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Abstract 

An energy model has been developed to predict the electricity consumption at Swarthmore College. Factors 
such as historical weather data and the College’s class schedule are considered as major decision variables for the 
model. The model is implemented through a Windows-based computer program. The College’s Facilities Department 
plans to use the model to estimate the College’s future electricity demand. The model will help Facilities managers to 
avoid potentially high electricity costs as a result of the coming deregulation of electricity prices in Pennsylvania in 
2010. The model’s feedback system will improve its results based on the deviations between predicted and actual data 
collected over time. 
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1 Please note that the Appendices will be provided upon request. The code and data for the Project can be provided in a 
CD. 
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Introduction 

The Adaptive Electricity Use Model, “the Project”, at Swarthmore College, “the Client” or “the College”, was 

created in response to the energy challenge the College faces in future. It is a work of extensive data collection, 

analysis, formulation and real-time implementation. Three major objectives of the Project are: minimizing the 

College’s energy cost, reducing greenhouse gas emissions and heightening students’ awareness of wasteful practices.  

The Project analyses, estimates and forecasts the College’s electricity consumption. During 2005 – 2006, the 

College was charged for its electricity demand by local contractors PECO/Exelon at $0.08 per kWh2, which cost in 

total $1,387,010.56 from August 2005 to July 2006. An additional demand charge for exceeding the allowable peak 

limit was charged at $25 per kW. The College paid approximately $52,000 for the excess demand.  

The motivation for this Project is the final step in the deregulation of the electricity market in December, 2010. 

A competitive market for electricity will end the regulation of electricity prices. Current electricity prices at in 

Pennsylvania will change in 2010, when electricity prices will adjust every fifteen minutes based on the market price 

determined by supply and demand. Swarthmore College, “the Client”, is concerned that its electricity bill will triple as 

a result of deregulated electricity prices. The Client’s endowment has returned outstanding results while beating the 

market’s return in past years. However, tripling the current electricity bill of approximately $1.4 million will squeeze 

the College budget in a significant way leading to cuts in other spending. In order to excel as the best undergraduate 

institution in the world, the Client must understand its electricity demand to avoid potentially high electricity prices in 

2010. 

The Adaptive Electricity Use Model, “the Project”, at Swarthmore College, was developed in response to the 

Client’s challenge of becoming a low-cost and environmentally-friendly energy consumer. An energy model has been 

designed to optimize the electricity consumption in terms of cost and environmental impact, and will be implemented at 

Swarthmore College. The model will predicts the Client’s future electricity demand based on factors such as outside 

temperature and time by taking inputs through a Windows-based program. The Client plans to use the model to 

estimate its future demand and take precautions to avoid potentially high electricity prices. The academic goal for the 

author is to apply his knowledge from a broad range subjects such as optimization research, linear physical systems 

analysis, systems engineering, fluid mechanics, digital signal processing, thermodynamics and economics. The project 

is also aimed at raising environmental awareness among the campus community. 

The College has a well-structured data gathering system for data such as electricity demand and temperature. 

Other experiments such as a hotbox experiment have been conducted to get a deeper understanding of College’s 

electricity consumption. The extent of data collection has been the main constraint in the Project. 

The model has been developed to forecast electricity demand based on selected decision variables. The 

decision variables range from class schedule to the performance of air handling units. Extensive data has been acquired 

from the Swarthmore College Facilities Management Department (FMD) through its established data-gathering system. 

The FMD will eventually send the raw data to an intermediate server. A Windows-based program will read the data 

from the server. An interface portion of the program will analyze the data and present it. After the data gathering and 

analysis phase is completed, the electricity model will digest this data to output tomorrow’s predicted electricity 

                                                 
2 Current price for electricity is at constant dollars similar to 1991’s electricity prices. 
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demand in terms of kWh. The user interface will help the user to choose among different forecasting models. The result 

will be displayed graphically. During the next day, the predicted result of the model will be compared to actual data. 

Through a feedback loop mechanism, the deviations will be minimized and the model will optimize over time3. The 

Client plans to use the model to estimate its future demand and take precautions to avoid the potentially high electricity 

prices by 2010. 

 

Information about the Project space 

The Campus Energy Analysis Project at Swarthmore College investigates Kohlberg Hall, “the building”, in 

depth. Kohlberg is the home to Economics, Modern Languages and Literatures Departments, was completed in 1996. 

There is a language lab on its third floor. The ground floor includes a lounge with a coffee bar and fireplace, and the 

Scheuer Room. The coffee bar provides a community space for campus and it is a popular study and hang-out space for 

students. On the upper two floors are classrooms, seminar rooms and faculty offices. Kohlberg is a gathering point for 

the college community and it is located in the center of a group of other academic buildings. 

Kohlberg is chosen as an exemplar building for the whole college. The rationale for choosing Kohlberg is 

because of its main usage, its average age compared to other buildings at campus, its size and location, its functionality 

at the college and its infrastructure for data gathering. The building has several classrooms and faculty offices. Since 

students leave their rooms for most of the day, a dormitory building is not the best choice for a campus-exemplar 

building. Kohlberg is neither new nor old compared to other building in campus. The building is located at the center of 

the college. With its coffee bar, it attracts student body every day. The most important feature of the building is the 

already built-in data gathering system. The Facilities Department can collect various types of data from the building. 

Once Kohlberg is understood, the model can be replicated for the rest of the campus.  

 

Conversion Factors 

The Campus Energy Analysis project heavily relies on quantitative data. In the Project, experimental data is 

compared to theoretical data. To analyze data, it is essential to convert the different units of data into the same units. 

The most common units are KW and KWh since the Project’s main target is electricity consumption at the College. 

One KW equals to 1000 Joule per 1 second.  
2

3

*J kg m NmW
s s s

= = = , Equation 1 

In terms of electrical definition, 1 watt is 1 volt times 1 ampere. In other words, 1 watt of power is dissipated, if 1 volt 

of potential difference is applied across a resistive load, and a current of 1 ampere flows through that resistor load. A 

watt-hour is a unit of energy. One thousand watt-hours equals one kilowatt-hour. One watt-hour is the amount of 

energy consumed operating a watt-power load for one hour. The next most common unit is the British Thermal Unit 

(Btu), since the Project is an energy project. Btu is defined as the amount of heat required to raise the temperature of 

one pound of water by one degree Fahrenheit. The table below shows useful conversion factors.  

                                                 
3 Please look at “Forecasting electricity demand at Swarthmore College” section for more information. 
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Table 1 
Unit Multiplication Factor Obtained Unit 

Btu 252 Calorie 

Btu/sec 1.0545 KW 

Btu 1.05*103 Joule 

 
Information about the potential energy candidates for Swarthmore College 

Table 1 displays several properties for commonly used energy sources4. These are fuel types that Swarthmore 

College is using or might be using in the future. Currently, the College uses electricity and #6 Oil oil as major sources 

of energy, whereas cooling machines that use natural gas exist. 

Table 2 
Fuel Type Unit Btu/unit  Efficiency Cost/unit Cost/mmBtu Carbon Dioxide Emission (kg) 

Gas Therms 100,000 80% $0.96 $12.00  

#2 Oil  Gallons 139,000 85% $2.00 $16.93  

#4 Oil Gallons 145,000 85% $1.30 $10.55  

#6 Oil Gallons 150,000 85% $1.24 $9.73  

Electricity kWh 3,143 100% $0.08 $25.45 44 

 

Electricity is the most expensive energy out of the possible fuel types, whereas #6 Oil is the least expensive 

energy source available. Although #6 oil has cost advantages, it is the dirtiest energy source among the listed fuels. It is 

not in the College’s interest to pollute the environment. At the same time, the College has carbon dioxide caps imposed 

upon it by Pennsylvania law. If these limits are surpassed by the College’s CO2 – emission, the College has to pay a 

significant fine for the excess of pollutants.  

The College uses #6 oil for heating purposes. Beside its regular use, electricity is also used for cooling, 

ventilation, distribution of heat and infiltration. The #6 oil is used to make steam in the College’s heating plant and that 

is distributed to the rest of the campus through its central heating system. Some buildings have separate heating 

systems with their boilers such as Mary Lyons and PPR. 

 

Electricity consumption at campus – How to choose decision variables? 

A brief summary of the literature about forecasting electricity demand 

Forecasting electricity has been an important topic since electricity has become a commodity that is traded 

much like oil in markets. Neural network systems and vector machines are the main approaches in the literature to 

forecast electricity demand or prices. In this project, I will choose not use these models since they do not require an 

understanding of the system for forecasting. With the rich data set I have, I would like to build more intuitive models 

that will help decision makers understand the electricity demand and forecast it. 

 

Forecasting electricity demand at Swarthmore College 

It is vital for the Project’s success to choose appropriate decision variables for the forecasting model. 

                                                 
4 The information is obtained from Tom Sahagian and Betsy Jenkins from Power Concepts LLC. 
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Therefore, it is important to understand the electricity consumption at the College. Electricity consumption at 

Swarthmore can be broken down among three main electricity demand variables: controlled, uncontrolled, and HVAC 

variables. The controllable variables are the electricity consumption factors such as temporary lighting, computers and 

other plug loads. The uncontrollable variables are the fixed loads like emergency lights and pumps. The final variable is 

the HVAC variables, which represent the heating, ventilation and air conditioning of the buildings. Although HVAC is 

partly an uncontrollable and partly a controllable variable, it will be treated as a separate variable because of its extent 

of contribution to the total electricity demand at the College.  

