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ABSTRACT 
 
This report describes the work of Swarthmore students Mark Piper and David Luong in 
Spring 2006 and their efforts to design and construct a directional hearing aid under the 
guidance of Professor Erik Cheever and E. Carr Everbach. The content of the report 
discusses the formulation of the theory of microphone arrays in achieving directional 
hearing and documents the progress made in hardware and software.  The system was 
built with four equally spaced microphones in an array connected to a small amplifier 
board.  One of the primary goals is to demonstrate directionality in hearing aids and 
implement the system in a digital environment.  A successful characterization of 
directionality has been done in theory and software and allows for design exploration of 
microphone arrays.  A fully successful testing instrumentation has yet to be implemented, 
but much progress has been made in identifying current complications to allow for future 
work. 
 
INTRODUCTION 
 
We are quite fortunate to live in a world rife with all variety of rich, complex sound.  
Inspiring symphonies, screeching blackboards, whistling bluebirds, droning machinery, 
and chatting friends all fall within the plethora of what is audible.  The problem arises 
because people need to make sense of it all simultaneously.  Aural cognition plays a 
substantial role in the ability of an individual to function and communicate effectively in 
modern society.  Unfortunately, the general process of aging naturally works to impair 
this incredibly useful ability, not to mention many other possible causes for hearing 
difficulty.  The hope is that through clever engineering design we may help overcome 
these barriers of auditory function. 
 
The concept of an electronic hearing aid is not novel, and in fact, many products already 
exist in the market targeted at hearing impaired population.  Generally, these are small in-
ear devices that amplify sound, allowing a wearer to notice sounds that would otherwise 
have been inaudible.  These products are very well established as consumer goods and 
are used frequently, particularly by the elderly. 
 
A problem with the standard design is that it does very little to distinguish between 
desired and undesired sound.  Thus, the user is still left on her own to sift out the noise 
from what she wants to listen to, and this is not a trivial task.  A useful modification 
would be to have a “smart” hearing aid that could diminish the amount of unwanted noise 
in comparison to the desired sound. 
 
Our goal here is to improve upon the basic design by adding a degree of directionality as 
an improvement to traditional hearing aids.  The device will be “smart” in that it will 
preferentially amplify a direction of interest compared to other directions, effectively 
focusing the attention of the user and diminishing background noise.  This can be 
accomplished by branching out from an in-ear device with a single microphone to a 
wearable array of microphones. 
 
Previous work has been done at Swarthmore College on such a project.  In 2003, Emily 
Eddy developed an analog version of such a device for her senior design project.  Though 
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successful, the project was limited by its analog nature.  We seek to digitize the design.  
The most substantial improvement this offers is the possibility of scaling down the device 
size to make for a practical consumer product.  The digital world also allows for a degree 
of consistency and durability that analog lacks.  Also time delays—essential to the 
operation of directional hearing aids—are especially difficult to implement in analog 
form.  Thus digital seems the only natural choice for our design. 
 
Goals 
 
The primary goals of this project are 
1) to fundamentally understand the acoustics and physics behind directional hearing 
technology 
2)  to digitally implement a directional hearing aid in hardware and software, and 
3) to instructively demonstrate the degree of directionality attained with processed 
measurements. 
 
SYSTEM DESIGN OVERVIEW 
 
The purpose of this report is to guide the reader through the development stages of 
understanding and implementing a directional hearing aid. 
 
A microphone array with known separation between each microphone allows for known 
sound delays.  A geometrical analysis of the array provides a mathematical determination 
of these delays.  With the idea of constructive and destructive addition of physical signals 
in hand, we report a methodology to achieve directionality first with a 2 microphone 
array and then show the improvements with 4 microphones. 
 
For physical implementation of the system, we adapt the theoretical results into an 
equivalent MATLAB algorithm to process the microphone signals digitally.  By 
generating static sinusoidal signals in place of actual signals and feeding them to the 
algorithm, we can create simulated results demonstrating the degree of directionality 
achieved. 
 
Developing the hardware of the system allows for static testing of the algorithm on actual 
signals and real-time testing on a digital signal processor.  Selection and acquisition of 
the microphones dictate the amplifier design constraints.  Once tested and manufactured 
as a printed circuit board, the amplifier attaches to the chosen end-fire microphone array 
ready for directionality measurements. 
 
The Swarthmore College Sound Booth Lab is equipped with a data acquisition system 
and an anechoic chamber which provided the location to gather sound measurements.  
Further MATLAB scripts were written for efficient data acquisition and signal 
processing. 
 
 
A graphical outline of the design process is shown in Figure 1. 
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Figure 1: Flow chart outlining system design. 
 
THEORY OF MICROPHONE ARRAYS AND ACHIEVING DIRECTIONALITY 
 
In recent years, microphone array technology has emerged as a reliable method to 
improve performance in hearing aids.  Traditional hearing aids rely on single 
microphones placed strategically on a user that amplifies a sound signal that is then 
played back to the user.  Unfortunately, noise—signal and undesired sound—is amplified 
along with the signal and tends to produce an unintelligible overall signal and the user 
finds difficulty understanding the amplified sound.   
 
A multi-microphone system set up as an array with a specified distance between each 
microphone offers a solution that can boost intelligibility of sound signals through 
directionality.  Essentially, this is accomplished by amplifying sound arriving from a 
direction of interest relatively more than undesired sources from other directions.   
 
Achieving Directionality with a 2 Microphone Array 
 
Consider the simple case of a two microphone end-fire array as shown in Figure 2. 
 
 

 
 

Figure 2: End-fire microphone array arrangement. 
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With the sound source a distance l away from the center of the array and the microphones 
placed a distance d apart, the two signals seen by the microphones will have an inherent 
delay in time.  In representing the delay, we assume the sound source radiates spherical 
waves at c = 345 meters per second.  In a geometrical analysis, we calculate the distance 
sound must travel to each microphone and divide it by the speed it traveled to acquire the 
travel time.  We have 
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Representing the sound signal as a sinusoid of amplitude A with a particular frequency f, 
we can represent the physically delayed microphone signals by 
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Note that the delays are functions of theta, indicating that different sound source positions 
produce sinusoids received by the microphones with different delays.   
 
Up to this point we have focused on representing the physical nature of sound.  We are 
now ready to impose directionality.  Let’s consider leftward directionality, meaning we 
desire more amplification in the 180 degree position (in polar coordinates) and relatively 
less at other positions.  Imagine a sound source from the right side (at 0 degrees).  A 
sound will arrive at microphone 2 before microphone 1 due to the inherent delay from the 
spacing.  Choosing to playback microphone 2 in real-time, we artificially impose 
additional delay to microphone 1 such that it adds destructively to microphone 2, 
resulting in an output signal with less amplitude around zero.   
 
