'Helicopter' Control Theory

Demonstrator
E90 Final Report

Swarthmore College Department of Engineering

Emery Ku, Class of '05
Advised by Professors Cheever and Orthlieb
05/2005

Table of Contents

ADSTFACT. ...ttt ettt ettt ettt et ettt et e et e ete e te et e et e ereete et eeteennas 3
INEFOTUCTIONcuiiiee ettt ettt ettt et et b e beebe e st ese e st et e sentenseenene 3
SYSLEM DESIGN OVEIVIEW ...ttt ettt ettt ettt et e a e et e et e teeaeeaseereeseesseereeaseeasenns 4
SYSEEM COMPONENTS......c.eiiiiiiiieeiieeie ettt e eteete e et eebeessteebeestaeesseessseeseessseesseessseenseensseensesnsns 5
IMIECNANICAL........oeivieiicee ettt ettt ettt et e et e et eeaeeteeaseereennas 5
MOLOrS @nNd PIOPEIIEIS ...t 5
Swinging Arm and SUPPOIT STFUCLUIEccviiieeeeeie ettt e 7
BIECEIICAL ...ttt st ettt se ettt et e beeaeenes 8
Sensors: Optical RoOtary ENCOUEIS.........coviviiieeeeeieeeeee ettt 9
AMPLITIEIS FOr MOTOIS. ..ottt et ae e s aeeaeenaaas 10
Microcontroller for D/A and A/D CONVEISIONSccvecueeiieeeeerieieeteeere e ereeereecee e eaneas 11
COMIPULRT ...ttt et e e et e e e ta e e bt e ssbeesseessseesseessseensaessseenseessseenseessseenseensns 14
MATLAB Script to Implement Controller AIgorithm...........c.ocoooeieviiiiieeeeeeeeee e, 15
SYSTEM INTEGFATION ...ttt ettt ettt e e ra e be e b e essesaeenseeseeseennas 17
IMIECNANICAL ..ottt ettt et et ettt et eae e teeaeeaeenns 17
BIECEIICAL ...ttt ettt s ae ettt et e benbesaeeneas 19
(0] 1 1 01U | £=] oSSR USSR 20
SYSTEM DEVEIOPMENT........oeiiiieiieieee ettt ettt ettt eereesbe e b e essesaeenseeseeseennas 21
HAFAWAE ...t ettt et ettt ete et e ettt e eateeaeeteeaseeasenseennens 21
MATLAB Data ACQUISITIONc..ecuiiiieiiiceieeii ettt ettt v e saeebe s e eaeeseennaas 21
Insufficient Vertical Forces Generated by Lift-propeller...........c.ccoooveeieiiiiecieiiiiicee, 21
POWEE SUPPIY .ottt ettt ettt ete et e e b e saeesseessesseeseenaans 21
IMIOSETS ...ttt ettt ettt ettt ettt b et e e teeseesa e e esb e s e sesbesbeeseesaeseessessensensansessensensens 21
DIHOUES ...ttt ettt ettt et a et e ettt et e te et e en e st e st e st et ebenseeaeenea 22
ENCOUETS ...ttt ettt ettt et et e eateete et e eaeeteeaaeeaeeeseeneens 22
Time Variation of Motor Response due t0 Heatcceevevieeiieiiniieieceeeee e 22
Swinging Arm and SUPPOIT STFUCKUIEooveevieeieieceeceeeete ettt 22
SOTEWEATE ...ttt ettt ettt et et et st e bt e bt eseent e st ensenbenbeeseenes 22
MATLAB CONIIOIET ..ottt ettt eaaea 23
RESUIES ...ttt ettt h et et e bt e bt s e ent st et et et e beene e 23
Before Redesigning the AIMooueoii ettt ettt 23
After RedeSigNING the ATcoviiiiieeeeeie ettt ettt et eeve e eaaeeeveeeaaeeneas 27
DISCUSSION.......c.eeetieeieete ettt ettt ettt ettt e te et eeteeete e b e easeeteeaseess e seenseessesssenseesseaseenseessesseenseensans 29
FUTUIE WOTK ...ttt b ettt ettt et et ae e 30
AAPPENTICESttt ettt ettt ettt e et et e et e eae e b e easeetseaeeabeeae e beeaaeeaeeteeateeaeereenaeeaeenns 31
APPENAIX Az DAtaSNEELS.ccvieiiieeieiiieeie ettt ettt eae et e e v e eeae e eaaeeeteeeareeneas 31
Rotary OptiCal ENCOUENS..........ovieiieieeeeeeteeeeeet ettt 31
IMIOSFETS. ..ottt ettt ettt a e b et se b e b et e se et et eneeseese st eseeseneeneesesens 35
DIHOGES ...ttt ettt ettt ettt ettt e et e te e te et e eteete e b e eaeeteenaans 37
ApPPENdiX B: ComPULETr COAEooovieiiiieiieieeiiecieeie ettt ae e reebeesaesaeeseesnens 39
PIC-C COUE: PRttt et et ve e eaeeaeenaeas 39
PIC-C C0UE: TRELAetieietietieiteete ettt sttt ettt e e b sbesbe e 41
IMATLAB SCEIPL ...ttt ettt ettt ettt e v e et e ete e teeabesaeebeeaseeseeseennans 44

Abstract

This final report summarizes the work done by Emery Ku ’05 on a
‘Helicopter’ Control Theory Demonstrator in the spring of 2005. Much
of the content of this document is dedicated to the discussion of the
design procedure and the documentation of system components. The
system was built to resemble a helicopter and requires a two-input, two-
output controller. One of the primary goals was to construct a new and
unique structure which would ultimately be used as an educational tool
for those studying control theory; it is currently in working condition. A
fully successful controller has yet to be implemented, but a great deal of
progress has been made in understanding the system’s inherent
complications.

Introduction

Hundreds of years before Leonardo da Vinci was even born, the idea of vertical flight had
already been implemented. A Chinese toy known as a "bamboo dragonfly" became widespread
circa 400 BC: "the earliest versions of the Chinese top consisted of feathers at the end of a stick,
which was rapidly spun between the hands to generate lift and then released into free flight,"
(http://centennialofflight.com/history/helicopter.html). More than two thousand years later, this
simple toy would serve as a great inspiration for several key contributors to early modern
helicopter design.

A component common to all modern helicopters is an advanced control system. The
propeller that is responsible for 'lift' simultaneously generates a torque which causes the body of
the aircraft to rotate. This is counteracted by the tail rotor. To have a pilot try to manually
compensate for this constantly varying characteristic of the system while trying to stay in the air
would be incredibly dangerous. Thus, a controller is required to counteract the natural tendency
to horizontal rotation or 'yaw'. This challenge was the inspiration for my E90 Senior Design
Project.

The primary goals of my E90 project are 1) to produce a system which emulates the
functionality of a helicopter to be used as an educational tool for future classes of engineers, 2) to
implement a two-input/two-output controller to govern the motion of the 'helicopter', and 3)
serve as a demonstration of control theory principles.

While the system has been fully constructed and developed, a number of issues have
come up along the way. Some have been addressed and resolved while others remain a barrier to
the utmost realization of my project goals. At this point in time, parallel PID controllers have
been implemented for both Theta (yaw) and Phi (pitch) directions. The system went through a
serious redesign after which progress has been difficult. Before that modification, results were
respectable for the Phi direction. However, due to time varying behavior in the system,
consistent results have yet to be achieved.

http://centennialofflight.com/history/helicopter.html

System Design Overview

The salient features of a helicopter are its ability to hover vertically and rotate
horizontally. In keeping with a system analogous to a real helicopter, I decided to use two
motors/propellers, the larger of which would be responsible for generating lift. Given that the
primary purpose of this project is to create a system which will be applied in an educational
setting, safety and especially system hardiness are of great concern.

The idea of a counter-balanced arm which is free to rotate horizontally and vertically is
an appealing adaptation of a true helicopter for a number of reasons: 1) the two degrees of
freedom available in my system create the necessity of a two-input/two-output controller; 2)
because the lever-arm rotates about a fixed point, there is no danger of the apparatus 'flying
away' and doing damage to itself or to a student; 3) counter-balancing the lever allows for
reduced power requirements for the motor responsible for generating lift.

With the general vision of a counter-balanced swinging arm propelled by ‘fans’ in mind,
the first step to realizing the project was to order motors and propellers. Once acquired and
tested, the mechanical capabilities these components dictated the design and weighting of the
arm. In addition, the electrical requirements and characteristics of the motors determined the
specifications of the amplification component. The details of the rotating parts of the arm were
finalized when rotary sensors were purchased. The electrical characteristics and requirements of
the electrical components (amplifier and sensors) determined the functionality of the
microcontroller; this chip facilitates communication to and from the computer. Only with all of
these components in place was it possible to begin designing a controller in MATLAB.

A graphical outline of the components’ prerequisites in the design process is shown in the
flow chart below:

Motor/Propeller Meghamcal Optical

s » Design of [« Rotary
Capabilities

Arm Sensors

A A
Amp 'liﬁer' Microcontroller Design
» Specifications > Code and Outputs » System Controller
P (MATLAB)

Figure 1. Flow chart outlining system design.

System Components

The system can be broken down into three primary domains: Mechanical, Electrical and
Computer (or software). Each component is outlined here in terms of its function within the
context of the entire system. The following flow chart summarizes the path of information
through the system. Note that there are two arrows into and out of each component because the
system moves in both theta and phi directions.

<— Rotary
| Sensors
Micro-
Controller Controller
(MATLAD) Motors/
Propellers
: Amplifiers

Figure 2. Flow of information within the system. Computer components are diamond-shaped,
electrical components are rectangular, mechanical components are octagonal.

Mechanical

The primary components of my project that fall under the mechanical category are the
motors/propellers, and the physical apparatus which consists of the swinging arm and its support
structure. The latter allows for the physical freedoms and restrictions of the system, while the
former drives its motion.

Motors and Propellers

Motors were chosen such that they would be easily driven and lightweight. I selected a

pair of identical 12V motors as this input range is very common. In addition, I consciously
selected motors with the ability to spin in either direction as I felt it would leave fewer
restrictions later in the design process.

After ordering several different propellers, I adapted the motor shafts to be able to hold
and swap out these different models. In the end, a three-rotor 12" diameter by 6" pitch plastic
propeller was selected for the phi-direction, and a dual-rotor 6" diameter by 3" pitch was fixed
permanently to its motor shaft for the theta-direction. These choices were made through a
process of measuring the ranges of force that could be easily produced by the various
motor/propellers combinations without overtaxing the motor.

Once both motors and propellers were acquired, they were fitted to each other in the
shop. The tail rotor was fixed permanently to its motor because I did not anticipate the need for
a great deal of force in the theta direction. However, I was less certain about the output force
requirements of the motor/propeller ‘fan” which would produce lift (motion in the phi direction).
As a result, I designed the motor shaft such that different propellers would be interchangeable.

The electrical input and mechanical output characteristics of the variously configured
‘fans’ were measured by holding the fans in a block which was then taped to a digital scale. The
following figures illustrate the various Force vs. Input Current functions for different
motor/propeller combinations:

Forces Generated by Motor with Various Propellers

0.25

0.2 -

0.15

—e— Two-Blade 6x3

—=— Three-Blade 6x3

0.05

Output Force (Ibs)
o
H

Input Voltage

Figure 3.1. Force vs. Voltage curves for DC motor with two different propellers.

