))*(DT); 
            end 
        end 
%Phi----------------------------------------------------------------------% 
        %Derivative Error Calculation 
        if counter > 1 
            %if we're below our target, do normal derivative of error 
            if Phi_Error_now > 0 
                Phi_DE1 = (Phi_Error(counter) - Phi_Error(counter-1))/DT; 
 
                %otherwise scale derivative of error 
            else 
                Phi_DE1 = .6*(Phi_Error(counter) - Phi_Error(counter-1))/DT; 
            end 
            %If we're on the first sample, you can't take the derivative 
        else 
            Phi_DE1 = 0; 
        end 
%Phi----------------------------------------------------------------------% 
        %If the 'copter is sitting still, set integral and derivative errors to 
        %zero. 
    else 
        Phi_IntError = 0; 
        Phi_DE1 = 0; 
    end 
%Phi----------------------------------------------------------------------% 
    Phi_Error_Int = [Phi_Error_Int Phi_IntError];   %Save Int Error 
    Phi_Error_Der = [Phi_Error_Der Phi_DE1];        %Save d/dt(error) 
%Phi----------------------------------------------------------------------% 
    %Final Output Calculation 
    Phi_Out_p = [Phi_Out_p (Phi_Error_now)*(abs(Kp_aa*sin(angle_error))... 
        + Kp_bb*cos(Phi(counter)*pi/180))]; 
    Phi_Out_i = [Phi_Out_i Ki*Phi_Error_Int(counter)*(cos(Phi(counter)*pi/180))]; 
    Phi_Out_d = [Phi_Out_d Kd*Phi_DE1*(cos(angle_error))]; 
 
    %Output is the sum of above: 
    OutData0= V0_Phi + Phi_Out_p(counter) + Phi_Out_i(counter) + Phi_Out_d(counter); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%<<<<<<<<<<<<<<<<<<<% End Phi Controller Algorithm %>>>>>>>>>>>>>>>>>>>>>>% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%=========================================================================% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%<<<<<<<<<<<<<<<<% Begin Theta Controller Algorithm %>>>>>>>>>>>>>>>>>>>>>% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %Theta Angle error in rad 
    angle_error = (Theta_Goal_Angle - Theta(counter))*pi/180; 
%Theta--------------------------------------------------------------------% 
    %Proportional Error Calculation 
    Theta_Error_now = (Theta_Goal - Theta_V);     %Proportional Error Factor 
    Theta_Error = [Theta_Error Theta_Error_now];  %Save Error 
%Theta--------------------------------------------------------------------% 
    %Integrated Error Calculation (perform only when close to goal) 
    Theta_IntError = Theta_IntError + (Theta_Error(counter))*(DT)*cos(angle_error)^3; 
%Theta--------------------------------------------------------------------% 
    %Derivative Error Calculation (perform only after first sample) 
    if counter > 1 
        Theta_DE1 = (Theta_Error(counter) - Theta_Error(counter-1))/DT; 
    else 
        Theta_DE1 = 0; 
    end 
%Theta--------------------------------------------------------------------% 
    Theta_Error_Int = [Theta_Error_Int Theta_IntError];   %Save Int Error 
    Theta_Error_Der = [Theta_Error_Der Theta_DE1];        %Save d/dt(error) 
%Theta--------------------------------------------------------------------% 
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    %Final Output Calculation 
    Theta_Out_p = [Theta_Out_p (Theta_Error_now)*(abs(Qp_a*sin(angle_error))... 
        + Qp_b*cos(Theta(counter)*pi/180))]; 
    Theta_Out_i = [Theta_Out_i Qi*Theta_Error_Int(counter)]; 
    Theta_Out_d = [Theta_Out_d Qd*Theta_DE1*(cos(angle_error))]; 
 
