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Abstract 
 
The Wipmod (wireless patient monitoring device) system was designed to monitor a 
patient while offering the convenience of being at home and carrying on with one’s day-
to-day activities.  It acquires, transmits, processes, and displays three physiological 
signals, using wireless modules to communicate from a remote unit to its base station. 
The remote unit carried by the patient incorporates sensors to obtain the 
electrocardiogram, the body temperature, and the blood oxygen saturation concentration 
and to coordinate their transmission to the base station. The system is intended to be 
home-based, using a personal computer to run a Matlab-based software for data 
collection and processing. An integrated patient alert feature alerts the patient if one of 
the measured physiological parameters is outside of the range set by his or her doctor. 
The software also has the capability to email the collected data to doctors, allowing 
greater flexibility and convenience for off-site continuous monitoring. 
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1/ Introduction 
 
The Wireless patient monitoring device (Wipmod) system is designed for continuous 
monitoring of patients in a home setting which makes it distinct from the current products 
available commercially. Since some cardiac conditions are activity-induced, continuous 
monitoring of patients provides critical information that cannot necessarily be obtained 
while a patient is in a medical facility. In addition, the use of wireless technology 
provides more freedom and a more comfortable, normal lifestyle while being monitored.  
 
Currently, there are wireless monitors that allow more freedom for a patient both within 
and outside of a medical environment. Ambulatory electrocardiographs can be taken 
home and can monitor the ECG of the patient in a few different ways.  
 
Continuous monitors are set up in the doctor’s office by a professional and then worn by 
the patient for 24-72 hours. The recorder accumulates all of the data until the patient 
returns to the office and the recording tape is read by a computer. 
 
Intermittent recorders require more patient participation as they do not monitor the full 
ECG at all times. Patients must be aware of their bodies and begin recording data when 
they detect symptoms of their condition. Loop recorders have electrodes that are always 
attached to the patient and constantly record heartbeats, but the rhythm of the heart is 
only recorded when the patient initiates the recorder. Event recorders are not attached to 
the patient, but must be applied to the chest and initiated to start recording. Event 
recorders are only used when symptoms of the problem occur.  
 
More recently, hospitals are beginning to implement telemetry systems that wirelessly 
connect patient monitors to nurse stations, and at times, to the attending doctor 
themselves. These systems provide more freedom for the patients, relieving the bother of 
multiple wires tying them to a bed, as well as improving treatment by allowing doctors to 
be directly contacted in the event of emergencies. 

1.1/Scope of the project 
 
The Wipmod system consists of two main components, the remote unit and the base 
station. The remote unit is a compact portable module that integrates multiple 
physiological sensors such as electrocardiogram electrodes, a body temperature sensor 
and a pulse oximeter. All the operations in the remote unit such as data sampling and 
communicating with the integrated wireless module are controlled by a microcontroller. 
The base station of the monitoring system includes a wireless-module connected to a 
computer that receives data from the remote unit and a MATLAB-based graphical user 
interface (GUI) that processes and displays the physiological data. An RF wireless 
module called XBee that uses Zigbee protocol, which will be described later, was used to 
create a wireless link between the remote unit and the base station. In addition to 
processing and display, the GUI also allows the patient to share the collected data with a 
medical professional or a doctor through electronic mail. The Wipmod system has an 
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integrated patient alarm system that activates a buzzer in the remote unit if the base 
station detects abnormal conditions. A general overview of the monitoring system is 
depicted in Figure 1.  
 

 
Figure 1. General overview of the Wipmod system1

 

1.2/Organization of the report 
 
 The block diagram in Figure 2 shows the how the report is arranged.  
 

 
 
Figure 2. Block diagram showing the organization of the report. 
 
The wireless communication is the integral link between the remote unit and the base 
station of the monitoring system. Therefore, the specifications and testing of the XBee 
modules, which are used for wireless transmission of data, are discussed first. This is then 

                                                 
1 Modified from www.florencecolibrary.org 
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followed by a general overview and a description of implementation procedures for each 
of the different components of the remote unit and the base station.   

2/Wireless communication 
 
This project revolves around the use of a wireless protocol to allow the patient to move 
freely within the home while still having important vital signs monitored. To accomplish 
this task, the IEEE 802.15.4 Zigbee protocol was used. Within the Zigbee protocol, 
MaxStream produces the XBee module: a single self-contained, programmable wireless 
transmission module. Two of these are used, one incorporated into the remote unit and 
one connected to the base station PC, to create the wireless link necessary to allow the 
freedom of movement desired. 
 

2.1 / Overview of Zigbee 
 
Zigbee is a wireless communication protocol based on the IEEE 802.15.4 standard for 
wireless networks. Compared to other wireless technologies such as Bluetooth, Zigbee 
offers a cost-effective and a low power consumption wireless technology with low data 
transmission rate. However, patient monitoring does not require high speed data 
transmission and therefore, its low cost and low power consumption makes Zigbee ideal 
for use in wireless patient monitoring devices.   
 

2.2 /Overview of the Xbee Module 
 
An Xbee module is compatible with any device that has a USART interface such as a 
microcontroller. For the project, the module in the base unit is connected to a PC through 
a serial port and the module in the remote unit is connected to the USART pins of the 
microcontroller (Figure 3).  
 
 

 
Figure 3. Data flow between the base and the remote unit through the XBee modules. (DI = Data In ; 
DO= Data Out) 
 
Data received from the DI (Data In) pin is first stored in the DI buffer and then 
transmitted. The default data flow control is such that the module signals the host device 
to stop sending information when the DI buffer is almost full. Data loss can be prevented 
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by ensuring that the data transmission rate is lower than the maximum throughput rate.  
Data received from transmission first enters the DO (Data Out) buffer which also has a 
limited amount of space. Therefore, the base unit must read from buffer before it 
overflows if data flow control is not implemented. The data transmission rate required for 
the project is approximately 5.0 kbps for which the baud rate was set to 9.6 kbps. This is 
discussed in detail in Section 2.3. Therefore, active data flow control was not required. 
The maximum interface data rate of the Xbee module is 115.2 kbps.  
 

2.3/General specifications 
 
To limit power consumption and weight of the remote unit, a low-voltage system was 
desired. The XBee module can be powered between 2.8-3.4 V and draws a typical current 
of 45 mA when transmitting and 50 mA when receiving data. It is specified to transmit 
data up to 100 ft. (30 m) indoors and up to 300 ft. (100 m) outdoors. For the purpose of 
this project, this is an adequate range capability, though MaxStream also produces the 
XBee Pro module, which would seamlessly replace the XBee module and increase the 
indoor range up to 300 ft. However, this will increase the power consumption and 
therefore reduces the battery life.  
 
The serial data baud rate of the module ranges between 1200-115200 bps. The largest 
concern in choosing the baud rate is ensuring that all ECG data points, which comprises 
of the majority of the data, can be transmitted. The sampling rate for the ECG waveform 
used for the project is 620 Hz. Since an 8 bit analog to digital converter was used, each 
second of data was represented by approximately 5000 bits. By setting the baud rate to 
9600 bps, successful transmission of ECG data was accomplished.. 
 
The XBee module was obtained as a part of an XBee 802.15.4 Development kit which 
also included RS323 development board (Figure 4) that allows direct connection to the 
PC using a serial cable. Along with a RS232 port, the development board has an LED 
array to indicate signal strength and the direction of communication between the two 
modules.  

 
 Figure 4. XBee RS-232 development board  with module2

 
                                                 
2 Modified from http://news.thomasnet.com/images/large/480/480398.jpg. 
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2.4/Programming the XBee module 
 
Software called X-CTU is used for programming the XBee module using a development 
board that connects to a PC through a serial port. Each module contains a unique address 
and can be given a specific identification name. Once the module is set to command 
mode using X-CTU software, built-in commands can be used to either read or modify 
both the destination address and identification name of the chip. Setting the specific 
addresses and identification information of each chip in a point-to-point communication 
between two modules prevents cross-talk should other XBee modules be within range. 
 
Through X-CTU, if the serial address of the desired destination is known, it can simply 
be written to the module currently connected to the computer and saved in its memory. In 
addition, a module can broadcast a general call to all other modules within range 
requesting identification name and serial address. In this situation, using a known 
identification name, the serial address of the desired destination module could be found 
and then set as the destination address without having direct contact with the module 
attached to the computer.  
 

 
Figure 5. X-CTU software used to program the XBee module for point-to-point communication. 
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2.5/Testing 
 
Preliminary testing of the modules was conducted using the XBee development boards 
and HyperTerminal to establish simple two-way communication between two PCs.  The 
next step involved using a PIC microcontroller to transmit to a PC via the XBee modules. 
Finally, the destination addressing was tested in the presence of other modules and it was 
confirmed that data was sent solely to the desired destination. 
 

3/Temperature  

3.1/Temperature sensor overview 
 
The tympanic temperature sensor used in the project for measuring body temperature is a 
thermistor-based sensor. Thermistors are semiconductors that are whose resistance 
changes with its temperature. The thermal coefficient of a thermistor (α) is the change of 
resistance per unit change in temperature. Thermistors can be classified into two kinds 
depending on the value of α. Negative Temperature Coefficient (NTC) thermistors have a 
negative α and its resistance decreases with temperature. On the other hand, the resistance 
of Positive Temperature Coefficient (PTC) thermistors increases with temperature. The 
following equation shows the temperature dependency of the thermistor resistance.  
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0
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The thermal coefficient of a thermistor can be found as follows: 
 

1 t

t

dR
R dT

α =  

 
Although thermal coefficient of a thermistor is a nonlinear function of temperature, a 
linear approximation can be made for a small range of temperature. 
 
Tympanic temperature sensors are widely used a measure of core body temperature. The 
tympanic sensor from Novamed (Figure 6) has a comfortable fit that ensures easy 
placement and minimizes the risk of tympanic membrane perforation.  
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Figure 6. Thermistor-based temperature sensor 
 

3.2/Sensor calibration  
 

 
Figure 7. Temperature sensor calibration set-up. 
 
The calibration of the temperature sensor was performed in a controlled temperature bath 
using a mercury thermometer with a precision of 0.5 degree Celsius (Figure 7). In order 
to see the effect of temperature on the resistance of the sensor, a voltage divider circuit 
was used (Figure 8).  
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Figure 8. Voltage divider circuit used for calibration. 
 
The voltage across the resistor was recorded using a voltage for different temperature of 
the water bath. The data collected was then plotted to derive a calibration curve for the 
sensor. (Figure 9)  
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Figure 9. Calibration curve for the tympanic temperature sensor. 
 
It is seen from the data that the voltage across of the calibration resistor increases when 
the sensor detects a higher temperature. Due to the voltage divider effect, this implies that 
resistance of the thermistor in the sensor decreases with increasing temperature. 
Therefore, the calibration data shows that the sensor has a negative temperature 
coefficient. From the calibration data, it is seen that relationship between the resistance of 
the sensor and temperature is linear in the temperature range of our interest.  
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4/Electrocardiograph 
 
The electrocardiograph is an instrument used to produce a graphic representation of the 
electrical activity of the heart, the electrocardiogram (ECG or EKG), as measured by 
body-surface electrodes. It is an invaluable tool in the diagnosis of cardiovascular 
diseases, the monitoring of patients while under anesthesia, and occasionally used for the 
diagnosis of non-cardiac diseases. 
 

4.1/Characteristics of the electrocardiogram 
 
The activity of the heart can be approximately modeled by an electric dipole, also called 
the cardiac vector. The magnitude and orientation of the dipole characterize the current 
state of the heart along the cardiac cycle. To measure these qualities, lead vectors are 
defined such that, when electrodes are placed along two different vectors that lie in the 
same plane as the cardiac vector, it can be fully defined. For example, two lead vectors, 
a1 and a2, can be defined at different angles in the cardiac vector plane (Figure 10). The 
voltage measured within either lead is the component of the cardiac vector, M, in the 
direction of that particular lead. In Figure 10, the voltage measured in the a1 direction is 
Va1 = |M|cos θ. Since M is orthogonal to lead a2, its component Va2 is zero. Both leads 
are necessary to uniquely describe the cardiac vector, but information can still be 
collected using a single lead. 
 