Forces Generated by Motor with Various
Propellers

0.25

.

0.15

—e— Two-Blade 6x3

./’” —=— Three-Blade 6x3
0.05

©
-

Output Force (Ibs)

o
®

-0.05

Input Current (A)

Figure 3.2. Force vs. Current curves for DC motor with two different propellers.

I performed a similar test on the combination of the motor with the 12x6 rotor. However, the
results were much noisier towards the upper end of the voltage range; this was likely due to the
higher air flow over the digital scale. What was significant was that the combination of the
motor with the 12x6 rotor was able to produce a force of ~0.25 Ibs at 8V. This option was
chosen as the higher force at lower voltages allowed for a wider range of potential forces.

Swinging Arm and Support Structure

The swinging arm and its support structure constitute the body of the system. I decided
to build a metal support system because it was my opinion that a PVC base would be more prone
to damage and appear less attractive. The aluminum components of the support structure were
shaped to fit the theta direction encoder (which would simultaneously allow for free rotation
horizontally and measure its angle) and also the swinging arm. The set screw that holds the
upper aluminum support piece to the encoder shaft is prevented from rotating past one revolution
by a perpendicular machine screw. This is to prevent the wires from becoming entangled.

The swinging lever arm is constructed from 2”°x3/4” cross-section pine. This wood was
selected because of its low weight and ease of construction. My initial design specified an arm
35 inches long, and 2 inches wide with the pivot at 19 inches distant to the end where the phi
direction motor was held. This would accommodate the range of forces that the phi direction
motor could output. Wood was glued to the two ends to produce two-cubic inches of pine which
were then drilled out hold the motors (one pointing upwards, the other pointing horizontally).

The transfer function of the phi direction motion of the arm was determined by sending

step inputs to the system and recording the steady state values. The result was then fitted to an
exponential function. In turn, this function was solved for the required input voltage given a
desired output angle for application in the PID controller.

Exponential Fit of Vin vs Vout

N
&

y — 9E_O6e4.9159X

S ? »

= —— Angle (V) vs
§ 1.5 Vin

o 1 — Expon. (Angle
= (V) vs Vin)

<

o
Ul

1.5 2.5 3.5
Controller Vin (V)

o

Figure 4. Numerical solution and exponential of transfer function in phi direction given
step inputs.

The arm was eventually redesigned to new physical specifications (for reasons that will
become apparent later: see System Development: Hardware). The final arm was 14.5” long
with a %4 x %4 square cross-section. The motors are fixed to the ends with adjustable metal
straps. This arm also has the ability to slide along the board which rotates in the support
structure. This makes varying the arm’s balancing much more convenient.

Electrical

The electrical components of this system consist of the rotary sensors, microcontroller,
and the amplifier (with power supply). These are responsible for facilitating communication
between the computer and the physical apparatus.

Sensors: Optical Rotary Encoders

There are numerous ways to measure rotation. One common method is using a dial-
based potentiometer. I chose to use digital rotary encoders in order to minimize noise and
maximize accuracy and precision. The two encoders I chose were BEI Duncan’s EX-11 and
MX-15 (male and female versions). These encoders output 1024 pulses per revolution in two
channels (90 degrees offset to discern direction of rotation); see figure below:

Output Wave Form

JE0FE MNON., —————
180FE NOML

S0°E MNOM. —*|

Al

||
[

_—
o

s ||

ml

Figure 5. Output from rotary encoders.

I opted for this level of precision in order to acquire better data, and I felt confident that the
microcontroller decoding its output would be fast enough to catch these cycles without missing
any pulses. For complete technical specifications, please refer to Appendix A: Datasheets,
Rotary Optical Encoders.

Amlifirs.fq_r M_otors

PRECISION REGULATED
DC POWER SUPPLY

ON

* INPUT: 117V AC 60Hz

* OUTPUT: 13.8V DC
10AMP CONSTANT
12AMP SURGE

* SHORT-CIRCUIT PROTECTION

OFF
MODEL 38-381

In order to power the motors, an amplification system is necessary. The requirements of
this component were set by the motors. I anticipated (given prior measurements) that the
absolute maximum continuous current that would be drawn by both motors was close to 7 or 8
amps. In addition, the motors are designed for 12V continuous (max), so it made sense to use a
power supply that would be able to match these characteristics. The chosen power supply
outputs a continuous 13.8V, with a max continuous current rating of 10A. In addition to the fuse
internal to the power supply, I added a single 8A fuse between the power supply and the motors
in order to prevent potential damage to the apparatus.

In order to maximize efficiency and simplicity, a pulse-width modulation (PWM) mode
of operation was chosen to power the motors. This method minimizes the energy wasted in heat
in the amplifier circuit. In my implementation of PWM, a MOSFET (Metal Oxide
Semiconductor Field-Effect Transistor) turns on and off quickly which determine how much
current flows through the motor. A ‘flyback’ diode is placed in parallel with the motor to reduce
the effect of the motor’s internal inductance (see figure 6 below).

% Diocde 4

P

=S w

Figure 6. Amplifier circuit. V1 is the power supply.

10

The components that I eventually chose as permanent additions were the 10CTQ-150
Schottky diode and the RFD16NO5L logic-level MOSFET. For complete technical details,
please see Appendix A: Datasheets. The design processes that led up to the selection of these
particular are discussed in System Development: Hardware.

Microco_ntroller for D/A and A/D Conversions

- ...
o IGO0 R D
" b "

-
o

e orF
...............

i

- o
-
_—

,,,,,,,,

iy’ Wl
e e T

i

aaaaaaa

8
il

The microcontroller is responsible for performing the critical function of converting the
signals between the computer and the system into readable data. There are two microcontrollers:
one for the phi direction and the other responsible for the theta direction. The microcontroller is
a necessary component because the computer’s data acquisition board (accessed through

MATLAB) is only capable of sending and receiving 0-5V data, and the amplifier must use
PWM.

Given that the rotary encoders each output two channels of pulses, the microcontrollers
must take this information, track the change in angle, and convert this data to a readable signal
from between 0-5V. At the same time, the MOSFET in the amplifier only accepts TTL
(transistor-transistor logic, a signal of either OV or 5V); the microcontroller must convert a
controller voltage from the computer to a PWM signal operating between 0V and 5V. For

details on how this is accomplished, see System Components: Computer, C-Code for
Microcontroller.

The microcontroller I chose for this purpose is the PICI6F873A. I chose it in part due to
its availability and convenience; more importantly, it met the I/O requirements for my system.
In particular, there are three inputs (two channels from the rotary encoders, the third is the
computer’s controller voltage) and two outputs (one to the amplifier, the other to the computer).
The /0O functions of the PIC microcontroller is summarized below.

11

1/0 Function 1/0 Pin Type Micro-Controller Pin Number on
Pin Address PCB
(Pin 1 =5V)

Input Encoder Channel A | Digital Input RBO 4

Input Encoder Channel B | Digital Input RBI 5

Input Motor Control 10-bit Analog-to- RAO 7

Voltage Digital

Output Angle Voltage PWM RC2/P1 16

Output Motor Control PWM RC1/P2 17

Figure 7. Table of microcontroller I/O functions and pin locations.

One important matter to keep in mind is that the microcontroller does not have analog

outputs. Subsequently it cannot strictly output an analog voltage. However, the PWM channels
can be low-pass filtered to provide a varying analog signal. This is done with a simple R-C

circuit.

PWM
Input

W

R

Figure 8. R-C low-pass Filter to convert PWM to a DC signal.

Output to DAQ

Through an iterative process, it was determined that optimal values for the resistor and capacitor
would be R = 10kQ and C = 33uF, given a 51.2 ps period.

12

A schematic of the circuit is shown here:

] | 1 | 2 | 3 | 4 5] B]
Title: Wu_E90_Circuit_final
A A
) vee
Date: Spring, 2005
34 ||
RE B3 Bl B4
b 4700km 10kchn 10kohm 470ckn b
e
Lz 81 % L1
!\ LED-I PES N
- LED-G -
13
I Ul —t
1 MCLE 4oy IE
n] 1 L o
| | EE7 TEO/INT T
gt k¢ |
- iEs £
— w71z RE3 iy — T —
Pad— —t
1 A
7
= B B R E
E 2 T
éé BCZ/EL
- Besonator it RCL/PE |
J PICLEFETS
F F
—t
G
N
E-HDR1xZ0
] 1 i 3 4 5 [7]

Figure 9. Microcontroller schematic.

The power supply circuit for the microcontrollers is not shown in Figure 9 (it is understood as

internal to VCC); it is a very simple

circuit:

+i
0.33 pF

L

HATHNX

L r—

I 0.1 pF

1-'|.|'|]

Figure 10. Power supply for microcontrollers. +V is 6VDC, Vo is SVDC.

13

Computer

The computer and software components of the system are what determine how the
system reacts. The microcontroller code determines how the chip parses the incoming signals
and how to output appropriate information. The exact code can be found in Appendix B:
Computer Code. The following section describes the processes that the code executes.

C-Code for Microcontroller

As discussed above, the microcontroller must provide important I/O functions for the
system (see Figure 7 for details). I will discuss the functions of the code in the order that they
appear, as divided by commented section headers:

//Things we need.

The #include and #use lines simply tell the compiler what components are necessary for
this PIC chip. Note that the library 16F873.h was modified to use 10-bit analog-to-digital
conversion.

//Define quadrature-based states as grey-code.

Here the 4 possible states of the two channels from the encoder are defined. They are: 1)
both A and B low, 2) A high, B low, 3) A and B high, 4) A low, B high. A grey code (only one
bit flip at a time) is used to reduce potential errors.

//Inputs
This section defines which pins are used as inputs by default. The fixed io setting saves

processing time later.

//Outputs
This section is commented out because the PWM channels are set as such by default.

//Keep track of the angular position (10-bit)

The angular position variable ‘angle’ is stored as a 10-bit integer, as is the ‘control’
variable. This is setup in this manner so that the output to the PWM channel can be easily
determined (it also ensures that there is enough resolution to accommodate the output format).

main{}

This is where the ‘program’ operates. More I/O pins are setup at the top, and the PWM
pins initialized. The timer responsible for PWM outputs is set to a 20 kHz cycle and the angle
variable is initialized to 0. Finally, an infinite loop is started which compares the current state
with the last to determine which way the encoder is turning, redefines the old state for the next
cycle, reads the input from the motor control channel (the 10-bit A/D conversion takes places
there) and sends outputs according to which way the encoder is turning and what input the
microcontroller is receiving.

In order to maximize the resolution available for each direction, the amount added to
angle with each pulse and how much it is divided by in determining the PWM output is carefully
chosen. For example, the phi direction has a range of rotation of approximately 70 degrees,
whereas the theta direction is closer to 330 degrees. As a result, the incremental step-size for the

14

theta direction is Y4 the size of the incremental step-size for the phi direction. This maximizes
the resolution available given a 10-bit variable.

