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Abstract

This report presents an architecture for a specialized digital processor to accelerate evaluation and
training of cascade-correlation neural networks by parallelization of multiply-accumulate operations.
Design details are given for a prototype with 4 input, 1 output, 16 hidden, and 4 candidate nodes,
implemented on an FPGA in communication with a host PC. Table 1 summarizes the performance
attained for P training patterns. Technical documentation, issue tracking, and source code for the
project is available to the public via a web-based project management tool.1

Operation Clock Cycles
Evaluation 379

Candidate Training Epoch 978P + 303
Output Retraining Epoch 783P + 2

Table 1: Performance of the accelerator peripheral.

1http://130.58.84.125/dgerman1_e90
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1 Introduction

When trained to solve standard benchmark problems, Fahlman’s cascade-correlation neural networks con-
verge in many fewer epochs than conventional back-propagation networks [9]. Nonetheless, training is often
a bottleneck in the development cycle for artificial intelligence (AI) systems containing software implemen-
tations of large cascade-correlation networks. Research in the area would benefit from faster performance
than general-purpose computing can presently provide.

As Fahlman’s seminal paper notes, cascade-correlation is “attractive for parallel computation” because
candidate nodes can be trained independently [9]. Later research investigates simplifications of cascade-
correlation for parallel hardware, but gives only theoretical or simulated results [6, 1, 14, 12]. Eldredge and
Hutchings report an actual hardware implementation of back-propagation [8], but the literature contains no
similar work for cascade-correlation.

This report presents a scalable computing architecture for highly parallel evaluation and training of
cascade-correlation networks. It documents a proof-of-concept implementation of the architecture for a
small network and reports the performance attained. Project management strategies, product cost, and
marketability are discussed. Complete source code is available via the Internet.2

2 Theory

This section gives the theory of the cascade-correlation algorithm, with an emphasis on deriving mathematical
results important to the hardware implementation. Readers requiring a conceptual introduction to neural
networks in general should review the proposal for this project [11], and consult a textbook such as Coppin’s
for more detail as needed [5].

2.1 The Cascade-Correlation Algorithm

In 1991, Fahlman and Lebiere proposed the cascade-correlation algorithm for training a neural network [9].
Under this algorithm, the dimensions of the network are not determined in advance. Rather, when training
begins, a network consists solely of input and output nodes. Gradient descent is used on this two-layer
network to select output weights that minimize error with the training set. When change in error per
training epoch declines below an arbitrary threshold, this initial training ceases.

A pool of candidate units is then created. Each candidate unit is assigned a random weight for each input.
The candidate units may also have diverse activation functions specified by the operator. Training epochs
are performed, in which each candidate unit performs gradient descent on its input weights to maximize
the correlation of its output with the remaining error between the target output and the network output
as previously trained. Only the candidate units are modified during this phase; the rest of the network is
frozen.

When change in candidate correlations per epoch declines below an arbitrary threshold, the candidate
node with highest correlation to the error is installed as a hidden node. Its input weights are permanently
frozen. Output weights of the input nodes and the new hidden node are then retrained to minimize error. A
new pool of candidate units is then created, fed by all the input nodes and the hidden node, and the process
repeats. Figure 1 is Fahlman’s original schematic showing the incremental growth process.

Thus, cascade–correlation learning oscillates between two phases: the output weight retraining phase
and the candidate unit input weight training phase. Each hidden layer contains a single node, fed by all
inputs and all preceding nodes. All inputs and hidden layers feed the output. Qualitatively, each hidden
unit specializes in detecting a “feature” of the function to be approximated that no previous hidden unit
has specialized in, and then freezes its input weights so that no future training can disrupt its focus on that
feature. Training stops once total error is satisfactorily low.

The rest of this section will rigorously derive some mathematical results important to the hardware
implementation of cascade-correlation.

2http://130.58.84.125/dgerman1_e90/browser
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Figure 1: Fahlman’s original cascade-correlation diagram: “The vertical lines sum all incoming activation.
Boxed connections are frozen, X connections are trained repeatedly.” [9]

2.1.1 Evaluation

Let ~i be the input vector of I elements and ~o be the output vector of U elements. Let fn be the activation
function for node n. Let wij be the weight that node j assigns to the output of node i. Let hk be the hidden
node in the kth of H hidden layers. Then the output activation αhk

of hk is

αhk
= fhk

(
I∑

s=0

(wishk
· is) +

k−1∑
t=0

(whthk
· αht

)

)
= fhk

(anet,hk
)

Similarly, a network output om is

om = fol

(
I∑

s=0

(wisom · is) +
H∑

t=0

(whtom · αht)

)
= fom(anet,om

)

This recursive formulation defines the feed-forward evaluation of a cascade-correlation network. In gen-
eral, hidden node hk cannot compute its output activation until hidden node hk−1 has activated; hidden
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node h0 can activate given just the input vector. Network outputs cannot be computed until all hidden
nodes have activated, at which point they can all be computed without dependence.

2.1.2 Activation Functions

For reasons that will become clear in the following subsections, the training algorithms require that the
activation functions f : R→ R are continuous and piecewise differentiable. Typical applications also require
that f is monotonically increasing.

If some g meets these requirements, a piecewise linear function interpolated between sample points from
g also meets them. The following function h, which samples g at the integers, lends itself particularly well
to hardware implementation:

h(anet) = g(banetc) + (g(danete)− g(banetc)) · (anet − banetc)

2.1.3 Candidate Node Training

In candidate node training, the entire network is frozen. A pool of candidate nodes adjust their weights by
gradient ascent on their output correlation S with the network’s remaining error E over the training data.
When that correlation ceases to improve, the highest-correlated candidate node is installed as a new hidden
layer. Let Eom = (dm − om), where d is the desired value of om, and let p be the set of training patterns.
Fahlman gives the following definition for S at a candidate node c [9]:

S =
∑

o

∣∣∣∣∣∑
p

(αc,p − αc)(Ep,om
− Eom

)

∣∣∣∣∣
Qualitatively, S measures the tendency of the candidate node’s activation α to be extreme on input

patterns for which the network error is extreme. To perform gradient traversal on S, we must differentiate
it with respect to wnc for all input and hidden nodes n feeding c. Temporarily ignoring the absolute value,
we find

∂S

∂wnc
=
∑

o

∑
p

(
∂S

∂αc,p
· ∂αc,p

∂anet,c

· ∂anet
∂wnc

)
Expanding each partial derivative from the definition of S and the discussion in 2.1.1,

∂S

∂wnc
=
∑

o

∑
p

(
(Ep,o − Eo) · f ′(anet,c) · αn

)
For a differentiable function y(x), d

dx |y| is dy
dx for x > 0 and − dy

dx otherwise. Let σ be -1 if S is negative
and 1 if S is positive. By the chain rule we arrive at Fahlman’s result [9]:

∂S

∂wnc
=
∑

o

∑
p

(
σ · (Ep,o − Eo) · f ′(anet,c) · αn

)
Gradient ascent is then performed, adjusting wnc in the direction of increasing S. Fahlman uses the

quickprop algorithm for fast convergence, but a hardware quickprop implementation is beyond the scope of
this project. Instead, we simply let η be a small, constant learning rate and compute a weight update using
the well-known backprop rule:

∆wnc = η · ∂S

∂wnc

If the activation function f is h from Section 2.1.2, its derivative takes on a convenient form:

f ′(anet) = g(danet,ce)− g(banet,cc)
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2.1.4 Output Node Retraining

In output node retraining, each output node adjusts its weights for all input and hidden nodes, including
the newly installed one, by gradient descent on training pattern error. The network is evaluated for each
training pattern. Then, for every output om, for every hidden or input node n,

∂Eom

∂wnom

=
∂Eom

∂om
· ∂om

∂anet,om

·
∂anet,om

∂wnom

Since we want to perform gradient descent on error Eom , we simply find the partial derivatives as before
and invert the sign. Applying the backprop rule again, we arrive at the following weight update:

∆wnom
= η · Eom

· f ′(anet,om
) · αn

2.2 Asymptotic Time Analysis

Consider the evaluation of a cascade-correlation network in series. Hidden node 0 must perform O(I)
multiply-accumulate operations to weight each input and sum it into anet. It must then perform a constant-
time operation to compute f(anet). Hidden node k must perform O(I + k) multiply-accumulates before
activating. Thus, activating all the hidden nodes takes linear time in I and quadratic time in H. Each output
node must then multiply-accumulate the stimulus from every input and hidden node, adding an additional
factor of O (U · (I +H)). In a parallel implementation, all nodes fed by some node n can simultaneously
multiply-accumulate its output when it activates. This eliminates asymptotic time dependence on U . It
also reduces complexity in H from quadratic to linear, since hidden node k must perform just one multiply-
accumulate after hidden node k − 1 activates.