Controllable variables such as office equipment and additional plug loads like students’ fan dryers or laptops 

are an important part of the electricity demand. These variables are the major factor for demand peaks that cost the 

College $52,9255 in the 2005-2006 class year. Controllable variables are the hardest to forecast among the three 

decision variables because they strictly depend on human interactions and activities. Human interactions depend on 

various factors that are either hard to observe or not observable. Since a model’s success depends on the ratio of factors 

that the model can observe out of the all possible factors that affect the model, it is a challenge to build a model to 

forecast electricity based on controllable variables. 

The uncontrollable variables are factors that the College has no control to regulate. The College is mostly 

restricted by authorities on limits for these uncontrollable variables. For instance, pumps are used to heat the water that 

runs through the heating pipes across the buildings. The pumps will always be on as long as outside temperature is 

under 65 Fahrenheit. Shutting off the pumps is not feasible since this will decrease the inside temperature of the 

buildings so significantly that the low temperature will cause a discomfort to Kohlberg residents, students, faculty and 

staff. Similarly, turning off the fixed lighting is not possible since fixed lighting such as emergency lights is essential to 

provide safety on campus.  

HVAC variables cover the biggest portion of the energy bill. As described above, the Collage uses #6 oil for 

heating. The HVAC system distributes this heat through air handling units to campus spaces. At the same time, HVAC 

variables include the cooling of campus space. Although electricity is the most expensive fuel type used on campus, it 

is the main source of cooling. The cooling plant at the north campus and McCabe chiller are two major cooling plants. 

Although there are some cooling units that run by natural gas, these units are additional units.  

The remaining share of the electricity consumption can be identified as other variables. Other variables 

represent all the factors that affect the electricity demand at Kohlberg and are not observed by the three decision 

variables discussed above. Another name for these other variables is unobserved variables. These unobserved variables 

might be inefficiencies or unidentified energy demands. For instance, when the electrical demands of Kohlberg and 

Trotter are plotted against time, peaks in electricity demand are seen between midnight and early morning. These peaks 

do not belong to any of the three decision variables listed above, but they appear to be the result of Kohlberg’s 

hydraulic elevator pump. 

                                                 
5 Demand cost is the additional electricity cost that the College has to pay to the electricity distributor as a punishment 
of its high electricity demand peaks in the summer. The College has a complicated agreement with the electricity 
distributor. Briefly, the College will be charged when its electricity demand falls below some certain percentage of its 
highest peak in the given year. More information is given about the demand cost in Appendix X, Swarthmore College 
Case Study. 
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Forecasting with decision variables 

The three decision variables discussed above represent the observable factors that affect the electricity demand 

at Kohlberg. Although they are responsible for a part of the total electricity demand, their influence on the total demand 

is important. Therefore, three different models are built to forecast the total electricity demand based on each of these 

decision variables. These three models are combined by a linear function that is shown below.  

  X = α * X1 + β * X2 + γ * X3 , Equation 2 

, where X1 represents the uncontrollable variables model, X2 is the controllable variables model and X3 stands for the 

HVAC variables model. The coefficients multiplying the decision variable models are the weighting factors to finalize 

the forecasted electricity demand. Different approaches to finalize the forecasting model are presented toward the end 

of the project by comparing the results. Possible approaches to adaptive adjustment of the coefficients are a dynamic 

multivariable regression model and/or an adaptive filter method. A feedback loop mechanism is created through these 

methods.  The final forecasting model predicts tomorrow’s electricity demand. The forecast is compared to actual data 

the next day. Based on the deviations from actual data, weighting factors are reevaluated6.  

 Since authorities set most of the uncontrollable variables, these variables are more easily observed compared 

to other decision variables. Unobserved variables might demand different loads of electricity at different times but they 

are expected to follow a specific schedule since they are predetermined. Therefore, their electricity demands repeat 

based on their specific demand schedules. It is essential to understand the cyclical behavior of the unobserved variables 

to build a forecasting model. In order to create an elaborate model, historical data were investigated. 

 

 

                                                 
6 If there are significant errors, the models will be changed accordingly. 
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Time Series Model – Models for decision variables 

Theory  

Electricity demand at Kohlberg has been recorded every 30 minutes with Facilities Departments’ loggers since 

Fall 2006. The failure of some loggers and other types of data lost are the limitations of this meticulous data gathering 

process. A snapshot of electricity demand at Kohlberg is provided below for the first three weeks of November 2007. 

 
Figure 1 

 

Looking at the data above, it can be observed that the electricity demand fluctuates like a sinusoidal curve with 

smaller amplitudes on weekends and bigger amplitudes on weekdays. As a first step in data investigation, I separated 

the weekend data from the weekday data since the variables that affect them are different. For instance, because there 

are no classes on weekends, electricity demand at Kohlberg is considerably less compared to a weekday’s electricity 

demand.  

The cyclical behavior of electricity demand can be generally attributed to uncontrollable variables. Although 

they each might have a different schedule for electricity consumption, I understand that their electricity demands 

depend on time. Since the weekday cycles have same periods and similar amplitudes, an average cycle for 

uncontrollable variables’ electricity demand schedule can be chosen as any multiple of one day. Since the electricity 

demand depends on time, the idea of time series data is encountered. A time series is a sequence of data points that is 

gathered mostly with a uniform time interval.  

The series that we want to forecast vary over time. We often attribute that variation to unobserved underlying 

components such as trends, seasonal variations, and cycles. There are various possible approaches to analyze and 

forecast time series data. Before we investigate time series models, I present a linear regression analysis since it is 

essential for the models used in this paper. 

 

Theory – Correlation coefficient and simple linear regression analysis 

A relationship between two data sets can be investigated by a simple linear regression analysis method. Linear 

Regression Analysis (LRA) is a fundamental statistical method used throughout the Project’s data analysis.  
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As a first approach to data analysis in many engineering problems, data is investigated often by graphing the 

dependent and independent variables against each other. This helps the analyst to visualize the type of the relationship 

between the independent and dependent variables. “The correlation coefficient (ρ) of two random variables X1 and X2 is 

computed by dividing the covariance of X1 and X2 by their respective standard deviations.”7 We can write: 

1 2 1 2 1 2

1 2 1 2

Cov( , ) ( , ) *=
* *
X X X X μ μρ

σ σ σ σ
Ε −

= , Equation 3 

, where σ1 and σ2 are the standard deviations of X1 and X2, respectively. A positive or negative correlation will 

indicate whether there is a relationship between dependent and independent variables, while a correlation value of zero 

will indicate no relationship. A correlation number of -1 is a perfect negative linear correlation, whereas a value of 1 

indicates a perfect positive linear correlation.  

However, in most engineering problems the data is further investigated by regression analysis. In data analysis 

where there is only one independent variable involved, the regression analysis is called simple regression. Later in the 

paper, a more complicated regression analysis such as multivariable regression analysis will be discussed. Simple 

regression analysis has a dependent variable and an independent variable. We are interested in finding a relationship 

between these two variables to find the expected value of the dependent variable for any given number of independent 

variable. We can write: 

 E(Y | X) = a + b*X , Equation 4 
, in which a and b are constants. To find the estimates for constants “a” and “b”, the method of least square analysis is 

used. The deviation of each estimated dependent value from the actual dependent value or, in other words, the 

difference between the estimated value and the experimental value, *
i i iy yΔ = − , is called the residue. In the least 

square method, the sum of the square values of residues is minimized to find the best-fit line for the given data8. The 

sum of squares of residues can be denoted as SSE or SSE. Minimizing the sum of squared of residues can be described 

as:  

  
SSE = yi

* − yi( )
i=1

n

∑
2

= (a + bxi − yi )
i=1

n

∑
2

, Equation 5 

Two equations below estimate the coefficients “a” and “b”. These coefficients are described with symbols “a” 

and “b”. 

0ESS
a

∂
=

∂
, Equation 6 

0ESS
b

∂
=

∂
, Equation 7 

 The linear regression analysis above can be taken one step further by minimizing the SSE. This is called the 

least square estimation method. Equation 5 can be rewritten for the least square estimation method: 

                                                 
7 Fundamentals of Systems Engineering with Economics, Probability and Statistics, C. J. Khisty and J. Mohammadi, 
Prentice Hall 
8 In data gathering process, data is collected in Y and X pairs. 
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Min

a,b
(a + bxi − yi )

i=1

n

∑
2

, Equation 8 

, where coefficients a and b are determined to minimize the sum of squared errors, SSE. The least square estimation 

method will be often used in time series modeling. 

 
Procedure – Time series model 

Some Forecasting Thoughts 

There are ways to estimate and to forecast a selected time series data set. First, we need to understand the time 

series data to find the best approach possible. Let’s investigate some possible approaches. 

 

Constant Plot Approach 

The simplest estimate for a time series is a constant estimate model. The set of unobserved factors includes 

everything but the average of the selected data set. As a result of these factors, the time series data varies along the 

plotted constant average of the data set. 

 yt = a + εt , where ε t : N (0,σ 2 ) , Equation 9 
“a” is the estimate for the selected data. In this simple case, it is the average of the data set, which is plotted as a 

constant line below in Figure 2. 