For leftward directionality, we want to eliminate rightward sounds as best possible.  At 
the extreme we desire a null at the 0 degrees position.  This is achieved when the two 
signals are half a period out of phase.  By imposing a delay of d/c—based on the 
microphone separation distance—on microphone 1, the signals add destructively at a 
frequency where the signals are exactly time-shifted by half a period.  For other 
frequencies and angles the signals will have partial destructive addition because they are 
not exactly out of phase by the proper amount.  However, leftward signals will add 
constructively, creating leftward directionality. 
 
To measure the directionality, we determine the maximum amplitude of the output signal 
at each angle.  We define the output signal as 
 

1 2sin( ( )) sin( ( ))imposedoutput A t delay delay A t delayω ω= − − + −  
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where ω is 2πf.  The maximum amplitude of this signal is given by 
 

2 1( )
2 cos( )

2
imposeddelay delay delay
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More explicitly, it is given by 
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Refer to Appendix A for the derivation.  Plotting on a polar coordinate system for 
specified parameter values given in Table 1, we generate a beam profile of the hearing 
sensitivities as a function of angle.  This is shown in Figure 3 below. 
 
 

Microphone 
spacing (d) 

Source distance 
from array (l) 

Microphone 
Amplitude (A) 

Speed of sound 
in air (c) 

Frequency (f) 

.05 meters 1 meter 1 volt 345 m/s 1750 Hz 
 

Table 1: Array Parameters 
 

 
Figure 3: Leftward Directional Beam Profile for 2 Microphone Array 

 
Note that the output signals are scaled by the number of microphones producing a 
magnitude between 0 and 1.  We observe the nullification from the right side (0 degrees) 
at this particular frequency where the microphone signals add destructively.  At the 
opposite extreme is constructive signal addition resulting in maximum hearing 
sensitivity.  The angles in between results in sensitivities between the maximum and 
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minimum as expected.  The resulting beam profile is an improvement through 
directionality by focusing on sound sources from the left and less so in other directions. 
 
Achieving Directionality with a 4 Microphone Array 
 
Similar derivations can be made for other sized microphone arrays.  Applying the same 
directionality scheme for the four microphone array (refer to Appendix A for 
derivations), the resulting beam profile with the same specifications in Table 1 is shown 
in Figure 4. 
 

 
Figure 4:  Leftward Directional Beam Profile for 4 Microphone Array 

 
Comparing 2 and 4 Microphone Arrays 
 
Comparing Figure 3 to Figure 4, we notice two significant differences.  First, the main 
lobe appears narrower for the 4 microphone case.  In focusing on the direction of a sound 
source, this is seen as an improvement.  The second point is the appearance of side lobes, 
seen here at approximately 60 and 300 degrees.  This can be explained by the nature of 
summing signals not completely in-phase or out of phase, resulting in residual signal 
amplitude. 
 
In a hearing aid application, we are interested in examining these beam profiles within 
the range of human speech.  This applicable range is between 600 Hertz to 4000 Hertz, 
with 3000 Hertz being most sensitive.  Figure 5 examines beam profiles for several 
frequencies for the 2 and 4 microphone cases. 
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Figure 5: Directional Beam Profiles for Human Speech 
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The matter of choosing 2 or 4 microphone arrays depends on the tradeoff between 
narrower main lobes and existence of side lobes.  A way to resolve this issue is by 
quantifying the amount of directionality of beam profiles plot.  We adopt the ratio of 
maximum amplitude to the average amplitude as our measure of directionality.  Table 2 
shows these measures for the frequencies in Figure 5 for the 2 and 4 microphone arrays. 
 
 

Frequency (Hertz) 300 1000 1750 3000 5000 

2 Microphone 1 1.2 1.6 1.4 1.5 

4 Microphone 1.1 1.6 2 2 2 

 
Table 2: Directionality Numbers 

 
In both arrays, we see a trend of increasing directionality for higher frequencies.  This is 
expected since lower frequencies are less directional since their wavelengths are larger 
than the length of the array.  For the 2 microphone case, we see the beam profile most 
directional at 1750 Hertz.  We observe an improvement at the same frequency from the 4 
microphone array due to the narrower main lobes.  Furthermore, we observe little, if any, 
change in the directionality numbers at higher frequencies at the expense of more side 
lobes. 
 
Given the theoretical implications of microphone arrays, our design choice is influenced 
by the following factors.  With the analytical solution implemented in Matlab, different 
parameters were tested to yield a highly directional system within the human speech 
frequency band (600-4000 Hz) that would also be feasible as a device worn by a user.  
The 4 microphone array with specifications given in Table 1 provided a compromise 
between array size, directionality numbers in the frequency range, and side lobe 
generation. 
 
HARDWARE DESIGN 
 
Microphone Amplifier 

The choice of microphones was a recommendation from Knowles Electronics.  With an 
“invisible” system in mind, the EK-3024 microphones were small units capable of 
attaching to jewelry, eye glasses, and other accessories.  They also provided ultra low 
noise operation for cleaner signals and were readily available in from vendors.   

Testing of Knowles EK-3024 microphones was needed to “clean” their signals before 
data processing.  Because the raw microphone signal's gain was low (in the range of mV) 
and noisy, we built filters and gain elements using TLC2772C Rail-to-Rail operational 
amplifiers. Single supply design was chosen in anticipation of battery pack inclusion in 
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the final system, and will be discussed in more detail later. Figure 6 shows a circuit block 
diagram and Figure 8 the schematic of the microphone amplifier. Note that the same 
design is used four times to allow feeds from our four input channels.  The circuit was 
turn-keyed into an Ultiboard file for printed circuit board production. 

 

Figure 6: Microphone Circuitry 

Single Supply Design 

Anticipating portable battery power in the system, we considered single supply design.  A 

rail-splitter effectively creates a virtual ground, specified at 2
ccV or 2.5 volts with a 5 volt 

supply.  Connecting this to the positive terminals of the operational amplifier references 
the microphone signal to the virtual ground.  With a capacitor to remove the DC 
component, the result is a signal range between -2.5 and 2.5 volts relative to virtual 
ground.   

Amplification and Gain Stages 

The gain and filters were divided into two stages to avoid op-amp saturation. The gain 
was experimentally chosen to achieve sufficient dynamic range on the oscilloscope; a 10 
kOhm potentiometer later replaced the feedback resistor in the first stage to allow for 
adjustable volume control.  By including the potentiometer, we handle possible signal 
clipping, which depends on the amplifier gain as well as varying source amplitude at 
different frequencies.  