In a candidate node training epoch, the network must be evaluated for each training pattern. Each
candidate node must also activate, and accumulate the contributions of every output node into ∂S

∂wnc
. This

introduces an additional complexity factor of O (C · (U + I +H)) for series computation. After all patterns
have been presented, actually computing weight updates is O(CI+CH), which does not increase the bound.
Since the training of each candidate node is independent, parallelization can eliminate the factor of C.

Analysis for an output node training epoch is similar. The network must be evaluated for each training
pattern. Each output rule must then compute a backprop rule update to the weight for every input and
hidden node, adding a complexity factor of O(I + H). Parallelization eliminates this factor by allowing all
output nodes to learn simultaneously.

Table 2 summarizes the “asymptotic” time bounds for each cascade-correlation phase. Hardware paral-
lelization cannot affect the asymptotic behavior of an algorithm in the true mathematical sense. The size of
the hardware impose a constant cap on the size of the problem; given constrained size, the problem is O(1)
with or without the accelerator. Table 2 thus invokes the fictional ability to make arbitrarily large hardware.

Evaluation Candidate Training Epoch Output Retraining Epoch
Series I +H2 + U · (I +H) P · (CU + CI + CH +H2) P · (UI + UH +H2)

Parallel I +H P · (I +H) P · (I +H)
(a) Complexity

I number of input nodes
H number of hidden nodes (depth of network)
C number of candidate nodes
U number of output nodes
P number of training patterns

(b) Parameters

Table 2: big-O running times for the cascade-correlation phases.
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3 Design

Three parallelization opportunities are discussed in Section 2.2: accumulation of input, training of candidate
nodes, and retraining of output nodes. This section will describe the design and implementation of a system
to exploit these opportunities. The system consists of two components: a specialized processor that actually
performs the parallel computation, and software that enables a general-purpose host PC to control the
processor as a peripheral. The system supports cascade-correlation networks with 4 input, 1 output, 4
candidate, and up to 16 hidden nodes, with training on up to 256 patterns. It uses 16-bit, 2s complement
fixed-point arithmetic with the radix point between bits 7 and 8.

The hardware accelerator is implemented on an Altera Cyclone II EP2C35 field-programmable gate
array (FPGA). The host PC is a commonplace Intel x86-64 desktop with a Linux operating system. The two
components communicate over an RS-232 serial link at 115.2 kbps with no flow control or error checking.
The Host-Peripheral Interface Specification (Appendix A) lists the bit-level format and semantics of all legal
messages between the host and the accelerator; both components abide by this document strictly. One could
think of the accelerator as a CPU and the Specification as its instruction set; alternatively, one could abstract
the accelerator as an object, and think of the Specification as the public methods. This section details the
organization of both components and describes execution flow for evaluation.

3.1 Hardware

The organization of the processor can be divided along conventional lines into a control unit and a datapath.
The control unit incorporates the serial manager (Section 3.1.1) and the decoder (Section 3.1.2). The
serial manager parallelizes input from and serializes output to the RS-232 interface. The decoder interprets
input, distributes control and data signals to the datapath, and synthesizes output. The datapath is highly
specialized to the application domain: it consists of input nodes (Section 3.1.3), hidden nodes (Section 3.1.4),
candidate nodes (Section 3.1.6), and output nodes (Section 3.1.5) assembled to model a cascade-correlation
network. Figure 2 gives a module-level schematic of the processor.

Since the datapath bears little resemblance to the datapath in a general-purpose CPU, it will hereafter
be referred to as the network. The network is highly stateful, incorporating nearly 140 kilobits of RAM
and hundreds of registers, and this state is largely preserved between operations. A few of the interface
operations, such as dumpWeightTable or evaluate, are performed simply to obtain a result, but the purpose
of most is to perturb the state of the network. Incremental perturbation of the network’s persistent state is
the mechanism that enables the device to learn.

3.1.1 Serial Manager

Figure 3 gives state diagrams for the reception (Rx) and transmission (Tx) state machines that comprise
the serial manager. The Rx machine monitors RS-232 pin 3 for a start (low) bit. Following a start bit, it
samples the input on pin 3 every 8.606µs until it has collected a byte of input. It then raises a signal to the
decoder indicating that the input byte is valid.

Conversely, when the decoder signals that an output byte is valid, the Tx machine latches it, raises an
acknowledgment signal, and transmits a start bit on RS-232 pin 2. It then transmits each bit in the output
byte, followed by a stop (high) bit. After sending a message, the host will not provide further input until
some response is received, and the processor will not generate output unless it is occasioned by input from
the host, so no buffering is required.

3.1.2 Decoder

The decoder is a finite state automaton that implements the Host-Peripheral Interface Specification. There
are 99 named states in the decoder, but the behavior in many is influenced by other state data the decoder
maintains, producing thousands of possible state configurations. As shown in Figure 2, the decoder outputs
a 4-bit control bus to every node individually, an 8-bit address bus to all nodes, and an 8-bit pattern index
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Figure 2: Module-level circuit schematic. The circles represent network nodes.

(a) Receiving

(b) Transmitting

Figure 3: State diagrams for the serial manager.
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and 16-bit error bus to candidate nodes for training. The decoder also mediates write access to a 16-bit
bidirectional data bus serving it and all the nodes. Thus, the decoder can supply inputs to the nodes,
command them to act upon it, and direct resulting output to other nodes as appropriate. The decoder also
incorporates RAM blocks for caching the training patterns. Figure 4 gives a circuit schematic.

Figure 4: Simplified circuit schematic for the decoder.

The decoder initializes in the Waiting state, and remains in that state until the serial manager signals
that an input byte is available. The first input byte must be the one of the message codes listed in Appendix
A; if it is not, the decoder immediately signals the serial manager to transmit an error code and returns
to Waiting. If the opcode is legitimate, the decoder classifies it as a moding, command, or data message,
and transitions to an appropriate state for handling each. Moding codes consist of a single byte, and simply
switch the processor between training and evaluation modes. While in one mode, it rejects all command
or data messages reserved for the other by replying with an error code. Command messages instruct the
peripheral to perform some network operation, or prime it to receive a certain type of data. Data messages
contain numerical values for the peripheral to load directly into network state.

Command codes are always followed by a target byte. For commands that affect a single node in
the network, the target byte identifies that node using the addressing scheme given in the specification.
In a setLearningRate command, the target byte also encodes a new value for η. In a loadTrainingData
command, the target byte gives the number of training item data messages to follow. Several other command
codes prime the processor for data messages that the host must send immediately after the command, but in
no other case is the number of those data messages variable. If the processor is primed for data, the decoder
will respond to a command opcode with an error and return to Waiting. Table 3 summarizes the behavior
of each command message.

If a command message is both valid and expected, the decoder transitions to a submachine of states
dedicated to handling that message. Commands that prime for data simply output a code indicating that
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the peripheral is ready to receive data, set a state flag accordingly, and return to Waiting. The sub-machines
for all other commands directly modify the network.