 
Figure 10. Lead vectors a1 and a2 in relation to the cardiac vector M.3

 
Three basic leads have been defined for the frontal-plane ECG (the plane along the front 
of the chest). These leads use the convenient markers of the right arm (RA), left arm 
(LA), and left leg (LL) to define lead vectors Lead I, Lead II, and Lead III that create an 
equilateral triangle across the center of the chest known as Eindhoven’s triangle (Figure 
11). In this project, the ECG across Lead I will be the main focus. 

                                                 
3 Webster, 236. 
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Figure 11. Eindhoven’s triangle.4

 
The electrocardiogram is typically composed of three separate components: the P wave, 
the QRS complex, and the T wave (Figure 12). These components represent the different 
electrical responses of the heart during the contraction and relaxation phases that 
compose a single “beat” of the heart. 
 

 
Figure 12.  P wave, QRS complex and T wave.5

 
A single heart beat begins when an electrical signal from the S-A node in the atria 
propagates throughout both atria. This signal depolarizes the atria, therefore causing them 
to contract and force blood into the ventricles. On the ECG, this is seen as the P wave. 
The ventricles follow the same fashion when an electrical signal from the A-V node 
depolarizes both ventricles, causing them to contract. This electrical activity is displayed 

                                                 
4 Webster, 237. 
5 Modified from http://en.wikibooks.org/wiki/Image:Qrs.png. 
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in the ECG as the QRS complex. Finally, the ventricles return to their previous state and 
prepare for the next contraction, resulting in the repolarization wave, the T wave. 
Depending on which lead is being examined, the clarity and magnitude of the individual 
waves varies. 
 

4.2/Analysis of timing features of the electrocardiogram 
 
Time intervals between the different waves of the ECG can help doctors diagnose cardiac 
abnormalities. Therefore, a few timing features of the Lead I ECG were processed via 
software to aid in medical diagnosis. 
 
The time between heart beats is one of the most basic qualities that can be extracted from 
the ECG. Heart malfunction due to an abnormal rhythm of the heart is called an 
arrhythmia. A fast heart rate, called tachycardia, generally results from an increased body 
temperature, stimulation of the heart by the sympathetic nerves, or toxic conditions of the 
heart (Figure 14). The opposite condition, a slow heart rate or bradycardia, may result 
from problems with the heart’s electrical system and natural pacemaker (Figure 15). 
Extreme cases of bradycardia may mean that the heart is not pumping enough blood to 
meet the body’s needs. To aid in the diagnosis of such conditions, the ECG is processed 
to extract the average heart rate of the patient and continuously display it at the base 
station. 
 

 
Figure 13. Normal sinus rhythm for leads I, II, and III. Note that the peak-peak distance is 
approximately 3 divisions (0.20 seconds per division).6

 

                                                 
6 Guyton, 118. 
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Figure 14. Tachycardia. Note that the peak-peak distance is approximately 2 divisions (0.20 seconds 
per division).7

 

 
Figure 15. Bradycardia. Note that the peak-peak distance is approximately 7 divisions (0.20 seconds 
per division).8

 
The duration of the QRS complex is also calculated and displayed at the base station. 
Since the QRS complex lasts as long as depolarization of the ventricles lasts, an 
abnormally prolonged or otherwise irregular duration of the complex indicates improper 
electrical conduction throughout the heart. This can be due to the deconstruction of heart 
muscle throughout the ventricular system that is then replaced with scar tissue, or the 
appearance of multiple small local blocks in the Purkinje system, the part of the heart that 
conducts electrical impulses to the ventricles. A normal QRS complex lasts 0.06 to 0.08 
seconds; anything longer than 0.09 seconds is considered abnormal. 

 

5/Electrocardiograph circuit 
 
To acquire the electrocardiogram, multiple stages of analog circuitry were implemented 
in the remote unit prior to transmitting the signal to the base station. The signal is passed 
from two sensing electrodes positioned on opposite sides of the chest to a difference 
amplifier, which then sends the ECG through filters to be sampled by the microcontroller 
and sent to the base station. To counter the effect of the common-mode, a driven-right-leg 
circuit provides negative feedback via a third electrode placed on the right leg. A 
graphical representation of this path can be seen in Figure 16. Each of these blocks will 
be described in detail individually. 

 
It is important to note that no protective circuitry is included in the design. For the 
patient, this does not pose any risk from the remote unit; it is run on batteries and the 
voltage is not sufficient to do any harm in any event. However, should a defibrillator be 
                                                 
7 Guyton, 135. 
8 Guyton, 135. 
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used on the patient while the Wipmod is still connected, the discharge would destroy the 
circuitry. 
 

 
Figure 16. Block diagram of ECG circuitry. 
 
The circuitry used to perform the functions in each block of Figure 16 were designed and 
simulated in Multisim before creating them on a breadboard. The Multisim circuit is 
shown below in Figure 17. 
 

 
Figure 17. Multisim schematic of complete ECG circuit. 

5.1/Single-supply op-amps and virtual ground 
 
The fact that the remote unit is powered entirely by batteries introduces the additional 
consideration of single-supply circuitry. TLV2774 op-amps were chosen specifically for 
their qualities that make them ideal for a 3.3V battery-operated application: 
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• Single-supply 
• Rail-to-rail output 
• Low supply current of 1mA 

 
In order to display the oscillating AC signal correctly, a virtual ground must be created 
around which the signal may oscillate from positive to negative. This is accomplished 
with the circuit in Figure 18. 
 

 
Figure 18. Virtual ground circuit 
 
The op-amp is configured as a voltage follower with resistors R8 and R9 serving as a 
voltage divider to divide VDD in half. 
 

8 1Virtualground
8 9 2
R VDD VDD

R R
⎛ ⎞= =⎜ ⎟+⎝ ⎠

 

 
The capacitor is a bypass capacitor that serves to reduce the effect of non-uniform current 
draw on the op-amp by the rest of the circuit.9

5.2/Electrodes 
 
To acquire the ECG, 3M soft cloth Red Dot electrodes are used. These are body-surface 
electrodes that use an Ag/AgCl interface to transmit the biopotential signal. The metal 
does not directly contact the skin, but a solid-state electrolytic gel is used to ensure good 
electrical contact without the mess of a more liquid-based gel. The backing is a 
breathable, stretchable cloth for patient comfort and to maintain good contact when the 
patient moves. 
 

                                                 
9 Cheever, “Single Supply Op Amps.”  
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Figure 19.  3M Red Dot electrode.10

5.3/Instrumentation amplifier 
 
To characterize lead I, the potential difference across the chest must be measured. To this 
end, an instrumentation amplifier was employed. At the front end of the amplifier, a 
passive AC-coupling circuit is the first step to cutting out any DC offset potential that 
may be present in the patient’s body or at the electrode-skin interface. To avoid drawing 
too much current and distorting the signal, an instrumentation amplifier uses a voltage-
follower-with-gain op-amp at each input, thereby ideally drawing zero current from the 
patient’s body.  
 
The passive AC-coupling circuit was implemented as suggested by Spinelli, et. al to 
maintain a high common mode rejection ratio for the instrumentation amplifier while 
consuming no additional power.11

 
To reduce the amount of gain that must be obtained from the difference amplifier stage of 
the instrumentation amplifier, the first stage amplifies the difference signal before passing 
it to the second stage. The common-mode is passed through the first stage, but not 
amplified. The gain varies according to the 100 kΩ digital potentiometer placed between 
the positive terminals of the two op-amps. A digital potentiometer functions as a variable 
resistor whose value can be set by a microcontroller. The gain for the first stage is found 
to be, 

Equation 1 

2
2 1 I

1

2RV V 1 V
2R

⎛ ⎞
− = +⎜ ⎟

⎝ ⎠
D

                                                

 

 
With the resistor values in this configuration, the first stage ideally can have a gain of 10 
to ∞. The specific purpose and function of this component will be discussed later in 
Sections 5.6 and 9.2.1. Figure 20 below presents this first stage of the instrumentation 
amplifier. 
 

 

.
10 Picture retrieved from http://www.grogans.com/servlet/shop?cmd=I&id=3M9641. 
11 Spinelli, et. al, 2003  
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Figure 20. First stage of instrumentation amplifier 
 
The second stage of the instrumentation amplifier further amplifies the signal and rejects 
the common-mode of the signal. This stage is composed of a single difference op-amp. 
The gain that can be obtained from this stage can be calculated as shown below (Equation 
2). Combined with the gain from the first stage, the entire system has a gain from 51.1 to, 
again ideally, ∞. The ECG signal ranges from 0 to around 1 mV in amplitude. Therefore, 
to amplify the signal to a usable range of 0 to around 2 V, a gain of approximately 2000 
is necessary. Thus, the circuit was designed so that the potentiometer’s value can increase 
or decrease so that the circuit can adapt to signals with amplitudes either greater or less 
than the average. 
 

Equation 2 

4
O ID

3

4 2
O I

3 1

Second stage gain,

R                                                V V
R

Overall gain,

R R                                               V 1 V
R R

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
D
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Figure 21. Second stage of instrumentation amplifier 

 
The Common-Mode Rejection Ratio (CMRR) has been calculated to be 62.9 dB 
(Equation 3). 
 

Equation 3 

DM

CM

ACMRR = 1391 62.9 dB
A

= =  

5.4/Filters 
 
The difference signal obtained from the instrumentation amplifier still contains a large 
amount of noise. Some of the noise derives from electrical interference present in the 
environment of the patient whether that is from appliances in the vicinity, power lines 
overhead, or the electrical system of the building. Also, a DC offset may be present due 
to non-ideal input currents in the op-amps in the circuit itself. Therefore, before the signal 
is of any use, it must first be filtered to remove noise as much as possible. 
 

5.4.1/Band-pass filter 
 
The ECG contains frequencies ranging from about 0.05 Hz to 1 kHz, but an 
electrocardiograph with a frequency response of 0.05 to 150 Hz can produce a well-
defined ECG. This is approximately the bandwidth used for the band-pass filter (Figure 
22) whose transfer function can be seen below in Equation 4. 
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Figure 22. Band-pass filter. 
 

Equation 4 

12 2 12 2

12 2 5 1

( )
1 1

1 11 1
L H

sR C sR CH s
s s

s s

R C R C

ω ω

− −
= =

⎛ ⎞ ⎛ ⎞⎛⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟⎜⎜ ⎟

⎝ ⎠⎝⎜ ⎟⎜ ⎟+ +
⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎞
⎟
⎠

 

  where, ωL= lower threshold frequency 
            ωH= lower threshold frequency 

 
Using the values shown in Figure 22, the cut-off frequencies, ωL and ωH, are 0.048 Hz and 
159.2 Hz respectively. The Bode plot for this filter is shown below in Figure 23. 
 

 
Figure 23. Bode plot for the band-pass filter. 
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5.4.2/ 2nd order low-pass filter 
 
Testing showed that the band-pass filter still permitted an unacceptable amount of high-
frequency noise to distort the signal. Although the band-pass filter had a cut-off at 159.2 
Hz, high-frequency noise was not being attenuated sufficiently. Therefore, a second-order 
low-pass filter was added to the output of the band-pass filter. A Sallen-Key filter was 
chosen since it can perform the necessary function utilizing only one op-amp with a few 
passive components (Figure 24). This filter’s transfer function is shown in Equation 5. 
 

 
Figure 24.  2nd order low-pass filter. 
 