    %Output is the sum of above: 
    %OutData1= Theta_Out_p(counter) + Theta_Out_i(counter) + Theta_Out_d(counter); 
    OutData1 = 0; %for testing purposes 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%<<<<<<<<<<<<<<<<<<% End Theta Controller Algorithm %>>>>>>>>>>>>>>>>>>>>>% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
    %Don't send outputs that you know you can't send... 
    %Phi output is 5V max 
    if OutData0 > 5 
        OutData0 = 5; 
    elseif OutData0 < 0 
        OutData0 = 0; 
    end 
%-------------------------------------------------------------------------% 
    %Theta output is 3V max (shouldn't need to go above this) 
    if OutData1 > 2.5 
        OutData1 = 2.5; 
    elseif OutData1 < 0 
        OutData1 = 0; 
    end 
%-------------------------------------------------------------------------% 
    %Send the Outputs and Collect Output Data 
    putsample(Aout,[OutData0 OutData1]); 
    Out0=[Out0 OutData0]; 
    Out1=[Out1 OutData1]; 
end 
%=========================================================================% 

 

Post Data-Acquisition Outputs 
%putsample(Aout,[Out0(end) 0]); 
 
% pause(1.8); 
 putsample(Aout,[0 0]);                              %Reset Output 
%=========================================================================% 

 

Free up any memory that we used. 
stop(Ain) 
stop(Aout) 
delete(Ain) 
clear Ain 
delete(Aout) 
clear Aout 
%=========================================================================% 

 

Plot the data 
figure %for determining where stuff went wrong in the phi direction 
plot(Time,Phi_Error,'m.',Time,Out0,'b.',Time,Phi_Out_p,'y.',Time,Phi_Out_i,'r.',Time,Phi_O
ut_d,'g.',... 
    Time,V0_Phi*ones(max(size(Time))),'k-.') 
legend('Error','Total Output','Proportional Output','Integral Ouptut','Derivative 
Output','V0','Location','Northwest') 
title('Output due to Errors for Phi'); 
%-------------------------------------------------------------------------% 
% figure %for determining where stuff went wrong in the theta direction 
% 
plot(Time,Theta_Error,'m.',Time,Out1,'b.',Time,Theta_Out_p,'y.',Time,Theta_Out_i,'r.',Time
,Theta_Out_d,'g.') 
% legend('Error','Total Output','Proportional Output','Integral Ouptut','Derivative 
Output','Location','Northwest') 
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% title('Output due to Errors for Theta'); 
%=========================================================================% 

 

Optional plots 
if 0    %Don't show lest you want to be fancy.. poor computer can't take it 
    %  Actual positions & outputs 
    subplot(4,1,1), plot(Time,Phi) 
    hold on 
    plot(Time,[Phi_Goal_Angle*ones(1,max(size(Time)))],'r-'); 
    hold off 
    xlabel('Time (s)'); 
    ylabel('Voltage (V)'); 
    title('Vertical Angle (Voltage) vs time'); 
 
    subplot(4,1,3), plot(Time,Theta) 
    xlabel('Time (s)'); 
    ylabel('Voltage (V)'); 
    title('Horizontal Angle (Voltage) vs time'); 
 
    subplot(4,1,2), plot(Time,Out0) 
    xlabel('Time (s)'); 
    ylabel('Voltage'); 
    title('Phi Output Voltage vs time'); 
 
    subplot(4,1,4), plot(Time,Out1) 
    xlabel('Time (s)'); 
    ylabel('Voltage (V)'); 
    title('Theta Output Voltage vs time'); 
 
    figure %for Errors 
    subplot(2,1,1), plot(Time,Phi_Error) 
    hold on 
    plot(Time,[zeros(1,max(size(Time)))],'r-'); 
    hold off 
    xlabel('Time (s)'); 
    ylabel('Error (V)'); 
    title('Phi Angle Error (V) vs time'); 
 
    subplot(2,1,2), plot(Time,Theta_Error) 
    xlabel('Time (s)'); 
    ylabel('Error (V)'); 
    title('Theta Angle Error (V) vs time'); 
end 
 
%=========================================================================% 
 
%The little birdie says we're done 
load chirp.mat 
wavplay(y(1:4500),Fs); 
clear y Fs 
disp('Data Acuisition done.'); 
 
%=========================================================================% 
%=========================================================================% 
%=========================================================================% 
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