Data codes are always followed by a size byte; if N is the number of words of substantive data that follow,
the size byte is N − 1. If the processor is not primed for data, the decoder will immediately respond to data
messages with an error code. Otherwise, it will latch the N subsequent words of input and write them into
appropriate storage locations, informed where applicable by the target byte of the priming command.

The weightTable data message specifies the weight a hidden, candidate, or output node should assign
to each possible feeding node. The activationTable message specifies the activation function for a hidden,
candidate, or output node at each of the 256 integers. Each word in an activationTable or weightTable
message is output to the network on the data bus, the address bus is set to the word’s ordinal index,
and the node specified in the target byte is given a control code to store it. Similarly, each word in an
evaluationTable message is placed on the data bus, and the input node corresponding to the word’s
ordinal index is given a control code to latch the data. The contents of trainingItem messages are not sent
to the network; instead, each word is stored in RAM internal to the decoder. As shown in Figure 4, there
are five RAM blocks for storing training patterns. Each pattern occupies one line in all five blocks, so that
blocks 0-3 store all the training inputs for a given input node, and block 4 stores all the expected outputs.

3.1.3 Input Node

The input node is simply a bank of 16 D flip-flops. On every clock edge, the flip-flops capture the contents
of the data bus if the capture signal from the decoder is high. The decoder can connect the output of the
flip-flops to the data bus via the 26:1 mux, as shown in Figure 2.

3.1.4 Hidden Node

The hidden node is a machine with 18 states, as diagrammed in Figure 6. The state machine initializes in
the Waiting state; while in that state, it checks the control nibble on every clock cycle to determine the next
transition. The decoder may set the control nibble to any of the values shown in Figure 6, which have the
semantics listed in Table 4.

Figure 5 gives a simplified circuit schematic. Like the input node, the hidden node receives its inputs
from the decoder, and outputs to the data bus via the 26:1 mux. It additionally has a one-bit overflow
output connected directly back to the decoder; if any arithmetic overflow is detected internally, this line is
set high until a Clear control code is received.

The RAM blocks are single-port with an R/W line not shown; they activate on the inverse clock edge,
since the combinational logic driving their inputs is fast enough to permit it. The weight table stores the
weight assigned by the hidden node to the nodes that feed it: lines 0-3 store weights for the four input nodes,
and lines 4-19 store weights for up to 16 hidden nodes. Some lines at the end of the RAM will always be
zero for nodes in the middle of the cascade. The activation table stores the activation function’s value at
anet = L, where L is the integer address of the line of memory.

The linear interpolation function presented in Section 2.1.2 is easy to compute in hardware given the
activation table. Recall that 16-bit arithmetic with a fixed point between bits 7 and 8 is used. Let a15:8

be the 8 most significant bits of anet. After an Activating control code, the hidden node subtracts the
table entry at line a15:8 + 1 from the entry at a15:8 to obtain the slope, multiplies that slope by the 8 least
significant bits to interpolate, and sums the resulting delta with the entry at a15:8 to find f(anet).

The linear interpolation process accounts for one of the multiplication operations shown in Figure 5. The
other is used after an Accumulating control code to multiply the input data by the stored weight for the
input address. The Cyclone II FPGA provides only 35 16-bit array multipliers, and multipliers implemented
with general-purpose logic elements cannot meet timing specifications. Since accumulation and activation
never happen simultaneously in a given hidden node, the same multiplier is used for both in the actual
circuit. The relatively large number of states required to activate are spent clearing the accumulator, using
its multiplier to interpolate, and then clearing it again. This expense is worthwhile, however, in view of the
resource utilization results discussed in section 5.1.2.
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Command Mode Ignores Target Byte Primes for Data
loadWeightTable Any No Yes

loadActivationTable Any No Yes
dumpWeightTable Any No No

clear Evaluation No No
evaluate Evaluation Yes Yes

setLearningRate Training No No
loadTrainingData Training No Yes

candidateTrainingEpoch Training Yes No
install Training No No

outputRetrainingEpoch Training Yes No

Table 3: Summary of command message behavior.

Code Name Semantics
0 Idle Remain in the Waiting state.
1 Accumulate anet+ = wis

· is for current address s and data is.
2 Store Weight Set wis

for the current address s to the current data.
3 Store Activation Set f(a) for the current address a to the current data.
4 Activate Compute and output α = f(anet) by linear interpolation on stored activation values.
5 Clear Set the accumulated anet to 0.
8 Output Weight Output the stored value of wis

for the current address s.

Table 4: Hidden node control codes.

Figure 5: Simplified circuit schematic for the hidden node.

10



3.1.5 Output Node

The output node is a machine with 32 states, as diagrammed in Figure 7. Its functionality is a superset of
the hidden node’s supporting the control codes listed in Table 5 as well as the codes in Table 4.

The circuit is similar to the hidden node (Figure 5). There is an additional RAM block of 20 one-
word lines for storing the most recent input αn from each input and hidden node. These are then recalled
for computing the perceptron rule weight updates after a Learn control code is received. Thus, if output
retraining is being performed, the Learn control code should immediately follow an Activate control code.

Since η is constrained to be a negative power of 2, the learning rate can be applied by a right shift on
the absolute value of E · f ′(anet) · αn. That product is easily and cheaply done in series, requiring just one
additional multiplier. The derivative term f ′(anet) is found by subtraction on the activation table, just as
is done for linear interpolation during activation. Sampling at intervals of 1 avoids performing division.

Code Name Semantics
9 Set Learning Rate Set η to 2−k, where k is the 3 LSBs of the current data.
F Learn Add η · (t− f(anet)) · f ′(anet) · αn to the weights for all feeding nodes n.

Table 5: Output node control codes. t is the current input, interpreted as the target output.

3.1.6 Candidate Node

The candidate node is a machine with 55 states, as diagrammed in Figure 8. Its functionality is a superset
of the hidden node’s, supporting the control codes listed in Table 6 as well as the codes in Table 4. Note
that, by necessity, these codes reuse the namespace for output node control codes (Table 5), but an effort
has been made to preserve semantic similarity.

Recall that a candidate node is trained to maximize the correlation S of its output with the error. As was
shown in Section 2.1.3, the weight updates to the candidate nodes involve a sum over all patterns for each
input or hidden node, so RAM is required to store those running sums. These sums are updated when the
node receives a Learn control code; since the most recent activations and inputs are used, as in the output
node, this should be done immediately after an Activate.

Furthermore, the product inside the sum includes ∆E = (Ep − E), which incorporates as a term the
existing average error in the network. Thus, before any candidate node training begins, the existing network
must be evaluated on all training patterns, and the error averaged. This necessitates the “Pattern Error
RAM” seen in Figure 4: the decoder performs an evaluation pass over the training patterns, computes the
difference between target and actual output for each pattern, and stores the result in this memory. It then
averages the result and stores it in a register. Since the number of patterns P is constrained to be a power
of 2, averaging is simply a division. The candidate nodes receive ∆E for the current pattern as a input from
the decoder.

As yet another complication, the sign of S is a term in the first partials of |S|, so the candidate node
must recompute its actual correlation with the error after each pass through the training patterns. This
requires remembering its own output αq for each pattern q, averaging them in the same fashion as the
decoder averages the error, and then multiply-accumulating the ∆α with the ∆E for every pattern. This
computation has additional value as output to the host, which can use it to judge whether training has
stagnated.

3.2 Software

The software running on the host PC consists of low-level drivers implemented in C, and a high-level Python
API module. Since a standard serial link connects the peripheral to the host, the drivers are not actually
a loadable kernel module; they are simply a relocatable library of functions that use the existing serial
module to read from and write to the serial port. The library provides a function to send each message of the
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Figure 6: State diagram for the hidden node.