MATLAB Script to Implement Controller Algorithm
The MATLAB script is critical for both administering data I/O and also implementing the
controller. As with the above C-code, I will describe the functionality of the script which is

delimited by the comment titles. For specific code and detailed comments, refer to Appendix B:
Computer Code, MATLAB Script.

%%Setup the input channel

Here the input channel is initialized. The number of seconds of the run is set at the top,
in addition to the Sample Rate. While there is no hard upper limit, there is no great benefit of
running the test at a very high sample rate. Anything above 20Hz will probably yield good
results as that should be fast enough to simulate a continuously sampled system. In fact, setting
the Sample Rate too high can quickly fill the input buffer and cause trouble. However, the
greatest irritation will probably be the increase processor usage at the end of the data run when it
has to plot a great many data points.

%% Setup the output channel

The National Instruments Data Acquisition (‘nidaq’) communication protocol still
remains standard with the boards Swarthmore College’s Department of Engineering currently
uses. To avoid timing problems, the output sample rate is equal to the input sample rate.

%%Initialize I/O
Here we add channels and set acceptable ranges. The input range should be set to £5V;
other settings seem to upset MATLAB or the NIDAQ board.

%%Pre-Set Output
An initial output is sent to the motors in order to break past the static friction of the
motors. This also slightly decreases the time delay at the start of the data acquisition run.

%%Predefine variables & Initialize Arrays
Arrays which do not have a defined size must be initialized as empty before they can be
dynamically filled. Some variables have to be zeroed.

%%Goal Angles (and voltages)
Here the goal angles are entered. This angle is then converted to a goal voltage to be
compared with the angle output from the microcontroller.

%%Set Controller Parameters
In my PID controller, I have two different proportional gain constants. The

implementation is as follows:

(Error)*[abs(Kp_a*sin(phi_desired)) + Kp_b*cos(phi_absolute)]
This helps account for the tendency of the system to get stuck at the top (see System
Development for details on this problem). Kp a diminishes with the sine of the angular
difference between the current position and the goal angle. The Kp b term varies with the
cosine of the angle of the current position as measured from horizontal (zero degrees).

15

%%Get ready...
Trigger the data acquisition object.

%% Loop until time t

This is the main loop that governs data acquisition, controller calculations and sending
output signals. Inputs and outputs are stored in pre-defined arrays, in addition to the components
of the PID controller. Outputs are checked for sanity; if they exceed safe values, they are clipped
and set to the maximum or minimum allowable value.

%%Post Data-Acquisition Outputs
This is an attempt at preventing the system from doing undue damage to itself, and also
an attempt at resetting it to a ‘zero’ position.

%%Free up any memory that we used.

MATLARB?’s data acquisition code (when used with NIDAQ) seems problematic in that if
you try to generate a new analog input or output object before the old one has been cleared, the
I/O hangs altogether and requires that you restart your shell. Nonetheless, a short script at the
beginning of my code looks for and tries to deal with the problem ahead of time.

%% Plot the data

This set of plots I have found very useful to debugging the controller’s output. In this
figure, each component of the controller is plotted against time along with the total error and the
total output.

%%Optional plots

In this figure, angular positions and goals versus time are displayed, in addition to the
total output of the controller. This set of commands is generally not executed to save processor
time.

16

System Integration

This section describes in detail the working relationships between the components of
each domain necessary to the functioning of the apparatus. This system is in some ways
analogous to a biological organism: the mechanical components represent the muscles and bones
that are critical for motion, the electrical circuits can be thought of as the nervous and circulatory
systems which convey information, while the computer acts like a brain controlling these bodily
functions. The following diagram shows how communication takes places within the system and
by what means:

F Y

Eotary

SENSOTS)
Motion

[

Micro-
Controller Controller PWM

QLATLAR)

Motors!
Propellers
PWM

L | Amplifiers

PWM (high current)

Figure 11. System flow chart in detail.

Mechanical
The skeletal and muscular structure of this system can summarized as the following
components:

base platform

threaded steel pipe and connector

machined aluminum holder for theta direction encoder

theta direction encoder

machined aluminum ‘tuning fork’ to couple theta direction encoder shaft with arm
balanced rotating arm

motors and propellers

phi direction encoder

e AU e

The physical relationships of these parts are illustrated on the next page.

17

18

Electrical
The electrical components of this system are shown in the figures below.

FigUre 13. Physical realization of electrical components: 1) Amplifiers, 2) Voltage regulator for
power supply to microcontrollers, 3) Microcontrollers; phi microcontroller on left, theta
microcontroller on right.

o s

Figure 14. Faceplate to electrical components. From left to right: analog input BNC terminals
(2), analog output BNC terminals (2), phi and theta motor terminals (2 sets), phi and theta
encoder terminals (4 each).

19

Figure 15. Additional electrical connectors: 1) high power supply connectors (13.8VDC, 10A),
2) low power supply jack (6VDC), 3) on/off switch for microcontrollers.

Computer

The following diagram outlines the PID controllers that [implemented in my system:

Exponential_Function_of_Win_ws_Vout |
1 |

Systermn Characteristios

Derivative Derivative Gain

Fropartional Gain

++

7 Phits)
1

System Transfer Fon

Phi_%eal_Angle

Integrator Integral Gai

h A

Qphi
Proportional Sain

(fram output to Phi system)

Deriwatived Cerivative Gaind

+ h Thetais)
¥
1

Theta_Goal_Anglel Theta Transfer Fond

Figure 16. Basic PID controller flow chart.

Theta

20

Note that Figure 16 does not detail the augmentations that were applied to the Phi direction
controller. For a detailed discussion of controller implementation and the motivations behind
design choices, see System Development: Software, MATLAB Controller for details.

System Development
Hardware
I encountered a number of hardware problems during the course of this project. To
simplify the explanation of the design revisions that took place, I will discuss the difficulties and
subsequent changes to the system that I made in chronological order.

MATLAB Data Acquisition

A great deal of time was spent trying to get the data acquisition code to work properly
beyond the 2000 point buffer. Eventually this was easily overcome by leaving all settings alone
but adding the line ‘Ain.TriggerRepeat=inf.” However, it was rare that [would ever need to
take more than 2000 data points as most test runs were short and designed to diagnose or
improve the controller.

Insufficient Vertical Forces Generated by Lift-propeller

Early on in the building process, my only power source available was only capable of
outputting 6V/5A max. This was quite a constraint on the amount of lift I could generate, so I
modified the system by adding weights to the shorter end of the arm. This reduced the amount
of power needed to lift the arm, though the weights were eventually removed when my new
power supply arrived.

Power Supply

The new power supply with its greater power output capabilities (max 13.8V/10A
continuous) immediately solved the torque issues I was having, but it also created a few serious
problems. My MOSFETs and diodes had been perfectly functional until I installed the new
power supply, but after a couple trial runs, the MOSFETSs went up in smoke (literally) and my
diodes melted.

MOSFETs

I had been using some lower-power logic-level MOSFETSs before the new power supply
arrived. Logic-level MOSFETs were required because the other MOSFETs available in the lab
were not turning on and off quickly enough, given the 20 kHz cycle which my PWM was based
upon. However, the greater loads induced by the new power supply was more than my old
MOSFETs could handle. In addition, the variety that I had obtained were surface mount chips,
thus precluding the addition of heat sinks which might have prolonged their active lives.

The new MOSFETs I chose were also logic-level, with a low Gate to Threshold Voltage
level (1-2V typical). This simply means that the transistor will turn on more readily even given a
lower or slower PWM signal. In addition, a max drain current of 10A (per channel) was more
than sufficient to ensure that they would function properly even under extreme conditions in my
system. Lastly, heat sinks were attached to these chips to further reduce the danger of damage.

21

Diodes

Even more surprising to me than the failure of the MOSFETs was the melting of several
Schottky diodes I had been using. Schottky diodes are well-known for their low forward voltage
drops (~0.3V) which means they are wasting less energy and generating less heat. The fact that
they were being destroyed suggests to me that quite a bit of current flows through them during
the off-cycle of the MOSFETs. The replacements I ordered were heat-sinkable dual-channel
10A Schottky diodes. Even with (comparatively) large heat sinks attached, these diodes still get
quite warm, but they have not failed even with the highest of currents.

Encoders

Perhaps with the increased current flow to and from the motors, a greater EMF was being
generated in the vicinity of the encoders. It was not uncommon to observe a rise (or decrease) in
the angular position voltage while the motors were on, even though there was no actual
movement of the arm. However, this never occurred when the motors were off, so I attributed
the problem to EMF disturbance. This problem was largely solved by twisting the pairs of
cables carrying the encoder outputs. This physical arrangement of cables has the tendency to
cause a reduction in sensitivity to nearby fields as they cancel their inductive effects in the
twisted pair when the first cable loops around again. If values continue to drift, the angle values
can be reset to zero by turning the microcontrollers off and the on again.

Time Variation of Motor Response due to Heat

This particular failing of the first design of my system was the most severe. For a long
time, I attributed the day-to-day inconsistencies of my system to misbehavior of the electrical
components, most notably the diodes. However, with the new diodes installed, I had no choice
but to consider alternative sources of the system’s variability. I eventually discovered that the
motors were producing so much heat (while dissipating so little of it) that the blocks of wood
surrounding them were getting hot to the touch. It seemed that the motors were producing so
much heat that their electrical characteristics were being significantly altered (the electrical
resistance of a conductor rises with temperature due to the physics of electron transport). The
solution required a re-design of the arm mechanism, thus invalidating a significant portion of
time spent perfecting the phi direction controller.

Swinging Arm and Support Structure

The time variability of the motors due to heat was one of two significant reasons that led
to the redesigning of the arm. The second was the fact that the phi direction propeller was so far
out from the arm’s central axis of rotation that it was producing very little torque in the theta
direction. This was problematic because the theta direction motor would only be unable to move
the arm in one direction. Thus the redesigned arm served two primary purposes: to allow the
motor to ‘breathe’ more and dissipate heat faster, and to bring the phi direction fan closer in to
the center thus creating a restoring torque. All of these goals were met by the new design.

Software

The two pieces of software that this project relies upon are the C code that runs on the
PIC Microcontrollers and the MATLAB script which is responsible for implementing the
controller algorithm. The PIC-C code worked without much difficulty, though some trial and
error was involved in maximizing the resolution for each encoder.

22

MATLAB Controller

Although successfully coded and applied, the PID controllers I implemented never
attained full success in both theta and phi directions simultancously. However, there were a
number of ways that I worked to improve the reliability of the PID controller. The two most
significant modes of modification to the classical PID controller were 1) adding in an asymmetry
to the controller to minimize any overshoot, and 2) modifying the weights of the contributions of
the controller components based on various functions of the angle.

The asymmetry in my PID controller directly addresses one mode of (open-loop)
instability in the system. The arm is balanced about a central pivot; this can be idealized as a
single rod free to rotate in a vertical plane, fixed at one end. The limit of the amount of torque
required to lift this rod an incremental angle eventually goes to zero as the rod approaches a
perpendicular posture. Though my system’s swinging arm can never reach a vertical position (at
most close to 40 degrees above horizontal), the aforementioned relation still remains true. Thus
any overshoot past the desired angle can be dangerous as it will quickly lead to an almost
irrecoverable state where the phi direction fan is barely on, but the arm is stuck at its maximum
vertical angle and does not fall back down (or does so very quickly).