 
Figure 2 

  a
^

is the estimate for the constant average number, a, for the data set. a
^

 can be found as following: 

a
^

=
yt

n=1

T

∑
T

, Equation 10 

T is the last time point that we have data for. In Figure 2 above, T corresponds to 500. This formula is nothing different 

than solving the following equation. 
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Min
a

= (yt − a)2

n=1

T

∑ , Equation 11 

Let’s assume that we get one more data point after T. Most likely our estimate of a
^

 will change with the 

additional data. To find the new estimate, we have to find a
^

(T+1). 

a
^
(T + 1) =

yt − yT +1
n=1

T

∑
T + 1

=
yT +1

T + 1
+

a
^
(T )*T
T + 1

, Equation 12 

Now we know how to find the estimate of the selected data set. We want to forecast future data points based on past 

data. y
^

T + k  is the forecast for the data point y, k time intervals in the future.  

y
^

T + k = a
^
(T ) , Equation 13 

The constant model tells that the forecast data point y that is k time intervals in the future is equal to the estimate a
^

. 

 
Exponential Smoothing: 

Investigating a
^
(T + 1)  further, we can rewrite the equation as following: 

a
^
(T + 1) =

1
T + 1

⎛
⎝⎜

⎞
⎠⎟

* yT +1 +
T

T + 1
⎛
⎝⎜

⎞
⎠⎟

* a
^
(T ) , Equation 14 

The sum of coefficients in front of the independent variable, 
1

T + 1
⎛
⎝⎜

⎞
⎠⎟

, and the estimate for the selected data set, 

T
T + 1

⎛
⎝⎜

⎞
⎠⎟

, is 1. In other words, these coefficients are weighting factors for the two variables on the right side of 

equation. We can rewrite the equation as: 

a
^
(T + 1) = α * yT +1 + (1 − α )* a

^
(T ) , Equation 15 

The weighting factor α  determines the importance of the variables on the right hand side of equation in finding the 

new estimate for the selected data set after the additional data point is added to the data set. This is called exponential 

smoothing. Even with exponential smoothing, the constant plot model does not fit our data well as a result of the 

variance of data from a
^

. A high Sum of Squared Error number is expected from this fit.  
 
Linear Trend Model: 

In linear trend models, not all the factors are unobserved. An upward or downward sloping trend is an 

observable factor. “Trend is slow, long-run, evolution in variables that we want to model and forecast.”9 When this 

                                                 
9 Diebold, Francis. “Elements of Forecasting.” Department of Economics, University of Pennsylvania. Chapter 4, page 74. South-Western College 
Publishing. 
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trend evolves in a predictable way, then the model has a deterministic trend. Figure 2 below, has an upward sloping 

trend. 

Dummy Graph for Linear Fit
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Figure 3 
 
The time series graph in Figure 2 can be described with a simple linear function of time: 

yt = a + b * t + εt , where εt : N(0,σ 2 ) , Equation 16 
Similarly, the estimates for a and b can be found by minimizing the following equation: 

Min
a,b

(yt − a − b * t)2

n=1

T

∑ , Equation 17 

a is the intercept while b presents the slope coefficient. a
^

and b
^

 from Equation 18 are the estimates that minimizes the 

Sum of Squared Errors of the linear fit to the selected time series data set. Forecasting any data point in future can be 

found similarly with the following equation:  

y
^

T + k = a
^
(T ) + b

^
(T )* (T + k) , Equation 18 

 
Quadratic Trend Model 

Another time series model is Quadratic Trend Model. Figure 3 represents the time series data for United 

States’ population from 1805 to 1975.This model is used when the time series data looks as following: 

The Population of United States (in millions)
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Figure 410 

Quadratic Time Model can be described with the following equation.  

yt = a + b * t + c * t 2 + ε t , Equation 19 
Data above is has an exponential trend. To forecast this data set, quadratic model can be used  

y
^

T + k = a
^
(T ) + b

^
(T )* (T + k) + c

^
(T )* (T + k)2 , Equation 20 

by minimizing the Sum of Squared Errors.  

Min
a,b,c

(yt − a − b * t − c * t 2 )2

n=1

T

∑ , Equation 21 

 
Autoregressive Model, AR(p) 

In the previous models discussed above, time series data set y is only dependent on time. This is not the case 

for autoregressive model data, where correlation among the data themselves is expected. This model is mostly used for 

engineering problems in production systems. A model that works on a queuing problem such as predicting the number 

of customers in a grocery store has to use an auto-regressive model. The customers will wait or not wait the queue 

based on its length. Since the data depends on past data, an AR model is necessary. An estimate of time series model 

can be found as following: 

1 1 2 2 ...t t t p t p ty a b y b y b y ε− − −= + + + + + , where εt : N(0,σ 2 ) , Equation 22 

If we want to make the equation above look similar to our previous equations, we can rewrite it as: 

Y = X1 + X2 + ...+ Xp + ε t , where εt : N(0,σ 2 ) , Equation 23 

We don’t see time variables on the right hand side of the equation but we observe that yt is dependent on past variables 

such as yt-1, yt-2,…,yt-p, where p is the order of the auto-regressive model. 

 Forecasting is little more meticulous in this case. We have to follow a step-by-step approach since the y-values 

depend on the past y-values. To forecast yT+k, we have to find the forecast for yT+1, yT+2,…, until yT+k-1 in order to find 

y
^

T + k . The forecast for yT+1 is equal to: 

 

Code 1 
for j = 1:1:48 
count = 1; 

for index=(day_diff-((day_diff-40))):day_diff 
 dayy = index; 

         timee = j; 
         % Wednesday 
         day_act = dayy; 
         dayy = dayy - 2; 

A1 = [demand(timee,dayy-1), demand(timee,dayy-2), demand(timee,dayy-3), demand(timee,dayy- 
4), demand(timee,dayy-5), ... 
demand(timee,dayy-6), demand(timee,dayy-7), demand(timee,dayy-14), demand(timee,dayy-21),

  demand(timee,dayy-28)]; 
b1 = demand(timee,dayy); 
% I truncated some code here… 
… 
% Creating the matrix 
A = [A1; A2; A3; A4]; 
b = [b1; b2; b3; b4]; 
% Least Square Regression to find the Betas 

                                                 
10 http://www.mste.uiuc.edu/malcz/ExpFit/FIRST.html 
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x = lsqr(A,b); 
end 

end 

Code 1 represents a portion of the auto-regression model, written in Matlab. This model searches for autocorrelation 

between the current data and historical data. In the code above, the user would like to forecast electricity demand on 

Friday. Based on visual autocorrelation detection and Matlab’s “xcorr.m” function, it can be argued that an auto-

correlation occurs every 24-hours occurs. As a result of the class schedule, different multiples of day-interval is used to 

find the historical auto-correlative data to forecast Friday’s electricity demand. The model works as following: 

Table 3 
Weekday T-1 T-2 T-3 T-4 T-5 T-6 T-7 T-14 T-21 T-28 
Friday           
Wednesday Tuesday Monday Sunday Saturday Friday Thursday Wednesday Wednesday Wednesday Wednesday 
Monday Sunday Saturday Friday Thursday Wednesday Tuesday Monday Monday Monday Monday 
Last Friday Thursday Wednesday Tuesday Monday Sunday Saturday Friday Friday Friday Friday 
Last 
Wednesday 

Tuesday Monday Sunday Saturday Friday Thursday Wednesday Wednesday Wednesday Wednesday 

 
Four matrixes are created for Wednesday, Monday, last Friday, and last Wednesday. Each matrix has ten columns 

representing the past data from T-1 through T-28. The Least square estimation method is used to find the variable x in 

Code 1 that minimizes the sum of squared errors for function B = A*x. B is the raw data and A is the four matrixes 

created above. X is the forecasting matrix. By multiplying X with A_act, which is shown below, one can find y
^

 based 

on the auto-regressive model. 

Code 2 
% From the historical raw data we have for the electricity demand. 
A_act = [demand(timee,day_act-1) demand(timee,day_act-2) demand(timee,day_act-3) 
 demand(timee,day_act-4) demand(timee,day_act-5) ... 

demand(timee,day_act-6) demand(timee,day_act-7) demand(timee,day_act-14) 
demand(timee,day_act-21) demand(timee,day_act-28)]; 

Clearly, the forecasted electricity demand depends on past data since historical electricity demand values are used to 

forecast tomorrow’s electricity demand. 

 
Holt Winter Model 

Like the first three models, this model only depends on time. Therefore, any possible autocorrelation in the 

data ignored. Investigating our time series data from Kohlberg, one notices that the data set is strictly dependent on the 

time of day. The two big factors that affect the KW demand are outside temperature and human actions measured by 

class schedule. In general, these two factors vary based on the time of day. The Holt – Winter Model is the model for 

forecasting that is used to investigate data sets with similar properties. The model can be described by the following 

equation.  

  yt = a * ct + b + εt , where εt : N (0,σ 2 ) , Equation 24 
, where we want to minimize: 

Min
a

= (yt − a * ct − b)2

n=1

T

∑ , Equation 25 

‘Ct’ is the adjustment factor that is essential for the success of the Holt – Winter Model. There are forty-eight ‘ct’ that 

correspond to half-an-hours in a day. The number of constant ‘a’s equal to the number of days of time series data since 
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‘a’ represents the average electricity demand of a day in past data. ‘B’ is a constant number in the model. ‘Ct’ will 

suppress or magnify the estimated average number, ’a’, based on the time of day.  