Figure 7: State diagram for the output node.
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Code Name Semantics
6 Clear Correlation Set the accumulated value of S to 0.
9 Set Learning Rate Set η to 2−k, where k is the 3 LSBs of the current data.
A Output Correlation Output the current value of S.
C Average Compute and store α over the most recent αq for all patterns q.
D Accumulate Correlation S+ = (αp − α)∆E for all feeding nodes n.
E Learn ∂S

∂wn
+ = σ ·∆E · αn · f ′(anet).

F Absorb Add η · ∂S
∂wn

to the weights for all feeding nodes n.

Table 6: Candidate node control codes. p is the current pattern index. ∆E is the current error delta.

Figure 8: State diagram for the candidate node.
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Host-Peripheral Interface Specification (Appendix A) and collect the response. If so inclined, the end-user
could fully utilize the device from a C program that makes these calls directly.

However, the API offers a more convenient interface for Python users. It provides intermediate-level
support for each message by calling the driver functions using SWiG wrappers (see Section 4.3). It then
provides high-level methods that automate common evaluation and training tasks by issuing the correct
series of calls, and returning only the results of interest to the user.

3.2.1 Drivers

Complete documentation for every function in the driver library is available via the Internet.3 The driver
supports an ordinary mode, in which it interacts with an actual peripheral via a serial port, and a test
mode in which it writes output to a file and does not attempt to read responses. A driver session begins
with a call to openSerialDevice or openOrdinaryFile, depending on the desired mode, and ends with the
corresponding closeSerialDevice or closeOrdinaryFile call. When a serial device is used, the driver
configures the port to disable all flow control and parity checking.

Each driver function takes the arguments appropriate to the corresponding message. For commands,
these arguments are characters giving the contents of the target byte; for data, these arguments are arrays
of short int giving each substance word of the message. It also receives a pointer to allocated memory
large enough to accommodate the largest expected output.

The function assembles the arguments into an appropriate byte stream, with the opcode prepended, and
passes it to the sendMessageGetResponse function along with the buffer pointer. sendMessageGetResponse
writes the output, reads the peripheral’s response into the buffer, and returns the number of bytes read.
This number is then returned by the message function.

3.2.2 API

The API consists of the Python module cascCorrAccelSession. Complete documentation of the module is
available via the Internet.4 The cascCorrAccelSession object opens a new driver session upon instantiation,
manages the session state, and provides API methods to interface with the session device.

High-level methods that issue commands take node types and indices as arguments, and construct the
raw target bytes to be passed to the driver. Similarly, high-level methods that issue data messages, such as
setTrainingPatterns, accept sequences of floating-point numbers, and construct the tables of short int
that the target byte requires. Inputs are checked for validity before any communication with the peripheral;
software exceptions are raised if the input is incorrect, so that the peripheral will not accidentally be put
into an unknown state. For additional robustness, parts of the peripheral state are cached in the API. For
instance, the session object will throw an exception rather than attempt a command for which the device is
in the wrong mode. It also duplicates all the training patterns in host memory when setting them on the
device, so that the computeError function can easily test the network’s sum-squared error over all patterns
during output retraining.

Inversely, data output from the peripheral is reassembled from little-endian byte streams into floating-
point sequences that are ultimately returned to the user. If an unexpected amount of data is read, or the
peripheral response indicates an error condition, an appropriate exception is generated. The user will be
responsible for catching these exceptions if some response other than program termination is desired.

3.2.3 Test Case Utility

The test case utility is a simple tool for sending the contents of a binary file to the serial port and printing the
response. The binary file encodes the total number of message bytes and the expected number of response
bytes in its first two words. Documentation of the utility is available via the Internet.5

3http://130.58.84.125/~dgerman1/cascCorrAccelDrivers/html/
4http://130.58.84.125/~dgerman1/API/
5http://130.58.84.125/~dgerman1/TestCaseUtility/html/

14



3.3 Example: Network Evaluation

Suppose that the hidden and output node weights and activation functions for some desired cascade are
already known, and the user wishes to find the network output for a particular input. Appendix B gives
a detailed account of every execution step performed by the host and the peripheral in this use case. A
summary follows.

To set the network up for evaluation, the host sends weight and activation tables for each node. The
decoder puts each value on the bus as it arrives, and commands the target node to store it. The host then
sends an evaluate command, and evaluationInput data. As each input arrives, the decoder loads it to
the corresponding input node. The decoder then gives each input node the bus in turn and commands
it to activate. In parallel, each hidden and output node multiplies that activation by stored weight, and
accumulates the product into its net input stimulus. Now, every node that feeds hidden node 0 has activated,
so its net stimulus is fully accumulated. The decoder gives it the bus and commands it to activate, and all
the deeper nodes can weight and accumulate that output. Hidden nodes 1-15 can sequentially activate in
the same way, and then the output node can activate. The decoder latches that output and transmits it
back to the host.

3.4 Example: Training

Given an understanding of the execution flow for evaluation, the execution flows for output retraining and
candidate training are intuitive. Both training cycles require that training patterns be loaded to the decoder’s
cache, and assume that the learning rate, activation functions, and initial weights have been set to desired
values.

In an output training epoch, the decoder loads a pattern from cache to the input nodes, evaluates the
network, provides the target output on the data bus, and instructs the output node to learn. If there were
multiple output nodes, they could learn in parallel, as discussed in Section 2.2. In the API, stagnation
detection may optionally be enabled, to terminate output retraining if total error over the training patterns
ceases to decline. Since error is not explicitly computed in the training process proper, using this option
slows down each epoch: the host switches the device back to evaluation mode after each training pass, and
evaluates it on all patterns. It may nonetheless save the user time in comparison to a conservatively large
guess at the appropriate number of epochs required.

In a candidate training epoch, the decoder evaluates the network for all patterns and computes the
average error. It then replays each pattern while outputting the correct ∆E and giving the Learn control
code to all candidates in parallel. After all patterns have been displayed, the candidate nodes have completely
summed ∂S

∂wn
, so the decoder applies the Absorb control code to them in parallel. It then applies the Average

control code so that each candidate computes its α, again in parallel. Finally, correlation is computed: the
decoder replays the ∆E for each pattern once more, with a parallel Accumulate Correlation control to all
candidates after each. It then collects each candidate’s response to Output Correlation and transmits the
correlations back to the host. Since correlation, the function to be maximized, is an explicit byproduct of
candidate training, API-level stagnation detection is inexpensive in this case. Though optional and off by
default, it should be enabled in most practical situations.

4 Procedure

The design described in Section 3 was implemented, documented, and delivered on schedule. The devel-
opment process was managed using conventional software engineering strategies and tools, which are easily
extended to hardware design in an HDL.

4.1 Planning

Before the beginning of work, the project was planned using the critical path method (CPM). The objective,
approach, and output for each atomic task in the project were enumerated, and the corresponding hours of
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work were estimated. The tasks were then assembled into a dependency graph and scheduled in the project
time frame using the Merlin6 planning tool. 40 hours of work per week were anticipated. Details of the plan,
including the Gantt chart giving the final schedule, are provided in the project proposal [11].

4.2 Project Management

Trac7, a “wiki and issue tracking system for software development projects”, was used for lightweight, web-
based project management. All project tasks were entered into the Trac system as tickets. Each ticket,
in turn, was associated with a milestone corresponding to a major internal deadline established by the
planning process. Progress on each ticket was noted in the associated comments. Technical documentation
and meeting notes were entered into the Trac wiki for convenient access and editing. The tool was accessible
to the project advisor and interested third parties for easy review of project status.8

4.2.1 Code Management

Subversion9 was used for code management and version control. Every substantial change to the hardware,
software, or documentation, including this report, was committed into the SVN repository along with a
descriptive comment. Trac was configured to read the repository, allowing the cross-referencing of code with
tickets and wiki pages, and providing a convenient interface for viewing revision diffs.

