

Haptically Enhanced Mouse
Heather Jones and Lauren Stadler

Advisor: Erik Cheever
30 November 2005

 2

Abstract

 We intend to design and build a haptically enhanced mouse for the visually

impaired. A basic trackball mouse will be improved upon to include a brake to indicate

when the pointer reaches the edge of the screen, a vibrating motor that alerts the user

when the pointer passes over the edge of a window, and an audio feedback option that

provides information about the window or icon the pointer is over. The mouse will

connect through the USB port and operate in Linux. The mouse will initially be designed

to interact with a GUI that we will create, but ultimately it will be able to interact with the

window managing system. This project will involve building and wiring the mouse

itself, programming control for the brake and motor, and writing a driver that will allow

the mouse to interface with the computer.

Introduction

 We propose to build a trackball mouse that will improve the experience of

visually impaired users, or those with poor coordination, interacting with a desktop

computer’s visual environment. While several devices for blind computer users currently

exist, including a mouse with similar functions to our design, most are quite costly. Our

proposed device, however, will be made of very simple, off-the-shelf components, and

therefore the mouse will be much less expensive to manufacture. The technical

discussion below describes how we will implement the hardware on the mouse, the

software on the host computer, and the communication between the mouse and the host

computer; it also explains the reasoning behind the major design choices we have made

thus far. The project plan provides a brief statement of the steps involved and a critical

path method schedule detailing when these steps will be accomplished. The

qualifications section outlines our experience in technical tasks related to this project and

discusses our access to the necessary resources. The costs section provides a preliminary

estimation of cost for different elements of this project.

Technical Discussion

 There are many interfaces available for computers to communicate with

peripheral devices. In most systems on the market today, however, the Universal Serial

 3

Bus (USB) has become the dominant interface, with lower-cost systems phasing out the

older “legacy” ports completely. Since we want our mouse to be a prototype of a device

that would be useful to the mainstream blind user without requiring the purchase of

additional expensive hardware, we chose to use USB. Additionally, the USB

specification is controlled by the USB Implementer’s Forum, which includes over 900

companies in the technology industry. This means USB is not a proprietary technology:

although a $1500 fee is required to obtain a vendor ID before selling any product

including a USB interface, there is no licensing fee required to develop USB software.

 The Universal Serial Bus was designed to connect peripheral devices to a

computer; each instance of the bus includes a single host that controls communication

with up to 127 devices. A USB cable transmits data serially using a differential signal

and has physically different connectors on its upstream and downstream ends. The USB

specification standardizes the connectors, cables and transfer types that comprise the

USB interface. Two versions of the specification are currently in use. USB 1.1 supports

a low-speed data transfer rate of 1.5 Megabits per second and a full-speed data transfer

rate of 12 Megabits per second. The newest version of the specification, USB 2.0, also

supports a high speed data transfer rate of 480 Megabits per second. For this project,

because we will be taking input from and providing feedback to a human user, who

necessarily operates at a much lower speed than the computer, low-speed data transfer is

sufficient.

 To create a USB device, we need

• A controller chip with a USB interface and the ability to control all other

device functions

• Code on this chip to handle the USB interface and other device functions

• A device driver on the host computer

• A program on the host to test the device

• A program that allows the device to perform its desired functions, which

in our case will be a modification of an existing window manager.

 Considerations in choosing a controller chip include cost, availability, speed,

reprogrammability, and difficulty of development. We chose to look at PIC

microcontrollers because of their low cost and high availability. Since we only need low-

 4

speed data transfer, we first examined the PIC16C745/765, but these chips only come in

one-time-programmable and UV-erasable PROM versions, neither of which would

facilitate easy reprogramming. Since the 18F2455/2550/4455/4550 series chips that

support full-speed data transfer also support low-speed data transfer, and they have Flash

memory, we decided to work with these chips instead. There is a development board

available for the 18F4550, and the Engineering Department should already have the

software necessary to program the chip using this board. Programming is done in the C

language, which we will also be using in other parts of this project; this is better than

having to learn an additional programming language to work with the microcontroller.

 In order to make our mouse usable for the greatest number of visually impaired

users, we would ideally like it to work with the Windows™ operating system. Neither of

us, however, have done any software development for Windows, so we chose to write a

driver for the Linux operating system. Unlike Windows, Linux is open source, so there is

a free USB driver skeleton we can use, as well as plenty of similar example code to

examine. Should our device actually go into production, it would not be difficult for

someone more familiar with Windows driver development to write a new driver for our

device.