The asymmetrical solutions that I used in my code apply primarily to an increase in the
rate of integration and the proportionality constants once the system overshoots past the goal
angle. This faster integration and stronger proportionality constant cause a fairly quick reaction
that usually counteracts the natural upwards tendency of the system. Balancing these constants
with the rest of the system so that the motor does not lose too much speed if it overshoots is
crucial.

The second mode of adapting a classical PID controller to my system involved weighting
controller components by sine and cosine relations based upon the angle to the goal. For
example, proportionality constants are applied both to the sine of the angle to the goal (thus more
quickly decreasing this controller component when the system approaches its goal) and to the
cosine of the absolute angle measured against horizontal (thus retaining some level of a ‘normal’
proportional controller). Perhaps most significant is the weighting of the integral component of
the controller by the square (or higher) of the cosine of the angle to the goal. This restricts the
sensitivity of the (already very small) integral component of the controller to the region near the
target angle. This serves the purpose of retaining the integral controller’s ability to drive the
error to zero without first slowing the system way down before it gets near its goal, while
avoiding potential over- and under-shoot problems.

In general, I tweaked the PID constants first by aiming for some amount of overshoot and
then slowly increasing the derivative constant in order to increase system speed and reduce
dangerous overshoot. My iterative cycle seemed consistent with most published methods of
tuning PID controllers.

Results

Before Redesigning the Arm
Before redesigning of the arm, I attained a fairly high degree of success in controlling the

23

phi direction position for a variety of goal angles. The major difficulty at this point was related

to the time variability of the motors. However, if I settled into a fairly steady rhythm of trails
and system cooling, the motors would respond fairly consistently and I would get good results.
The most readily attainable angles were those very near to horizontal, and slightly below.

Figures 17.1 and 17.2, and 18 illustrate two such favorable tests.

Vertical Angle (Voltage) vs time

0 — —_— I
5
<10
® -15- .
8 20- -
2.5
30
35 4
4% 2 4 6 8 10 12 14 16
Time (s}
Phi Output Voltage vs time
45
4
35
© 3
Ea25
g 2
15
1
05
% 2 4 6 8 10 12 14 16
Time (s)
Outputs for Phi

Magnitude (Volts)

wn

+ Ermor

+ Total Qutput
Proportional Output

* Integral Quptut
Derivative Qutput

IIIIIVU

-3
LTI E]

Time (s}

Figures 17.1 and 17.2. Phi goal angle of 0 degrees (horizontal) trials. 17.1 shows the rise in
position and the total output of the controller. 17.2 shows the various contributions to the total
output of the controller from proportional, derivative and integral components.

24

Of particular note here is the slight system overshoot at 10s, which is quickly corrected by the
integral controller (which can be very slightly discerned as the red line dipping below 0 in figure
17.2).

Goal Angle 2 degrees above Horizontal

5 , .
+ Error
. + Total Output
4- - * . Proportional Output [|
. + Integral Quptut
3 oL ’ * .) Derivative Output
* . . + {7V

———

Outputs (V)

20 i

-3

Time (s)

Figure 18. Output for goal angle of 2 degrees above horizontal.

While the controller tended to work fairly well for a variety of angles in those ranges, the
fact that it would be impossible to design a functional theta direction controller coupled with the
time variability of the motors necessitated that I redesign the arm. The severity of the
inconsistency of the motors is illustrated by Figures 19.1 and 19.2.

25

“ertical Angle versus Time

“ertical Angle (deg)

Time ()

“ertical Angle versus Time

Vertical Angle (deg)

Time (s)

Figure 19.1 and 19.2. The first graphic illustrates the response of a system whose goal angle is
nearly horizontal. The second figure shows with increasingly thick lines the progression of the
system response with time (no changes to controller or other hardware were made during this
time). By the ninth trial, the response peaks at an angle nearly 30 degrees less than the first run.

26

After Redesigning the Arm

Though redesigning the arm solved the dilemmas of creating a restoring torque in the
theta direction and increasing the rate of heat dissipation, it also made the system more unstable.
By moving motors closer to the center, the overall moment of inertia went down significantly
(the moment of inertia for a bar rotating through its midpoint is given by I = 1/12*ML?). This
means that the system became more prone to high angular accelerations and greater angular
velocities. In a system that has an inherent time delay, this modification works to make a
stablizing controller more difficult to implement.

Nonetheless, a Simulink model of the system was generated and a potentially stable
controller implemented. The model was generated by doing a very basic fit of a step response to
a first order system with a time delay.

Step Response of System vs 1st Order Model
1 5 T T T T T T T T T

Response (V)

o
[

1 1.2 14 1.6 1.8 2 22 24 26 28 3
Time (s)

Figure 20. Here a step response of a first-order model with a time delay (red x’s) was fit to the
system step response in the phi direction (blue *s).

While it is evident that my system is of a higher order, and the two responses diverge fairly
significantly after 3 seconds, it useful nonetheless to examine a simplified theoretical model with
a time delay to consider potential controllers.

In order to model the time-delayed system in Simulink, it is necessary to perform a Pade
approximation.

27

>> pade(sys, 1) %perform a first-order Pade approximation.

Transfer function:
-0.5s+0.5714

s"2-1.982s-3.571

Figure 21. First order Pade approximation of theoretical system with time delay.

This system is then input into Simulink and analyzed for stability.

Currert Compensator Currert Compensator
(1 +063s)
Fs) ={1 ’?{s) = 562 % N Eood
Root Locus Editor (C) Root Locus Editor (C)
T T - |. 25 T T T T T T T

08| : : 2t

06 15

0.4 1+

0.2- 05

(2]

w |
— =
< .| H O
T R 2
@©
£ E

02+ 05+

0.4 1+

06 A5

8- 2r

3 25 | 1 | 1 1 | 1 |
2 3 i ; 2 s % & 4 3 2 4 0o 1 2 3
Real Axis Real Axis

Figure 22.1 and 22.2. Before controller is applied; and after application of a lead controller.
Note that the system is now stable.

The lead controller implemented above takes the form:
560+ 1+.63s

1-.32s

The new system response is shown below:

28

Simulated System Response

Voltage

-0.5 1 1 1
0 5 10 15 20 25 30

Time (s)

Figure 23. Simulated system response with a lead controller. Though oscillatory and relatively
slow, this system does eventually stabilize.

In summary, though the controller is not 100% operational, the system is fully
constructed and the controller code is in place. If the next person decides to try their hand at a
modified PID controller such as mine, they simply have to load the code that has already been
written and tweak the values.

Discussion

Perhaps the greatest impediment to implementing a successful controller in this system
was the significant time delay inherent to the physical apparatus. The motors took a significant
amount of time to spin up to speed, and then there was a slight delay before the rotors would
catch the air to produce lift. I feel there are several possible directions to go from here: 1) accept
the time lag as is and work on a complex controller (or accept a slow response) possibly by first
developing a rigorous system model or 2) work on a mechanical solution to decrease the time
lag.

If I were to redesign the system with the goal of reducing the time lag in mind, I would
certainly try new motors or propellers. I don’t believe these motors were designed to produce
the levels of torque that they are generating at high currents. Part of the reason for the slow spin-
up time is that these motors simply are not very powerful. Another alternative would be to try

29

smaller propellers. This would lighten the load on the motors and increase system
responsiveness, though the apparatus would have to be more finely balanced due to the decrease
in the amount of lift generated (thus making it even more unstable!).

The primary goal of my first PID controller was to get as close as possible to the target
based upon the prior knowledge of the system’s transfer function (based upon the exponential fit
of step inputs versus steady state solutions) and then to move as slowly as possible to make any
corrections necessary. The slow speed of correction was required by the instabilities of the
system and the time lag.

Designing a finely crafted controller designed to compensate for the time-lag would be
quite a feat. Even a basic physical model of the system may shed light on potential solutions.
The method of PID control I implemented for the first arm simply does not work very well for
the redesigned system. This is largely due to the fact that the moment of inertia is so
significantly decreased; the range of voltages that will keep the system at a more or less stable
angle has become frighteningly thin. As a result, it is extremely difficult to produce a transfer
function of the system in the phi direction using step inputs.

While the first-order model with a time delay fails to match the physical system’s
response after a period of time, the Simulink lead-controller does give us hope that a controller
can be designed to combat large time delays and system instabilities. I would strongly
recommend against using this system as a general lab experiment for control theory students, due
to its current unstable condition. I do however have great faith in the technical abilities of
Swarthmore Engineering students; my apparatus may be more appropriate for a final project or
E90 that would involve research and design of experimental or exotic control techniques.

Future Work

In its current state, the system is prone to damage from the repetitive 'falls.' This is a
serious condition as it is possible that the arm will in time incur permanent damage to the theta
direction encoder shaft. This could be fairly easily remedied by constructing a downwards
pointing conic support attached at the first machined aluminum piece which would ‘catch’ the
arm.

Another important safety concern is that of the propellers. Before being used in a
laboratory setting, [would recommend constructing fan cages around the plastic blades as to
prevent curious fingers from getting cut.

Beyond these basic changes, there is only the simple matter of implementing a controller.

I look forward to hearing about the various methods that are implemented on my apparatus when
they meet with success!

30

Appendices
Appendix A: Datasheets

Rotary Optical Encoders

Modular Incremental
Rotary Optical Encoder

By the time you have read this first sentence, you
could have installed BEl's model MX15 INSTA-MOUNT™
modular optical encoder. In addition to its quick and easy
installation, the MX15 is designed to operate with jitter-free
output signals without tight controls on shaft endplay,
runout or perpendicularity. The new INSTA-MOUNT™
encoder is capable of operating within a temperature range
of -10° ta +70°C, requiring less than 30 milliamps of LE.D.
current, without degradation of output signals and is short
circuit protected. The MX15 is perfectly suited for motor
manufacturers and other high volume OEMs,

BEI's INSTA-MOUNT™ Series encoder offers 5V TTL
compatible quadrature outputs with index and complements
as options. Axial shaft movements during operation, of
+0.010", will not adversely affect the output signals. Shaft
runouts of 0.005" TIR can also be absorhed by this device .

without affecting output signal performance.

5 Series

Standard Features

Figure 1
* Resolutions to 1024 PPR

(MX152/MX153)
* Quick and easy installation

06—||—

» Tolerant of axial shaft
movement often associated
with less expensive motors P [

OPTIONAL HEADER (H) —\
MOLEX 22-23-2071

* Jitter-free outputs
* Index options

* Increased MTRF

(lower component count)

] f |
e COVER EUTTDN—/ e i _ 1

2¥ @.120 THRU HOLE

+ 261531 line driver output
from MX156

*» High Frequency response

* Z-year warranty Figure 2

(MX156)
/x Dimensions not shown, same as Figure 1
\ : OPTIONAL HEADER (H)

DUPONT #87206-510 _\

18" MIN.