Before processing, the signal was cleaned as best possible to reduce processing errors and 
recreate the signal digitally. We used a simple analog band-pass filter to remove 
undesired low and high frequency content inherent in the microphone signals. With the 
available values of resistors and capacitors in the lab, the frequency band turned out to be 
in the range between 100 Hz and 10 kHz, inclusive of human speech and hearing. 
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It was later discovered that the acquired signal possessed a floating ground when attached 
to a low impedance DAQ board.  Attaching a 1 Mohm resistor from the amplifier output 
to ground solves the problem without significant effect on the output amplitude.  

Because we use four microphones, we have replicated the amplifier above for each.  The 
final amplifier board is shown in Figure 7 below along with its circuit layout in Figure 8. 

 

Figure 7: Amplification Board
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Figure 8: Multisim Microphone Amplification Layou
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SOFTWARE DESIGN 
 
In addition to our fully analytical theoretical analysis, we also performed a MATLAB 
simulation of both two and four microphone arrays.  We define the sound source as a 
simple sinusoidal of amplitude one.  To determine the signal heard at each microphone 
from such a source, we used simple trigonometry to solve for the distance between source 
and microphone.  This translates directly into the necessary delay to apply to the source 
when divided by the speed of sound (345 m/s). 
 
To apply a leftward sense of directionality to our simulated microphone signals, the left 
microphones must be delayed with respect to the right microphones.  Effectively, the goal 
is to be using the real-time value of the rightmost microphone while delaying each 
subsequent microphone to the left by an additional amount.  Specifically, the amount is 
equal to the amount of time needed for sound to travel between any two of the evenly 
spaced microphones.  However, since this is being done digitally, there is no easy way to 
apply an exact time delay to each microphone signal.  Rather, it must be done in terms of 
an array index delay.  Thus, each signal is delayed by an appropriate number of array 
indices. 
 
Once the proper delays have been applied, the new signals can all be summed together.  
Sound sources coinciding with the sense of directionality tend to add constructively while 
those far away from the sense of directionality will add destructively.  Because we are 
working with simple sinusoids, a good measure of the amount of directionality is simply 
the maximum magnitude of the resultant summed periodic signal.  The higher the degree 
of constructive addition the higher the maximum will be and the more destructive 
addition the lower the maximum will be. 
 
Two loops were implemented to automate the procedure of beam profile generation.  One 
rotates the sound source an entire 360° around the array.  The second changes the 
frequency of the sound source.  All the while, the data is being stored so that at the end of 
its iterations the beam profile can be plotted.  The results are shown on the next page in 
Figure 9. 
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Figures 9: MATLAB simulated beam profiles for 2 and 4 microphone array. 
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The 2 and 4 microphone cases simulated results match well with the analytical results 
arrived at previously.  The plots are more piece-wise, arising from the fact the results are 
discrete and not continuous.  The trends and analysis presented earlier still apply in 
simulation. 
 
TESTING SETUP AND METHODOLOGIES 
 
With the amplifier and microphone array designed and assembled, we next made steps to 
verify the system’s directionality performance with real sound data.  We proceed to 
explain these steps with the following block diagram in Figure 10. 
 

 
 

Figure 10: Testing the System 
 
Sound Booth Lab 
 
Measurements were taken in the Sound Booth Lab located near 3 and 5 Whittier Place of 
Swarthmore College.  The anechoic chamber provides the most ideal environment to 
perform acoustic measurements with noise and echo mitigated (see Figure 11).  
Reverberant signals are typically a small fraction of the incident sound, and the anechoic 
chamber further mitigates effects and presence of standing waves from the microphone 
output for purposes of testing. 
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Data Acquisition System 
 
A National Instruments 50 pin PCI-MIO-16E-4 board and GPI card were used in 
conjunction with Matlab to bring measurements into a computer for processing.  The 
board allows for the required four channels and sufficiently high sampling rates, in our 
case at least 40 kHz per channel.  For purposes of testing, we used 100 kHz to accurately 
digitize the physical signals.  The board also provides two digital outputs needed to 
control a stepper motor used to facilitate measurements at various angles. 
 
Several Matlab scripts were written to perform the processes during the data acquisition.  
Table 3 lists each script and a brief description of its functionality, and the full code can 
be found in Appendices D and E. 
 
stepper_daq.m Initializes and executes a data acquisition routine, 

recording measurements in a data matrix 
stepper_adj.m stepper_adj.m allows for manual adjustment of the step 

motor position 
process_pair.m Takes the ‘data matrix’, runs findmax.m on the summed 

signals, and returns amplitude information 
process.m Takes the ‘data matrix’, runs process_pair.m on even 

segments, and saves to a ‘processed matrix’ with angle 
and amplitude information 

plott.m Takes a ‘processed matrix’ and generate beam profiles 
findmax.m Algorithm to find appropriate amplitude of summed signals 
setamp.m Opens HP 3314A function generator at GPIB address 7 and 

sets amplitude of output signal 
setfreq.m opens HP 3314A function generator at GPIB address 7 and 

sets frequency of output signal 
Table 3: Matlab Scripts 

 
The motor is situated below the microphone array that rotates 96 ticks for a full 
revolution, allowing for 360º sound measurements at 3.75º intervals (see Figure 12).  
Other intervals are possible depending on the number of ticks per adjustment.  Matlab 
scripts instruct the motor to rotate counter clockwise with a low output and clockwise for 
a high output.   
 
A Hewlett Packard 3314A function generator operates from Matlab instructions and 
together with an amplifier, selected frequency tones are played through a JBL 
loudspeaker. 
 
Software Methodology for Directionality Testing 
 
Using the National Instruments board (see Figure 13) and the DAQ capabilities of 
MATLAB, we are able run the simulation described earlier with real tones.  A series of 
tones is played with 1 second pauses between and 4 channels of data (one from each 
microphone) is gathered and stored in a separate array for each tone.  The MATLAB 
script then turns the array a specified angle and the sequence of tones and data collection 
is repeated.  This continues until a full revolution has been made. 
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Figure 11 (left): Test setup in anechoic 

chamber 

Figure 12 (above): 4 microphone end-fire 

array resting on the stepper motor 

 Figure 13 (below): DAQ board, amplifier, 

and function Generator 
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RESULTS AND DISCUSSION 
 
Electrical Noise 
 
After running our DAQ setup, we are left with a matrix containing 4 channels of 
microphone data for each angle at each frequency under test.  Figure 14 shows a sample 
of one channel of raw microphone data. 

 
Figure 14: Raw microphone data. 

 
The output clearly contains the expected sinusoidal component which results from the 
monofrequency input.  However, also take notice of the peaks highlighted with red 
circles.  These disturbances were not expected, and measurement reveals that these occur 
at a 60 Hz frequency.  Such signal corruption is a common problem for electrical systems 
as this is the frequency of the alternating current utilized in the electrical grid.  The 
presence of many instruments and equipment operating on 60 Hz power in close 
proximity of the wiring carrying our microphone signals during testing is a likely source 
of our signal interference. 
 