Equation 5 
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So, 

21 22 5 6

1
cut off R R C C

ω − =  

 
Again, using the values from Figure 24, . This cut-off 
frequency is different from the high-frequency cut-off of the band-pass filter. By 
choosing this cut-off point to be lower than the desired cut-off of 150 Hz, the attenuation 
at that point is greatly increased, thereby ensuring that noise at or above 150 Hz is 
excluded from the final signal. The Bode plot for this filter is given below in Figure 25. 

1785.398  or 125 Hzcut off rad sω −
− = i
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Figure 25. Bode plot for the 2nd order low-pass. 

5.5/Driven-right-leg circuit 
 
Once the signal passes through first stage of the instrumentation amplifier, it is carried 
along the driven-right-leg circuit to an electrode on the right leg. This circuit functions as 
a negative feedback loop to reduce the transmission and amplification of the common-
mode portion of the signal. This is demonstrated below in Figure 26. 
 

 
Figure 26. Driven-right-leg circuit.12

                                                 
12 Webster, 257. 
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If , then taking the common-mode voltage (VID x yV V V= − cm) into consideration, we can 
model the input voltages as, 

Equation 6 

ID ID
x cm y cm

V VV V    and   V V
2 2

= + = −  

 
With the three resistors placed in series between the outputs of the two op-amps set to the 
value R, . If no common-mode voltage is present, 

, making I
3 x y 4 yV 2V V    and   V 2V V= − = − x

2x y 3 4 1V V ,  V V   and   I I= − = − = 3 = 0. In this situation, the feedback op-amp 
is not activated and no current travels between the circuit and the right leg. 
 
However, in the event that a common-mode voltage is present, I3 will be non-zero. For 
example, suppose that there is a common-mode voltage of 2V.  
 
If, VID = 4V (chosen for the simplification of the calculation),  
 

Vx =4V and Vy = 0V 
this results in, 

3 4V 2(4) 0 8   and   V 2(0) 4 4= − = = − = − . 
Since the negative terminal of the feedback op-amp is ideally ground,  
 

1 2
a a

8V 4VI    and   I
R R

= =  

This means 3
a

4VI
R

=  and this current must pass through Rf, making the output: 

output
3

a f

f
output

a

0 V4V I
R R

thus,
4RV
R

−
= =

= −

 

Voutput is connected to the patient’s body via the right leg and so it actively works to lower 
the common-mode potential of the body to close to zero. Thus, it works to help the 
instrumentation amplifier refine the ECG signal and retain just the desired signal. 

5.6/Adaptive gain 
 
The voltage levels of the different waves in the ECG can be analyzed to extract medically 
important information. However, factors other than cardiac conditions could result in 
voltage differences from patient to patient. Electrode placement and skin moisture, for 
example, both play a role in how strong of a signal can be obtained through the body-
surface electrodes. To ensure that other features of the ECG can still be detected and ease 
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the use of Wipmod on any patient, an adaptive gain was implemented that ensures that 
the ECG signal reaches a certain minimum voltage. This is accomplished with a digital 
potentiometer controlled by the microcontroller. The function and use of this component 
is described in detail in Section 9.2.1.  
 

6/Pulse oximeter 
 
Definitions: 
Diastole- relaxation of heart muscles 
Reduced hemoglobin (Hb) -    hemoglobin unbound to oxygen molecule. 
Oxygenated hemoglobin (Hb02) -   hemoglobin with a bound oxygen molecule. 
Sp02- pulse oximeter measurement  
Sa02- arterial blood's actual oxygen 
Systole- contraction of heart muscles 
 
The oxygen saturation of the blood is an important physiological parameter that medical 
personnel use as an indication of various respiratory conditions. Hemoglobin, a 
respiratory pigment, present in the red blood cells provides a binding mechanism for 
oxygen. When hemoglobin is combined with oxygen molecules, it changes color. 
Oxygenated hemoglobin is bright red while a deoxygenated hemoglobin molecule is 
bright red. This change in color is used in the application of pulse oximetry for to 
estimate arterial blood saturation level.  
 

6.1/Principles of pulse oximetry 
 
A pulse oximeter sensor shines light of two different frequencies through a capillary bed 
such as the finger and the ear lobe. The two frequencies of light, red (660 nm) and infra 
red (940 nm) are chosen so that there is a large difference in the absorption of these lights 
by oxygenated and reduced hemoglobin. The opaqueness of the Hb and HbO2 for a light 
of certain frequency is called its extinction coefficient. The extinction coefficient of Hb 
and HbO2 for various frequencies is shown in Figure 27.  
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Figure 27. Extinction coefficients of Hb and HbO2.13

 
As seen from the figure, while the extinction coefficient of HbO2 is higher that that of Hb 
at infrared frequency (940 nm), the reverse is true at 660 nm. This implies that if SaO2 
increases, the absorption of infrared light will increase while the absorption of the red 
light will decrease.  
  
The light transmitted through the tissue bed is absorbed by tissues and bones along with 
components of the blood. Therefore, it is necessary to distinguish between the tissue/ 
bone absorption and absorption by hemoglobin. The pulse oximeter takes advantage of 
the pulsatile nature of the arterial blood for this purpose. The absorption of light by 
hemoglobin increases during systole and decreasing during diastole. The total absorption 
of light comprises of a DC component caused by tissues, bones and non-pulsating arterial 
blood and an AC component due to the changes in the arterial size during systole and 
diastole. 
 

 
Figure 28. AC and DC components of the total absorption of LED lights. IL represents the least 
transmitted light and IH represents the maximum transmitted light in one cardiac cycle.  
 
In order to account for different emission intensity of red and infrared LEDs, the 
measured light intensities have to be normalized. This normalization is done by dividing 
                                                 
13  (http://www.oximetry.org/pulseox/principles.htm) 
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the transmitted intensities with the by the peak transmitted values of each wavelength. 
The ratio ‘R’ is then calculated as follows: 

  
R= ln (IL,R/ IH,R) / ln (IL,IR/ IH,IR)  

 
where IL,R = normalized least transmitted red light  

   IH,R = normalized maximum transmitted red light 
   IL,R = normalized least transmitted infrared light 
                         IH,R = normalized maximum transmitted infrared light 
 
 

6.2/Theoretical calibration curve 
 
 The functional oxygen saturation can be calculated from the ratio R using the 
following equation: 
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7/Pulse oximeter circuit  

7.1/Some reverse engineering 
 
Oximax pulse oximeter sensors from Nellcor are designed to be used with pulse oximetry 
monitors. Since no datasheets or technical information was available about the sensors, 
one of the sensors was taken apart and its components were tested and their operation 
analyzed. The sensor consisted of two LEDs, red and infrared, a photodiode and copper 
shielding with small slits for the photodiode. The copper shielding is placed in order to 
reduce error due to electromagnetic interference. Figure 29 shows the sensor and pulse 
oximeter sensor and its components.  
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Figure 29. Pulse oximeter sensor and its components  
 
The two LEDs are arranged in parallel to each other in opposite orientations such that 
only one LED turns one at a time. When light from the LED falls on the photodiode, it 
allows current to pass through it depending on the intensity of the light. This was verified 
using a resistor in series with the photodiode which resulted in a voltage drop across the 
resistor when the LED was turned on.   
  

 
Figure 30. Arrangements of LEDs and photodiode in the pulse oximeter sensor. 
 
The pulse oximeter sensor was equipped with a RS-232 male port to make it compatible 
with commercial pulse oximeter monitors. The connections of each of the pins of the port 
are shown in Table 1. 
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Pin Number Connections   Wire color 
1 Internal shielding  Large white 
2 LED Red 
3 LED Black 
4 Not connected  
5 Photodiode White 
6 External shielding  
7 Copper Shielding  
8 Not connected  
9 Photodiode Green 

Table 1. RS-232 pin connections in the pulse oximeter sensor 
 
7.2/ Block diagram of pulse oximeter circuit 
 

 
Figure 31. Block diagram for the pulse oximeter circuit. 
 
In a pulse oximeter sensor, the timing of the two LEDs, red and infrared, is controlled 
such that only one of the two LEDs is on at a time. This control was acquired using a 
microcontroller which was programmed such that LEDs switched about 200 times per 
second.  The output of the photodiode due to the incident light from the LEDs was then 
processed using analog circuitry shown in Figure 32.  
 
 
 

 
Figure 32. Multisim schematic of the pulse oximeter circuit 
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The first stage of the circuit is a current to voltage converter. When the light falls on the 
diode, the current flows through the negative feedback resistor which creates a voltage 
proportional to the current at the output. The frequency range of interest for a pulse 
oximeter signal is 0.5 Hz to 5 Hz. 14 The feedback capacitor, C10, forms a low pass filter 
with a cutoff frequency of 5 Hz. The second stage of the circuit is a band-pass filter with 
the passband from 0.48 Hz to 4.8 Hz. Finally, the band-pass filtered signal is amplified to 
get the final output shown in Figure 33. The image shows the output waveform when 
only the red LED was on.  This output was then sent to the microcontroller.  
 

                                           
Figure 33. Output waveform of the pulse oximeter circuit for the red LED. 
 
While the LED timing and the analog processing was tested and verified, due to time 
constraints, the sampling of the analog output for red and infrared light in analog to 
digital converter of the microcontroller was not completed. 

8/ Batteries 
 
Four 1.2V AAA Nickel Metal Hydride Energizer batteries were used to power the remote 
unit. The maximum dropout voltage of the 3.3V voltage regulator incorporated in the 
circuit is 0.7 V. Therefore, at least four 1.2V batteries were required. The maximum 
supply current required for the remote unit was 62.5 mA. The supply current 
requirements for each component of the remote unit are shown in Table 2. The batteries 
are 900 mAh and can therefore last for about 12 hours if the remote unit is used 
continuously.  
 
 
 
 
 
 
                                                 
14 Townsend N. 2001.  
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Component Max current supply
PIC er  microcontroll 2 mA 

Xbee Module 50 mA 
Op-amps 10 mA  (1mA * 10) 

Digita eter l potentiom 0.5 mA 
  

Total 62.5 mA 
Table 2. Maximum current supply f  of the main com f remote unit. 

echargeable batteries were used to minimize the costs, both economical and 

9/ PIC microcontroller 

9.1/ General characteristics  

he basic requirements for the microcontroller to be incorporated in the remote unit are 

1. Low operating voltage – The maximum operating voltage of the XBee module is 

 
.  8 bit analog to digital converter – The analog to digital converter in The 

 
3. 3 ADC channels – For continuous monitoring of temperature, ECG and blood 

 
4. Timers – Timers are required for controlled sampling rate of ECG, temperature 

 
5. Universal Synchronous Asynchronous receiver (USART) - This feature is required 

 
6. Synchronous Serial Port (SSP) with SPI – This allows the synchronous 

or each ponents o
 
R
environmental, of non-rechargeable batteries. Two sets of batteries would allow the user 
to operate the Wipmod system for almost 24 hours, using one set while recharging the 
other. 
 

 
T
listed below. To meet these requirements the PIC16LF877A was chosen. 
 

3.4V. This makes it imperative for the microcontroller to operate with a source 
less that 3.4 V. The PIC16LF877A has a wide operating voltage range from 2.0 V 
to 5.5V. This feature makes it compatible with a low voltage source. 

2
PIC16LF877A can be set to either an 8 bit or a 10 bit ADC.  

oxygen saturation, the microcontroller has to be equipped with at least three ADC 
channels. The PIC16LF877A has 8 ADC channels.  

and blood oxygen saturation.  The PIC16LF877A provide 3 timers.   

to send the sampled data to the XBee module serially for wireless transmission to 
the base unit.  

communication between the microcontroller and a peripheral device. SPI is 
required for controlling the digital potentiometer for adaptive gain of ECG 
waveform.  
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9.2/Programming the PIC 
 
The PIC microcontroller is programmed to control the physiological data collection, 
adaptive gain of the ECG and the patient alarm system. All of these operations require 
controlled timing which was achieved by the use of timers.  Timers are counters that reset 
every time the counter overflows. For example, RTCC (Real Time Counter Clock) is an 8 
bit counter which counts from 0-255 and then resets to 0. This process repeats 
continuously once the timer is setup. At each overflow, timers generate an interrupt. The 
code written within the interrupt service routine is executed when an interrupt occurs.  
 