All dimensions ax =102
in inches i axx = +.005

BE DUNCAN ELECTRONICS DIVISION
BE! TECHNOLOGIES INC
15771 Red Hill Avenue

Tustin, CA 92780-7303

(714) 258-7500 Fax: (714) 258-4629

et i o 1SO9001 Certified/QS9000 Compliant

MX15 Series

Modular Incremental Rotary Optical Encoder

Performance Specifications

Mechanical Environmental
Dimensions see Figure 1 Temperature operating: -10°C fo +70°C
Weight 2.0 oz, storage: -40°C to +125°C
Moment of Inertia 2.6 x 10%0z in sec® Enclosurs unsealed housing unit must be
Bore Size see “Ordering Information” protected from harsh environments
Motor Interface Termination
Mount Holes #2-56 threads @ 180° on 1.280 dia. 5.C. Terminal Board (Header)
Mount Hardware #2-56 x 3/4 in. long (provided) (M152 & Mx153) Pincut
Perpendiculari X R - r
Srﬁaﬂ to Moutﬁt +0.002° TIR Pin# | Signal Pin & | Signal
Shaft Runout 0.005" max (sach D.0001 degrades ; mﬁx T g gi{:g
accuracy by 0.5 arc minutes) 3 = 7 ground
Shaft Endplay 4 +5 volt
Dynamic ar Static +0.005"
Shaft Finish 18 microinches or better (M 158) Pinout
End must be cha.mfered or rounded Pin# | Signal Pin # | Signal
Shaft Tolerance 0.0002"/-0.0007" {e.g. ©.24093/.2458) 1 +5 volt g data B
Shaft Length _ 0.45" minimum E 5 volt 7 ground
{remove cover button for motor through-shafis) 3 index] ground
Electrical 4 index] data B
Code incremental s data & 10 [dataB
SRS T
{noindex on MX152) gated index (G) (MX152 & MX153) . Color Code .
Supply Voltage S volis +5% (@ B0m& max. Color_| Function Color | Function
Cutput Format dual channel guadrature and index Fed |+35 volt Green | dataB
(MX152 & MX153) (no index on MX152) Black |ground |Orange | index (MX153
Cutput Format dual channel quadrature and index White |data A
(M 156) with complements
Cutput Type sguare wave TTL. 16ma sink (M 158) Color Code
(MH152 & MX153) S00pA source. Short circuit protected Color | Function Color Function
Cutput Type TTL differential line driver (26LS31 or equiv.) Red +5 volt Green data B
(M158) should be terminated into a line receiver Black |oround WhtiBlk ﬁ
(26LS32, or egulvalent_mr_cultg White | data A Orange ﬁ
Freguency Response see graph: Fig. 3 " Blue |oatar | J_F{ 48k |ndex |
Rise Time 1.0psec. max. ue ata & index
. g
Figure 3 f
. s s OQutput JBOENOM, —— -
i Wave Form 180°E NOM. ———— —
™
£ OPENOM —=| —
§ S
E3
M FPR A
&) Y I Sy |
1 z 3 & 5 & T E]
SFEED [RFM X 1220} A
Ordering Information
MX15X - XX - XXXX - X - X B
Basic Model Mo, _
B

Cutput Format
2 = Quadrature
3 = Quadrature w/index
6 = Quadrature w/index & complements
Bore Size
25- 25", 38-375"
Ghd-Gmm, 8M-Bmm
Pulses Per Revalution (PPR)
500, 512, 1000, 1024
Index Option
G = gated to data & & B
LT = ungated
Electrical Termination
T = terminal beard

H = terminal board w/header

P o] shiclded el | EXAMPLE: MX153-25-500-U-P

INDEX GATED TO A& B — —_

90°E TO 450°E — —
INDEX UNGATED ‘
INDEX | |1]
T T
TNOEX I

— _COWROTATION OF SHAFT—
W M152 QUTPUTS A& B ONLY
W MX1S3 QUTPUTS A B & INDEX ONLY
W ME156 QUTPUTS AS SHOWN

BE DUNCAN FLECTRONICS DIVISION
g e e ot e s I NC

HwoLOGTi

15771 Red Hill Avenue

Tustin, CA 92780-7303

(714) 258-7500 Fax: (714) 258-4629
email: sales@beiduncan.com
www.beiduncan.com

Specifications subject to change without notice. Printed in LL5.A.

BEOOZ5-MX15-1001

32

Miniature Incremental

Rotary Optical Encoder

EX1L..

The EX11 Series was developed to provide a high
precision. low cost enclosed shaft encoder for light duty
applications. The EX11 offers benefits of the Opto-ASIC
design with 1024 line counts in a 1.1 inch diameter size.

) Packaged in a glass filled polycarbonate housing with
a 1/8" stainless steel shaft and precision bearings, the EX11
provides superior performance at a lower cost.

The EX11 Series is capable of operating over a temperature
range of -10°C to +70°C without degradation of signals.

Proven design and Duncan Electronics’ experience makes
the EX11 perfectly suited for high volume OEM applications,
including: robotics, process control and instrumentation.

Standard Features
* Line counts up to 1024 PPR
+ RS422 compatible 261531 line driver

+ 1.1 inch diameter package in servo or flange
mount configurations

+ Z-year warranty

Figure 1 Figure 2
Servo Mount Flange Mount
—— A7
05|14 .
083~ ||—= 085 — 437
“ — 078 @a3n
2435002
Pl ez [o
| — ' 1244 —
t p———
ﬂu ! 1 ! PIN 1
—~‘ —38t03 4 PIN2 —
—130 Max— -
I—1.25 Max—
PNz BROWN ‘
TOPIN1
12°41.0
BROWM
TOPIN 1
e THRU HOLE
/, T 4% .100
o L) TJS0BLC.
2958 =000 I/ | MOUNTING
998 Thne HOLES —2x 838~
4% 2-58 THDS. MOUNTIMG HOLES
X .15 DEEP
All dimensions in inches ax =202
o = +£.005

BE DUNCAN ELECTRONICS DIVISION
B EI TECHNOILOCGIES INC
15771 Red Hill Avenue
Tustin, CA 92780-7303
(714) 258-7500 Fax: (714) 258-4629
email: sales@beiduncan.com
www.beiduncan.com

ISO9001 Certified/QS9000 Compliant

33

EX11 Series

Miniature Incremental Rotary Optical Encoder

Performance Specifications

Mechanical Pin No. Color Signal
Dimensions see Figure 1 1 Brown N/C
Weight 2.0 oz. (Approx.) 2 Red +5Y
Shaft Diameter 0.1247 +.0000/-.0003
Shaft Load axial 2 Ibs., Radial 1 Ib. i 852&9 E
Torque, starting less than 0.4 oz. in. —

running less than 0.2 oz. in. 5 Green index
Inertia 3.0 x 10% oz. in./sec. 6 Blue index

Motor Interface 7 Viglet A
Servo Mounting Holes 4 places #2-56 @ 90° on 0.75" B.C. 8 Gray A
Servo Mount designed to accommodate motor 9 White NIC

mount cleat “PIC type” L2-2 10 Black Ground
Flange Mounting Holes 4 places .100 dia. thru holes
Shaft Coupling must be flexible (do not hard mount)

Electrical P
Code ncremental 18Ure 3 g
Pulses per Revolufion see "Ordering Information” 3 e -
Supply Voltage +5 volts 5% @ 80mA max. im Ef i
Output Format dual channel quadrature and index with |

complements (no index on EX112) o
Output Type TTL differential line driver (26LS31 or equiv.) g
should be terminated into a line receiver &
(26LS32, or equivalent circuit) .
Rise Time 1.0psec. max. £) e e I R R I |m|pm| [
Frequency Response see graph: Fig. 3 ; e A

. SPEED (RAM X 1000)
Environmental
Temperature operating: -10°C to +70°C
storage: -40°C to +125°C Output Wave Form

Termination 360°E NOM. -—
Type 28 AWG flat ribbon cable with 10 position 180°E NOM -
connector Berg P/N 65863-165 or equiv. -
Mates with Berg P/NG65863-165 or equiv. H-E NOM.—-| -—

(mating connector not provided)

P

|

Ordering Information
EX11X - XXXX - X

Basic Model No. 90°E TO 450°E
Output Format INDEX

2 = Quadrature -
3 = Quadrature wiindex |— [-
INDEX I I

6 = Quadrature wiindex & complements

Pulses Per Revolution (PPR) T 1
-200, -256, -500, “NOEX | . _|

-512, -1000, -1024

Mounting ' — CWROTATION OF SHAFT —
éj%j;%:ﬁ;&u WEX112O0UTPUTS A& B ONLY

W EX113 OUTPUTS A, B & INDEX ONLY
[EXAMPLE: EX113-500-2 | W EX116 OUTPUTS AS SHOWN

BE DU \(,/1\ ELECTRONICS DIWS)’O\ - ! . o
FE 7 CHNOLOGIES INC Specifications subject to change without notice, Printed in LS.A. BED025-EX11-1001

15771 Red H|IIAvenue

Tustin, CA 92780-7303

(714) 258-7500 Fax: (714) 258-4629
email: sales@beiduncan.com
www.beiduncan.com

MOSFETs

e rr——
FAIRCHILD
e ———

SEMICONDUCTOR®

Data Sheet

16A, 50V, 0.047 Ohm, Logic Level,
N-Channel Power MMOSFETs

These are N-Channel logic level power MOSFETs
manufactured using the MegaFET process. This process,
which uses feature sizes approaching those of L3I
integrated circuits gives optimum utilization of silicon,
resulting in outstanding performance. They were designed
for use with logic level (5V) driving sources in applications
such as programmable controllers, automotive switching,
switching regulators, switching converters, motor relay
drivers and emitter switches for bipolar transistors. This
performance is accomplished through a special gate oxide
design which provides full rated conductance at gate biases
in the 3V to 5V range, thereby facilitating true on-off power
control directly from logic circuit supply voltages.

Formerly developmental type TA0S871.

Ordering Information

RFD16NO5L, RFD16NO5LSM

January 2002

Features

* 184, 50V

* Ips(ON) = 0.047Q

« UIS SOA Rating Curve (Single Pulse)

+ Design Optimized for 5V Gate Drives

+ Can be Driven Directly from CMQOS, NMQOS, TTL Circuits
+ Compatible with Automotive Drive Requirements

+ SOA is Power Dissipation Limited

.

Nanosecond Switching Speeds

.

Linear Transfer Characteristics

.

High Input Impedance

.

Majority Carrier Device

.

Related Literature

- TB334 "Guidelines for Soldering Surface Mount
Components to PC Boards”

PART NUMBER PACKAGE BRAND
RFD1&MNosL TO-251AA RAFD16MOSL Symbo]
RFD1&NosLSM TO-252AA AFD16MOSLSM
]
NOTE: When ordering, include the entire part number. Add the suffix 9A
to obtain the TO-252AA variant in tape and reel, i.e. RFD16N0sLSMaA —t
Ia—j
G —
s
Packaging
JEDEC TO-251AA JEDEC TO-252AA
SOURCE DRAIN (FLANGE)
DRAIN
GATE
GATE
DRAIN (FLANGE)
e ’ SOURCE

2002 Fairchild Ssmiconductor Corporstion

RFD1ENOEL, RFD1EMOSLEM Rev. B

35

RFD16NO5L, RFD16NO5LSM

Absolute Maximum Ratings Tg=25°C, Unless Otherwise Specified

RFD16NOSL,
RFD16N0SLSM UNITS
Drainto SourcaVoltage (Note 1)o i Vbs 50 v
Drain to Gate Voltage (Rgg =20k (Note 1) ... VbR 50 v
Continuous Drain Current e I 16 A
Pulsed Drain Current (Note 3)o e i lom 45 A
Gateto SourceVWoltage ot i e Vas 0 Vv
Maximum Power Dissipationt i Po 60 W
Derate ABOVE 25°Go 0.48 W/eG
Operating and Storage Temperature i Ty TsT -55 to 150 °c
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for10s. TL 300 °oc
Package Body for 10s, See Techbrief 334 oo i Tpkg 260 °c

CAUTION: Stiesses above those listed in “Absolute Maximum Ratings” may cause permanent damage fo the device. This is a stress only rating and operation of the
device at these ar any ather conditions above those indicated in the operational sections of this specification is not impliad.