Our solution to this problem was to implement a digital high-pass filter to rid ourselves of 
these extra peaks.  We chose to do this using a 4th order Butterworth filter with a cutoff 
frequency of 200 Hz.  The chose cutoff is high enough to significantly attenuate the 60 
Hz signal while not infringing on the frequency band of human speech beginning at 400 
Hz.  The order of the filter did not have to be very high as the specifications of transition 
width and ripples on the filter did not have to be particularly stringent. 
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Normalization 
 
We also normalized all of our microphone inputs in code to try and compensate for 
microphone mismatches.  We attempted to correct for this in our analog amplifier 
circuitry as well by tuning potentiometers but decided also to include this extra measure 
in software for further accuracy.   
 
Experimental Beam Profiles 
 
With the microphone signals adjusted appropriately, we then applied the same algorithm 
to the real data that had proven effective in simulation to arrive at the beam profiles 
shown in Figures 15 and 16. 
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Unfortunately, the results do not agree with the simulated responses.  Directionality is 
ambiguous at best in cases like at 2000 Hz and the symmetries we would expect do not 
appear except in the 1500 Hz case.  The one general trend that does match is that there is 
relatively more variation in the beam profiles with higher frequency inputs which is 
expected because of the development of side lobes. 
 
Loudspeaker Nonlinearities 
 
A minor explanation for the observed discrepancies is the nonlinear behavior of the 
loudspeaker that we used in our data acquisition.  Testing revealed that two tones 
relatively close in frequency and equal in amplitude played to the microphone array could 
potentially result in drastically different outputs.  We attempted to correct for this in our 
procedure by choosing particular frequencies for which the signal produced by the 
loudspeaker was of substantial and equal magnitude.  The four frequencies represented in 
Figures 15 and 16 were chosen in this manner.  However, the processing of correcting for 
the variations was far from rigorous. 
 
Signal-to-Noise Analysis 
 
Another explanation for the results is the poor signal-to-noise ratio (SNR) of our system.  
Measurement showed that the SNR for our system was 10.94 dB which translates to an 
output where the signal is only about 3.5 times the level of the noise.  Likely, some of 
this is due to crosstalk in the amplifier circuitry and in the wiring used to channel the data 
from the anechoic chamber into the data acquisition setup outside.  To get a visual look at 
the SNR we show in Figure 17 the very end of a tone test. 
 

 
Figure 17: The end of a tone test and a magnified version of the end of the test. 

 
Once the input halts, there is still a significant nonzero output.  This can only be 
attributed to noise in the system, and it is on the order reported in the SNR. 
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Algorithmic Anomalies 
 
Noise seemed to cause problems for the part of our algorithm for generating beam 
profiles from raw data which requires an estimation of the amplitude of a signal.  The 
function findmax.m was written to accomplish this task (the full code can be found in 
Appendix E).  Though it works to guess an appropriate value for the amplitude of a noisy 
signal a large majority of the time, a few special data sets appeared to confuse our 
algorithm as can be seen in Figure 18. 

 
Figure 18: Two results from findmax.m. 

 
The horizontal red lines represent the amplitude estimate of findmax.m given the signal in 
blue.  The particular noise in these two cases seems to have cause out algorithm to fail at 
a few instances. 
 
One last piece of evidence that noise is the source of fault in our system is the 
inconsistency in results of repeated identical tests.  This is shown in the beam profiles of 
Figure 19. 

 
Figure 19: Beam profiles from two identical tests. 
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These results lack similarity and thus it is reasonable to conclude that there is some 
random process present to cause such discrepant results in identical tests.  Noise is such a 
random effect and likely the culprit. 
 
FUTURE WORK 
 
Much progress has been made toward understanding and implementing a directional 
hearing aid in hardware and software.  Our system has potential to lead to further 
development in various areas after performing instrumentation improvements.   
 
Issues regarding noisy microphone signals need resolving prior to further developments.  
As pointed out earlier, the current instrumentation requires protection from 
environmental disturbances such as 60 Hertz electrical equipment, which is common in 
many systems.  Once completed, the Matlab and National Instruments data acquisition 
protocol is already set up to robustly test directionality with ease. 
 
The theoretical and simulated characterizations of directionality provide the structure and 
algorithm to model directional hearing and explore changes from varying system 
parameters such as microphone spacing distances, number of microphones, etc.  Optimal 
designs can be formulated in further development.  For example, steering the 
directionality of interest might provide an informative exploration.  It has been 
implemented in the analytical scripts, but has yet been fully explored. 
 
The scripts written to illustrate directionality provide a structure to readily translate the 
algorithm into real-time platforms where incoming sounds can be processed and played 
back to the user through a speaker device.  Simulink, a tool branch of Matlab capable of 
realizing real-time developments, is a sensible direction to head in first and ultimately a 
DSP device a hearing impaired individual can wear.  The Swarthmore engineering 
department has recently acquired the real-time development application in Simulink.  
Also, we have carefully chosen a DSP development kit by Analog Devices capable of 
handling four analog input channels and adequate sampling rates. 
 
Because hearing impairments vary across individuals, testing subjects with the developed 
hearing aid is essential.  Measures could be developed to quantify improvements in 
speech intelligibility and overall effectiveness of the hearing aid as a comfortable and 
non-stigmatizing device. 
 
In keeping with our project vision of catering to an unnoticeable device, wireless 
development between the speaker and the processing unit is a recommended application 
in future student projects.  Currently, such is done via telecoil and electromagnetic 
applications and could potentially interest students in those areas. 
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APPENDIX 
 
A.  Analytical Method: Derivation 
 
Given the equation 
 
 1 2sin( ( )) sin( ( ))imposedoutput A t delay delay A t delayω ω= − − + −  (1.1) 
 
we find the amplitude of output by summing the following two trigonometric identities. 
 

 
sin( ) sin cos cos sin
sin( ) sin cos cos sin

A a b A a b A a b
A a b A a b A a b

+ = +
− = −

 (1.2) 

 
Hence, 
 
 sin( ) sin( ) 2 sin cosA a b A a b A a b+ + − =  (1.3) 
 

 
Note that amplitude of (1.3) is 2 cosA b .  We rewrite equation (1.1) in the form of (1.3) 
by letting 
 

 1 2

1 2

1 [ ( ) ( )]
2
( )

2

imposed

imposed

a t

b delay delay delay

delay delay delay

ω

ω ω

ω

=

= − − − −

− − +
=

 (1.4) 

 
The maximum amplitude of output is then 
 

 1 2( )
2 cos( )