The three timers in PIC16LF877A are as follows: 
 

a. RTCC timer/ Timer 0 – an 8 bit counter  
b. Timer 1 – a 16 bit counter 
c. Timer 2 – an 8 bit counter 

 
The oscillator clock can be scaled down by using different pre-scalar state (in RTCC) and 
modes (in Timer 1 and 2). For example, for a 4MHz clock, instruction cycle is  
4/4 = 1 MHz. This means that each instruction requires 4 cycles. In case of RTCC timer, 
if this is pre-scaled using RTCC_DIV_256, then the timer increments (1/256) MHz = 
3900 times per second). For an 8 bit counter, this implies that the counter overflows 
3900/255 ~=15 times per sec, hence generating a timer which causes the interrupt routine 
to be executed at 15 Hz.  
 
Each timer can be used to execute actions at different frequencies by using variables as 
secondary counters which decrements from its maximum value. In the project, using 
secondary counters, RTCC timer was used to sample ECG, temperature data and to 
control the buzzer in the patient alert system.  Figure 34 shows the process that was 
implemented in the microcontroller for interrupt generation and execution of interrupt 
routines for a single secondary counter. As shown in the figure, some of the processes are 
sequential, while others are simultaneous. For example, the timers are initiated only after 
a start signal is received from the base station, however, the “Timer” and the “Infinite 
loop” processes take place simultaneously. Using a similar implementation, different 
counters were used for temperature sampling and patient alert system, namely 
temp_START and buzz_START respectively (See Appendix C).  
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Figure 34. Flowchart demonstrating how timer/interrupts were generated to control sampling rate 
using counters.  

 
For each timer, it is also possible to set the timer to start from a value other than 0 by 
using a setup_timer function. This approach was also implemented to obtain a desired 
sampling rate for data. In the above example, if setup_rtcc(245), the interrupt routine will 
be executed at 3900/ (255-245) = 390 Hz.  
 

9.2.1. Digital potentiometer 
  
The digital potentiometer, or digipot, is a peripheral component controlled by the 
microcontroller. As mentioned in Section 7.6, the digipot controls the adaptive gain of the 
electrocardiograph to allow the circuit to adapt itself to the specific conditions of the 
patient.  
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To communicate between the microcontroller and the digipot, it was necessary to use the 
Serial Peripheral Interface (SPI) protocol. The PIC16LF877A has hardware specifically 
designated for this sort of communication and so the digipot could be directly 
programmed without having to create additional software. 
 
SPI works on a master-slave system in which one master can control several slaves. The 
master sets the clock with which the slave operates and can send instructions to all of the 
peripheral slaves or just one. Also, slaves can be cascaded so that one slave is controlled 
by the output of another. Nonetheless, in this application, only one slave is controlled by 
the master. The pin connections between the master PIC16LF877A and the slave 
MCP41100 digital potentiometer are shown below (Figure 35). 
 

 
Figure 35. SPI pin connections for the digipot. 
 
The designated functions for the pins on the digipot are tabulated in Table 3. 
 

 
Table 3. MCP41100 Digital Potentiometer Pin Functions 

 
To communicate with the digipot, the PIC must first select it by setting the chip select 
(CS) pin low. Then, a command byte is sent out of the Serial Data Out (SDO) pin to 
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instruct the digipot as to what it should do with the following data byte. For the 
MCP41100, the command byte can either tell the digipot to write the data byte to the 
potentiometer, completely shutdown, or do nothing. The data byte contains the 
information that sets the value of the potentiometer. Once the data byte is clocked in, the 
chip select must be set high again. The digipot will discard the information sent to it if the 
chip select pin is not set low and then high again in multiples of 16 clocks. 
 
To adapt the gain of the electrocardiograph, the digipot is first set to a designated starting 
level. According to test values, the middle resistance of the digipot served as a good 
starting point to produce an acceptable gain. Then, the PIC monitors the output of the 
circuit and sets the digipot accordingly. To determine the maximum output voltage of the 
circuit, the PIC performs a continuous comparison of every single ECG data point 
collected over a period of approximately 1.5 seconds. Each data point within that period 
is compared to the maximum value that the PIC has seen up to that point of time within 
the period. Then, if the output is lower than the designated threshold, the digipot is 
lowered by a small amount thereby increasing the overall gain slightly. If the output is 
too high than another threshold, the opposite occurs. If the output remains within the 
designated voltage zone, nothing happens. 
 
To clarify the function of the digipot and the algorithm for its control, the following 
pseudo-code is included. 
 
Set the digipot level to an average value according to previous tests 
Compare first two data points and save the greater value 
For 1.5 seconds, 
 Compare Next data point with Current greatest value 
 If Next is greater than Current, replace Current with Next 
 Else maintain same value in Current 
 

If Current is too low, 
  Set CS low 
  Send command byte to WRITE 
  Send data byte to increment the digipot by a small amount 
  Set CS high 
 
 If Current is too high, 
  Set CS low 
  Send command byte to WRITE 
  Send data byte to increment the digipot by a small amount 
  Set CS high 
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The successful implementation of the digipot for adaptive gain of the ECG waveform is 
demonstrated in Figure 36 below. Immediately after the remote unit is turned on, gain for 
the ECG signals is small. However, the digipot responds to the amplitude of the R peak 
of the waveform and adjusts the gain to ensure that the peak lies within a specific range 
of lower and upper thresholds.   

 
Figure 36. Three snapshots showing the adaptive gain of the ECG signal. 

9.2.2 Patient alert system  
 
This feature is incorporated in the Wipmod design to alert the patient if any of the 
physiological parameters that are being monitored are out of normal range. The alarm 
informs the patient to either contact the doctor or restrain activity that might have induced 
cardiac activity which poses a danger to the patient.  
 
The alarm settings are based on the threshold values that are set by a doctor using the 
graphical user interface (Section 11.2.3). When the physiological parameters are beyond 
the threshold, the interface communicates with the remote unit wirelessly to initiate a 
buzzer. 
 
The PIC microcontroller in the remote unit controls the patient alarm system. When an 
alert notice is received from the base unit, the microcontroller turns on the buzzer. The 
buzzer-snooze pushbutton available to the user allows the patient to turn off the buzzer 
once he or she is informed of the situation. However, after 30 seconds of “snooze” time, 
if the monitored parameter is still beyond the specified threshold, the alarm is re-initiated. 
The flowchart in Figure 37 summarizes how the alarm system works.  
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Activate alarm 
system 
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from the base unit 

Alert patient? 
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pressed? 
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Yes 

No 

Yes 
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Figure 37. Flowchart describing the patient alert system. 
 
The PIC uses timers and interrupts to implement the buzzer-snooze feature. An I/O pin, 
which a pushbutton is connected to, is always high until when the button is pressed. 
When the pin is high, the alarm system is activated. However, when the pushbutton is 
pressed, I/O pin is goes to 0 which initiates a counter based on the RTCC timer that 
deactivates the alarm system for 30 seconds. The circuit set up for the alarm system is 
shown in Figure 38.  
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Figure 38. The circuit set up for the alert system with the buzzer-snooze pushbutton. 

 
Table 4 below outlines the pin connections of the three physiological signals and circuit 
controls to the PIC microcontroller. 
 

  Pins 
ECG data AN0 (Pin 2)

Temperature data AN1 (Pin 3)
Pulse Oximeter data RA2 (Pin 4)

RB3 (Pin 36)
Pulse Oximeter LEDs RB2 (Pin 35)

Buzzer RB1 (Pin 34)
Buzzer pushbutton RB5 (Pin 38)

Digipot Chip Select (CS) RA5 (Pin 10)
Digipot Clock RC3 (Pin 18)
Digipot SI pin RC5 (Pin 24)

Table 4. PIC microcontroller pin conections. 
 

10/Signal processing  

10.1/Data parsing 
 
The stream of data received by the XBee module connected to the base station contains 
both the ECG and the temperature data. The interface collects 3000 data points, 
approximately 5 seconds of data, each time it reads the serial port buffer. The parsing 
algorithm used on these 3000 data points is based on controlled amplification of the ECG 
signal by the digital potentiometer and the event flag used for the temperature data in the 
PIC microcontroller. The digital potentiometer in the ECG processing circuit ensures that 
the gain of the ECG is such that analog-to-digital converter (ADC) value is always less 
than 255. Therefore, if an array of 3000 data points contains a ‘255’, the event flag, the 
algorithm recognizes the value that immediately follows the flag as temperature data.  
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10.2/Estimation techniques for characteristics of an ECG waveform  
 
Once the wireless data has been parsed and a complete ECG data set is available, it can 
be processed in MATLAB to extract relevant information of medical significance. As 
mentioned in Section 6.2, the heart rate and the duration of the QRS complex can be 
analyzed to help in the diagnosis of medical conditions.  

10.2.1/Heart rate 
 
To calculate the heart rate, the R wave was used to identify a single heart beat. The QRS 
complex peaks just once per heart beat and so it can be used to calculate the time between 
heart beats. Two characteristics of the R wave were used to identify it: a voltage 
threshold and the slope of the surrounding points. 

 
Since the ECG was being processed with a circuit with adaptive gain, the peaks of the 
QRS complex are always within the same range. Thus, a voltage threshold can be used to 
search for the exact R peak. Figure 39 demonstrates this first filtering step. Any points 
along the ECG waveform that are not above the voltage threshold are not considered as 
possible R peaks. 
 

 
Figure 39. Voltage threshold filtering for R peak identification 
 
The next step in finding the R peaks is to examine each point that is above the threshold 
and calculate the slope of the best line fit of the four points before and after the point 
being considered. This is done with MATLAB’s polyfit command. The slope of the fit is 
then compared to two thresholds that were determined from examples of ECG data. The 
point that represents the R peak must have a “before” fit with a positive slope between 1 
and 8 and an “after” fit with a negative slope between -1 and -8. The array index of the R 

 42



peak is then saved for later reference. To ensure that only one point per heart beat is 
specified, once a point is designated as the R peak, the code will ignore the next 1/10 of a 
second of data. Figure 40 below outlines the entire R peak search process. 
 

 

No 

Consider a single ECG 
sample 

Is the voltage above 
the threshold? 

Continue to slope 
calculation 

Yes

No 
Not a peak, no 

further processing 
necessary 

Is the “before” 
slope between 1 

and 8?

No 

Yes 

Is the “after” 
slope between -1 

and -8?

R peak found. Add index number to 
R peak array. Ignore next 1/10 of a 

second of data. 

Figure 40. R peak search flow chart. 

 

10.2.2 QRS complex width 
 
To calculate the QRS complex width, the Q and S points must be known. As can be seen 
in Figure 42, these points lie on either side of the R peak and are junctions at which the 
slope of the ECG waveform sharply changes, with respect to the R peak, from negative to 
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positive. To reduce the effect of noise, the entire ECG data set is passed through a digital 
median filter with a window of 5 points. This process eliminates outliers that may disrupt 
the search for the Q and S points. It could not be performed earlier because the very 
nature of R peaks is exactly what the filter eliminates. 
  
Once the R peaks have been identified, each complex is searched to find the Q and S 
points. A technique similar to that used to find the R peaks is employed for each. Starting 
from the R peak, each point of the complex on either side of the peak is examined and the 
slope of the best line fit of the four points on the side opposite of the R peak is calculated. 
If the slope reaches a certain threshold, determined from examples of ECG data, that 
sample is designated the Q or S point, depending on which side of the complex is being 
processed. For the Q point, the best line fit slope must be less than 1; for the S point, it 
must be greater than -0.5  
 
To improve the search speed, a modification was attempted that used previous Q and S 
point locations to approximate the search start location for the next Q and S point 
locations. This modification averaged the R-Q and R-S distances of the previous data set 
and divided that distance in half. Thus, the search would start at the approximate 
midpoint of each slope of the QRS complex instead of at the R peak. However, after 
comparing processing time both with and without the modification, it was found that this 
addition did not show any speed improvement. Instead it seemed that variation in the 
processing usage of the PC had more of an effect. Therefore, to maintain as simple of a 
code as possible, the modification was not included and the Q and S search always start 
at the R peak. 
 