NOTE:
1. Ty=25°C to 125°C.

Electrical Specifications Tg = 25°C, Unless Otherwise Specified

PARAMETER SYMBOL TEST CONDITIONS MIN | TYP MAX UNITS
Drain to Source Breakdown Voltage BVpss Ip = 250mA, Vigg = 0V, Figure 10 50 - - v
Gate to Thrashold Voltage VasmHy | Ves=Vps. Ip =250mA, Figurs 9 1 - 2 v
Zero Gate Voltage Drain Current Ipss Vpg =40V, Vgg =0V - - 1 LA
Te=150°C _ Bl 50 o
Gate to Source Leakage Current lass Veg=+10V, Vpg =0V - - 100 nA
Drain to Source On Resistance (Note 2) 'osioNy | lp=18A, Vgg =5V - - 0.047 Q
Ip = 16A, Vgg = 4V . : 0.056 Q
Tum-On Time tion) Voo =25V, Ip = 8A, - - 60 ns
Tum-On Delay Time taiomN) \,}Eﬁfeg \;F'E:R%S = 1280 - 14 - ns
Rise Time tr - 30 - ns
Tum-Off Delay Time tdioFF) - 42 - ns
Fall Time | - 14 - ns
Tum-Off Time toFR - - 100 ns
Total Gate Charge Qqgromy |Ves=0V1to 10V [Vpp =40V, - - 80 nC
Gate Charge at 5V Qg |Vas=0Vtosv E’:;;‘;‘; 5 - : 45 nG
Threshold Gate Charge QuTHy | Ves=0V1o 1y [Figures 17,18 5 s a nC
Thermal Resistance Junction to Case RaJc - - 2.083 °CW
Thermal Resistance Junction to Ambient Reya - - 100 °cw
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN | TYP | MAX | UNITS
Source to Drain Diode Voltage Vsp Isp = 16A - - 1.5)
Diode Reverse Hecovery Time ter Isp = 184, digp/dt = 100Aus - - 125 ns

NOTES:
2. Pulse Test: Pulse Width = 300ms, Duty Cycla = 29
3. Repetitive Rating: Pulse Width limited by max junction temperature.

2002 Fairchild Semiconductor Gorporstion RAFO1EMOEL, RFDN&NOSLEM Rev. B

Diodes

International
IR Rectitier

Bulletin PD-2.291 rev.C 03/03

10CTQ150
10CTQ150S
10CTQ150-1

SCHOTTKY RECTIFIER

Major Ratings and Characteristics

10 Amp

Description/ Features

Characteristics Values | Units This center tap Schottky ectifier has been optimized for low
reverse leakage at high temperature. The proprietary barrier
technology allows for reliable operation up to 175° C junction

[.:\'A\-’_\ Rectangular 10 A temp re. Typical applications are in switching power
waveform supplies, converters, free-wheeling diodes, and reverse
VR?M 150 v battery protection
: + 175° C T, operation
logy @tp=5pssine 620 A * Cenier tap configuration
« Low forward voltage drop
Ve @5Apk.T =125°C 0.73 v = High purity, high temperature epoxy encapsulation for
(per leg) enhanced mechanical strangth and moisture resistance
- » High frequency operation
T, range -5510175 < « Guard ring for enhanced ruggedness and long term
reliability
Case Styles
10CTQ150 10CTQ150S 10CTQ150 -1
L g
Base Zaze
‘Common Commen
3!’.'})&_& Ca'.’o:_e
2 2
1 Comman 3 1 Comman 3
Aok Camode Anode Ancce Camode Anode
TO-220 D?PAK TO-262
www.irf.com

37

10CTQ150, 10CTQ150S, 10CTQ150-1

Bulletin PD-2.291 rev. C 03/03

Infernational
TSR Rectifier

Voltage Ratings

10CTQ150
Parameters 10CTQ1505
10CTQ150-1
Va Max. DC Reverse Voltage (V) 150
Vaww Max. Working Peak Reverse Voltage (V)
Absolute Maximum Ratings
Parameters Values |Units Conditions
'r.-»-;-. Max. Average Forward (Per Leg) 5 A | 50%duty cycle @ Tc: 155°C, rectangular wave form
Current *SeeFig.5 (Per Device) 10
lee,, Max. Peak One Cycle Non-Repetitive 620 A 5ps Sineor3psRect pulse |Following any rated
. i - load condition and with
Surge Current (Per Leg) *SeeFig.7 115 10ms SineorémsRect. pulse |rated Vggy applied
E,: Non-Repetitive Avalanche Energy 6.75 mJ [T,=25°C, 1,;=0.30Amps,L=150mH
(Per Leg)
I,‘R Repefitive Avalanche Current 0.30 A |Current decaying linearly to zero in 1 psec
(Per Leg) Frequency limited by T_I I'"Ia){_\.-'ﬁ: 15 x\f‘R typical
Electrical Specifications
Parameters Values |Units Canditions
Veu Max. Forward \,-'ol.tage Drop 0.93 vV |@b5A T,= 25°C
{Per Leg) * See Fig. 1 (1) 1.10 Voo [@ 10A
0.73 V@ 5A R
0.86 V@ 10A T,=125°C
Iw Max. Reverse Leakage Current 0.05 ma TJ = 25°C R
(Per Leg) * See Fig. 2 (1 7 mA [T, =125°C i L
Ve Threshold Voltage 0.468 Vo T, =T, max
I Forward Slope Resistance 28 mi}
C_ Max. Junction Capacitance(Per Leg) 200 pF \,-'R = 5\-'x: (test signal range 100Khz to 1Mhz) 25°C
[E= Typical Series Inductance (Per Leg) 8.0 nH |Measured lead to lead Smm from package body
dv/dt Max. Voltage Rate of Change 10000 | Vips
{Rated \.-'R)
Thermal-Mechanical Specifications (1) Puse Wicth < 200ks, Duty Cycle <2%
Parameters Values |Units Conditions
LA Max. Junction Temperature Range -5t 175 | °C
TSlg Max. Storage Temperature Range -B5t0 175 | °C
:{m_lc Max. Thermal Resistance Juncfion 350 “CMAW | DC operation
toCase (Per Leq)
:{m_lc Max. Thermal Resistance Juncfion 1.75 “CMAW | DC operation
to Case (Per Package)
Rice Typical Thermal Resistance, Case 0.50 “CMAW | Mounting surface , smooth and greased
to Heatsink {only for TO-220)
wi Approximate Weight 2(0.07) |gfloz.)
T Mounting Torque Min. G(5) Kg-cm
Mazx. 12(10) |{Ibf-in}
2 www.irf.com

38

Appendix B: Computer Code
PIC-C Code: Phi

/*
Emery Ku, E90

This file details the I/O for a PIC microcontroller (16F873A) which is
connected to an angular encoder (1024 pulses/revolution) and outputs a pulse-

width modulated signal to convert angular position to a voltage.
*/

//Things we need.

#include <16F873.h> //ADC set to 10 (open 16F873.h)

#include <STDLIB.H> //Required by read adc()

#fuses HS,NOWDT,NOPROTECT,NOLVP

#use delay(clock=10000000)

#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7, BRGH10K) // Jumpers: 8 to 11, 7 to 12

//Define quadrature-based states as grey-code.

#define state 0 0 //Both encoder outputs A and B are low
#define state 11 //Ais high, B is low

#define state 2 3 //Both encoder outputs A and B are high
#define state 32 //Ais low, B is high

//Inputs
#use fast 10(A) //this requires the set tris X command
/[#use fixed io(a_inputs=PIN_A0) //AQ is the motor control voltage
/M#use fixed io(b_inputs=PIN_ BO, PIN B1) //B0O and B1 are encoder inputs
//B0 is A from encoder
//B1 is B from encoder

//Outputs << I'm not sure we need this any more? CCP is separate from RCX >>
/l#tuse fixed i1o(c_outputs=PIN CI1,PIN C2) //Pin Cl is PWM output (DAQ)
//Pin C2 is PWM output (motors)

long int angle; //Keep track of the angular position (10-bit)
//int angle; //Keep track of the angular position (10-bit)
long int control;

int cur_state;

int old_state;

void main()

{
SET TRIS A(0xOF);
/I A7,A6,A5,A4 are outputs
// A3,A2,A1,A0 are inputs

39

SET TRIS B(0xOF);
// B7,B6,B5,B4 are outputs
// B3,B2,B1,B0 are inputs

setup_ccpl(CCP_PWM); // Configure CCP1 and CCP2 as a PWM
setup_ccp2(CCP_PWM);
/I The cycle time will be (1/clock)*4*t2div*(period+1)
//" In this program clock=10000000 and period=127 (below)
/I For the three possible selections the cycle time is:
/- (1/10000000)*4*1*128 = 51.2 us or 19.5 khz
setup_timer 2(T2 DIV _BY 1,127, 1);// 20 KHz signal

setup port a(ALL ANALOG);
setup_adc(adc_clock internal);
set adc_channel(0); //A0 is the motor control voltage pin

angle = 0;

//Loop to collect/output data
do {
control=read _adc(); //Control should be a 10-bit long int, set in #device

cur_state = input(PIN_BO0) + 2*input(PIN_B1);

if (cur_state !=old_state)

{
if (cur_state == state_1 && old_state == state 0 && angle > 200) /65400 for theta

{
//angle+=64; //Encoder shaft is turning clockwise (theta)
angle-=256; //Use this for the phi-direction encoder

H
if (cur_state == state 3 && old state == state 0 && angle < 65200)

{
//langle-=64; //Encoder shaft is turning CCW (theta)
angle+=256; //The max output comes to 1.04V if left (@ +/-64 (phi)

}
}

old state = cur_state; //For the next cycle...

T
T Oatpats /1777777777001
T

//Need to convert angle to a voltage to output to DAQ
set pwml duty(angle/128);

40

//This should be okay... angle is a long int

//Need to output our motor control voltage as PWM:

set pwm?2_duty(control/2);
//control reads in from 0 to 1024 :-)
/Ivalue*(1/clock)*t2div
//value may be an 8 or 16 bit constant or variable
/lwant duty cycle to be some fraction of 51.2 us
//What is the range of control?? I think I set it to 10 bits

}+ while(1);
}

PIC-C Code: Theta

/*
Emery Ku, E90

This file details the I/O for a PIC microcontroller (16F873A) which is
connected to an angular encoder (1024 pulses/revolution) and outputs a pulse-

width modulated signal to convert angular position to a voltage.
*/

//Things we need.