2
imposeddelay delay delay

A
ω − − +

 (1.5) 

 
Note that the parameters delayi are functions of position theta, and hence we can 
construct a polar plot as a function of angle, namely a beam profile as we have seen. 
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4 Microphone Array Case 
 

 
Figure 20: 4 Microphone Array 

 
Similarly, this technique can be applied iteratively to n-microphone end-fire arrays where 
n is even (a separate modified technique must be used for cases where n is odd).  For the 
case where n=4 (see Figure 20), the output signal for leftward directionality is given by  
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The physical delays of this microphone array can be determined from geometrical 
analysis and are given by the following. 
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Using (1.2) yields 
 

 
1 4

2 3

1 4 2 3

2 sin cos(.5 ( 3 ))
2 sin( ( ))
[2 (cos(.5 ( 3 )) cos(.5 ( )))]sin

output A t delay d delay
A delay delay d

A delay delay d delay delay d t

ω ω
ω

ω ω ω

= − − +
+ − + −
= − + − + − + −

 (1.7) 

 
Thus, the maximum amplitude of the summed microphone signals is 
 
 1 4 2 3[2 (cos(.5 ( 3 )) cos(.5 ( )))]A delay delay d delay delay dω ω− + − + − + −  (1.8) 
 
 
B.  Analytical Method: Matlab Implementation 
 
a. analytical2.m 
 
clear all; close all; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% analytical2mic.m %%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%% David Luong and Mark Piper %%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%% e90 Directional Hearing Aid %%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Swarthmore College, Spring 2006 %%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%% This is a script to produce the beam profiles of a 2 microphone 
array 
%% with sinusoidal inputs incident at varying angles based on 
mathematical 
%% derivations of the theoretical response. 
  
%% System Parameters 
L = 1; %sound source distance from mic array center 
A = 1/L; %amplitude attenuation assuming spherical source 
d = .05; %mic spacing [m] 
c = 345; %speed of sound [m/s] 
  
theta = 0:.1:2*pi; 
f = [300 1000 1750 3000 5000]; 
  
for directionality = 1:8:31, 
  
    for i = 1:length(f), 
        w = 2*pi*f(i); 
  
        int_delay1 = w*sqrt((L*cos(theta)+d/2).^2+(L*sin(theta)).^2)/c; 
        int_delay2 = w*sqrt((L*cos(theta)-d/2).^2+(L*sin(theta)).^2)/c; 
         
        %%steering directionality: 1 -> 32 (left @ 90 to right, CW) 
        ext_delay = int_delay1(directionality)-
int_delay2(directionality); 
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        %delay Mic1 (left) --> left-looking directionality 
        output_max(i,:) = abs(A*cos(.5*((-int_delay1-ext_delay)-(-
int_delay2)))); 
  
    end 
  
    outLeg = ''; 
    color = ['k' 'r' 'c' 'm' 'b']; 
    for i=1:length(f) 
        curr_color = color(mod(i,5)+1); 
        polar(theta,output_max(i,:),curr_color);hold on; 
        outLeg = strvcat(outLeg,sprintf('%.1f Hz', f(i))); 
    end 
    hold off 
    legend(outLeg); 
    axis([-1 1 -1 1]);axis square; 
    title({'Analytical Beam Profile Polar Plot (2 Mics)';''}) 
    dirnum = max(output_max)/mean(output_max) 
    pause; 
     
end 
 
b. analytical4.m 
 
clear all; close all; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%% analytical4mic.m %%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%% David Luong and Mark Piper %%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%% e90 Directional Hearing Aid %%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Swarthmore College, Spring 2006 %%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%% This is a script to produce the beam profiles of a 4 microphone 
array 
%% with sinusoidal inputs incident at varying angles based on 
mathematical 
%% derivations of the theoretical response. 
  
%% System Parameters 
L = 1; %sound source distance from mic array center 
A = 1/L; %amplitude attenuation assuming spherical source 
d = .05; %mic spacing [m] 
c = 345; %speed of sound [m/s] 
  
theta = 0:.1:2*pi; 
f = [300 900 2300 3000 5000]; 
  
for directionality = 1:16:31, 
     
    for i = 1:length(f), 
        w = 2*pi*f(i); 
  



30 

        int_delay1 = w*sqrt((L*cos(theta)+3*d 
/2).^2+(L*sin(theta)).^2)/c; 
        int_delay2 = w*sqrt((L*cos(theta)+d/2).^2+(L*sin(theta)).^2)/c; 
        int_delay3 = w*sqrt((L*cos(theta)-d/2).^2+(L*sin(theta)).^2)/c; 
        int_delay4 = w*sqrt((L*cos(theta)-
3*d/2).^2+(L*sin(theta)).^2)/c; 
  
        %no steering  
        ext_delay = w*d/c; 
        %Note: addition of four sinusoids matter (sum Mic1/Mic4, then 
Mic2/Mic3) 
        output_max(i,:) = abs(.5*A*(cos(.5*(-int_delay1+int_delay4-
3*ext_delay))+cos(.5*(-int_delay2+int_delay3-ext_delay)))); 
                         
    end 
   
    outLeg = ''; 
    color = ['k' 'r' 'c' 'm' 'b']; 
    for i=1:length(f) 
        curr_color = color(mod(i,5)+1); 
        polar(theta,output_max(i,:),curr_color);hold on; 
        outLeg = strvcat(outLeg,sprintf('%.1f Hz', f(i))); 
    end  
    hold off  
    legend(outLeg); 
    axis([-1 1 -1 1]);axis square; 
    title({'Analytical Beam Profile Polar Plot (4 Mics)';''}); 
    dirnum = max(output_max)/mean(output_max) 
    pause; 
     
end
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C.  Microphone Array Simulation in Matlab 
 
a. simulation_2mic.m 
 
clc; clear all; close all; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% simulation_2mic.m %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%% David Luong and Mark Piper %%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%% e90 Directional Hearing Aid %%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Swarthmore College, Spring 2006 %%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%% This is a script to simulate the response of a 2 microphone array to a 
%% sinusoidal input incident at varying angle. The results are displayed in 
%% the form of a beam profile. 
  