This algorithm required extensive testing and revision. Since values for the threshold 
slopes were based on empirical data, they had to constantly be tested and modified. Also, 
the algorithm evolved greatly to accommodate all foreseen situations. Due to the fact that 
four data samples are used with the polyfit command, certain restrictions must be 
considered. For the Q point search, the first four samples before the R peak are ignored. 
In the S point search, the last four samples of the data set are ignored. This situation is 
acceptable unless the QRS begins (Q point) or ends (S point) within those eight ignored 
samples. These cases are treated just as if the points were truncated, as explained next. 
 
For a given set of data, it is possible that the ECG was captured such that either the Q or 
S point of a given QRS complex was truncated, depending on the timing of the data set 
collection. In these cases, the Q and S points are set as the first or last data samples of the 
data set. Although this results in a shorter QRS complex width, the effects of this 
inaccurate measurement are mitigated by the averaging of several QRS calculations. This 
compromise is necessary as the first iteration of the algorithm would often freeze in the 
attempt to find a Q or S point that did not exist in the given data set. The final resulting 
algorithm and its implementation is shown in Figures 41 and 42 respectively. 
 
Using the array indices of the Q and S points and the known sampling rate of the data, the 
time that passes between the two can be calculated. The average over approximately 25 
seconds is then displayed in the GUI.  
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Figure 41. Q and S point search flow chart. 
 

 
Figure 42. Example Q point search. 
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Not found Not found 

Not found Found 
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11/Layout and features of the graphical user interface 
 
MATLAB offers easy-to-use resources to create graphical user interface both 
programmatically and by using GUIDE, a graphical user interface development 
environment in MATLAB. While the “drag and drop” feature of GUIDE allows one to 
easily create a GUI, code written to create GUI components allows a better control of the 
GUI. Both of these options were used, as required, to get the design features necessary 
for the project.  
 
The graphical user interface allows the user to display, process and save the data received 
by the XBee module connected to the base station. Since Wipmod is designed to be used 
in a home setting, the GUI was designed to provide a user-friendly environment for any 
individual.  The interface also has an inbuilt function that allows sharing of patient data 
from the base station to a doctor’s office through electronic mail.  
 

11.1/Brief introduction to MATLAB GUI structure 
 
In a MATLAB GUI, all the components placed in the GUI figure are automatically 
incorporated in the handles structure and are identified by the Tag name of each 
component. For instance, if a GUI figure consists of a pushbutton component with a Tag 
name “Cancel_pushbutton”, handles.Cancel_pushbutton is automatically generated in the 
handles structure of the figure. Each component has an associated callback function 
which includes the action that is executed when the component is activated in the GUI. In 
addition to components, handles can also store variable or arrays, also referred to as 
“fields” of the handles structure, which are “global” and available to all the callbacks in 
the GUI. Each time a field of the handles structure is changed or added, guidata(hObject, 
handles) has to be performed to update the handles structure. Further details about 
structures in MATLAB GUI can be found in the help files. The code, with detailed 
comments, is included in Appendix A.  
 

11.2/GUI features 
 
The GUI is divided into three main categories. 

1. Main panel  
2. Alarm Settings panel  
3. Communication Settings panel 

 

11.2.1/Main Panel 
 
All the physiological parameters recorded from the sensors are displayed in this panel. 
These include the body temperature, the heart rate, the width of the QRS complex, the PR 
width and the RT width of the ECG wave of the patient. The algorithms implemented to 
extract information from the ECG waveform are discussed in Section 10.2. In addition to 
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the physiological parameters, the panel consists of a panel for ECG wave display. The 
ECG waveform display is almost real time as it is updated every five seconds, while the 
values of heart rate and widths of various parts of the ECG are updated every twenty five 
seconds. The communication control between the GUI and the remote unit are also 
incorporated in this panel.   
 
A status bar, which gives detailed information about the path location of collected data 
and the status of the data collection process, is displayed at the bottom of the window to 
make the GUI user-friendly.  
 

 
Figure 43. Main panel of the GUI. 
 

11.2.2/Communication Settings panel  
 
This panel contains all the fields necessary for communication with the XBee module and 
for sending the patient data to the doctor. On initialization of the GUI, it automatically 
detects the COM ports available in the computer and allows the user to select the port to 
which the XBee module is connected to. The server settings and email addresses required 
to send the collected physiological data are also specified in this panel. Under the email 
settings, the user needs to enter a password for the sender’s email address. To ensure 
security, the password field is masked with asterisks. Finally, the panel also offers an 
“auto-email send” feature, which automatically sends the patient data by email upon end 
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of data collection. If the feature is disabled, GUI prompts for user permission before 
emailing the data.    
 

 
Figure 44. Communication Settings panel. 
 

11.2.3/Alarm Settings panel  
  
The normal heart rate of an individual varies depending on his or her lifestyle. For 
example, an athlete will have a lower resting heart rate while a person with a sedentary 
lifestyle will have a higher resting heart rate. This implies that for any particular person, 
the heart rate threshold that indicates abnormal behavior might be different from that a 
different individual. The alarm settings panel allows the doctor to customize the threshold 
parameters for the patient alarm system according to the patient’s condition.  
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Once these threshold values are set by a doctor, the user will not have to re-enter the 
settings each time the application is opened. The threshold values from the previous 
session will be preserved and re-used. However, if need be, the panel does allow the user 
to re-adjust the threshold values.  

 
Figure 45. Alarm Settings panel. 
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Appendix A: Wipmod version 1 

 
 
 
 
 
Figure 46. Complete Multisim schematic of Wipmod v. 1.0 
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Figure 47. Ultiboard layout of Wipmod v. 1.0. 
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Appendix B: Wipmod version 2 
 

 
Figure 48. Complete Multisim schematic of Wipmod v. 2.0 
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Figure 49. Final Ultiboard layout of Wipmod v. 2.0 
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Figure 50.  Interior view of the complete remote unit.  
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Figure 51. Exterior view of the complete remote unit with all the sensors connected.  

Appendix C: PIC code 
 
Main.c 
 
#include "F:\E90\PICboard\twoChannelsVer2\main.h" 
//Initialize variables 
int ecg_data,temp_data; 
int ecg_ready =0; 
int temp_ready=0; 
int flag; // flag for temperature data 
#define temp_START 9000;//10= sampling at (1/10)* ECG_sampling rate. 
Set it to about 10000 to sample every 15 secs.  
#define buzz_START 18000;//every 30 secs 
 
// Variables for Digipot control 
#define high_start 3 
#define cs_pin PIN_A5 
#define write  0x11 
 
int high_count;//for writing to digipot 
int digi_marker; //Digi_marker is 1 every 1.5 secs (writes to digipot) 
long int temp_count; //for temp sampling 
int pulse_count;//for pulse ox sampling 
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//Variables Buzzer control 
long int buzz_count; 
long int buzz_snooze;  
int buzz_flag; 
int buzz_active;  
 
//Timer 1 is for digipot control (16 bit timer) 
#INT_TIMER1 
void clock_isr(){ 
   if(--high_count==0){ 
      //output_high(PIN_B4); 
      digi_marker=1;       
      high_count=high_start; 
      //delay_ms(10); 
      //output_low(PIN_B4); 
   } 
} 
 
// RTCC (Timer 0) is for Temp, Pulse Ox, and ECG data sampling 
#INT_RTCC 
 
clock_isr(){ 
   output_high(PIN_B3);//just a sanity check 
   set_adc_channel(0); 
   delay_us(10); 
   read_adc(ADC_START_ONLY); 
   while(!adc_done()); 
 
//ECG sampling 
   ecg_data=read_adc(ADC_READ_ONLY); 
   ecg_ready=1; 
 
//For pulse ox sampling 
   pulse_count=pulse_count+1; 
    
//!   if (pulse_count==2){ //Sampling rate of pulse ox is half the 
sampling rate of ECG 
//!      pulse_ox_ready=1; 
//!      pulse_count=0; 
//!   } 
    
//Temp sampling    
   temp_count--; 
       
   if(temp_count==0){ 
     temp_ready=1; 
     set_adc_channel(1);//Channel 1 is for temperature 
     delay_us(10); 
     read_adc(ADC_START_ONLY); 
     while(!adc_done()); 
     temp_data=read_adc(ADC_READ_ONLY); 
     temp_count= temp_START;    
   } 
    
   read_adc(ADC_START_ONLY); 
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   set_rtcc(250);//ECG sampling at around 600 Hz.  
   
//Controlling the "snooze" feature of the patient alarm        
   if(--buzz_snooze ==0){ 
      buzz_active=TRUE; 
   } 
//Controlling patient alarm on/off       
   if((buzz_flag ==TRUE) && (--buzz_count!=0)){ 
      output_high(PIN_B1); 
   } 
   else{ 
      output_low(PIN_B1); 
      buzz_flag=FALSE; 
      buzz_count=700; 
   } 
 
    
   output_low(PIN_B3); 
} 
 
// Checks RX pin for incoming data and grabs it if available. 
Otherwise, sets retval to 'N' 
char timed_getc() { 
   //unsigned int16 timeout; 
   char retval; 
   if(kbhit()) 
      retval = getc(); 
   else 
      retval = 'N';//'N' for no information 
   return(retval); 
} 
 
 
main() 
{ 
//Initializing variables 
  char PICstart, c; 
  int value = 0, digipot_value = 0x80; 
   
//Set up ADC   
  setup_adc(ADC_CLOCK_DIV_2); 
  setup_adc_ports(AN0_AN1_AN3); 
  
//Set up SPI 
   setup_spi(SPI_MASTER|SPI_L_TO_H|SPI_XMIT_L_TO_H|SPI_CLK_DIV_64); 
    
//Set up the timers 
   setup_timer_1(T1_internal|T1_DIV_BY_8); 
   setup_counters(RTCC_INTERNAL,RTCC_DIV_256);  
    
//Idle PIC until receive "Start" command from Matlab    
   while(true){ 
      PICstart=timed_getc(); 
      if(PICstart=='Y'){ 
      output_high(PIN_B0); 
      output_low(PIN_D7); 
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//Initiating the timers 
         set_timer1(0); 
         set_rtcc(250); 
 
         read_adc(ADC_START_ONLY); 
         enable_interrupts(INT_RTCC); 
         enable_interrupts(INT_TIMER1); 
 
         enable_interrupts(GLOBAL); 
    
    
         temp_count=temp_START; // to control temperatute sampling rate 
         high_count=high_start; // Digipot control sampling. 
         buzz_active= TRUE; // Buzzer control sampling 
 
         buzz_count =0; 
         buzz_flag = FALSE; 
    
//Initializing digipot to start off (Initial gain) 
         output_low(cs_pin); 
         spi_write(write); 
         spi_write(digipot_value); 
         output_high(cs_pin); 
    
         while (TRUE){              
            c=timed_getc(); 
             
//PIN_B5 is for the buzzer snooze 
            if (!input(PIN_B5)) { 
               buzz_active= FALSE; 
               buzz_snooze= buzz_START; 
            }     
                   
            if( (c=='B') && (buzz_active==TRUE)){ 
               //This will turn buzzer on. PIN_B1 reserved for the 
buzzer. 
               buzz_flag = TRUE;  
                             
             } 
//Sending data over Xbee to PC                   
            if ((temp_ready==0) && (ecg_ready==1) ){ 
               ecg_ready=0; 
               if(ecg_data>value){ 
                  value = ecg_data; //Tracking the maximum value of the 
ECG data for digipot settings 
               } 
               printf("%c",ecg_data); 
                       