#include <16F873.h> //ADC set to 10 (open 16F873.h)

#include <STDLIB.H> //Required by read adc()

#fuses HS, NOWDT,NOPROTECT ,NOLVP

#use delay(clock=10000000)

#use 1s232(baud=9600, xmit=PIN_C6, rcv=PIN_C7, BRGH10K) // Jumpers: 8 to 11, 7 to 12

//Define quadrature-based states as grey-code.

#define state 0 0 //Both encoder outputs A and B are low
#define state 11 //Ais high, B is low

#define state 2 3 //Both encoder outputs A and B are high
#define state 32 //Ais low, B is high

//Inputs
#use fast 10(A) //this requires the set tris X command
/[#use fixed io(a_inputs=PIN_A0) //A0 is the motor control voltage
/I#use fixed io(b_inputs=PIN_ BO, PIN B1) //B0O and B1 are encoder inputs
//B0 is A from encoder
//B1 is B from encoder

//Outputs << I'm not sure we need this any more? CCP is separate from RCX >>
/lttuse fixed i1o(c_outputs=PIN CI1,PIN C2) //Pin Cl is PWM output (DAQ)
//Pin C2 is PWM output (motors)

41

long int angle; //Keep track of the angular position (10-bit)
//int angle; //Keep track of the angular position (10-bit)
long int control,

int cur_state;

int old_state;

void main()
{
SET TRIS A(0xOF),
/I A7,A6,A5,A4 are outputs
// A3,A2,A1,A0 are inputs
SET TRIS B(0xOF);
// B7,B6,B5,B4 are outputs
// B3,B2,B1,B0 are inputs

setup_ccpl(CCP_PWM); // Configure CCP1 and CCP2 as a PWM
setup_ccp2(CCP_PWM);
/I The cycle time will be (1/clock)*4*t2div*(period+1)
//" In this program clock=10000000 and period=127 (below)
/I For the three possible selections the cycle time is:
/- (1/10000000)*4*1*128 = 51.2 us or 19.5 khz
setup _timer 2(T2 DIV _BY 1,127, 1);// 20 KHz signal

setup_port a(ALL ANALOG);
setup_adc(adc_clock internal);
set adc channel(0); //AO0 is the motor control voltage pin

angle = 0;

//Loop to collect/output data
do {
control=read adc(); //Control should be a 10-bit long int, set in #device

cur_state = input(PIN_BO0) + 2*input(PIN_B1);

if (cur_state !=old_state)

{
if (cur_state == state 1 && old state == state 0 && angle < 65400) /65400 for theta

{
angle+=64; //Encoder shaft is turning clockwise (theta)
//angle-=64; //Use this for the phi-direction encoder

}

if (cur_state == state 3 && old state == state_0 && angle !=0)
{
angle-=64; //Encoder shaft is turning CCW (theta)
//angle+=64; //The max output comes to 1.04V if left @ +/-64 (phi)

b
}

old state = cur_state; //For the next cycle...

T
I Oatpats /7777777777770
T i

//Need to convert angle to a voltage to output to DAQ
set pwml _duty(angle/128);
//This should be okay... angle is a long int

//Need to output our motor control voltage as PWM:

set pwm2_duty(control/2);
//control reads in from 0 to 1024 :-)
/Ivalue*(1/clock)*t2div
//value may be an 8 or 16 bit constant or variable
//want duty cycle to be some fraction of 51.2 us
//What is the range of control?? Set it to 10 bits

}+ while(1);
}

43

MATLAB Script

Ku_E90 MIMO.m
Written by Emery Ku

E90 Data Acquisition and Control Algorithm

A

9%%%%%%%%%%%%%%%%6%%%%% %% %% %% %% %% % %% %% %% 6% % %% % %% % %% % % %% %% %% %
9%%%%%%%%%%%%%%%%%%% Emery"s Script %%%%n%%e%%%d%%%n%hdedt%nnn%nndedide
%%%%%%%%%%%% Two-Input/Two-Output Control %%%%%%%%%%%%%%%%%

9%0%%%%%%%%%%%%%%%6%%%%%% % %% %% % %% % %% %% %% %% %6%6% %% % %% %%6% % % %% %% %%

clear;
clc;
close all;
o

%Clean up from last time

0/,

70

InChans=[0 1];
OutChans=[0 1];

%DAQ Board Input channels
%DAQ Board Output channels

70

Setup the input channel

NumSecs = 6;

Ain = analoginput(“nidaq®);
Ain._SampleRate=100;

NumPts = Ain.SampleRate*NumSecs;
Ain._SamplesPerTrigger=NumPts;
Ain. InputType="SingleEnded" ;
Ain._BufferingConfig=[1 2000];
Ain.TransferMode="Interrupts*®;
Ain.TriggerRepeat=inf;

DT = 1/Ain_SampleRate;

04

Setup the output channel

Aout = analogoutput("nidaq”);
Aout.SampleRate=Ain.SampleRate;

Initialize 1/O

Inputs = addchannel (Ain, InChans);
Outputs = addchannel (Aout,OutChans);

% For whatever reason, NIDAQ insists on setting its input range to +/-5V.
% Other settings (even those allowed by hardware) give anomalous results.

set(Inputs, {"Units", "UnitsRange"}, {"Volts", [-5 5]1})

Pre-Set Output

Phi_Pre = 1; Theta_Pre = 0;

putsample(Aout, [Phi_Pre Theta_ Pre]);
pause(1.-5);

%for now, no change in theta
%Spin up

0,
0

44

Predefine variables & Initialize Arrays

Phi=[]:; Theta=[]; %Acquired Data (degrees)
Phi_Vs=[]; Theta_Vs=[]; %Acquired Data (V)
Time=[]: counter=0; %Time vector & counting

Phi_Error = [] Theta_Error = []; %Save calculated errors

Phi_Error_Int z : Theta_Error_Int z :

Phi_Error_Der = [1; Theta_Error_Der = [1;

OoutO=[]; outl=[]; %Save outputs

Phi_Out p = [1; Theta_Out_p = [1; %Save outputs of each
Phi_Out_i = []: Theta_Out_i = []: %part of the PID controller
Phi_Out_d = []; Theta Out_d = [];

Phi_IntError=0; Theta_IntError=0; %initialize Integral
Phi_IntErrorl=0; Theta_IntErrorl=0; %Controller

Goal Angles (and voltages)

9%%%%%%%%%%%%%%%%6%% %% %% % %% %% % %% %% % %% %% %% %6%6% %% % %% %%6%6% % % % %% %6 % % % % %% % % % % %% %%
9%%%%%%%%%%%%%%%%%%%% Phi Voltage-Angle Conversion %%%%%%%%%%%%%%%%%%%%%%%%%
9%6%%%%%%%%%%%%%%W%%%% ~75-degree Range of motion %%%%%%%I6%%%%%696%%6%6%%%%%%%%
%%%%%%%N%%%%%%%%%%%% ~2V = 0 degrees 9%%%%%%%%6%%%%%%%6%%% % %%%%%0%
9%%%%%%%%%%%%%%%%6%6% %% %% %%6%%%%%%%%6%6%6% %% %% %6%6%%% % %% %96%6%6 % %% %% %%6%6% % %% %% %6% % %% %% %%

Phi_Goal Angle = -15; %Range from [-37 ~20] deg
Phi_Goal = 2.2*(Phi_Goal_Angle)/37.5 + 2.2;

9%%%%%%%%%%%%%%%%6%% %% %% % %% %% % %% %% % %% %% %% %% % %% % %% %6%6% % % % % %% 6% % % % % %% %% % % % %% %%
%%%%%%%%%%%%%%%%%%% Theta Voltage-Angle Conversion %%%%%%6%%%%%%%%6%%%%%%%%%%
%%%%%%%%%%%%%%%W%%%% ~75-degree Range of motion %%%%%%%I6%%%%%696%%6%6%6%%%%%%%
%%%%%%%N%%N%%%%%%%%%% ~2V = 0 degrees 9%%%%%%%%6%%%%%%%%%%%%%%%%0%
9%%%%%%%%%%%%%%%6%6%6% %% %% % %%%%%%%%%6%6%6% %% %% %6%6%%% % %% %96%6%6 % %% %% %%6%6% % %% %% %%6% % %% %% %%

Theta_Goal Angle = 180; %Range from [0 to 345] deg
Theta_Goal (Theta_Goal_Angle/345)*4 _65;

0,
/0

Set Controller Parameters

WNSNN\N\NNNNN/N\ Phi Controller Parameters /\/\/\/\/\/\/\N\/N\/N\N\N\/N\%
Kp_a=0.3; %For proportional control:
Kp b=0.2; %(Error)*[abs(Kp a*sin(phi_desired)) + Kp_| b*cos(phl absolute)]

%Different Ranges implies Diff. Control Factors. Want a more aggressive
%integral control factor at smaller angles: less chance of dangerous

%overshoot.
if Ph| Goal _Angle < -2
= 0.00; %Int(Error) Control Factor
Kd = .3; %Der(Error) Control Factor
else
Ki = 0.005;
Kd = .23;
end
_____ —_— —_— —_— —_— —_— _— —_————0
%"Model ling the System™
%%% VO Vchanl %%%
% 2.0 0.15
% 2.1 0.3
% 2.2 0.5
% 2.3 0.85
% 2.4 1
% 2.5 1.9
% 2.52 2.35

45

% Excel says Phi In V = 9e-6*exp(4.9159*V_to_ PIC)
% This suggests: VO_phi =

% 100 \

% ——— log(-=----)

% 492 9e-6

- - - -— -— -— S %

iT Phi_Goal Angle <6
%V0_ Ph| = 1/4_92*1og(Phi_Goal/9e-6)-.05;
VO_Phi 1.62

else
VO_Phi = 1/4_.92*1og(Phi_Goal/9e-6)-.08;

%This model isn"t perfect.

end
o o

0

BINNNNNNN\NN\/\ Theta Controller Parameters /A\/\/\/\/\/\\/N\/N\/N\/N\/N\%

Qp_a=1; %For proportional control:

Qp b=0_3; %(Err)*[abs(Qp_a*S|n(theta de5|red)) + Qp_| b*cos(theta abs)]

QI = 0. 0003 %Int(Error) Control Factor

[7S —— - _— _— _— - e

Qd = 2; %Der(Error) Control Factor
0

Get ready...
§tart(Ain);

=

Loop until time t

while counter < NumPts
counter=counter+1;

%Keep track of cycles
[InData, InTime]=getdata(Ain,l);

%Get the Data

Theta=[Theta InData(:,1)];
Phi=[Phi InData(:,2)];
Time=[Time InTime];

%Who knows why Chan 1 is the
%First row of data
%Time vector

—_— —_— —_— —_— —_— - —————————— %
Phi_V = Phl(counter) %Remember raw voltages

Theta V = Theta(counter);

Phi_Vs = [Phi_Vs Phi_V]; %Collect Phi(V)s

Theta Vs = [Theta_Vs Theta V]; %Collect Theta(V)s
—_— _— _— —_— —_— —_— —————————— %