Code 3: Part of the Holt – Winter Model Code 
% Get the forty-eight Ct for the Holt - Winter Model. These Ct will be used 
% to estimate and forecast the time series data based on the following 
% equation: y = a*Ct + error. 
% I got the average for every day (for the whole day). Then I found Ct 
% variables for each half-an-hour by doing a least square estimate. 
for i=1:1:48 
    B = weekday_demand(i,:)'; % This is a column vector for y - values at 00:00 
    A = weekday_mean_demand'; % To find the aver vector w/ same size. 
    Ct(i) = lsqr(A,B);  
end 

For our purposes, ‘b’ is chosen as zero, since we do not need any constant for our time series data. ‘Ct’ is calculated by 

the least square estimation method. It is a 48x1 vector that minimizes sum of squared errors for y − a * ct . By 

multiplying the ‘ct’ array with (for instance) electricity demand averages of the last five weekdays, we can estimate 

tomorrow’s electricity. The forecasting equation is as following: 

  y
^

T + k = a
^

(T + k) * c
^

T + k , Equation 26 
, where the estimates of ‘a’ and ct are used as forecasting coefficient and variable, respectively. Kohlberg electricity 

data depends strictly on time. It can be argued that any autocorrelation in the data set can be ignored since electricity 

demand at each half an hour interval depends heavily on factors like temperature, class schedule, and very little on what 

has happened earlier in the day.  

Class schedule is another way of understanding the human activity at Kohlberg since the building is used for 

education purposes. Controllable variables are the direct impact of human existence activity on the electricity bill. 

Although their effect is less compared to other variables, they are inevitable in modeling the electricity demand at 

Kohlberg. 

 
The Class Schedule Model – Controllable Variables 
Theory 

The contribution of the controllable variables such as lights, computers and plug loads to total electricity 

demand is harder to investigate than the contribution of uncontrollable variables such as pumps and air handling units 

(AHU).  They also represent the smallest portion of the electricity demand. Consequently, the contribution of 

controlled variables, computers and other plug loads, to electricity demand is often overlooked. At the same time, 

electricity demand by controllable variables is fairly large to neglect, approximately up to 22 KW on weekdays in 

Kohlberg in Fall 2006 and 17 KW on weekdays in Trotter in spring 2007 between 8:30 and 6:30 PM. At the same time, 

controllable variables are one of the main reasons for additional peak charges that the College paid in the past. 

Based on documents produced by the US EPA, “office equipment accounts for 7% of all commercial electrical 

usage or several billion dollars annually.”11 Data from various electrical devices that are used in Kohlberg and other 

places on campus are gathered and presented in table below.  

Table 4 

Device Type Type of 
Data Location Electricity Usage 

- peak (W)  
Electricity Usage 

- regular (W)  
Electricity Usage 

- idle (W)  
Electricity Usage - 

off (W)  

Data 
Discrepancy 

(%) 

                                                 
11 Energy Star Power Management: http://www.microtech.doe.gov/energystar/ 
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Measured Hicks 213 104.80 84.80   14 (standby), 8.4 
(off but plugged in) 9.281 Apple Power Mac 

G4 Tower Theoretical  115.00 90.00  2.00  
Measured Hicks 213 127.60 115.20 82 2.4 26.748 Nec Multisync 

P1150, 22'' Theoretical Nec Co. 167.00  20.00 5.00  
Measured Hicks 213   29.20 28.80 2.40   Dell Flat Screen 

15'' Theoretical  NA NA  0.70  
Dell OptiPlex 

GX280 Mini Tower Measured Hicks 310 120.8 58.4 78 3+/-1 (standby), 1 
(off but plugged in) 1.392 

Dell OptiPlex 
GX320 Mini Tower Theoretical Dell Co. 119.13 NA 79.43 2,4 (standby), 1,98 

(hibernate)  

Dell OptiPlex 
GX280 Desktop Measured Hicks 213 164.08 101.20 101.20 2.8 (standby) 26.881 

Dell OptiPlex 
GX320 Desktop Theoretical Dell Co. 125.20 NA 80.16 2,4 (standby), 1,87 

(hibernate)  

Measured Hicks 310 NA 57.20 NA 0.00 4.778 60 Watts Light 
Bulb Theoretical  NA 60 NA 0.00  

The tested devices are office equipment and they are either computer or computer-related peripherals. 

Measured data is from the existing electrical devices in building. Theoretical data is from the equipment user’s manual 

or company websites of the listed devices. The average of the listed devices’ peak and regular usage is calculated as: 

 

104.8 + 127.6 + 120.8 + 164.08
4

= 129.3Watts, Equation 27: Measured average peak usage 

 

115 + 167 + 119.13+ 125.2
4

= 131.6 Watts, Equation 28: Theoretical average peak usage 

Similarly, the measured and theoretical regular electricity usages are found. Making a conservative assumption, these 

devices are used three hours in their peak schedule and 21 hours in their regular schedule per day. It is known that these 

devices are not turned off overnight or they do not hibernate. Based on the measurements on campus, the annual 

electricity cost for a desktop computer (adjusted for Mac/PC) is calculated by: 

  

129.3* 3( )+ 89.9 * 21( )
1000

* 365
⎛

⎝
⎜

⎞

⎠
⎟ = 831KW , Equation 29 

Table 5 below displays the results for measured and theoretical averages for a desktop computer at the College. 

Assuming one KW costs 14 cents to college, the cost can also be calculated.  

Table 5 

Data type Peak Use (W) Regular Use (W) Annual KW Annual Cost in $ 14 cents per KWhAverage Use (W)

Measured Average 129.3 89.9 830.7 116.3 95 

Theoretical Average 131.6 90 833.9 116.8 95.2 
 

The average annual electrical demand and cost for Apple Power Mac, Nec monitor, Dell flat screen, Dell 

mini-tower and desktop are 95 W per hour and $116 per year. Hundreds of students that visit Kohlberg use these 

devices every day.  

The human actions that demand electricity are very hard to predict since each individual has his or her own 

schedule unlike the uncontrollable variables’ predetermined schedules. Along the path of understanding the 

controllable variables, I faced the challenge of understanding psychology and sociology in Kohlberg. From my talks 
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with Professor McGarity, I concluded that he also experienced a similar problem while conducting a similar research in 

Princeton. His work12 was to understand the contribution of air conditioning to the electricity consumption and the 

outcome was “I always turn it on super!” This is what his colleague, an anthropologist, concluded after an interview-

survey with the air conditioner users. Although human behaviors are extremely hard to predict, I believe that the 

College’s student body and faculty alike share common characteristics with regard to electricity use. 

Kohlberg is mainly occupied by classrooms and faculty offices. Comparing the winter-break data for these 

buildings to a regular weekday data revealed the electrical load contribution of controllable variables in these buildings. 

Investigating the class schedule, one can also find an approximate number for people in Kohlberg at a given time.  

To see the difference in electricity load, two graphs with classes in session and without classes are presented 

below.  

Kohlberg Electricity Demand, October 9-13
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Figure 5 

A similar rise in electricity demand is notable in Figure 6 below representing the demand over the fall break in 

2006. 

                                                 
12 Energy and Buildings, 18 (1992) 177-191, “’I always turn it on super’: user decisions about when and how to operate 
room air conditioners.” W. Krempton, D. Feuermann, A. McGarity. 
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Average Kohlberg Electricity Demand, October 16-20

0
10
20
30
40
50
60
70
80

0:0
0:0

0

1:3
0:0

0

3:0
0:0

0

4:3
0:0

0

6:0
0:0

0

7:3
0:0

0

9:0
0:0

0

10
:30

:00

12
:00

:00

13
:30

:00

15
:00

:00

16
:30

:00

18
:00

:00

19
:30

:00

21
:00

:00

22
:30

:00

Time (1/2 Hour)

D
em

an
d 

(K
W

)

 
Figure 6 

 

Air handling units start to operate at 6:55 AM and turn off at 8:00 PM on weekdays13. Consequently, in Figure 

6 above, a significant increase in electricity demand is observed around 7 AM. After the rise in the electricity demand 

at 7:00 AM, the two figures diverge in terms of their load characteristics. The reason for this difference is the fall break. 

Figure 6 reflects the electricity consumption in Kohlberg without any human activities while Figure 5 represents a 

regular weekday for Kohlberg. Temperature setpoints were identical. 

From 8:30 AM until 11:30 AM, the electricity consumption increases to its peak and it drops around 12:30 

PM. The lunch break at this time of day causes this drop in electricity. As students and faculty members come back 

from lunch around 1:15 PM, electricity demand starts to increase again. However, for Kohlberg, the increase in demand 

after lunch will not be as strong as the increase in the morning’s demand. The pattern will continue with small-

amplitude fluctuations until around 7:00 PM.  

To forecast electricity demand based on the human actions, we seek a relationship between the number of 

classes (which represents the building population) and electricity demand. A linear regression analysis is conducted 

among class schedule and electricity demand to search for any possible relationship. Any linear model will indicate a 

fixed load that results from the existence of building population and an additional load per class. Electricity demand is 

expected to be positively correlated with class schedule since the electricity consumption rises with the number of 

people in the building as a result of controllable variables like lights, computers, and plug loads.  