4.3 Tools

All development for the project was done in Ubuntu Linux on a typical Intel PC. The hardware was developed
using Altera’s Quartus II development environment, which incorporates a proprietary compiler, fitter, timing
analyzer, and programmer for targeting Altera FPGAs such as the Cyclone II. The Quartus II package also
includes a SPICE-type simulation tool and waveform editor that was used for unit test cases. Documentation
of the hardware interfaces was manually maintained in the Trac wiki.

The host PC software was developed in the Eclipse10 IDE, using the CDT11 and PyDev12 plugins.
The standard GNU tool chain was used to compile the C drivers and link them into a relocatable library.
SWiG13 wrappers were generated to make the C drivers available to the Python API, which was run in
the standard Python interpreter. Doxygen14 and Epydoc15 comments were used to automatically maintain
HTML documentation of the drivers and API.

4.4 Testing

The design was subjected to unit, integration and regression tests, following standard practice. Test inputs
and expected outputs were stored in version control, along with notes where needed. After design changes,
the tests for affected components were repeated to check for unexpected side effects. All test scripts can be
accessed for review via the Trac repository browser.

Each hardware component was unit tested under representative nominal and off-nominal conditions by
simulation in Quartus; the ability to examine simulated register contents is a highly valuable debugging tool.
The serial interface manager is prohibitively slow to simulate, since 87µs of simulation time are required to
cover the transmission of one serial byte. Therefore, supplementary unit testing of interface logic was done
by manually interacting with it via a serial console on the host PC. To achieve tractable simulation times for

6http://www.projectwizards.net/en/merlin
7http://trac.edgewall.org/
8http://130.58.84.125/dgerman1_e90/ (may cease to be available after June 1, 2008)
9http://subversion.tigris.org/

10http://www.eclipse.org/
11http://www.eclipse.org/cdt/
12http://pydev.sourceforge.net/
13http://www.swig.org/
14http://www.stack.nl/~dimitri/doxygen/index.html
15http://epydoc.sourceforge.net/
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non-interface control logic, a dummy high-speed interface controller was substituted for the serial manager.
As for software, each driver function was unit tested by dumping its output to a file for examination with a
hex editor. This process was extended to the Python API as it was developed.

At the Network Evaluation and Network Training milestones, the entire hardware-software system was
integration tested. Inputs were developed to cover error conditions and a variety of nominal use cases. These
test vectors were supplied to the hardware via the API, and the corresponding outputs as reported by the
API were recorded. Expected outputs were independently computed by hand or with the FANN16 library
to validate the results.

After all development work was completed, a sampling of key tests from the entire suite were repeated
as regression tests for final verification. The comprehensive demonstrations presented in Section 5 provide
additional evidence that the design works as expected.

5 Results

5.1 Performance

Tables 7, 8, and 9 summarize the clock cycle consumption of evaluation, output node retraining, and
candidate node training. These tables only count clock cycles spent doing actual computation. Most
device time is spent waiting for I/O, since transmitting or receiving a single byte takes approximately
8 · (50MHz)/(115.2kbps) ≈ 3472 clock cycles. The issue of I/O speed will be discussed further in Section 6.4.

Comparing the results to general-purpose computing is not straightforward, since the details of contem-
porary CPU implementations are unpublished and proprietary. Such essential information as the number of
clock cycles required to perform a fixed-point multiply (MUL) operation on Intel or AMD’s latest offerings is
not available. Superscalar designs will likely capture at least some of the parallelization opportunities this
project exploits by detecting them in the execution buffer, and pipelining may also mitigate the losses of
series computation.

However, detailed documentation of the Intel 486 instruction set is readily available17; this project’s 50
MHz clock speed was a typical speed for a 486, so comparing the two is in some sense fair. On the 486,
which was not superscalar, the MUL operation takes a minimum of 13 clock cycles. Clearly, it multiplies by
successive addition, rather than using array multipliers.

Serialized, network evaluation requires a minimum of 4 + 5 + ... + 20 = 204 multiply-accumulates, and
17 additional multiplications for linear interpolation. Those 221 MUL operations alone would take the 486 at
least 2873 clock cycles. Additionally, the 486 would have to perform a variety of supporting arithmetic and
memory accesses to complete the computation. The specialized processor thus evaluates the cascade in no
more than 15% of the cycles that the 486 would require. Since evaluation is a step in both training epochs
for every training pattern, faster evaluation directly gives faster training.

Furthermore, in output retraining, the 402 clock cycles required per pattern for learning are in principle
constant for arbitrarily many output nodes, though the prototype uses only one. In candidate training, the
202 cycles per pattern for derivative accumulation are also constant for arbitrarily large pools, as are the 263
cycles for absorbing the backprop rule updates. Thus, parallel learning conserves an additional 606 cycles
per pattern and 789 cycles per epoch during candidate training, a roughly 41.5% savings relative to naive
serial implementation on the same hardware.

5.1.1 Timing

As reported by the Quartus II timing analyzer, the device as implemented can run safely at 50 MHz. This
result was unattainable without restricting the number of training patterns to a power of 2; the division
unit required to average in the general case could not be fit onto the device without creating combinational

16http://leenissen.dk/fann/
17http://home.comcast.net/~fbui/intel.html
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Evaluation Step Cycles Repetitions Total Cycles
Acknowledge Command 2 1 2

Parse Data Header 1 1 1
Store Inputs to Input Nodes 1 4 4

Activate an Input Node 3 4 12
Accumulate an Input Node 5 4 20

Activate a Hidden Node 15 16 240
Accumulate a Hidden Node 5 16 80
Activate the Output Node 15 1 15

Ready Output For Transmission 2 1 5
Total 379

Table 7: Accelerator performance for network evaluation, all hidden nodes in use, excluding I/O.

Output Node Retraining Step Cycles Repetitions Total Cycles
Initialize 1 1 1

Load Pattern From Cache 7 P 7P
Evaluate The Network 370 P 370P

Compute Error 3 P 3P
Compute Backprop Rule Updates for All Weights 402 P 402P

Proceed to Next Pattern 1 P P
Prepare to Transmit Response 1 1 1

Total 783P + 2

Table 8: Accelerator performance for one output node retraining epoch on P patterns, excluding I/O.

Candidate Node Retraining Step Cycles Repetitions Total Cycles
Load Pattern From Cache 7 P 7P

Evaluate The Network 370 P 370P
Compute and Store Pattern Error 5 P 5P

Compute Average Error 5 1 5
Evaluate The Network 370 P 370P
Learn Updates to ∂S

∂wn
202 P 202P

Absorb New Weight Values 263 1 263
Clear Stored Correlations 3 1 3

Average Candidate Outputs 8P + 16 1 8P + 16
Accumulate Correlations 16 P 16P

Output Correlations 4 4 16
Total 978P + 303

Table 9: Accelerator performance for one candidate node training epoch on P patterns, excluding I/O.
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propagation delays in excess of 100 ns. The timing analyzer report indicates that the slowest register-to-
register propagation in the circuit is between the decoder output that controls the 26:1 mux and a register
used to latch input in the fourth candidate node. This 8.961 ns delay would admit a safe clock speed as high
as 54.48 MHz.

5.1.2 Resource Utilization

The Quartus II fitter successfully maps the design to the Cyclone II device. The design uses 36% of the LUT
blocks in the FPGA for 10,863 combinational logic functions and 5,419 registers. 142,336 bits of integrated
RAM are used, consuming just 29% of the total RAM resources. The embedded 9-bit multipliers, of which
the EP2C35 series has 70, were the only resource that constrained development of the accelerator. Early
project designs used 64 9-bit (32 16-bit) multipliers in the hidden nodes alone. Extensive re-engineering was
undertaken to share multipliers among functions, and the entire project now fits in just 60 multipliers, for
86% utilization.