%% defining the system 
  
% 1   2     component labels 
% o x o     microphones (o) and center of the array (x) 
  
v = 345; %speed of sound in m/s 
d = .05; %distance between microphones in m 
l = 1; %distance of signal source from array center in m 
  
FS = 100000; %sampling frequency 
deltaT = 1/FS; %time step 
n = 1000; %number of data points 
t = 0:deltaT:n*deltaT; 
% f = [300 1000 2000 3000 5000]; %base frequency in Hz 
f = [300 1000 1750 3000 5000] 
deltaTheta = 5; 
  
%iterate over frequencies 
for j=1:length(f) 
  
    %% creation of microphone data 
     
    %the signal 
    s = sin(2*pi*f(j)*t); 
  
    %iterate over thetas 
    for theta=0:deltaTheta:360 
  
        %receiving the signal in a microphone array 
        x = l*cosd(theta); 
        y = l*sind(theta); 
  
        %calculate the delay of microphone 1 
        h1 = sqrt((x+d/2)^2 + y^2); 
        delay1 = h1/v; 
        index_delay1 = round(delay1/deltaT); 
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        %calculate the delay of microphone 2 
        h2 = sqrt((x-d/2)^2 + y^2); 
        delay2 = h2/v; 
        index_delay2 = round(delay2/deltaT); 
  
        for i=1:n+1 
            %signal from microphone 1 
            if i <= index_delay1 
                m1(i) = 0; 
            else 
                m1(i) = s(i-index_delay1); 
            end 
  
            %signal from microphone 2 
            if i <= index_delay2 
                m2(i) = 0; 
            else 
                m2(i) = s(i-index_delay2); 
            end 
        end 
  
        %% applying directionality 
  
        delay = d/v; 
        index_delay = round(delay/deltaT); 
  
        %delay signal from microphone 1 
        for i=1:n+1 
            if i > index_delay 
                m1Delay(i) = m1(i-index_delay); 
            else 
                m1Delay(i) = 0; 
            end 
        end 
  
        %shift signals to only look at the steady state 
        ssShift = max(index_delay1,index_delay2)+index_delay; 
        m1DelaySS = m1Delay(ssShift:length(m1Delay)); 
        m2SS = m2(ssShift:length(m2)); 
        tSS = t(1:length(t)-ssShift+1); 
         
        %sum and find the amplitude of the resultant signal 
        output = m1DelaySS + m2SS; 
        outputMag(floor(theta/deltaTheta)+1) = max(output); 
  
    end 
    dirnum(j) = max(outputMag)/mean(outputMag); 
    directionalMag(j,:) = outputMag; 
  
end 
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%% plot the beam profile 
  
figure; 
outLeg = ''; 
color = ['k' 'r' 'c' 'm' 'b']; 
for i=1:length(f) 
    theta = (0:deltaTheta:360).*pi/180; 
    curr_color = color(mod(i,5)+1); 
    polar(theta,directionalMag(i,:),curr_color);hold on; 
    outLeg = strvcat(outLeg,sprintf('%.1f Hz/Directionality = %.1f', 
f(i),max(dirnum(i)))); 
end 
hold off 
legend(outLeg); 
axis([-2 2 -2 2]);axis square; 
title({'Beam Profile Polar Plot (2 Mics)';''}) 
 
b. simulation_4mic.m 
 
clc; clear all; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% simulation_4mic.m %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%% David Luong and Mark Piper %%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%% e90 Directional Hearing Aid %%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Swarthmore College, Spring 2006 %%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%% This is a script to simulate the response of a 4 microphone array to a 
%% sinusoidal input incident at varying angle. The results are displayed in 
%% the form of a beam profile. 
  
%% defining the system 
  
% 1   2   3   4   component labels 
% o   o x o   o   microphones (o) and center of the array (x) 
  
v = 345; %speed of sound in m/s 
d = .05; %distance between microphones in m 
l = 1; %distance of signal source from array center in m 
  
FS = 100000; %sampling frequency 
deltaT = 1/FS; %time step 
n = 1000; %number of data points 
t = 0:deltaT:n*deltaT; 
% f = [300 1000 2000 3000 5000 10000 15000]; %frequencies 
f = [300 1000 2000 3000 5000]; 
deltaTheta = 5; 
  
%iterate over frequencies 
for j=1:length(f) 
  
 
 



34 

    %% creation of microphone data 
     
    %the signal 
    s = sin(2*pi*f(j)*t); 
  
    %iterate over thetas 
    for theta=0:deltaTheta:360 
  
        %receiving the signal in a microphone array 
        x = l*cosd(theta); 
        y = l*sind(theta); 
  
        %calculate the delay of microphone 1 
        h1 = sqrt((x+3*d/2)^2 + y^2); 
        delay1 = h1/v; 
        index_delay1 = round(delay1/deltaT); 
  
        %calculate the delay of microphone 2 
        h2 = sqrt((x+d/2)^2 + y^2); 
        delay2 = h2/v; 
        index_delay2 = round(delay2/deltaT); 
         
        %calculate the delay of microphone 3 
        h3 = sqrt((x-d/2)^2 + y^2); 
        delay3 = h3/v; 
        index_delay3 = round(delay3/deltaT); 
  
        %calculate the delay of microphone 4 
        h4 = sqrt((x-3*d/2)^2 + y^2); 
        delay4 = h4/v; 
        index_delay4 = round(delay4/deltaT); 
  
        for i=1:n+1 
            %signal from microphone 1 
            if i <= index_delay1 
                m1(i) = 0; 
            else 
                m1(i) = s(i-index_delay1); 
            end 
  
            %signal from microphone 2 
            if i <= index_delay2 
                m2(i) = 0; 
            else 
                m2(i) = s(i-index_delay2); 
            end 
  
            %signal from microphone 3 
            if i <= index_delay3 
                m3(i) = 0; 
            else 
                m3(i) = s(i-index_delay3); 
            end 
  
            %signal from microphone 4 
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            if i <= index_delay4 
                m4(i) = 0; 
            else 
                m4(i) = s(i-index_delay4); 
            end 
        end 
  
        %% applying directionality 
  
        delay = d/v; 
        index_delay = round(delay/deltaT); 
  
        %delay signals from microphones 1,2,3 
        for i=1:n+1 
            if i > index_delay*3 
                m1Delay(i) = m1(i-index_delay*3); 
            else 
                m1Delay(i) = 0; 
            end 
  
            if i > index_delay*2 
                m2Delay(i) = m2(i-index_delay*2); 
            else 
                m2Delay(i) = 0; 
            end 
  
            if i > index_delay*1 
                m3Delay(i) = m3(i-index_delay*1); 
            else 
                m3Delay(i) = 0; 
            end 
        end 
  
        %shift signals to only look at the steady state 
        ssShift = max([index_delay1 index_delay2 index_delay3 
index_delay4])+index_delay; 
        m1DelaySS = m1Delay(ssShift:length(m1Delay)); 
        m2DelaySS = m2Delay(ssShift:length(m2Delay)); 
        m3DelaySS = m3Delay(ssShift:length(m3Delay)); 
        m4SS = m4(ssShift:length(m4)); 
        tSS = t(1:length(t)-ssShift+1); 
         