 Before we attempt to have our device interact with windows and desktop icons,

we need to make sure that it is working correctly and test its effectiveness, so we plan to

write a simple test program. This will need to include a graphical user interface (GUI).

Because JAVA has a good library for writing GUIs, and we want to spend as little time as

possible on the GUI portion of the code, we have decided to implement the test program

in JAVA.

 Ultimately, we want the mouse to be a tool that can identify visual elements

outside of our GUI program, such as icons on the desktop or the edge of a window. In

order to do this, we must interact with the window manager. There are many window

managers available for Linux – we want one that is simple and well documented. Twm

has been suggested to us as a very simple window manager, so this will be the first that

we examine.

 We want our mouse to provide several functions:

• Brake the trackball when the pointer reaches the edge of the screen

 5

• Vibrate when the pointer crosses over a feature of interest

• Provide a spoken description of a visual feature upon request

The first two of these will involve mechanical parts on the mouse itself. The third can be

done on the host computer. To brake the trackball, we will use a small motor or solenoid

to clamp the ball between two rubber pads. We examined the possibility of placing

brakes on the wheels used to translate the motion of the trackball into electrical pulses,

but we discovered that stopping these wheels did not necessarily stop the trackball. To

vibrate the mouse, we will use a small asymmetrically weighted motor such as those

found in cellular phones. Incorporating these additional components may significantly

increase the size of the mouse. They may also require more power than can be drawn

from the USB interface, in which case we will include a battery in our mouse. We have

decided to build a trackball mouse instead of a traditional mouse. Because this design

requires only the trackball to move, and not the entire device, the additional size and

weight will not be a disadvantage. The user’s direct contact with the trackball in this

configuration also makes it much easier to detect when the device is preventing the

trackball from moving.

 Because computers generally have speakers already, we do not need to include

speakers in our mouse in order to implement the speech-on-request function. Instead,

this can be done by calling a text-to-speech function when a certain mouse button is

pressed. There are a number of text-to-speech systems that exist for Linux. We will use

the one we find most appropriate for this task.

Project Plan

Our project can be broken down into three main phases: research and design,

building and programming, and debugging and testing. Research concerning the

materials necessary for building the mouse has already begun and they will be purchased

before the end of the fall semester. A preliminary list of devices has been compiled,

including solenoids for the brake, a vibrating motor for alters, batteries, a USB

microcontroller, a development board, and trackball mice, and a few parts have already

been ordered. The first task of the project will involve constructing a brake for the

trackball. In addition, the first weeks of the semester will be spent coming to understand

 6

how the microcontroller works, researching existing codes and device drivers for USB,

and brushing up on our programming skills. Once the trackball brake is built and tested,

the design and layout of other components, including a brake release button, vibrating

motor, and the microcontroller chip will begin, and assembly of the mouse will follow

immediately. The next major task will be to program the microcontroller and write

additional device drivers for communication between the controller and computer. As we

progress, we will test the mouse using simple GUIs created in JAVA. If we are able to

successfully execute all of the desired functions of the mouse in the GUI, the next step is

for the mouse to interact with the window manager.

 Below is a Critical Path Method (CPM) Network diagram and flow chart that

show the significant activities of the project and their expected duration and effort.

Appendix A is a Gantt milestone chart that indicates where the important benchmarks of

the project fall on a schedule of the 14 weeks of the spring semester and displays the

week by which each activity should be completed.

CPM Network Diagram

Activity Needs Feeds Duration Effort Action
A - B 5 w 9 h Research and purchase materials
B A C 1 w 10 h Design track ball brake and test
C B G 1 w 8 h Re-order devices if necessary and test
D - F 3 w 20 h Learn C

E A F 1 w 8 h

Familiarize ourselves with the microcontroller
1) Read Development Kit exercise book and complete simple exercises
2) Practice using the PIC compiler and programming the microcontroller

(detect push button, make LEDs blink)

F D, E G, K 1 w 5 h

Write simple test programs for communication between computer and
controller

1) Activate LED on controller board from program on computer
2) Have computer beep/respond with input from controller board

G C O 3 w 30 h Design and layout circuit and build mouse
I - J 1 w 5 h Read and understand existing device drivers

J I K 1 w 5 h
Plan out what additions to the driver are necessary/what we need our code to
do