5.2 Learning Demonstrations

5.2.1 XOR

The system was successfully trained to learn the 2-bit XOR problem. Let Y = A
⊕
B. In this experiment,

input 0 corresponded to A, input 1 corresponded to B, input 2 was always 0, input 3 was always the bias
value 1, and the network output corresponded to Y . Boolean false was represented as -1, and boolean true
was represented as +1. Table 10 gives the four training patterns.

Input 0 Input 1 Input 2 Input 3 Expected Output
-1 -1 0 1 -1
-1 1 0 1 1
1 -1 0 1 1
1 1 0 1 -1

Table 10: Training patterns for two-bit XOR.

All candidate node activation functions were symmetric sigmoids, with the range (0, 4). The output
node activation function was a symmetric sigmoid with the range (−2, 2). Initial candidate node weights
were randomly selected from the interval (−1, 1). The learning rate in all nodes was 2−3. These parameters
were manually tuned for reliable, fast training. Many unsuccessful pattern combinations were attempted
before this one was discovered. The results of learning are highly dependent on initial parameters, but the
reasons that some parameter choices fail to find global optima in the gradient search are seldom obvious.
This weakness is intrinsic to the algorithm, not a property of the hardware implementation.

Since there is no linear separability in the 2-bit XOR problem, initial perceptron training is unproductive,
and stagnates quickly. With the final parameters, about 200 epochs of candidate training to produce a single
hidden node, followed by about 200 epochs of output retraining, are typically required. The exact duration
of training depends unpredictably upon the initial candidate weights. The problem is considered solved when
all test patterns expecting +1 produce outputs greater than +0.5, and all test patterns expecting -1 produce
outputs less than -0.5.

Typical results are shown in Figure 9a. Input 0 is along the x-axis, and Input 1 is along the y-axis. Red
dots indicate a training pattern for which the false output is expected, while blue dots indicate a training
pattern for which the true output is expected. The greyscale background image indicates the learned behavior
of the network, evaluated at each point on a fine grid. The lighter a pixel is, the closer to +1 is the network’s
output at those coordinates.

Similar results were obtained for the 3-bit XOR problem. With the same parameters, the network learned
to classify all eight training patterns using a single hidden node, in about 200 epochs of each type of training.
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(a) 2-bit XOR

(b) 32 points from the two spirals problem

Figure 9: Learning Results

20



5.2.2 Two Spirals Problem

Figure 10 is a plot of the two spirals problem, a classic neural network benchmark.18 Each point marks a
training datum; true outputs are expected for one spiral, false outputs for the other. The network must
therefore learn to draw fine, sharp lines between the two. Fahlman reports that his cascade correlation
software outperformed the best known traditional layered network by a factor of 23 in total multiplications,
using between 12 and 19 hidden nodes [9].

Figure 10: Plot of the complete 194-point two spirals problem.

Parameters that replicate this success have not yet been found for the project system. In every attempt
to learn with a sample of 128 points from the spiral, both output training and candidate retraining stagnate
after just a few epochs, typically on the order of 101. Accordingly, the sum squared error achieved is little
better than random guessing. With -1 representing boolean false and +1 representing boolean true, no SSE
below 110 has been attained. Since dozens of attempts have been made with random initial weights, the
behavior suggests that in most parts of the input space, the problem’s error and correlation surfaces are
nearly flat. Ramifications will be discussed further in Section 6.3.

Successful learning has been accomplished on smaller subsets of the two spirals. Figure 5.2.2 shows
successful learning of 32 randomly sampled points. All hidden, candidate, and output units are using
symmetric sigmoid activation with range (−1, 1) and η = 2−3. All 16 hidden units are used. Interestingly,
the network solves this problem without generalizing to the spiral. Enough high-frequency information has
been removed that opportunistically drawing wedges around neighboring points of the same classification
suffices to minimize error.

6 Conclusions

The system presented in Section 3 successfully evaluates and trains a cascade-correlation neural network to
solve several test problems. Moreover, the specialized parallel processor presented in Section 3.1 requires
substantially fewer clock cycles than a general-purpose CPU to solve the same cascade-correlation problems.
The project is therefore a successful proof of concept for the architecture and organization used.

18Image from the Pyro Robotics project at http://pyrorobotics.org/?page=TwoSpiralsProblem
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6.1 Costs

The following discussion is restricted to costs incurred solely by this project. It excludes Engineering de-
partment activities that support ENGR 90 in general.

6.1.1 Material

An Altera DE2 prototyping board, based on the Cyclone II FPGA, was the only cash expenditure. It was
purchased directly from Altera for $269, exceeding the initial project budget of $200 by 34.8%. As is discussed
in the project proposal, the overrun was approved in advance by the project advisor and by the Engineering
department chair. Section 6.2 notes some auxiliary returns to the department from the investment.

The project also consumed various resources of unknown cash value. For the 16 weeks of active project
development, it required exclusive use of a laboratory space, a high-end computing workstation, and an
RS-232 cable. The workstation, DE2 board, laboratory lighting, and laboratory climate control consumed
some unknown amount of electricity. Network resources were used both to publish project materials and to
look up relevant documentation on the Internet. Approximately 200 pages of meeting notes, draft reports,
checklists, handouts, and other paper articles were printed on the department laser printer in connection
with the project, and about 150 pages of photocopies were made on library copiers.

6.1.2 Human

The project’s human resource costs were approximately as follows:

• 550 hours of primary developer time for

– proposal writing and specification development, 50 hours

– design and implementation, 200 hours

– testing and debugging, 200 hours

– documentation, 75 hours

– meetings and presentations, 25 hours

• 25 hours of Prof. Tali Moreshet’s time for meetings, presentations, debugging assistance, and review.

• 4 hours of Prof. Lisa Meeden’s time for discussion of neural network theory and current practice.

• 2 hours of Edmond Jaoudi’s time for procurement and workstation configuration.

6.1.3 Environmental

The electricity and printing costs noted in Section 6.1.1 entail environmental costs. These costs were miti-
gated as much as possible by using only half the light bulbs in the laboratory, turning off the DE2 board when
it was not in use, and reusing printouts as scratch paper before recycling them. Unfortunately, powering off
the workstation itself was not an option, since it was hosting the Trac web interface for public access.

FPGAs are reprogrammable indefinitely. Barring an improbable failure or accident, the Altera DE2
board will likely be reusable by the department for many years. Since the department is currently using
FPGA prototyping boards from 1994 in its curriculum, it seems unlikely that the DE2, a model that dates
to 2001, will be retired before 2015. Even when the department is through with it, the board may well pass
into other hands for ongoing reuse. By the time it is ultimately discarded as trash, it is difficult to predict
what the conventional disposal method for electronics will be. Encouragingly, the FPGA on the DE2 is
lead-free, but further information about materials used in the board is not readily available.

If a device based on the architecture presented in this report entered mass production as an ASIC, its en-
vironmental footprint would be comparable to any other integrated circuit device. Despite the attractiveness
of the architecture, this situation is unlikely in the near future, as argued in Section 6.4.
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6.2 Auxiliary Benefits

As mentioned in Section 6.1.3, the Altera educational FPGA prototyping boards presently in curricular use
by the Engineering department are obsolete. In at least two instances known to this author, final projects for
an engineering course have only been tested in simulation because they could not fit onto the department’s
devices. Engineering faculty have expressed interest in procuring newer kits. This project has therefore
served as a low-cost dry run for a larger-quantity DE2 purchase by the department.

Such a purchase is unequivocally recommended. Since the Cyclone II EP2C35 could fit this project,
albeit tightly (see Section 5.1.2), it is likely capacious enough for any ENGR 15: Digital Systems, ENGR 25:
Computer Architecture, ENGR 71: Digital Signal Processing, or ENGR 72: Electronic Circuit Applications
project in the foreseeable future. The DE2 also integrates a number of potentially valuable features not used
in this project, such as 8 MB of SDRAM, an SD card slot, USB ports, A/V jacks, and an LCD display.