        %sum and find the amplitude of the resultant signal 
        output = m1DelaySS + m2DelaySS + m3DelaySS + m4SS; 
        outputMag(floor(theta/deltaTheta)+1) = max(output); 
  
    end 
    dirnum(j) = max(outputMag)/mean(outputMag); 
    directionalMag(j,:) = outputMag; 
  
end 
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%% plot the beam profile 
  
figure; 
outLeg = ''; 
color = ['k' 'r' 'c' 'm' 'b']; 
for i=1:length(f) 
    theta = (0:deltaTheta:360).*pi/180; 
    curr_color = color(mod(i,5)+1); 
    polar(theta,directionalMag(i,:),curr_color);hold on; 
    outLeg = strvcat(outLeg,sprintf('%.1f Hz/Directionality = %.1f', 
f(i),max(dirnum(i)))); 
end 
hold off 
legend(outLeg);  
axis([-4 4 -4 4]);axis square; 
title({'Beam Profile Polar Plot (4 Mics)';''}) 
 
 
D.  Data Acquisition 
 
a. stepper_daq.m 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% stepper_daq.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%% David Luong and Mark Piper %%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%% e90 Directional Hearing Aid %%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Swarthmore College, Spring 2006 %%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%% stepper.m inititalizes and executes a data acquisition routine. At equal 
%% intervals around a full 360 degrees, the script sequentially plays tones 
%% at the specified frequency and logs the data collected by a four 
%% microphone array. The script then iterates to the next angle and 
%% repeats, all the while logging data to a final data matrix. 
  
%% Format of the resultant data matrix with N angles and M frequencies 
  
%% Sampling Rate    n   numfreq         numangle   
%% Frequency Array 
%% Amplitude Array 
%% Angle Array 
%% Angle 1              Freq 1          Time 
%%                                      Channel 1 
%%                                      Channel 2 
%%                                      Channel 3 
%%                                      Channel 4 
%%                      Freq 2->(M-1) 
%%                      Freq M          Time 
%%                                      Channel 1 
%%                                      Channel 2 
%%                                      Channel 3 
%%                                      Channel 4 
%% Angle 2->(N-1) 
%% Angle N              Freq 1          Time 
%%                                      Channel 1 
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%%                                      Channel 2 
%%                                      Channel 3 
%%                                      Channel 4 
%%                      Freq 2->(M-1)           
%%                      Freq M          Time 
%%                                      Channel 1 
%%                                      Channel 2 
%%                                      Channel 3 
%%                                      Channel 4 
  
Fs = 100000; 
n = 10000; 
freqs = [300 600 1500 2000 3250 5000]; %frequency array in Hz 
amps = [350 150 80 93 65 65]; 
numfreq = length(freqs); 
tics = 1; % must go into 96 evenly for exact revolutions 
numangle = 96/tics; 
  
data(1,1) = Fs; 
data(1,2) = n; 
data(1,3) = numfreq; 
data(1,4) = numangle; 
data(2,1:numfreq) = freqs; 
data(3,1:numfreq) = amps; 
  
for i=1:numangle 
    if (180-360*(i-1)/numangle) >= 0 
        data(4,i) = 180-360*(i-1)/numangle; 
    else 
        data(4,i) = 540-360*(i-1)/numangle; 
    end 
end 
  
T = .2; %time each frequency is to be played in seconds 
deltaT = 1; %time between each tone in seconds 
  
% set up daq system with 4 channels of analog input for receiving microphone 
% signals and 2 channels of digital output for controlling the stepper 
% motor 
ai = analoginput('nidaq','Dev1') 
ai.SampleRate = Fs; 
ai.InputType = 'SingleEnded' 
ai.SamplesPerTrigger = n; 
ai.TriggerType = 'Immediate'; 
c1 = addchannel(ai,1,'chan1'); 
c1.InputRange = [-5 5];c1.SensorRange = [-5 5];c1.UnitsRange = [-5 5]; 
c2 = addchannel(ai,2,'chan2'); 
c2.InputRange = [-5 5];c2.SensorRange = [-5 5];c2.UnitsRange = [-5 5]; 
c3 = addchannel(ai,3,'chan3'); 
c3.InputRange = [-5 5];c3.SensorRange = [-5 5];c3.UnitsRange = [-5 5]; 
c4 = addchannel(ai,4,'chan4'); 
c4.InputRange = [-5 5];c4.SensorRange = [-5 5];c4.UnitsRange = [-5 5]; 
%2 channels of digital output 
dio = digitalio('nidaq','Dev1'); 
addline(dio, 1:2, 'out'); %dio1 is clock and dio2 is direction 
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%start from silence and ready the stepper motor clock signal 
setamp(0); 
dir=1; 
putvalue(dio, [0 dir]); 
  
 
%step through the angles 
for j=1:(96/tics) 
  
    %step through the frequencies 
    for i=1:length(freqs) 
        setfreq(freqs(i)); 
        setamp(amps(i)); 
        pause(T); 
        start(ai); 
        pause(T); 
        setamp(0); 
        [d,t]=getdata(ai); 
        data(5*i+numfreq*5*(j-1),1:n) = t'; 
        data(((5*i+1+numfreq*5*(j-1)):(5*i)+4+numfreq*5*(j-1)),1:n) = d'; 
        pause(deltaT); 
    end 
  
    %preserve david's ears 
    setamp(0); 
  
    %turn to next angle 
    for k=1:tics 
        putvalue(dio, [1 dir]); 
        putvalue(dio, [0 dir]); 
        pause(1/10); 
    end 
    pause(1) 
end 
 
b. stepper_adj.m 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% stepper_adj.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%% David Luong and Mark Piper %%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%% e90 Directional Hearing Aid %%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Swarthmore College, Spring 2006 %%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%% stepper_adj.m allows for manual adjustment of the step motor position 
  
dio = digitalio('nidaq','Dev1'); 
addline(dio, 1:2, 'out'); %dio1 is clock and dio2 is direction 
dir = 1;%0 is CCW, 1 is CW 
putvalue(dio, [0 dir]); 
  
revolution = 96; %% number of tics per revolution 
  
%upper bound of loop is the number of tics that will be executed in the 
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%specified direction 
for k=1:14 
    putvalue(dio, [1 dir]); 
    putvalue(dio, [0 dir]); 
    pause(.2); 
end 
c. setfreq.m 
 
function output = setfreq(freq) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% setfreq.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%% David Luong and Mark Piper %%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%% e90 Directional Hearing Aid %%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Swarthmore College, Spring 2006 %%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%% Adapated from Carr Everbach's setfreq.m %%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%% The parameter freq is the desired amplitude of the signal in hertz. 
%% setfreq.m opens HP 3314A function generator at GPIB address 7 and 
%% changes the current frequency to frew. 
  