 

Procedure for Class Schedule Model 

I have two different class schedule models. The first Excel-based method was developed during my Campus 

Energy Analysis Project with Professor Carr Everbach14. The second Matlab-based model is designed for my E-90 

Project. The first model returns good R2 values (~0.75) while it is not flexible if the class schedule changes and it has 

built-in assumptions. The second, Matlab-based model, on the other side, is capable of downloading any reserved space 

                                                 
13 Please see the Appendix X, Swarthmore College Case Study for a detailed schedule of fan operations. 
14 Please find the Campus Energy Analysis Project’s Class Schedule Model attached. 
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information or class schedule from the on-line Kohlberg space schedule and analyzing the information without any 

assumptions15.  

As the first step, the Matlab model takes the user input of the weekday that the user would like to forecast. The 

model does not accept any dates on weekends, winter break or summer breaks. After acquiring the input date, the 

model finds what weekday the user input corresponds to and calls one of the five weekday functions (for instance 

“ClassScheduleTue.m”). Each weekday function scans the Kohlberg reserved space schedule. A part of the code from 

“ClassScheduleTue.m” is provided below: 

Code 4 
elseif(datenum('2:29 PM')<datenum(R(index,6))) && (datenum(R(index,6))<datenum('3:29 PM')) 
          if(datenum('2:29 PM')<datenum(R(index,7))) && (datenum(R(index,7))<datenum('3:29 PM')) 
                n7=n7+1; 
          elseif(datenum('3:29 PM')<datenum(R(index,7))) && (datenum(R(index,7))<datenum('4:29 PM')) 
                n7=n7+1;n8=n8+1; 
          elseif(datenum('4:29 PM')<datenum(R(index,7))) && (datenum(R(index,7))<datenum('5:29 PM')) 
                n7=n7+1;n8=n8+1;n9=n9+1; 
          elseif(datenum('5:29 PM')<datenum(R(index,7))) && (datenum(R(index,7))<datenum('6:29 PM')) 
                n7=n7+1;n8=n8+1;n9=n9+1;n10=n10+1; 
          else n7=n7+1;n8=n8+1;n9=n9+1;n10=n10+1;n11=n11+1; 
end 

The code initially divides the day from 8:30 to 9:30 into fourteen 1-hour intervals and creates buckets representing each 

interval. As “ClassScheduleTue.m” is scanning the reserved space schedule, it fills Tuesday’s fourteen buckets. For 

instance, if a class starts at 2:30, the part of the code for Tuesday will find it. Based on the end time of the class, the 

program will increase the corresponding buckets. If the class ends at 4:00 PM, the code will increase bucket n7 and n8 

by 1.  

 After getting the information from the reserved space schedule, the model will call the 

“ClassScheduleDemand.m” to find the corresponding electricity demand for the chosen date.  The code scans an Excel 

file for electricity demand of the selected day profiles (here, it is Tuesdays).  

Code 5: A part of the code from “ClassScheduleDemand.m” 
if((strcmp(weekday1,'Tue'))&&(strcmp(weekday2,'Tue'))) 
        for subindex=1:48 
           count = count + 1; 
           dates(day , count) = R(subindex+index-1,2);  % copy cell contents to dates array 
           times(day , count) = cell2mat(R(subindex+index-1,3));  % copy cell contents to time array 
           demand(day , count) = cell2mat(R(subindex+index-1,4)); % convert time number and save 
        end 
        day = day + 1; 
end 

 After it gathers all Tuesdays from the Excel file, the code averages the day profiles. Similarly, the code imports the 

electricity demand profile from winter break in order to get Tuesday data without having any people at Kohlberg. To 

understand the effect of people in the building, the code finds the difference between mean electricity demand of 

regular days and of winter break days. At the end, the model uses Matlab’s “polyfit” function to find best fit line for the 

new data set consisting of the obtained electricity demand and class schedule data.  

Code 6: A part of the code from “ClassScheduleDemand.m” 
P_coeff = polyfit(n,d,1); % Searching for the best fit line and its coefficients 
for i=1:1:14 
    classsch_KW(i) = P_coeff(2)+ P_coeff(1)*n(i)+Mean_Demand_Ave_Select(i); % The forecasted demand 
end 

The linear equation’s coefficients are used to estimate the electricity demand. By adding the basic building electricity 

load, which is obtained from the winter break, the electricity demand is forecasted. The model returns an array of 48x1. 

                                                 
15 There is only one assumption about lunch-time. 
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Although the Excel and Matlab models are similar in principle, the Excel model has built-in assumptions to 

smooth data sets for class schedule in order to lower sum of squared errors and a higher R2 value. The assumptions 

from the Excel model can be listed as following16: 

1. All of the one-time activities are neglected since the class schedule model returns specific class 

schedules for the chosen day. 

2. The Excel model uses a snap-shot method where it only cares about the number of classes at 

specific times in day. These times correspond to class start times based on class schedule. 

3. The data points are collected based on daily class schedule.  Monday, Wednesday and Friday 

follows a different model than Tuesday and Thursday since their class schedules are different. 

4. First classes start at 8:30 AM but electricity demand does not increase like a step function as the 

number of classes does. To avoid a sharp increase in the electricity forecast, the first class is 

assumed to start at 9:00 AM. 

5. Because of a similar reasoning for the first assumption, the sharp decrease at 12:30 in terms of 

number of classes is compensated by adding 20% of the number of classes from the previous 

period. The idea is that 20 % of the classes that start at 11:30 AM continue at 12:30 because of the 

Tuesday and Thursday class schedule. 

Although some of these assumptions are useful in terms of decreasing the sum of squared errors and therefore 

providing a better fit and forecast, they tend to limit the flexibility of the code. For instance, taking only the start times 

for each class limits the code’s ability of correctly determining how long each class lasts. An incorrect estimation of the 

class duration will provide incorrect estimates for the number of people at Kohlberg and therefore give a weak forecast 

for electricity demand. Therefore I used the Matlab model for class schedule. The class schedule model test results are 

shown below: 

Table 6: Based on class schedule model result from Monday, November 5, 2007 
Results  

Sum of squared errors, SSE 1.9588e+004 

R2 0.704 

Degrees of freedom error, dfe 142 

Adjusted R2 0.702 

Root mean square error, rmse17 11.7449 

 

The goodness of the “polyfit” function does not return a R2 value as high as the Excel model did. This might be due to 

the small number of data points (14 data points) in the best-fit curve and/or the assumptions listed above. In future 

work, some of the assumptions might be integrated into the Matlab model and tested. Based on the results, the Matlab 

model can be improved. 

 

Heat Loss Model 

                                                 
16 Please find the Excel model in Appendix attached. 
17 Root mean square error: The square root of the mean square error. 
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Historical data has been a fundamental source for understanding, modeling and predicting electricity demand. 

Other organizations and institutions such as PJM rely heavily on historical data to predict tomorrow’s electricity 

demand in order to shape the current real time electricity market. However, a physical understanding of the electricity 

demand will enrich our understanding. 

A Heat loss model is created as a third approach to forecast tomorrow’s electricity demand based on ambient 

temperature and time. The model looks for a relationship between the heat loss of Kohlberg and its electricity 

consumption.  

Heat loss model uses principles from thermodynamics and heat transfer. Heat transfer can be defined as “the 

transmission of energy from one region to another as a result of a temperature difference between them”18. Generally, 

three types of heat transmission are recognized by the literature: conduction, radiation, and convection. From a 

thermodynamic point of view, the amount of heat transferred during a process simply equals to the difference between 

system’s energy change and work done. The heat loss model incorporates these three types of heat transmission and 

thermodynamics.   

The basic procedures for estimating heating load (loss) of Kohlberg are developed. The procedures can be 

summarized among three categories: external heat gain, internal heat gain, and ventilation and infiltration. The total 

heat loss of the building is the sum of the partial heat losses discussed below. 

 
Theory 
External Heat Gain 

External heat gain is the heat gain by conduction and convection through exterior walls, windows and roofs. 

Conduction is described as “a process by which heat flows from a higher temperature to a region with lower 

temperature within a medium”19, whereas convection is “a process of energy transport by the combined action of heat 

conduction, energy storage, and mixing motion”20. The heat loss due to conduction and convection can be calculated as 

following: 

Q = U * A * ΔT , Equation 30 

, where U is one over thermal resistance (R), A is the area of element under analysis and ΔT is the temperature 

difference between Kohlberg’s temperature and ambient temperature. In order to find the heat loss, I have to find the 

thermal resistance, R, and surface area, A. I will collect Kohlberg temperature and ambient temperature by placing data 

loggers in the building and using Facilities infrastructure to collect data. To find the thermal resistance, R, first, the 

layers of roof, exterior walls, and windows need to be identified.  

 
The Walls: 

                                                 
18 Kreith, Frank. “Principles of Heat Transfer”. 3rd Edition. Intext Educational Publishers. New York. 
19 Kreith, Frank. “Principles of Heat Transfer”. 3rd Edition. Chapeter 1-2, pg: 4. Intext Educational Publishers. New 
York. 
20 Kreith, Frank. “Principles of Heat Transfer”. 3rd Edition. Chapeter 1-2, pg: 5. Intext Educational Publishers. New 
York. 
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To identify the layers of wall construction, Kohlberg’s blueprints from the College’s Facilities Department are 

obtained. Kohlberg has several variations for exterior walls. After investigating all the exterior walls, a typical wall 

cross section is chosen for simplicity and coherence in calculations.  