            } 
                   
            if((temp_ready==1)){ 
               flag=255; 
               printf("%c%c",flag,temp_data); 
               temp_ready=0; 
               } 
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//Adjust the digipot value according to the QRS peak value found in 
line 181 
            if(digi_marker){ 
                  
                 if(value<=200){  //If the ECG signal is lower than we 
want, 
                    
                    if(digipot_value > 8){ 
                      output_high(PIN_B4); 
                      digipot_value = digipot_value-(4);  //Decrease 
the digipot value (increase gain) 
                    } 
                 } 
                 else if(value>=220){   //If the ECG signal is higher 
than we want, 
                    if (digipot_value <  248){ 
                       digipot_value = digipot_value+(4);  //Increase 
the digipot value (decrease gain) 
                    } 
                    else{ 
                       digipot_value=255; 
                    } 
                 } 
//Write the new value to the digipot 
               output_low(cs_pin); 
               spi_write(write); 
               spi_write(digipot_value); 
               output_high(cs_pin); 
               value = 0; 
               digi_marker=0; 
               output_low(PIN_B4); 
            } 
         } 
      } 
      else{ 
         output_high(PIN_D7); 
         output_low(PIN_B0); 
      } 
   } 
} 
 
Main.h  
 
#include <16F877A.h> 
#device adc=8 
#FUSES NOWDT                    //No Watch Dog Timer 
#FUSES XT                      //Resistor/Capacitor Osc with CLKOUT 
#FUSES NOPUT                    //No Power Up Timer 
#FUSES NOPROTECT                //Code not protected from reading 
#FUSES NODEBUG                  //No Debug mode for ICD 
#FUSES NOBROWNOUT               //No brownout reset 
#FUSES NOLVP                    //No low voltage prgming, B3(PIC16) or 
B5(PIC18) used for I/O 
#FUSES NOCPD                    //No EE protection 
#FUSES NOWRT                    //Program memory not write protected 
#use delay(clock=4000000) 
#use rs232(baud=9600,parity=N,xmit=PIN_C6,rcv=PIN_C7,bits=8) 
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Appendix D: Matlab code for GUI  design 
 
function varargout = GUI(varargin) 
%GUI M-file for GUI.fig 
%      GUI, by itself, creates a new GUI or raises the existing 
%      singleton*. 
% 
%      H = GUI returns the handle to a new GUI or the handle to 
%      the existing singleton*. 
% 
%      GUI('Property','Value',...) creates a new GUI using the 
%      given property value pairs. Unrecognized properties are passed 
via 
%      varargin to GUI_OpeningFcn.  This calling syntax produces a 
%      warning when there is an existing singleton*. 
% 
%      GUI('CALLBACK') and GUI('CALLBACK',hObject,...) call the 
%      local function named CALLBACK in GUI.M with the given input 
%      arguments. 
% 
  
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only 
one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
  
% Edit the above text to modify the response to help GUI 
  
% Last Modified by GUIDE v2.5 28-Apr-2008 13:40:10 
  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @GUI_OpeningFcn, ... 
                   'gui_OutputFcn',  @GUI_OutputFcn, ... 
                   'gui_LayoutFcn',  [], ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
   gui_State.gui_Callback = str2func(varargin{1}); 
end 
  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
  
  
% --- Executes just before GUI is made visible. 
function GUI_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
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% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   unrecognized PropertyName/PropertyValue pairs from the 
%            command line (see VARARGIN) 
  
  
%All other panels besides the main panel is turned off 
set(handles.main_panel,'Visible','on'); 
set(handles.settings_panel, 'Visible','off'); 
  
% Initialization 
handles.ComPort=''; 
handles.Patient_ID=''; 
  
%Flag to indicate whether data collection process is ON or OFF 
% false - data collection inactive; true- data collection active 
handles.active= false;  
  
% handles to store ECG and temperature data 
handles.ecg_data=[]; 
handles.temp_data=[]; 
  
%Enabling and Disabling buttons in the main panel 
set(handles.Save_pushbutton,'Enable','on'); 
set(handles.Stop_pushbutton,'Enable','off'); 
set(handles.Start_pushbutton,'Enable','off'); 
  
set(handles.Temp_Disp,'String','Temp'); 
  
% Intializes email settings 
set_mailSettings(handles); 
  
  
%Looks for available ports in the computer 
find_ports_Callback(hObject, eventdata, handles) 
handles=guidata(hObject); 
  
% Get values saved from previous GUI session. The values are stored in  
% text files in the working directory. 
[HR_low,HR_high,temp_low, temp_high,ox_low] = 
textread('threshold_info.txt','%s %s %s %s %s', 1); 
[sender, receipient] = textread('email_info.txt','%s %s', 1); 
  
%By default, email autosend is ON 
set(handles.auto_send_checkbox,'Value',1); 
  
% Set values of the fields in the GUI 
set(handles.sender_email,'String',char(sender)); 
set(handles.receipient_email,'String',char(receipient)); 
  
set(handles.HR_low,'String',char(HR_low)); 
set(handles.HR_high,'String',char(HR_high)); 
set(handles.temp_low,'String',char(temp_low)); 

 62



set(handles.temp_high,'String',char(temp_high)); 
set(handles.oxygen_low,'String',char(ox_low)); 
  
  
% default temp unit is celsius 
set(handles.temp_unit,'Value',1); 
set(handles.temp_unit2,'Value',1); 
  
  
% Update handles structure 
handles.output = hObject; 
guidata(hObject, handles); 
  
  
  
% UIWAIT makes GUI wait for user response (see UIRESUME) 
%uiwait(handles.GUI_figure); 
  
  
% --- Outputs from this function are returned to the command line. 
function varargout = GUI_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Get default command line output from handles structure 
varargout{1} = handles.output; 
  
  
  
function HR_Disp_Callback(hObject, eventdata, handles) 
% hObject    handle to HR_Disp (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of HR_Disp as text 
%        str2double(get(hObject,'String')) returns contents of HR_Disp 
as a double 
  
  
% --- Executes during object creation, after setting all properties. 
function HR_Disp_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to HR_Disp (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
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end 
  
  
  
function Temp_Disp_Callback(hObject, eventdata, handles) 
% hObject    handle to Temp_Disp (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of Temp_Disp as text 
%        str2double(get(hObject,'String')) returns contents of 
Temp_Disp as a double 
  
  
% --- Executes during object creation, after setting all properties. 
function Temp_Disp_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to Temp_Disp (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
% --- Executes on button press in Start_pushbutton. 
function Start_pushbutton_Callback(hObject, eventdata, handles) 
% hObject    handle to Start_pushbutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see 
GUIDATA)handles.active = true  
  
%disable "start" button after it is pushed until "stop" is pushed 
%and enable "stop" button 
set(handles.Start_pushbutton,'Enable','off'); 
set(handles.Stop_pushbutton,'Enable','on'); 
  
%handles.ComPort is set in find_ports_Callback 
handles.port = serial(handles.ComPort,'BaudRate',9600); 
%Set input buffer size 
set(handles.port,'InputBufferSize',100000); 
  
%objects pointing to the data files. 
file_all= fopen('all_data.csv','w'); % stores all data (used for 
debugging) 
file_ECG= fopen('ECG_data.csv','w'); 
file_temp= fopen('temp_data.csv','w'); 
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handles.active = true;  
guidata(hObject, handles)  
temp_data=[]; 
ecg_data=[]; 
pulse_ox_data=[]; 
  
% This should probably be placed in the OpeningFcn so that fopen causes  
%errors we can ask the user to select the other available COM port 
% try 
%     fopen(handles.port); 
% catch ME 
%      
% end 
  
%Opens the serial port 
fopen(handles.port); 
flushinput(handles.port); %Clears the buffer  
  
fprintf(handles.port, 'Y'); %Send start signal to the PIC 
microcontroller 
  
% For Heart rate estimation 
count = 0; 
QRS_update = -1; %initialized counter for QRS step-by-step calculation 
ecg_for_R=[]; %stores ecg data used for R-peak estimation 
  
  
while (handles.active == 1)     
  
    numdata=3000; % total number of data collected from the serial port 
at a time 
    out_c=fread(handles.port,numdata); % read data from the port 
    out=out_c';     
    fprintf(file_all,'%d,',out); %write data to file 
    [max_val,index]=max(out); %find the maximum value in the array and 
its index 
     
    %Data parsing 
    %Temperature data is followed by 255. The rest of the data is ECG. 
    %Pulse oximeter is not incorporated yet.  
     
    if(max_val==255) %temp data is in the array 
         
        if (index~=numdata) 
            temp_data=[out(index+1)]; 
        end 
        if(index~=1) % rest of the data is ecg_data 
            ecg_data=[out(1:(index-1)), out((index+2):numdata)]; 
        else 
            ecg_data=[ out(3:numdata) ]; 
        end 
         
    else % no temp_data 
        ecg_data=out; 
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    end 
  
%   ************************************** 
%   Data parsing code if pulse ox was also incorporated. In this case 
it is 
%   assumed that 254 is used as a flag for pulse ox data, 255 as a flag 
for 
%   temperature data (as before) and the ECG data is not flagged.  
  
%      [max_val,index]=max(out); 
%      pulse_flags = find(out==254); % indices of the pulse_flags 
%      pulse_index= pulse_flags + 1; % indices of the pulse_ox data 
%       
%       
%      other_data_index = [pulse_flags, pulse_index, index+1]; 
%      
%      % collect ECG data 
%      for(m=1:numdata) 
%          
%         p = (other_data_index ==m); 
%         if (max(p)~=1) 
%             ecg_data =[ecg_data, out(m)]; 
%         end 
%          
%     end 
%       
%  
%     % collect temp data 
%      if(max_val==255) %temp data is in the array 
%           
%          if (index~=numdata) 
%              temp_data=[temp_data,out(index+1)]; 
%          end 
%           
%       end 
%       
%      % collect all pulse ox data 
%      for (k=1:length(pulse_index)) 
%         pulse_ox_data = [pulse_ox_data, out(pulse_index(k))]; 
%      end 
%         
%****************************************************** 
     
    %Write to file 
    fprintf(file_ECG,'%d,',ecg_data'); 
    fprintf(file_temp,'%d,',temp_data'); 
     
    %Used for debugging 
    ecg_data'; 
    temp_data; 
%     pulse_ox_data'; 
     
    if(length(temp_data)~=0) 
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    %   Temperature processing  
    %   y = 40.126x - 51.574 Calibration curve for the temperature 
sensor 
     
        temp_Volts= 3.3 * (temp_data/255); %Converting decimal value to 
volts 
        Temp_C = 40.126*temp_Volts - 51.574;%translating Voltage to 
temperature  
        Temp_F = Temp_C * (9/5) + 32 ; %Equation relating fahrenheit 
and celsius 
           
        % Converting string to a double 
        temp_low = str2double(get(handles.temp_low,'String')); 
        temp_high = str2double(get(handles.temp_high,'String')); 
         
         
        %% Alarm settings check for buzzer for Temperature 
abnormalities 
        if (get(handles.temp_unit,'Value')==1) %If Celsius is selected 
            set(handles.Temp_Disp,'String',num2str(Temp_C)); 
            if((Temp_C < temp_low) || (Temp_C > temp_high)) 
                fprintf(handles.port,'%c','B'); % 'B'- to start buzzer 
            else 
                fprintf(handles.port,'%c','P'); % 'P' does not mean 
anything in particular.  
                                                %It is sent so that 
signal 
                                                %strength indicator 
(RSSI) blinks 
                                                %in the remote unit. As 
it 
                                                %does so only when it 
                                                %receives anything. 
                                               
            end 
        elseif(get(handles.temp_unit,'Value')==2) % If Fahrenheit is 
selected 
            set(handles.Temp_Disp,'String',num2str(Temp_F)); 
            if((Temp_F<temp_low) || (Temp_F>temp_high)) 
                fprintf(handles.port,'%c','B'); % same as above 
            else 
                fprintf(handles.port,'%c','P'); % same as above 
            end 
        end 
               
    end 
     
    %   ECG signal processing 
  
    %Variable initialization 
    threshold_value = 155; % minimum amplitude threshold for R-peak 
detection 
    QRS_update = -1; %initialized counter for QRS step-by-step 
calculation 
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    count = 0; 
     