The DE2 is attractive for reliability as well as features. Programming the DE2 by USB is much faster and
less failure-prone than the parallel-port JTAG connectors used by the legacy hardware. Most importantly,
the Quartus II 7.0 development environment, at least when used in Linux, does not share Quartus II 5.0’s
habit of crashing with opaque error dialogs. Officially, Altera only supports Quartus for Windows and Red
Hat Linux, but it was used under Ubuntu Linux throughout this project with just a few initial configuration
hurdles. Quartus II 7.0 is supported by the College’s existing Altera license server for any platform.

6.3 Known and Suspected Issues

As noted in Section 5.2.2, parameters that allow the system to solve the full two-spirals problem have not yet
been found. It is suspected that the error and correlation surfaces are nearly flat over most of the input space,
making successful parameters exceptionally difficult to find. Nonetheless, Fahlman uses cascade correlation
to solve the problem reliably [9]. It is possible that the parameter tuning is just highly sensitive, and this
research simply has not hit upon the right combination of learning rates, initial weights, input and output
scaling, and activation functions. However, there are two other hypotheses explaining the discrepancy that
should be investigated in future work.

Hypothesis 1: Training Overflow

The hardware checks the accumulation of anet for overflow, but it does not check the various multiplications or
accumulations used in training. During output retraining, if the error on a training pattern is large, and some
αn is also large, and f ′(anet) > 1, the multiplication of those three 16-bit numbers into a 32-bit register
could overflow. In most tests, however, symmetric sigmoid activation functions were used without large
scaling. Thus, it was usually the case that f ′(anet) < 1 for any anet. Failure by overflow is a more plausible
scenario during candidate training. If several successive training patterns generated large components of the
same sign, the accumulated value for ∂S

∂wnc
could certainly experience intermediate overflow of the 16-bit

storage. Both conditions should be checked, and the peripheral should generate error messages if they arise.
If overflow is determined to be a problem, widening the affected memories should compensate.

Hypothesis 2: Search Rule Selection

The backprop rule used in this project computes weight updates using only the first derivatives of error and
correlation with respect to each weight. Although he claims any search rule will work, Fahlman himself uses
the quickprop rule, which incorporates information from higher-order derivatives into the weight update
[9]. Sensitivity to acceleration may be critical for traversing shallow slopes quickly, and thus avoiding
apparent stagnation. When considering the effects of limited precision on cascade correlation, Fahlman gives
a quickprop algorithm that is convenient for hardware implementation [12]. Future revisions of the project
should use it.
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6.4 Marketability and Future Work

The selection of tools and technologies for this project was tailored for low-cost rapid prototyping. Unsur-
prisingly, these design choices have also ensured that the current product is not useful for serious AI research.
Researchers who use cascade correlation have indicated that the most serious shortcomings are in network
size, training set size, and real speed. Notably, the requirement that learning rates and training set sizes be
powers of 2, the linear interpolation of the activation function, and the use of fixed-point arithmetic are not
viewed as problematic.

Given these observations, there is a clear path for future development that will mature the prototype
into a viable product without dramatic architectural changes. Firstly, the obsolete serial interface should be
replaced with a modern bus technology such as PCI-X or HyperTransport. The chip itself could be updated
to use a new interface simply by replacing the serial manager. Of course, moving away from the DE2 board
would entail additional engineering effort for PCB layout, JTAG support, and power regulation.

Secondly, the network could be scaled up massively if the design were implemented as an ASIC. Some
reworking of the design files would be required to support additional hidden nodes, output nodes, and training
set capacity. The width of address buses and associated registers would change; delays would be adjusted;
target and size information would no longer fit in a byte; Altera megafunctions for RAM and DSP units
would be replaced with custom design. Much smaller process sizes and correspondingly higher clock speeds
would be attainable, but additional engineering effort would be invested in timing, since the development
tools would not be able to analyze it automatically. Importantly, none of these issues affect the fundamental
architecture, which can scale as large as the fabrication technology will permit.

The project’s results suggest that a scaled-up ASIC implementation, on a fast bus, running at clock
speeds comparable to modern CPUs, would dramatically outperform a general-purpose computer at cascade-
correlation training. It is an open question whether the demand for fast cascade-correlation, likely limited to
academic and industrial AI laboratories, is sufficient to justify the engineering and production costs of ASIC
deployment. Market research on that point should certainly precede any serious work in this direction.

As an alternative, the design could be scaled up and clocked faster on a more modern FPGA. The Cyclone
II was a mature design in 2001. Altera’s highest-end Stratix III FPGAs use a 65 nm process and have up to
896 18-bit multipliers, along with much-increased RAM and LUT resources. At a very conservative guess,
the computational network could be 10 times as large, clocked to 1 GHz, have 210 inputs, and support 212

training patterns. A bus upgrade would still be necessary, of course, but the total engineering effort is much
reduced by remaining on an Altera platform. Moreover, the device would remain reconfigurable; network
size could be traded off for speed, for training set size, or for precision simply by reprogramming. Also, the
large startup costs of ASIC production would be avoided. This avenue lends itself to commercialization in
a consulting model: the vendor produces the accelerator, deploys it at the client’s site, and is available to
assist with modifications and updates as the client’s needs change. This model is likely more suitable for
serving the small but well-funded market of institutional labs.
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Appendices

A Host-Peripheral Interface Specification

This document governs communications between the network training accelerator and the PC host. It defines
the communications technology, and the format and semantics of all messages.

Technology

A standard serial link will be used for communications between the peripheral and the host PC. The link
will operate at 115.2 kbps = 8.68 µs/bit. All multi-byte encodings are little-endian.

Format

Type Bits Type
00 Moding
01 Command
10 Data
11 Reserved

(a) Type Codes

Node Bits Node
00 Hidden
01 Candidate
10 Output
11 Reserved

(b) Node Codes

Moding messages are a single byte. Command messages are two bytes long. Data messages may have an
arbitrary length in whole bytes. The first two bits of a message indicate its type, as presented in Table 11a.

The least significant six bits of the first byte of a Moding or Command message specify an opcode. The
second byte of a Command message specifies a target. If, semantically, the target is a node, the type of node
will be specified by the most significant two bits of the target byte as presented in Table 11b.

The least significant four bits will be used to address a hidden node. The least significant two bits will
be used to address a candidate node. The single output node requires no addressing.

The least significant six bits of the first byte of a Data message specify the type. The following byte has
unsigned value one less than the number N of words to follow. The subsequent 2N bytes, hereafter called
the substance bytes, encode the data in the manner specified for that particular message.

Moding Messages

beginEvaluation

opcode 000000. Enter network evaluation mode.

beginTraining

opcode 000001. Enter network training mode.

forceEvaluation

opcode 111111. Forces a return to evaluation mode regardless of any other conditions. Removes any expec-
tation of data. The peripheral must respond with resultCode 000000.
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Command Messages

clear

opcode 000000. Unfreeze all hidden nodes and reset internal state such that new training will install the
first successful candidate as hidden node 0.

dumpWeightTable

opcode 000010. The target byte will specify a node. The peripheral responds with the 40 substance bytes
of weightTable message, giving the contents of the weight table for the target node.

evaluate

opcode 111110. The peripheral must be in training mode. Compute the network output for a provided
input, adjusting no weights. The peripheral must be in evaluate mode.