 

 

 

 

 

 

 

 

 

The typical exterior wall of Kohlberg consists of four parts: stone, air gap, insulation, concrete masonry unit 

(CMU). Individual lengths of each component are shown in Table 1. These lengths are determined by investigating 

corresponding blueprints. 

Table 7 
Kind  Length (inches) 

Total wall length 19

Stone 8

Air space 1

Rigged insulation 2

CMU  8

 
The stone component of the wall consists of different types of stones21. For simplicity, the eight-inch stone 

component is treated as filled CMU. The R-values of each part of the wall is calculated based on the ASHRAE’s 

Fundamentals Handbook. The R-values are shown in Table 8 below.  

Table 822: Thermal resistance properties used in typical wall at Kohlberg. 
Exterior Wall Component (in 1 in unit) Resistance, R, (F*Ft*Hour2/BTU) 

8 inch heavy weight concrete block filled 1.96

Air 0.91

2 inch insulation 6.67

8 inch block (CMU) 2

Internal resistance 0.69

External resistance 0.17
 

The thermal resistance of the exterior wall can be modeled as resistors in series. Each components resistance 

(per inch) is multiplied by its length and added together to find the total resistance of the typical wall.  

Rwall = RStone + RAir + RInsulation + RCMU , Equation 31 

                                                 
21 Please see the Appendix for Kohlberg’s stone schedule. 
22 1997 ASHRAE Fundamentals Handbook, Nonresidential Cooling and Heating Calculations, Table 11: Thermal 
Properties and Code Numbers of Layers Used in Wall and Roof Description. Chapter 28, page 18. 

CMU (8 inch) Insul
ation 

Stone (8 inch) A 
I 
R 

Figure 7: A schematic display of Kohlberg’s typical exterior wall.  
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The typical wall’s resistance is found as 12.4 (F*Ft*Hour2/BTU).  Since the U-factor is one over the thermal resistance, 

the U-factor is found as 0.080646 BTU/ (F*Ft*Hour2) for Kohlberg’s walls.  

 The portion of walls on Kohlberg’s facet is determined with the help of the blueprints. For each floor, the 

surface area of exterior walls is given as following: 

Table 9: Surface area for walls. 
Walls  Feet2 

 Floor 1 8038

 Floor 2 7318

 Floor 3 7215

 Total 22572

 
Knowing U-factor and wall areas, QWall can be found by multiplying the constant, U*A, with ΔT .  

QWall = U * ATotal ,Wall * ΔT , Equation 32 

, where U * ATotal ,Wall = 22572 * 0.080646 =1820.3  BTU/(F*Hour2). 

  
The Windows: 

The conduction and convection through windows is important for Kohlberg since the area of windows is 

approximately one fourth of the total building’s facet area. There are four types of windows in Kohlberg: Small size, 

double small size, medium size and large size. The areas of each window type are shown below. These numbers are 

also obtained from Kohlberg’s blueprints. 

Table 10 
Windows Kind Type Square Inch 

 Large size Type 1 3318 

 Small size Type 2 6636 

 Double the small size Type 3 11664 

 Medium size Type 4 8258 
 

Kohlberg’s windows have double-glazing. I choose ½ inch air space between the panes. From ASHRAE 

Fundamentals Handbook, various U-factors for different types of windows are obtained. To find the correct U-factor, I 

averaged center of glass and edge of glass for glass only. The U-factor for Kohlberg window is determined as 0.535 

(BTU/(h*ft^2*F)). 

Table 11: U Factors for Various Fenestration Products in BTU/(h*ft^2*F) 
Product Type Glass only Operable glass (including sliding glass doors) 

 Center of glass Edge of glass Aluminum w/o thermal break Aluminum w/ thermal break 

Double Glazing    

¼ air space 0.55 0.64 0.87 0.65

½ air space 0.48 0.59 0.81 0.6

¼ argon space 0.51 0.61 0.84 0.62

½ argon space 0.45 0.57 0.79 0.58
 

Similarly, I found the surface area for windows, which is shown in the table below. 
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Table 12 
Windows  Feet2 

 Floor 1 3184 

 Floor 2 2094 

 Floor 3 2197 

 Total 7475 

Knowing U-factor and wall areas QWindow can be found as following: 

QWindow = U * ATotal ,Window * ΔT , Equation 33 

, where U * ATotal ,Window = 7475 * 0.535 =3999.1 BTU/(F*Hour2). 

 
The Roof: 

A typical cross-section for Kohlberg’s roof is determined that is presented below. 

 
 
 
 
 
 
 
 
 
 

The resistance values for each part of the cross section are found from ASHAE Fundamentals Handbook 1997. The 

results are displayed below. 

Table 13 
A typical roof at Kohlberg R, (F*ft^2)/Btu U, (F*ft^2)/Btu 

2 inch Insulation 6.67 0.149925037

6 inch concrete 5.00 0.2

6 inch Insulation 20.01 0.049975012

Outside surface resistance 0.33 3.03030303

Inside surface resistance 0.69 1.449275362

Total 32.7 0.030581039
 

The net area for third floor is determined as 11917 ft2 from Kohlberg’s blueprint. It is assumed that third floor has the 

same area with the roof. It is also assumed that the roof is flat and does not have downward sliding sections. Therefore, 

the heat loss through the roof is determined as following. 

QWindow = U * ATotal ,Roof * ΔT
U * ATotal ,Roof = 0.030581*11917=364.43

, Equation 34 

, where U * ATotal ,Roof = 0.030581*11917=364.43  BTU/(F*Hour2), and ΔT is the temperature difference 

between Kohlberg’s inside air and ambient temperatures. 

 
Total Heat Loss through Conduction and Convection 

2 inch insulation 

6 inch concrete 

6 inch insulation 

Figure 8: Typical Roof schematic 
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The total heat loss through conduction and convection from walls, windows and roof can be summarized by 

the following equation. 

QConduction,Convection = QTotal ,Wall + QTotal ,Window + QTotal ,Roof , Equation 35 
, which results in:  

QConduction,Convection =1820.3
Btu

Hour
⎛
⎝⎜

⎞
⎠⎟

+3999.1
Btu

Hour
⎛
⎝⎜

⎞
⎠⎟

+364.43
Btu

Hour
⎛
⎝⎜

⎞
⎠⎟

= 6183.83
Btu

Hour
⎛
⎝⎜

⎞
⎠⎟

, Equation 36. 

The Matlab code below shows how conduction and convection part of the heat loss model gathers 
information from roof, windows, and walls. 
 
Code 7: Part of the Conduction and Convection model 
% Calculating the heat loss for each section. 
Q_wall = UA_wall*Temp; 
Q_windows = UA_windows*Temp; 
Q_roof = UA_roof*Temp; 
% Calculating the final heat loss through conduction and convection 
QCC = Q_wall + Q_windows + Q_roof; 

 
Solar Gain 

Radiation is third type of heat transmission in heat transfer literature. It is the primary weather related variable 

influencing the heat gain of the building. Based on ASHRAE Fundamentals Handbook, solar heat gain at any instant 

can be modeled as following: 

Et + U(t0 − ti ) = qR + qS + qT + qRCo + qRCi , Equation 37 
, where qR , qS  , and qT are the heat reflected, stored in the glass, and transmitted, respectively. The terms qRCo  and 

qRCi represent outward and inward heat flux rates by radiation and convection. In other words, the heat gain can be 

expressed as: 
Table 14 

Total heat admission through 
glass =

Solar heat 
gain +

Heat gain through conduction and 
convection 

 
This can be written as: 

qA = SHGC * Et + U(t0 − ti ) , Equation 38 
, where qA  is the instantaneous rate of heat gain through fenestration in units of BTU/(Hour*ft2) and SHGC is the 

solar heat gain coefficient.  

 I have just discussed the conduction through windows above in Windows section. Therefore, I can leave out 

the conduction part when calculating qA . Simplified heat gain calculation can be made using the following solar gain 

equation: 

qi = SC * SHGC , Equation 39 
, where SC  represents the shading coefficient. 

 To find the correct solar heat gain coefficient (SHGC), I need correct location of the College. I found out that 

Swarthmore College is located in 39°54'18"N and 75°21'15"W coordinates23. According to Duffie and Beckman24, a 

                                                 
23 Google Earth 
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60° surface at 40° North latitude from 9 AM – 10 AM on February 20th receives about 1.29
  

MJ
m2 ⋅ Hour

, which can be 

converted to 113.6
  

BTU
ft2 ⋅ Hour

. Assuming that we have a shading coefficient of 50%, we calculate qi as 

56.8
  

BTU
ft2 ⋅ Hour

. Then the heat gain through solar radiation is: 

QSolar = SC * SHGC * ATotal ,Window , Equation 40 
Kohlberg’s exterior window area is presented as 7475 ft2 in Table 6 above. Therefore, ATotal,Window is equal to 7475 ft2. 
 
Internal Heat Gain 

 

Humans 

Internal heat gain, QSource, is the result of humans and electrical loads in the building that generate additional 

heat. The table below shows heat input by human in different states of activity. 