Phi (counter) = ((Phl(counter) 2)/2)*37.5;
((Theta(counter)/4. 74)*345); %and the same for Theta

Theta(counter)

%Convert Phi to degrees

A% %% 969696966 %% Y 96%6%69%6 K696 996969696 % Yo% Ha96Y6 %Y %6669 %6 % 6% 9696 Y6 Y Y6%6%69696%6 %96 %66% 6% %6 %% %% %%
fh<<<<<<<<<<<<<<<<<$y Begin Phi Controller Algorithm %>>>>>>>>>3>>>>55>>5>>>>0
6% %% 9969696 %% H%6%6%696% K%K IH6H%6% %% 6969 %% % HY6%% K%Y %I69%H %I 696%6% % %% %% %%

Phi_Goal Angle) < 10
%

%Phi Angle error in rad

angle_error = (Phi_Goal_Angle - Phl(counter))*p|/180
%Phi-- — -- -—

%Proportional Error Calculation
Phi_Error_now = (Phi_Goal - Phi_V);

Phi_Error = [Phi_Error Phi_Error_now];

if Phi_Error_now < 0

%Proportional Error Factor
%Save Error

%I1f past goal angle, increase

Kp_aa = 2*Kp_a; Y%proportional correction factors
Kp_bb = 2*Kp_b;
else
Kp_aa = Kp_a;
Kp_bb = Kp_b;
end
%Phi-- - - o -— -— -— ——————— %

%Integrated Error Calculation
if Phi(counter) > -35 %ls the

helicopter at least 2 degrees up?
if -4 < (Phi(counter) - Phi_Goal_Angle) && (Phi(counter) -

Phi_IE1 = (Phi_Goal - Phi_Vs(counter-1));
% % elseif abs(Phi(counter) - Phi_Goal_Angle) < 4

46

% Phi_IEl1 = O;
else
Phi_IE1 = 0;
end
Phi_IntError = Phi_IntError + (Phi_Error_now + Phi_IE1)*(DT/2);

REXRES

if Phi_Error_now > 0
Phi_IntError = Phi_IntError + (Phi_Error(counter))*(DT)*cos(angle_error)”"3;
else
iT Phi_Goal_Angle < 5
Phi_IntError = Phi_IntError +
5*(Phi Error(counter))*(DT)*cos(angIe error);
Ise
Phi_IntError = Phi_IntError + 10*(Phi_Error(counter))*(DT);
end
end
%Phi-- - - -— - -— -— ——————— %
%Derivative Error Calculatlon
if counter > 1
%iIFf we"re below our target, do normal derivative of error
if Phi_Error_now > 0
Phi_DE1 = (Phi_Error(counter) - Phi_Error(counter-1))/DT;

%otherwise scale derivative of error
else
Phi_DE1 = .6*(Phi_Error(counter) - Phi_Error(counter-1))/DT;

end
! %IT we"re on the first sample, you can"t take the derivative
else
Phi_DE1 = 0;
end
%Phi-- - -— -— -—= e %
%If the "copter is sitting still, set integral and derlvatlve errors to
%zero.
else
Phi_IntError = O;
Phi_DE1 = O;
end
%Phi-- - -—- -—- -—= —————— e %
Phi_Error_Int = [Phi_| Error Int Phi IntError] %Save Int Error
h Phi_Error_Der = [Phi_| Error Der Phi_DE1]; %Save dsdt(error)
%Phi-- - -—- -— -—= e %

%Final Output Calculatlon
Phi_Out_p = [Phi_Out_p (Phi_Error_now)*(abs(Kp_aa*sin(angle_error))...
+ Kp_bb*cos(Phi (counter)*pi/180))];
Phi_Out_i1 = [Phi_Out_i Ki*Phi_Error_Int(counter)*(cos(Phi(counter)*pi/180))];
Phi_Out_d = [Phi_Out_d Kd*Phi_DE1*(cos(angle_error))];

%Output is the sum of above:
OutDataO= VO_Phi + Phi_Out_p(counter) + Phi_Out_i(counter) + Phi_Out_d(counter);

%0%%%%%%6%%%%%%%%%0%% %% %% % %% %% % %% %% %% % %% %% %% %% %K% %% % %% %% %% %% %% %% %% 6% %% % %% %
fh<<<<<<<<<<<<<<<<<<<y§y End Phi Controller Algorithm %>>>>>>>>>>>>>>>>>>>>>>0
90%%%%%%%6%% %% %% %% %% %% %% %%%%%%%% %% %% %% % %% %% %% %% %% %% %% %K% %% 6% %% %% %% %% %% % %% %%

04 0/

0

90%%%%6%%%%%%%%%%%6%% %% %% %% %% %% %% %% %6%6% %% %% 96%6% %% %% %696%6%6% %% %%%6%% % % H % %%6% % % %% %% %
fh<<<<<<<<<<<<<<<<t Begin Theta Controller Algorithm %>>>>>>>>>>>>>>>>>>>>>0
9%%%%%%%6%%%%%%%%%6%%%%%%%%6%6%%%%%%%6%6%6% %% %% %6%6%6%% % %%%696%6%6% %% %%%96%6% % %% %% %% % % % %% %%
%Theta Angle error in rad
angle_error = (Theta Goal_Angle - Theta(counter))*p|/180'

%Theta - -—= - -—= ——————— e %
%Proportional Error Calculation
Theta_Error_now = (Theta_Goal - Theta_V); %Proportional Error Factor
Theta_Error = [Theta Error Theta Error_nowl; %Save Error

%Theta - - ——= - -— - —————— %

%Integrated Error Calculation (perform only when close to goal)
h Theta_IntError = Theta_IntError + (Theta_| Error(counter))*(DT)*cos(angIe error)”3;
%Theta - - ——= - -—= e e
%Derivative Error Calculation (perform only after first sample)
if counter > 1
! Theta_DE1 = (Theta Error(counter) - Theta_Error(counter-1))/DT;
else
Theta_DE1 = 0;
end
%Theta - - - -— -— -— —————— %
Theta_Error_Int = [Theta Error_Int Theta_IntError]; %Save Int Error
h Theta_Error_Der = [Theta_Error_ Der Theta_DE1]; %Save d/dt(error)
%Theta - —— -—= —-—= ettt ettt

47

%Final 0utput Calculation

Theta_Out_| [Theta_Out_p (Theta_Error_now)*(abs(Qp_a*sin(angle_error))...
+ Qp_b*cos(Theta(counter)*p|/180))]

Theta_Out_i = [Theta Out 1 Qi*Theta_Error_Int(counter)];

Theta_Out_d = [Theta_out_d Qd*Theta_DE1*(cos(angle_ error))]

%Output is the sum of above:

%OutDatal= Theta_ Out_p(counter) + Theta_Out_i(counter) + Theta_Out_d(counter);

OutDatal = 0; %for testing purposes
90%%%%6%%%%%%%%%%%6%% %% %% %% %% %% %% %% %% % %% %%96%6% %% %% 6%696%6%6% %% %6996 % % %% %%%6% % % %% %% %
fh<<<<<<<<<<<<<<<<<<t End Theta Controller Algorithm %>>>>>>>>>>>>>>>>>>>>>0
9%%%%%%%6%%%%%%%%6%6%% %% %% %% %6%%%%%%%6%6%6% %% %% %6%6%6%% % %%%696%6%6% %% %%%6%6%6% % %% %%%6% % % % %% %%

%Don"t send outputs that you know you can"t send...
%Phi output is 5V max
if OutData0 > 5
OutDataO = 5;
elseif OutData0 < 0
OutDataO = O;

Yom———— -— -— -— -— ———————————— %
%Theta output is 3V max (shouldn"t need to go above thls)
if OutDatal > 2.5
Outbatal = 2.5;
elseif OutDatal < 0O
OutDatal = O;

Yp————— -—= - - -— ——————— %
%Send the Outputs and Collect Output Data
putsample(Aout, [OutData0 OutDatall]);
OutO=[Out0 OutDataO];
Outl=[Outl OutDatal];

Post Data-Acquisition Outputs

Y%putsample(Aout, [OutO(end) 0]);

% pause(1-8);
putsample(Aout [0 OD); %Reset Output

Free up any memory that we used.

stop(Ain)
stop(Aout)
delete(Ain)
clear Ain
delete(Aout)
clear Aout

Plot the data

figure %for determlnlng where stuff went wrong in the ph| direction

pIot(Tlme Phi_Error,*m.",Time,Out0,"b.",Time,Phi_Out_p,"y.",Time,Phi_Out_i,"r.",Time,Phi_0O

ut_d,
Tlme) Ph|*ones(max(5|ze(T|me))) "k-.")
legend(” Error' "Total Output-®, 'Proportlonal Output®, " Integral Ouptut”®, "Derivative
Output®, "VvO0~, 'Locatlon' “Northwest™)
tltle('Output due to Errors for Phi™);
%

_____ —_— —_— - —_— —-— —_———

% Figure %for determining where stuff went wrong in the theta direction

pIot(Tlme Theta_Error,"m.",Time,Outl,"b.",Time,Theta Out p,"y.",Time,Theta Out_i,"r.",Time

,Theta_Out _d,"g.")
% legend(" Error' "Total Output”, "Proportional Output”,"Integral Ouptut”,"Derivative
Output”, 'Locatlon' “Northwest")

48

% title("Output due to Errors for Theta®);

Optional plots

ifo %Don"t show lest you want to be fancy.. poor computer can"t take it

% Actual positions & outputs
subplot(4,1,1), plot(Time,Phi)
hold on

plot(Time, [Phi_Goal_Angle*ones(1,max(size(Time)))],

hold off

xlabel("Time (8)");

ylabel("Voltage (V\)");

title("Vertical Angle (Voltage) vs time");

subplot(4,1,3), plot(Time,Theta)
xlabel("Time (s)");

ylabel("Voltage (V\)");

title("Horizontal Angle (Voltage) vs timeT™);

subplot(4,1,2), plot(Time,Out0)
xlabel("Time (s)7);

ylabel ("Voltage™);

title("Phi Output Voltage vs time");

subplot(4,1,4), plot(Time,Outl)
xlabel("Time (8)™);

ylabel ("Voltage (V));

title("Theta Output Voltage vs time");

figure %for Errors

subplot(2,1,1), plot(Time,Phi_Error)

hold on

plot(Time, [zeros(1,max(size(Time)))],"r-");
hold off

xlabel("Time (8)");

ylabel("Error (\)™);

title("Phi Angle Error (V) vs time");

subplot(2,1,2), plot(Time,Theta_Error)
xIabeI('Tlme [O®FE
ylabel ("Error (V)')
q title("Theta Angle Error (V) vs time");
en

0

"r-";

%The little birdie says we"re done
load chirp.mat
wavplay(y(1:4500),Fs);

clear y Fs

disp("Data Acuisition done.");

A

=

0

04

S

49

	Ku_E90_MIMO.m
	Setup the input channel
	Setup the output channel
	Initialize I/O
	Pre-Set Output
	Predefine variables & Initialize Arrays
	Goal Angles (and voltages)
	Set Controller Parameters
	Get ready...
	Loop until time t
	Post Data-Acquisition Outputs
	Free up any memory that we used.
	Plot the data
	Optional plots