global fungen 
  
if isempty(instrfind) 
    fungen = visa('agilent','GPIB0::7::INSTR'); % for Agilent USB-GPIB 
end 
if fungen.status == 'closed' 
    fopen(fungen); 
end 
freqstr = ['FR',int2str(freq),'HZ']; 
fprintf(fungen,'%s\n',freqstr); 
fclose(fungen) 
 
d. setamp.m 
 
function output = setamp(amp) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% setamp.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%% David Luong and Mark Piper %%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%% e90 Directional Hearing Aid %%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Swarthmore College, Spring 2006 %%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%% Adapated from Carr Everbach's setamp.m %%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%% The parameter amp is the desired amplitude of the signal in volts. 
%% setamp.m opens HP 3314A function generator at GPIB address 7 and 
%% changes the current amplitude to amp. 
  
global fungen 
if isempty(instrfind) 
    fungen = visa('agilent','GPIB0::7::INSTR'); % for Agilent USB-GPIB 
end 
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if fungen.status == 'closed' 
    fopen(fungen); 
end 
ampstr = ['AP',int2str(amp),'MV']; 
fprintf(fungen,'%s\n',ampstr); 
fclose(fungen) 
 
E.  Processing Experimental Data 
 
a. process.m 
 
function returnval = process(data) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% process.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%% David Luong and Mark Piper %%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%% e90 Directional Hearing Aid %%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Swarthmore College, Spring 2006 %%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%% The paramater data is a data matrix resulting from a data acquisition  
%% sequence from stepper_daq.m. process.m uses repeated calls of 
%% process_pair.m to create an output matrix that is eventually returned. 
%% The first row of the output matrix is the first row of the data matrix. 
%% The second and third rows of the output matrix are the vectors of test  
%% frequencies and angles, respectively. The remaining rows of the output 
%% matrix correspond to the frequencies specified in the first row where 
%% the column entries correspond to the angle specified in the third row. 
  
n=data(1,2); 
numfreq = data(1,3); 
numangle = data(1,4); 
  
output(1,:) = data(1,:); 
output(2,1:numfreq) = data(2,1:numfreq); 
output(3,1:numangle) =  data(4,1:numangle); 
  
%4th order butterworth filter to try and get rid of electrical noise 
[B,A] = butter(4,.004,'high'); 
  
%filter and process data at each angle,frequency pair 
for i=1:numfreq*numangle 
    i 
    currdata = data(5*i-4:5*i,1:n); 
    filtereddata(1,:) = currdata(1,:); 
    for j=1:4 
        filtereddata(j+1,:) = filter(B,A,currdata(j+1,:)); 
    end 
    entry = process_pair([data(1,:) ; filtereddata]); 
    output(mod(i-1,numfreq)+4,ceil(i/numfreq)) = entry; 
end 
  
returnval = output; 
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b. process_pair.m 
 
function returnval = process_pair(data) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% process_pair.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%% David Luong and Mark Piper %%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%% e90 Directional Hearing Aid %%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Swarthmore College, Spring 2006 %%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%% The paramater data is a 6 row data matrix with the first row being the  
%% first row of a matrix created from stepper_daq.m. The second row is the 
%% time vector with the next 4 rows being 4 corresponding microphone 
%% channels. process_pair.m appropriately delays and sums the 4 microphone 
%% channels and returns the result of the findmax algorithm on the 
%% calculated sum as its returnval. 
  
  
v = 345; %speed of sound in m/s 
d = .05; %distance between microphones in m 
  
FS = data(1,1); %sampling frequency 
deltaT = 1/FS; %time step 
  
%% applying directionality 
  
delay = d/v; 
index_delay = round(delay/deltaT); 
n=data(1,2); 
  
%delay signals from microphones 1,2,3 
for i=1:n 
    if i > index_delay*3 
        m1 = data(3,:); 
        m1Delay(i) = m1(i-index_delay*3); 
    else 
        m1Delay(i) = 0; 
    end 
  
    if i > index_delay*2 
        m2 = data(4,:); 
        m2Delay(i) = m2(i-index_delay*2); 
    else 
        m2Delay(i) = 0; 
    end 
  
    if i > index_delay*1 
        m3 = data(5,:); 
        m3Delay(i) = m3(i-index_delay*1); 
    else 
        m3Delay(i) = 0; 
    end 
end 
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m4 = data(6,:); 
  
%normalize to account of microphone discrepancies 
output = m1Delay/findmax(m1Delay) + m2Delay/findmax(m2Delay) + 
m3Delay/findmax(m3Delay) + m4/findmax(m4); 
  
%test the entire array 
returnval = findmax(output); 
  
%test a single microphone 
%returnval = findmax(m4); 
 
c. findmax.m 
 
function returnmax = findmax(array) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% findmax.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%% David Luong and Mark Piper %%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%% e90 Directional Hearing Aid %%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Swarthmore College, Spring 2006 %%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%% findmax.m takes an array of data and proceeds to find the limit where 
%% 90% of the array data lies between +/- that limit via a binary algorithm 
  
close all; 
guess = 5; 
upperbound = 10; 
lowerbound = 0; 
  
pct = 1; %ensure we get in the loop 
  
threshold = .90; 
tolerance = .01; 
n = length(array); 
  
while (abs(pct - threshold) > tolerance), 
  
    %count the number of points within the limit 
    inside = 0; 
    for i=1:n, 
        if abs(array(1,i)) < guess, 
            inside = inside + 1; 
        end 
    end 
  
    pct = inside/n; 
  
    %revise boundaries 
    if pct > threshold, 
        upperbound = guess; 
    else 
        lowerbound = guess; 
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    end 
    %make a new guess 
    guess = (upperbound-lowerbound)/2+lowerbound; 
end 
  
hold on; 
plot(linspace(0,.1,n),array), plot([0 .1], [guess guess], 'r',[0 .1], [-guess 
-guess], 'r') 
hold off; 
  
returnmax = guess; 
  
d. plott.m 
 
function plott(data) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% plott.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%% David Luong and Mark Piper %%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%% e90 Directional Hearing Aid %%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Swarthmore College, Spring 2006 %%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%% plott.m takes the output matrix from a call to process.m and plots the 
%% beam profiles. 
  
close all 
  
freq = data(2,:); 
numfreqs = data(1,3); 
numangles = data(1,4); 
  
for i=1:numfreqs 
    connect = [data(3,1)*pi/180 data(3,numangles)*pi/180 ; data(3+i,1) 
data(3+i,numangles)]; 
    figure; polar(data(3,:)*pi/180,data(3+i,:)); hold on; 
polar(connect(1,:),connect(2,:)); hold off; 
    title(sprintf('Beam Profile for %0.1f Hz',freq(i))); 
    i = i + 1; 
end 
 