Table 15: Rates of Heat Gain from Occupants of Conditioned Spaces25 
  Total Heat, Btu/hour  

  Adult, male Adjusted, M/F Sensible Heat, Btu/h Latent Heat, Btu/h 
Degree of Activity     
Seated at theater 390 330 225 105
Seater at theater, night 390 350 245 105
Seated, very light work 450 400 245 155
Moderately active office work 475 450 250 200

 
I choose adjusted female/male heat input of very light work since the students and the faculty in Kohlberg are expected 

to be working in classes. Consequently, the heat input per human in Kohlberg is 400 BTU/Hour. This heat input can be 

divided into two subsections: sensible heat and latent heat. I choose to use the total heat input since I think it is the best 

estimate of students’ activities in Kohlberg. By multiplying the number of humans in the building by the heat input of 

one person, the total heat input by humans is determined. 

QHuman = NStudents * qAdjM /F , Equation 41 

, where qAdjM /F  is the adjusted heat input of 400 BTU/Hour and NStudents is the number of people in Kohlberg that are 

mostly students and teachers. To find the building population, class schedule is investigated since teachers’ and 

students’ schedule depends on their classes. This is nothing but the class schedule model I discussed above. Assuming 

that there are 15 students per class (Liberal Arts College!), an estimate for building population, NStudents, is found. A part 

of the dedicated Matlab code can be found below: 

                                                                                                                                                                  
24 Duffie and Beckman.  Solar Engineering of Thermal Processes.  John Wiley & Sons: 1991.  pg. 95. (Conlton’s 
Project) 
25 This table above is from ASHRAE Fundamentals Handbook 1997, Chapter 28, page 8. Please note that the tabulated 
values are based on 75 F room dry-bulb temperature. 



 27

Code 8 
Q_in_perhuman = 400; %BTU/Hour 
% There are approximately 15 students per class room and a teacher. 
N_human_perclass = 15; 
% Finds the heat input generated by humans. 
Q_human = NumberOfClasses.*Q_in_perhuman.*N_human_perclass; %BTU/Hour 
% Displaying the heat input to space for each hour interval. 

 
Electrical Loads – Equipment 

As we can see from Table 4 in class schedule above, the electricity demands of various devices on campus are 

calculated. Based on the measurements on campus, the annual electricity for a desktop computer (adjusted for Mac/PC) 

is calculated. 1 watt equals 3.41214163 Btu / hour. The average Btu consumption can be calculated for a typical 

desktop computer at Swarthmore College as:  

  

129.3* 3( )+ 89.9 * 21( )
1000 * 24

* 3412.14163
⎛

⎝
⎜

⎞

⎠
⎟ = 323.6

Btu
Hour

, Equation 42 

The table 7 below displays the results for measured and theoretical averages for a desktop computer at the College.  

Table 16 

Data type Annual Btu/Hour Average Btu per hour 

Measured Average 2834466 323.6 

Theoretical Average 2845385 324.8 

 
These calculations are an approximation of the big picture for the rest of the electrical devices, especially computers, at 

the College. Printers, scanners, fax machines, and other peripherals and related devices should be included if a more 

detailed estimation is made. Many of these devices are never turned off. They continuously consume electricity and 

generate heat. The heat gain, QDevice, is calculated as following: 

QDevice = qDevice * NDevice , Equation 43 
, where NDevice is the number of computers in the building and qDevice  is the average heat input by electrical devices that 

equals to 323.6
Btu

Hour
. Adding the internal heat generation sources together, humans and electrical devices, I can find 

total QSource. 
QSource = QHuman + QDevice = NStudents * qAdjM /F + qDevice * NDevices , Equation 44 

, where NStudents is the building population, qAdjM /F is the adjusted heat input by each people, qDevice is the average heat 

input by electrical devices, and NDevice is the number of electrical devices in building. 

 

Recommendation to decrease the electricity demand 

This high cost of one controllable variable is the result of two factors. These factors are continuous operation 

of these devices and high regional electricity price of 14 cents for 1 KWh. According to the EPA, nearly 44 percent of 

computer users do not use the power-saving features of their equipments. I did a survey about computer usage at 

Kohlberg in 2006. The qualitative results of the survey indicate that more than one half of the professors leave their 

computers on over night in order to save time when they come back to their office the other morning. However, 90% of 

these professors are willing to turn their devices off or use power saving features such as hibernation after the survey. 
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The second best thing after turning off the computer is using computers’ power saving features. Based on EPA, 

computers can power down to as little as 14 watts in hibernation feature. In other words, if the power saving mode is 

used, computers consume significantly less electricity. Assuming 90% of professors turn off their computers, $50 per 

computer can be saved. 

 

89.9 *12
1000

* 365
⎛
⎝⎜

⎞
⎠⎟

* 0.14 * 0.90 = $49.6 , Equation 45 

Considering the annual estimation for a computer’s cost is $116.3, this is a remarkable saving in the College’s 

electricity bill.  

 
Ventilation and Infiltration Air 

To understand ventilation and infiltration, I consider the College’s HVAC system and its air-handling units 

(AHUs) that affect the heat gain of the building directly by inputting conditioned air into the building space.  

The HVAC system is responsible for the biggest portion of the College’s electricity bill. The HVAC system 

can distribute heat to space, ventilates air and, if necessary, air-conditions the space. The picture below belongs to 

Trotter’s HVAC, which is the same as Kohlberg’s system. 

 

 
Figure 9: HVAC system at Trotter is very similar to Kohlberg’s system. 

 
There are various abbreviations used in HVAC systems at the College. Table 17 below explains the most 

common abbreviations: 

Table 17: Explanation of Abbreviations for HVAC operating system at Swarthmore College 
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AHU1 Discharge Temp 

( F O
) 

56 – 68 for operating Temperature of air discharged to Kohlberg spaces 

AHU1 Mix Temp ( F O
) 

Ranges roughly from 40 – 60 depending on 
conditions 

Air entering the system from outside to be heated or used for 
cooling 

AHU1 Preheat Temp ( F O
) 

Ranges roughly from 60 – 75 depending on 
conditions 

Temperature of heated or cooled air ready for distribution 

AHU1 Return Temp ( F O
) 

70 – 80 roughly Air temperature returned from public spaces and sent to outside 

AHU1 Return Flow (KCFM) 0 – 7 roughly Flow rate of air returned from public spaces and released to the 
outside 

AHU1 Supply Fan ON/OFF Fan blowing air to supply all public spaces 

 
The College uses a HVAC system, called INSIGHT 3.7, by Siemens. The system has 49 panels in 26 

buildings that monitor 24,484 points over the campus fiber optic system. The panels operate as stand-alone units. The 

College has a server in Beardsley that collects data from various panels and sends scheduling information out to various 

panels. This infrastructure has helped me remarkably in collecting the required data for my Project. This infrastructure 

can create a database that might be very useful to continue with the project in future. 

 
Theory – Air Handling Units 

The HVAC is the abbreviation for heating, ventilation and air-conditioning. Heating is supplied by central 

heating system by burning #6 oil. The hot steam is distributed to rest of the campus by underground steam tunnels. The 

air handling units in each separate building distribute the heat to the building space. Similarly, air-conditioning is 

provided through the cooling plants. The cool air is distributed through the air handling units to the buildings. A 

building like Kohlberg has a two pipe system, where the Facilities can only heat or cool the building. This system is 

less useful but at the same time, less expensive compared to a three pipe system. The newly built Science Center has a 

three pipe system, allowing feeding of hot steam and air-conditioned cool air into the building at the same time. The 

remaining third pipe is for returning air. 

  HVAC variables at the College can be divided into two groups based on their usage patterns. First group 

consists of distribution of cooled and/or heated air into the campus space. The second group cools campus space 

through air-conditioning. It should be noted that air-conditioning is switched off for approximately seven months per 

year, whereas HVAC first group has a significant contribution to electrical demand based on its daily schedule all year 

around.  
The campus space internal temperature is regulated based on a weekday-weekend schedule. For our purposes 

in the Project, only the weekdays will be considered. The main air handling unit at Kohlberg starts to operate at 6:55 

AM and stops at 8:00 PM. In the mean time, the allowable range of interior temperature is 70 F to 75 F. The 

temperature is brought back to the allowable range around 7:00 AM with the start of air handling units. The building’s 

resistance, the R-value of the walls, secures the inside temperature for a while until it drops after the air handling units 

are switched off around 8:00 PM. 

If classes are not in session, the classroom temperature gradually increase and decrease based on factors like 

outside temperature and solar radiance. However, if the classes are in session, then the inside temperature increases 
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with a steeper slope in morning due to additional heat sources such as computer, light and humans26. It should be noted 

that for the rest of the day, the air handling units’ main operation is to keep inside air temperature in the range of 70 to 

75 F. Most of the time, Kohlberg is overheated as a result of additional heat sources. Therefore, the air handling units 

bring outside air to decrease inside air temperature at Kohlberg.  

One of the major heat losses at Kohlberg is due to ventilation and infiltration of the space. I will focus on the 

main air handling unit at Kohlberg, AHU1, to build a model for the heat loss due to ventilation and infiltration. To 

calculate QVentilation, Infiltration , I need to find AHU1 discharge temperature and mass flow, AHU1 return temperature and 

mass flow, specific air constant  (Cp). These variables of merit are tracked and recorded in Kohlberg in several 

experiments. The figure below presents the AHU1 discharge temperature, AHU1 return temperature, and Kohlberg 

outside temperature. 