K F, J O 3 w 25 h

Write and debug code for microcontroller – action complete when:
1) Brake mechanism activates with signal from computer
2) Vibrating motor activates with signal from computer
3) Brake release button releases braking mechanism
4) All mouse movements and button presses are sent to the computer

L - P 1 w 5 h Research window manager
M - N 1 w 6 h Familiarize ourselves with JAVA and creating GUIs – read tutorial and

 7

complete sample exercises
N M O 1 w 3 h Design GUI test program

O G, K, N Q 2 w 30 h

Implement and test GUI (incrementally) – action complete when:
1) Mouse can vibrate and brake when positioned over visual objects within

program
2) Audio feedback can identify object at mouse position
3) Blindfolded test subject can perform a designated sequence of

selections of objects on screen after exploring the environment
P L Q 1 w 5 h Plan interactions with window manager

Q O R 2 w 35 h

Write code to interact with window manager
1) Mouse vibrates when passing over an icon or edge of a window
2) Mouse brakes when it reaches the edge of the screen
3) Audio feedback identifies active window and icons on desktop

R Q S 3 w 40 h
Test and re-evaluate – action complete when blindfolded test subject can
sketch a picture of the desktop environment after exploring with mouse

S R - 2 w 55 h Final report and presentation

CPM Flow Chart

Qualifications

 For our project in Digital Systems, we created a system that collected data from

the physical world, transferred this data to a computer, made decisions based on this data,

and sent control signals back to a physical device. Although that project was much

smaller and simpler than the one that we propose, it included many of the same elements.

In addition, one of us has experience with PIC microcontroller programming, coursework

AStart B C

F
E

G

I J

K

L

M

D

N

O

P

RQ S

Finish

-5,-5

5

1

0, 0

1
-3, -3

3

1, 1

1

0, 0

1

2, 2

3
1, 1

0, 3 1, 4

1 1

0, 5

1

5, 5

2 1, 6

1

7, 7 9, 9 12, 12

2 3 2
14, 14

2, 2

1 3

1

0, 0 1, 1

 8

in JAVA, and familiarity with programming the Linux operating system. There are a

number of computers in Hicks which are dual-boot Windows and Linux; these will allow

us to develop our embedded code for the microcontroller in Windows and our host-based

software in Linux. The major hardware aspects of this project will consist of soldering

together the electrical circuits and physically mounting the components in a base

structure. The former can be done in the electronics lab in Hicks, and the latter can be

accomplished with tools that we own or, if necessary, tools borrowed from the

engineering shop. Thus, we believe that we have the ability, experience, and resources

necessary to for this project.

Costs and Equipment

We have already purchased a few PIC18F2550 microcontrollers for

approximately $6 each. We are in the process of purchasing a PIC development board,

which should cost $60-$120. We may be able to obtain several used trackball mice for

free to use for research and mechanical component testing. If not, we should be able to

purchase such mice for $15-25 each. The solenoids and motors that we will test for use

in our device should cost approximately $4-12 each. Many of the electrical components

we will use should be stocked in the electronics lab. Those that are not should not be

unduly expensive. The body of the mouse itself can be built fairly cheaply from wood or

metal machined in the engineering shop. We will need a computer on which we are

allowed administrative access in order to load our driver.

References

Axelson, Jan. 2001. USB Complete. 2nd Ed. Lakeview Research. Madison, WI.

Custom Computer Services, Inc. http://www.ccsinfo.com. 11 Nov. 2005.

Jameco Electronics. http://www.jameco.com. 11 Nov. 2005.

Microchip Technology Inc. http://www.microchip.com. 11 Nov. 2005.

Mouser Electronics. http://www.mouser.com. 11 Nov. 2005.

Rinne, Karl. Lecture Slides. ET4508: Computer Systems Architecture. University of
Limerick. Feb.-May 2005.

Appendix A: Gantt Milestone Chart

 0 1 2 3 4 5 6 Break 7 8 9 10 11 12 13 14

Activity
(Pre-
spring)

16-
Jan

23-
Jan

30-
Jan

6-
Feb

13-
Feb

20-
Feb

27-
Feb

6-
Mar

13-
Mar

20-
Mar

27-
Mar

3-
Apr

10-
Apr

17-
Apr

24-
Apr

1-
May

A
B
C
D
E
F
G
I
J
K
L
M
N
O
P
Q
R
S