    %expect no QRS in the another 1/10 of a sec.  
  
    current = -62; % only for initialization purposes 
    R_peak_index = []; % an array to keep track of the array indices of 
where R-peak  
                       % is located 
     
    ecg_for_R=[ecg_for_R, ecg_data]; %Data array to find the R peaks (5 
screenshots) 
    count=count+1; % count is used to keep track that we have (5 * 
numdata) datapoints for heart rate calculation 
                    % In other words, heart rate update every 5 
screenshots 
                    % of data 
    QRS_update = QRS_update +1;%  
     
    if (mod(count,5)==0) %For every 5 screenshots...(5 * numdata) 
datapoints 
        count; 
        for (i=1:length(ecg_for_R)-4) 
            if (ecg_for_R(i)>threshold_value) 
                
                if(i>4) 
                    %finding slope over 5 points to reduce the effect 
of 
                    %outliers, but not get rid of them (R peaks would 
be 
                    %removed) 
                    i; 
                    x=1:5; 
                    before_fit = polyfit(x,ecg_for_R(i-4:i),1); % slope 
of a linear fit on 5 pts before the current data point 
                    after_fit = polyfit(x,ecg_for_R(i: i+4),1);% slope 
of a linear fit on 5 pts after the current data point 
                    Beforedata= ecg_for_R(i-4:i); 
                    Afterdata= ecg_for_R(i:i+4); 
                     
                    if((before_fit(1)>1)&& (before_fit(1)<8) && (i > 
(current + 62))) 
                        if((after_fit(1)<-1) && (after_fit(1)>-8)) 
                            R_peak_index=[R_peak_index;i] 
                            current = i; 
                        end 
                   nd  e
                end 
            end 
        end 
         
%       Calculating Heart Rate 
        diff=[]; 
  
        for (j=1:(length(R_peak_index)-1)) 
            diff(j) = R_peak_index(j+1) - R_peak_index(j); 
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        end 
        heart_rate = 60/(mean(diff)/620) % beats per min 
         
%       %Buzzer check  
         
        HR_low = str2double(get(handles.HR_low,'String')); 
        HR_high= str2double(get(handles.HR_high,'String')); 
             
        %% Alarm settings check for buzzer for heart rate abnormalities 
        if ((heart_rate>HR_high)||(heart_rate<HR_low)) 
            fprintf(handles.port,'%c','B'); % see comments above (temp 
abnormalities) 
        else 
            fprintf(handles.port,'%c','P'); 
        end 
     
        count = 0;  %reset count 
        set(handles.HR_Disp,'String',num2str(heart_rate)); 
    end 
     
    %Plotting ECG 
    ecg_Volts= 3.3 * (ecg_data/255); %Converting decimal value to volts 
    handles = guidata(hObject);  
    pause(1); % this pause is required to make the callback 
interruptible  
               % this way the data collection can be stopped using the 
               % Stop_pushbutton callback 
    plot(ecg_Volts); 
    time = numdata*(1/620); %Converting number of samples to time 
    axis([0 numdata 0 3.5]); 
  
%   Search for Q and S points to calculate QRS duration  
    Q_index = [];% array containing indices of array where Q is found 
    S_index = [];% array containing indices of array where S is found 
  
    if (mod(count,5)==0) 
%       Median filter to remove outliers 
        ecg_for_QRS = medfilt1(ecg_for_R,5); 
  
        for(k=1:length(R_peak_index)) 
            L = 0; 
            p = 0; 
%         finding Q_index 
            Q_found = 0; 
            while(Q_found==0) 
                m = R_peak_index(k)-L; 
                if (m>4) 
                    Q_fit = polyfit(x,ecg_for_QRS(m-4:m),1);%slope of a 
linear fit 
                    if (Q_fit(1)<1) 
                        Q_index = [Q_index;m]; 
                        Q_found = 1; 
                    else 
                        L=L+1; 
                    end 
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                else 
                    Q_index = [Q_index;1]; 
                    Q_found = 1; 
%                 If Q is not found within the array window, which 
should 
%                 only happen at the first R peak, use the first value 
%                 of the array. Necessary to prevent an infinite loop. 
  
                end 
            end 
  
%         finding S_index 
            S_found = 0; 
            while(S_found==0) 
                n = R_peak_index(k)+p; 
                if (n<=(length(ecg_for_QRS) - 4)) 
                    S_fit = polyfit(x,ecg_for_QRS(n:(n+4)),1); 
  
                    if (S_fit(1)>-0.5) 
                        S_index = [S_index;n]; 
                        S_found = 1; 
                    else 
                        p=p+1; 
                    end 
                elseif (n>(length(ecg_for_QRS)-4) && 
n<length(ecg_for_QRS)) 
%                 To evaluate points at the end of the screenshot, use 
%                 previous points to calculate slope 
  
                    S_fit = polyfit(x,ecg_for_QRS((n-4):n),1); 
                    if (S_fit(1)>-0.5) 
                        S_index = [S_index;n]; 
                        S_found = 1; 
                    else 
                        p=p+1; 
                    end 
                else 
                    S_index = [S_index;n]; 
                    S_found = 1; 
                  
%                 If the S wave is not found within the screenshot, use 
the 
%                 last value of the screenshot for QRS-width 
calculation. 
                end 
            end 
        end 
  
  
  
    %     Calculate complex width 
        Individual_widths = ((S_index-Q_index)./620)*1000;%QRS complex 
width in ms 
        diff = S_index-Q_index; 
        QRS_width = sum(Individual_widths)/length(Individual_widths); 
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        ecg_for_R=[];% clear out data array for next set 
       
        set(handles.QRS_Disp,'String',num2str(QRS_width)); 
    end 
%------------------------------------------ 
  
end%end of while loop 
  
%close all the txt data file.  
fclose(file_all); 
fclose(file_ECG); 
fclose(file_temp); 
  
zipfile_name= get(handles.File_location,'String'); 
zip(zipfile_name,{'ECG_data.csv','temp_data.csv'}); 
  
%Initialize email settings 
set_mailSettings(handles); 
  
auto_send = get(handles.auto_send_checkbox,'Value'); 
  
%Date and time stamp - to include int the email 
date_time_stamp= datestr(now); 
  
attachment = strcat(zipfile_name,'.zip'); 
  
%If autosend is ON 
if (auto_send ~= 0) 
%Send the email     
     
sendmail('anima.singh@gmail.com',handles.Patient_ID,date_time_stamp,att
achment); 
end 
  
%close ports 
fclose(handles.port);    
delete(handles.port); 
clear handles.port; 
  
  
% --- Executes on button press in Stop_pushbutton. 
function Stop_pushbutton_Callback(hObject, eventdata, handles) 
% hObject    handle to Stop_pushbutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
handles.active=false 
flag='active false' 
guidata(hObject, handles) ; %updates the value of handles changed 
locally to be available globally. 
handles = guidata(hObject); % makes a local copy of the handle 
  
%re-enable "start" button after "stop" is pushed 
set(handles.Stop_pushbutton,'Enable','off'); 
guidata(hObject, handles) ; 
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handles = guidata(hObject); 
  
  
  
function set_mailSettings(handles) 
%Define these variables appropriately: 
mail = 'wipmod@gmail.com'; %Your GMail email address 
%mail = get(handles.sender_email,'String'); 
  
h=gcf ; %(for * password) 
%password = 'Cheever90'; %Your GMail password 
password = get(h,'UserData'); 
  
%%%%%%%%%%%Print handles for test 
  
%n='in set_mailSettings' 
%handles 
  
smtp = get(handles.smtp_server,'String'); 
  
%Then this code will set up the preferences properly: 
setpref('Internet','E_mail',mail); 
setpref('Internet','SMTP_Server',smtp); 
setpref('Internet','SMTP_Username',mail); 
setpref('Internet','SMTP_Password',password); 
props = java.lang.System.getProperties; 
props.setProperty('mail.smtp.auth','true'); 
props.setProperty('mail.smtp.socketFactory.class', 
'javax.net.ssl.SSLSocketFactory'); 
props.setProperty('mail.smtp.socketFactory.port','465'); 
  
  
  
% --- Executes on button press in Save_pushbutton. 
function Save_pushbutton_Callback(hObject, eventdata, handles) 
% hObject    handle to Save_pushbutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
SaveWindow('GUI',handles.GUI_figure); 
  
  
% --- Executes when GUI_figure is resized. 
function GUI_figure_ResizeFcn(hObject, eventdata, handles) 
% hObject    handle to GUI_figure (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
  
     
  
  
% -------------------------------------------------------------------- 
function main_Callback(hObject, eventdata, handles) 
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% hObject    handle to main (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
set(handles.main_panel, 'Visible','on'); 
set(handles.settings_panel, 'Visible','off'); 
  
  
  
  
% -------------------------------------------------------------------- 
function settings_menu_Callback(hObject, eventdata, handles) 
% hObject    handle to settings_menu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
set(handles.main_panel, 'Visible','off'); 
set(handles.settings_panel, 'Visible','on'); 
  
  
  
% --- Executes on button press in find_ports. 
%**IMPORTANT*** 
%THIS BUTTON IS NOT VISIBLE IN THE GUI. BUT IS REQUIRED TO FIND THE  
%AVAILABLE PORTS. 
%This code was obtained from 
%http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?object
Id=8499&objectType=file 
%Author:    Jeremy Smith 
function find_ports_Callback(hObject, eventdata, handles) 
% hObject    handle to find_ports (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
try 
    s=serial('IMPOSSIBLE_NAME_ON_PORT');fopen(s);  
catch 
    lErrMsg = lasterr; 
end 
  
%Start of the COM available port 
lIndex1 = findstr(lErrMsg,'COM'); 
%End of COM available port 
lIndex2 = findstr(lErrMsg,'Use')-3; 
  
lComStr = lErrMsg(lIndex1:lIndex2); 
  
%Parse the resulting string 
lIndexDot = findstr(lComStr,','); 
  
% If no Port are available 
if isempty(lIndex1) 
    lCOM_Port{1}=''; 
    return; 
end 
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% If only one Port is available 
if isempty(lIndexDot) 
    lCOM_Port{1}=lComStr; 
    return; 
end 
  
lCOM_Port{1} = lComStr(1:lIndexDot(1)-1); 
  
for i=1:numel(lIndexDot)+1 
    % First One 
    if (i==1) 
        lCOM_Port{1,1} = lComStr(1:lIndexDot(i)-1); 
    % Last One 
    elseif (i==numel(lIndexDot)+1) 
        lCOM_Port{i,1} = lComStr(lIndexDot(i-1)+2:end);        
    % Others 
    else 
        lCOM_Port{i,1} = lComStr(lIndexDot(i-1)+2:lIndexDot(i)-1); 
    end 
end     
handles.avail_ports= lCOM_Port; 
  
%set(handles.ports_menu,'String',[handles.avail_ports{2},... 
%    handles.avail_ports{1}]); 
  
set(handles.ports_menu,'String',{handles.avail_ports{2},handles.avail_p
orts{1}}); 
  
val = get(handles.ports_menu,'Value'); 
str = get(handles.ports_menu, 'String'); 
handles.ComPort = str{val}; 
  
guidata(hObject, handles); 
  
  
  
function smtp_server_Callback(hObject, eventdata, handles) 
% hObject    handle to smtp_server (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of smtp_server as text 
%        str2double(get(hObject,'String')) returns contents of 
smtp_server as a double 
  