The peripheral will nominally reply with resultCode 001000. The host will then send an evaluationInput
message. The peripheral will evaluate the network. If no error arises, it will send the two-byte network
output.

loadActivation

opcode 000100. The target byte will specify a node. In nominal circumstances, the peripheral will acknowl-
edge with resultCode 001000. The host must then send an activationTable message. IMPORTANT: After
an activation, the input accumulation is cleared.

loadWeightTable

opcode 000101. The target byte will specify a node. In nominal circumstances, the peripheral will acknowl-
edge with resultCode 001000. The host must then send a weightTable message.

setLearningRate

opcode 111000. The target byte will specify a candidate or output node with the two MSBs (7-6) and two
LSBs(1-0); bits 4-2 will give an integer k. The learning rate for the targeted node will be set to 2−k. In
nominal circumstances, the peripheral will reply with resultCode 000000 or resultCode 000001.

loadTrainingPatterns

opcode 111001. Initiate the training of a new hidden node. The peripheral must be in training mode. For
p training patterns, the target byte will be log2p. The training set may have at most 256 elements, so the
value of the target byte must not exceed 8.

In nominal circumstances, the peripheral will reply with resultCode 001000. For each of the patterns in
the training set, the host will send a trainingItem message, and the peripheral will respond nominally with
resultCode 001000. When the last element of the training set is transmitted, the peripheral will respond
with resultCode 000001.

candidateTrainingEpoch

opcode 111100. The peripheral must be in training mode. Instruct the peripheral to perform one epoch of
candidate training using the loaded training patterns. The peripheral will reply with four words giving the
correlation to the error achieved by each candidate node.
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install

opcode 111101. The peripheral must be in training mode. Indicate to the peripheral that the candidate
node specified in the target byte should be installed as a hidden node. The weight table of that node will
be copied into the next unused hidden node. In nominal circumstances, the peripheral will reply with result
code 001000. The host will typically then send a outputRetrainingEpoch message.

outputRetrainingEpoch

opcode 111111. The peripheral must be in training mode. Instruct the peripheral to perform one epoch
of output weight retraining using the loaded training patterns. The peripheral will reply with result code
000001 under nominal conditions.

Data Messages

Entry Value
0 Input 0
1 Input 1
2 Input 2
3 Input 3

(a) evaluationInput

Entry Value
0 Input 0
1 Input 1
2 Input 2
3 Input 3
4 Target

(b) trainingItem

Entry Value
0 Input 0
1 Input 1
2 Input 2
3 Input 3
4 Hidden 0
5 Hidden 1
... ...
19 Hidden 15
(c) weightTable

Table 11: Data message formats.

activationTable

The opcode for an activationTable message is 000100. It has 512 substance bytes.
An activation table specifies the activation function of the target node. It has 256 signed entries. Entry

0xNN stores a 16-bit word that gives the value of the activation function at 0xNN00. Activation levels at
net inputs between the listed values will be linearly interpolated.

evaluationInput

The opcode for an evaluationInput message is 111110. It has 8 substance bytes, consisting of 4 16-bit
words, as shown in Table 11a.

trainingItem

The opcode for a trainingItem message is 111111. It has 10 substance bytes, consisting of 5 16-bit words,
as shown in Table 11b.

weightTable

The opcode for a weightTable message is 000101. It has 40 substance bytes.
A weight table has 20 entries of 16 bits that record the weight assigned by a node to the output activation

of the four input nodes and the sixteen hidden nodes. For the output node, all entries in the weight table
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will be relevant. For a hidden or candidate node, immaterial entries will always be 0. The entries are signed.
Table 11c shows the organization.

Result Codes

The peripheral will not implement any message queueing. After sending a message to the peripheral, the
host will not send another message until it receives a response from the peripheral. In cases that do not
prompt a response with substantive data, the peripheral replies with a result code. Result codes are eight
bits, with the semantics listed in the Table 12. Unenumerated values are reserved.

Code Meaning
000000 Success. In Evaluation Mode. Any Moding or Command message legal.
000001 Success. In Training Mode. Any Moding or Command message legal.
001000 Success. Ready to receive data.
100000 Error: Undefined Message Code.
100001 Error: Training message not valid in evaluation mode.
110011 Error: Expected a data message.
100010 Error: Invalid Data - repeat.
100011 Error: Invalid Target Byte - repeat.
100100 Error: All Hidden Nodes In Use. In Evaluation Mode.
110000 Error: Arithmetic Error. In Evaluation Mode.
110001 Error: Overflow Error. In Evaluation Mode.
101000 Error: Default Error. In Evaluation Mode.

Table 12: Result codes.

B Evaluation Cycle Detail

The following list gives the series of calls made by a Python script for simple network evaluation, and the
resulting activity in the accelerator. This procedure fully captures the parallelization opportunity discussed
in Section 2.2.

1. The script instantiates a cascCorrAccelSession object with the path to the serial device.

2. For each hidden and output node, the script computes a sequence giving the activation function at all in-
tegers on the interval [−128, 127], and passes that sequence to the API function setActivation Hidden
or setActivation Output.

(a) The API calls the driver function Command loadActivationTable, which transmits that com-
mand’s opcode followed by the appropriate target byte.

(b) The decoder stores the opcode and target in registers, and responds with result code 001000:
ready to receive data. This code is returned to the API, which notes that it is an expected result
code, and therefore takes no action.

(c) The API converts the sampled activation function to an array of short int, and passes it to the
driver function Data activationTable, which transmits that data message’s opcode followed by
the size byte 0xFF.

(d) The decoder latches the opcode and size, moves to a state for collecting each word of the activation
table, and sets its address output to 0x00.

(e) Once a word is collected, the decoder gives itself control of the data bus, outputs the word, and
sets the control code for the target node to Store Activation.

29



(f) The target node latches the activation table value from the data bus and writes it to internal
RAM at the line specified by the address bus.

(g) The decoder decrements the stored size, increments the address output, and resumes waiting for
the next word.

(h) Once the 256th activation table entry has been stored, the decoder transmits result code 000000
or 000001 and returns to waiting.

(i) The Command loadActivationTable function returns that one byte is read. The decoder converts
that byte to an integer, and checks whether it is an error code. Since it is not, it returns without
raising an exception.

3. For each hidden and output node, the script passes a sequence giving the weight table value for all 20
possible feeding nodes to the API function setWeights Hidden or setWeights Output. Transmission
and storage proceeds in exactly the same fashion as for the activation table, except the message size is
19.

4. The script calls the API function evaluate, passing it a sequence of 4 elements giving the input at
inputs 0-3.

(a) The API calls the driver function Command evaluate, which transmits that command’s opcode.
The target byte’s contents do not matter.

(b) The decoder stores the opcode and target in registers, and responds with result code 001000:
ready to receive data. This code is returned to the API, which notes that it is an expected result
code, and therefore takes no action.

(c) The API converts the inputs to an array of short int, and passes it to the driver function
Data evaluationInput, which transmits that data message’s opcode followed by the size byte
0x03.

(d) The decoder latches the opcode and size, and moves to a state for collecting each word of input.

(e) Once a word is collected, the decoder gives itself control of the data bus, outputs the word, and
raises the enable line to the input node corresponding to the word’s position in the message.

(f) The input node latches the value in its register.

(g) The decoder decrements the stored size and resumes waiting for the next word.

(h) Once all the inputs have been latched, the decoder gives the bus to the first input node, and sets
the control codes for all hidden and output nodes to Accumulate.

(i) After sufficient delay to allow accumulation, the decoder gives the bus to the each subsequent
node and allows all the fed nodes to accumulate again.

(j) Now the first hidden node is fully fed. The decoder sets its control code to Activate and gives it
control of the bus.

(k) Once the hidden node has had time to activate, the decoder sets the control code for all other
hidden and output nodes to Accumulate once again.

(l) Now the second hidden node is fully fed. It activates; all other nodes accumulate; then the third
hidden node activates, and so on, until the output node itself activates.

(m) The decoder gives the bus to the output node, latches the output, and transmits the word back
to the host.

(n) The Command evaluate function returns that two bytes are read, as expected. The API converts
the byte array giving the response to an array of short int, and thence to a sequence of floating-
point numbers that is returned to the user’s script.
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