  
% --- Executes during object creation, after setting all properties. 
function smtp_server_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to smtp_server (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
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%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
% --- Executes on selection change in ports_menu. 
function ports_menu_Callback(hObject, eventdata, handles) 
% hObject    handle to ports_menu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = get(hObject,'String') returns ports_menu contents 
as cell array 
%        contents{get(hObject,'Value')} returns selected item from 
ports_menu 
val = get(hObject,'Value'); 
str = get(hObject, 'String'); 
  
handles.ComPort = str{val}; 
  
guidata(hObject,handles) 
  
% --- Executes during object creation, after setting all properties. 
function ports_menu_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to ports_menu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
% --- Executes on button press in auto_send_checkbox. 
function auto_send_checkbox_Callback(hObject, eventdata, handles) 
% hObject    handle to auto_send_checkbox (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hint: get(hObject,'Value') returns toggle state of auto_send_checkbox 
  
  
  
function receipient_email_Callback(hObject, eventdata, handles) 
% hObject    handle to receipient_email (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
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% Hints: get(hObject,'String') returns contents of receipient_email as 
text 
%        str2double(get(hObject,'String')) returns contents of 
receipient_email as a double 
  
  
% --- Executes during object creation, after setting all properties. 
function receipient_email_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to receipient_email (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
  
function sender_email_Callback(hObject, eventdata, handles) 
% hObject    handle to sender_email (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of sender_email as text 
%        str2double(get(hObject,'String')) returns contents of 
sender_email as a double 
  
  
% --- Executes during object creation, after setting all properties. 
function sender_email_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to sender_email (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
  
function password_Callback(hObject, eventdata, handles) 
% hObject    handle to password (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of password as text 
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%        str2double(get(hObject,'String')) returns contents of password 
as a double 
  
  
% --- Executes during object creation, after setting all properties. 
function password_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to password (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
%% Hide Password 
%%This function is specified as a keypress-function of 'password' edit 
text 
%%box.   
%%Downloaded from 
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectI
d 
%% =8499&objectType=file 
%%Author:Jeremy Smith 
function KeyPress_Function(hObject,eventdata,handles) 
% Function to replace all characters in the password edit box with 
% asterixes 
h=gcf; 
password = get(h,'Userdata'); 
key= get(h,'currentkey'); 
  
switch key 
    case 'backspace' 
        password = password(1:end-1); % Delete the last character in 
the password 
    case 'return'  % This cannot be done through callback without 
making tab to the same thing 
        gui = getappdata(0,'logindlg'); 
        OK([],[],gui.main); 
    case 'delete' 
        password = password(1:end-1); 
    case 'tab'  % Avoid tab triggering the OK button 
        gui = getappdata(0,'logindlg'); 
        uicontrol(gui.OK); 
    otherwise 
        password = [password, get(h,'currentcharacter')]; % Add the 
typed character to the password 
end 
  
SizePass = size(password); % Find the number of asterixes 
if SizePass(2) > 0 
    asterix(1,1:SizePass(2)) = '*'; % Create a string of asterixes the 
same size as the password 

 77



    set(handles.password,'String',asterix) % Set the text in the 
password edit box to the asterix string 
else 
    set(handles.password,'String','') 
end 
  
set(h,'Userdata',password); % Store the password in its current state 
  
  
% --- Executes on button press in close_app_button. 
function close_app_button_Callback(hObject, eventdata, handles) 
% hObject    handle to close_app_button (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
user_response = modaldlg('Title','Confirm Close') 
switch lower(user_response) 
case 'no' 
    % take no action 
case 'yes' 
    % Prepare to close GUI application window 
    %                  . 
    %                  . 
    %                  . 
    delete(handles.GUI_figure) 
end 
  
% --- Executes on selection change in temp_unit. 
function temp_unit_Callback(hObject, eventdata, handles) 
% hObject    handle to temp_unit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = get(hObject,'String') returns temp_unit contents as 
cell array 
%        contents{get(hObject,'Value')} returns selected item from 
temp_unit 
if (get(hObject,'Value')==2)%if user switches from celsius to 
fahrenheit 
    set(handles.temp_unit2,'Value',2); 
     
    a= get(handles.Temp_Disp,'String'); 
    b= get(handles.temp_low,'String'); 
    c= get(handles.temp_high,'String'); 
         
    tempC = str2double(a); 
    tempF = tempC *(9/5)+ 32; 
  
    tempC_low = str2double(b); 
    tempF_low = tempC_low *(9/5)+ 32; 
     
    tempC_high = str2double(c); 
    tempF_high = tempC_high*(9/5)+ 32; 
     
    set(handles.Temp_Disp,'String',num2str(tempF)) 
    set(handles.temp_low,'String',num2str(tempF_low)) 
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    set(handles.temp_high,'String',num2str(tempF_high)) 
     
     
elseif (get(hObject,'Value')==1) % if user switches from fahrenheit to 
celsius 
    set(handles.temp_unit2,'Value',1); 
       
     
    a= get(handles.Temp_Disp,'String') 
    b= get(handles.temp_low,'String'); 
    c= get(handles.temp_high,'String'); 
     
    tempF = str2double(a); 
    tempC = (tempF-32)*(5/9); 
    
    tempF_low = str2double(b); 
    tempC_low = (tempF_low-32)*(5/9); 
     
    tempF_high = str2double(c); 
    tempC_high = (tempF_high-32)*(5/9); 
     
    set(handles.Temp_Disp,'String',num2str(tempC)) 
    set(handles.temp_low,'String',num2str(tempC_low)) 
    set(handles.temp_high,'String',num2str(tempC_high)) 
     
end 
  
  
  
  
  
  
  
% --- Executes during object creation, after setting all properties. 
function temp_unit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to temp_unit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
  
  
% --- Executes on button press in Save_email. 
function Save_email_Callback(hObject, eventdata, handles) 
% This button saves email addresses from previous GUI sessions 
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% hObject    handle to Save_email (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
fid = fopen('email_info.txt','w'); 
  
class((get(handles.sender_email,'String'))); 
  
a = get(handles.sender_email,'String'); 
b= get(handles.receipient_email,'String'); 
  
fprintf(fid,'%s ',a); 
fprintf(fid,'%s ',b); 
fclose(fid); 
  
function edit13_Callback(hObject, eventdata, handles) 
% hObject    handle to edit13 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit13 as text 
%        str2double(get(hObject,'String')) returns contents of edit13 
as a double 
  
  
% --- Executes during object creation, after setting all properties. 
function edit13_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit13 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
  
function edit15_Callback(hObject, eventdata, handles) 
% hObject    handle to edit15 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit15 as text 
%        str2double(get(hObject,'String')) returns contents of edit15 
as a double 
  
  
% --- Executes during object creation, after setting all properties. 
function edit15_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit15 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
  
function QRS_Disp_Callback(hObject, eventdata, handles) 
% hObject    handle to QRS_Disp (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of QRS_Disp as text 
%        str2double(get(hObject,'String')) returns contents of QRS_Disp 
as a double 
  
  
% --- Executes during object creation, after setting all properties. 
function QRS_Disp_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to QRS_Disp (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
  
function HR_low_Callback(hObject, eventdata, handles) 
% hObject    handle to HR_low (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of HR_low as text 
%        str2double(get(hObject,'String')) returns contents of HR_low 
as a double 
  
  
% --- Executes during object creation, after setting all properties. 
function HR_low_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to HR_low (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
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% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
  
function HR_high_Callback(hObject, eventdata, handles) 
% hObject    handle to HR_high (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of HR_high as text 
%        str2double(get(hObject,'String')) returns contents of HR_high 
as a double 
  
  
% --- Executes during object creation, after setting all properties. 
function HR_high_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to HR_high (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
  
function temp_low_Callback(hObject, eventdata, handles) 
% hObject    handle to temp_low (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of temp_low as text 
%        str2double(get(hObject,'String')) returns contents of temp_low 
as a double 
  
  
% --- Executes during object creation, after setting all properties. 
function temp_low_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to temp_low (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 

 82



%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
  
function temp_high_Callback(hObject, eventdata, handles) 
% hObject    handle to temp_high (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of temp_high as text 
%        str2double(get(hObject,'String')) returns contents of 
temp_high as a double 
  
  
% --- Executes during object creation, after setting all properties. 
function temp_high_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to temp_high (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
% --- Executes on button press in celsius_radio. 
function celsius_radio_Callback(hObject, eventdata, handles) 
% hObject    handle to celsius_radio (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hint: get(hObject,'Value') returns toggle state of celsius_radio 
  
  
% --- Executes on button press in fahrenheit_radio. 
function fahrenheit_radio_Callback(hObject, eventdata, handles) 
% hObject    handle to fahrenheit_radio (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hint: get(hObject,'Value') returns toggle state of fahrenheit_radio 
  
  
% --- Executes on button press in alarm_set_pushbutton. 
function alarm_set_pushbutton_Callback(hObject, eventdata, handles) 
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% Saves alarm settings to a txt file so that they can be uploaded next 
time 
% GUI is opened.  
% hObject    handle to alarm_set_pushbutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
fid = fopen('threshold_info.txt','w'); 
  
a= get(handles.HR_low,'String'); 
b= get(handles.HR_high,'String'); 
c= get(handles.temp_low,'String'); 
d= get(handles.temp_high,'String'); 
e= get(handles.oxygen_low,'String'); 
  
fprintf(fid,'%s ',a); 
fprintf(fid,'%s ',b); 
fprintf(fid,'%s ',c); 
fprintf(fid,'%s ',d); 
fprintf(fid,'%s ',e); 
  
fclose(fid); 
  
function oxygen_low_Callback(hObject, eventdata, handles) 
% hObject    handle to oxygen_low (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of oxygen_low as text 
%        str2double(get(hObject,'String')) returns contents of 
oxygen_low as a double 
  
  
% --- Executes during object creation, after setting all properties. 
function oxygen_low_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to oxygen_low (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
% --- Executes on selection change in temp_unit2. 
function temp_unit2_Callback(hObject, eventdata, handles) 
% hObject    handle to temp_unit2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
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% Hints: contents = get(hObject,'String') returns temp_unit2 contents 
as cell array 
%        contents{get(hObject,'Value')} returns selected item from 
temp_unit2 
  
if (get(hObject,'Value')==2)%if user switches from celsius to 
fahrenheit 
    set(handles.temp_unit,'Value',2); 
     
    a= get(handles.Temp_Disp,'String'); 
    b= get(handles.temp_low,'String'); 
    c= get(handles.temp_high,'String'); 
         
    tempC = str2double(a); 
    tempF = tempC *(9/5)+ 32; 
  
    tempC_low = str2double(b); 
    tempF_low = tempC_low *(9/5)+ 32; 
     
    tempC_high = str2double(c); 
    tempF_high = tempC_high*(9/5)+ 32; 
     
    set(handles.Temp_Disp,'String',num2str(tempF)) 
    set(handles.temp_low,'String',num2str(tempF_low)) 
    set(handles.temp_high,'String',num2str(tempF_high)) 
     
     
elseif (get(hObject,'Value')==1) % if user switches from fahrenheit to 
celsius 
    set(handles.temp_unit,'Value',1); 
    a= get(handles.Temp_Disp,'String') 
    b= get(handles.temp_low,'String'); 
    c= get(handles.temp_high,'String'); 
     
    tempF = str2double(a); 
    tempC = (tempF-32)*(5/9); 
    
    tempF_low = str2double(b); 
    tempC_low = (tempF_low-32)*(5/9); 
     
    tempF_high = str2double(c); 
    tempC_high = (tempF_high-32)*(5/9); 
     
    set(handles.Temp_Disp,'String',num2str(tempC)) 
    set(handles.temp_low,'String',num2str(tempC_low)) 
    set(handles.temp_high,'String',num2str(tempC_high)) 
end 
  
% --- Executes during object creation, after setting all properties. 
function temp_unit2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to temp_unit2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
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% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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