Kohlberg Temperatures between Nov 19 - 26, 2006
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Figure 10 
 

As it can be seen from Figure 14, AHU1 discharge temperature is lower than the AHU1 return temperature that means 

the air-handling units are technically cooling the space while the air-conditioning is off and the building is in heating 

schedule. At the same time, this conclusion can be misleading. The mass flow of air through AHU1 discharge is almost 

twice the amount of return air flow. Therefore it is misleading to say that AHU1 is cooling the building in heating 

schedule. AHU1 is regulating the conditioned air temperature in the building. Although AHU1 discharge temperature is 

lower than AHU1 return temperature, AHU1 discharge’s heat input into Kohlberg per hour is bigger than AHU1 

return’s heat output from the building per hour.  

 

                                                 
26 It should be noted that taking this additional source of heat into account, it is possible to save some energy by starting 
the air handling units later than their scheduled time. 
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Procedure and Results: 

I would like to talk about how I modeled Qdiff , or QHeating , in order to clarify my model. Later, I will develop 

the current model to find QVentilation.Infiltration for Kohlberg. QHeating is calculated by the following equation: 

QHeating = Cp m
•

Disch arg e*TDisch arg e − m
•

Re turn*TRe turn
⎛
⎝

⎞
⎠ , Equation 46 

, where  m
•

Disch arg e  and TDisch arg e are the mass flow and temperature at the discharge unit at Kohlberg. Similarly, 

m
•

Re turn and TRe turn are the mass flow and temperature at the return unit. The results for QHeating are shown in Figure 13 

below. Because each of the variables on the right hand side of the equation change with time based on variables such as 

temperature and mass flow, there are various different results for QHeating when the air-handling units are on. I also 

included the electricity demand schedule in the same graph. 

Q_diff (Q_supply - Q_return) and Electricity Demand
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Figure 11: The data for electricity demand and heat input is from Nov 19 to 26, 2006.  
 
Figure 13 shows a time span starting and ending on Sunday. AHU1 is not operating from 8 PM to 7 AM. Therefore, 

there are zero values for QHeating , which is also called as QDiff since it is the difference between heat input and output. 

When the blowers turn on and AHU1 starts operating there is a large heat input to building to warm up the space for 

early classes. Although this warm-up period is short, it can be seen in Figure 15 as early peaks in every weekday 

morning.  
The average numbers for heat input, QHeating , for each weekday are presented in table 11 below. These 

numbers represent the heat difference between the Qsupply and Qreturn. 

Table 18: Qdiff Values 
Day of the week Average Heat in - Q (Btu/Hour) 

Monday 3,861,217

Tuesday 2,067,690

Wednesday 3,680,998
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Thursday 4,535,253

Friday 4,394,652

 
Looking at Figure 13 and Equation 46 will give us an understanding about how we calculated daily averages for 

QHeating. Figure 13 represents the HVAC system at Trotter, which is the same as the HVAC system at Kohlberg. The 

HVAC system regulates Kohlberg’s inside temperature through its discharge and return units. The temperature and air 

flow data at these units are recorded from April 1 to April 8 at Kohlberg. The air flow data in units of cubic feet per 

minute (cfm) is converted to mass flow data in units of lbm per hour, and then multiplied by the temperature (F) to find 

final results in Btu per hour. Mass flow is equal to volumetric flow times the air density.  At 70 F and 14.696 psia, dry 

air has a density of 0.074887 3
mlb

ft
.27 To calculate the heat input above, I need to use some conversion factors. This 

calculation is presented in Equation 47 below: 

   

Btu
hour

= F o *1000 *
ft3

min
*60 *

min
hour

*0.074887 *
lbm

ft3 , Equation 47 

The schematic below in Figure 14 will give a better understanding about my QHeating model. Equation 46 represents 

QHeating model, and the variables on the right hand side of the equation are temperatures and air flows at “supply air” 

and “return air” stations shown below. 

 
 

 
Figure 12: Schematic for Infiltration model. 

 
Although QHeating and QVentilation,Infiltration  models look similar, they are completely different models. 

QVentilation,Infiltration is a part of a model that finds the heat loss of Kohlberg, whereas QHeating is a totally new approach and 

a model by itself to find the heat gain of the building. At this point, it is essential to find QVentilation,Infiltration to complete 

the heat loss model. 

                                                 
27 Wikipedia. “http://en.wikipedia.org/wiki/Density_of_air”. 

Infiltration, (mVentilation,Infiltration) 

Supply Air (Discharge Air) Return Air TAmbient, 
(TVentilation,Infiltration) 

TInside 

Control Volume for Infiltration

Control Volume for Heating
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Kohlberg losses heat through ventilation and infiltration. Federal laws determine the minimum required heat 

ventilation in buildings. Heat loss due to ventilation and infiltration in Kohlberg can be found as an extension of the 

discussion above. QVentilation,Infiltration can be calculated by the following equation: 

QVentilation, Infiltration = Cp m
•

Ventilation, Infiltration* (TVentilation, Infiltration − *TInside )⎛
⎝

⎞
⎠  , Equation 48 

, where Cp is the specific heat constant for air, m
•

Ventilation, Infiltration  is the difference between AHU1 discharge mass flow 

and AHU1 return mass flow28, TVentilation, Infiltration  is ambient temperature since AHU1 takes outside air for ventilating 

Kohlberg and cooling the building in heating schedule. The daily averages for QVentilation,Infiltration  is presented below. 

Table 19: QVentilation,Infiltration Values 
Day of the week Average Heat in - Q (Btu/Hour) 

Monday 3,778,332

Tuesday 2,042,398

Wednesday 3,597,066

Thursday 4,445,477

Friday 4,380,260

 
“Program Q_VI2.m” is the Matlab model designed to calculate the heat loss through Ventilation and infiltration at 

Kohlberg. As inputs, the program needs time (for instance: “11/1/2007”), AHU1 discharge temperature and airflow, 

return temperature and return airflow. A part of the Matlab code, used to calculate the QVentilation.Infiltration, can be found 

below. 

Code 9: VI stands for ventilation and infiltration29. 
% Mass flow for infiltration is the difference between supply and return mass flows.  
M_infiltration = M_supply - M_return; 
% Temperature is the difference between inside temp and ambient (outside) temperatures. 
T_infiltration = T_inside - T_ambient; 
% Calculating the infiltration and ventilation heat loss. 
% The fundamental equation is Q = m*Cp*delta(T). 
QVI_All = M_infiltration.*T_infiltration*Cp; 

 
Heat Loss Model 

The heat loss model combines external, internal heat gains, and ventilation and infiltration. The total heat input to 

the building is the result of all of the heat gains and losses mentioned above. The total heat loss is the sum of partial 

heat losses that are discussed above. Since the Project is designed for winter and Swarthmore is located in 39°54'18"N 

and 75°21'15"W coordinates, the heat gain from Solar radiation can be neglected. Consequently, the heat loss can be 

modeled as following: 

QLoss = QConduction,Convection − QSource + QVentilation, Infiltration , Equation 49 
, where variables on the right hand side depend on factors such as ambient temperature, AHU1 discharge air-flow, 

AHU1 return air-flow, AHU1 discharge temperature, and AHU1 return temperature that vary based on time of the day 

and day of the week. QConduction,Convection  depends on the ambient temperature and inside temperature. Currently, the 

                                                 
28 m

•

Ventilation, Infiltration  is true assuming that there is no remarkable loss through conduction through the walls. 
29 These tables are the product of an Excel file that digested November 2006 data. The Matlab model will run on April 
2008 data to be consistent with class schedule and time series models. 
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model is designed to take forecasted outside temperature and average inside temperature as inputs to calculate the heat 

loss through conduction and convection. QSource depends on the class schedule to determine the heat input by humans 

to Kohlberg, whereas QVentilation,Infiltration,NET depends on ambient temperature, inside temperature, AHU1 discharge and 

return airflows. 

 A regression analysis is conducted between the final heat loss, QLoss , and electricity demand. The result will 

provide a model to estimate the electricity demand based on past data and forecast tomorrow’s electricity demand. 
 

Discussion 

The disadvantage of QVentilation,Infiltration model is the limited data for AHU1 discharge temperature, discharge 

airflow, return temperature, and return airflow. I have only data from a week in 2006 and a week in April 2008 to build 

my model on. Consequently, I got sizeable differences among my results for average Btu/hour calculations.  As 

presented in Table 18 above, average heat input for weekdays vary considerably with a standard deviation of 46,322.  

An important assumption in the infiltration model is that the difference between the discharge mass flow and 

return mass flow is equal to infiltration mass flow. This assumption neglects the fact that the HVAC system leaves 

some potion of the return air back to environment. From the Trotter HVAC system, it can be observed that some potion 

of the return air is mixed with outside air and the rest is sent outside. Another assumption is that the amount of 

infiltration enters the building is the same as the amount of infiltration that leaves the space. This is not the same way 

for heating model where the input mass flow through the discharge unit is almost twice as the return mass flow. 

Although we do not expect any heat accumulation in the building since the building temperature is around 72 F, we 

understand there are all types of other losses due to other infiltration through doors and windows or conductivity.  

As mentioned in the introduction section of the model, the College burns #6 oil since it is a cheap energy 

source. In Table 20 below, the cost of burning #6 fuel oil to produce 1 million Btu is presented. One also notices the 

significant rise in the energy prices when one compares the November 2006’s price to last months’ price. 

Table 2030   
Fuel Type Unit Btu/unit  Efficiency Cost/unit Cost/mmBtu November, 2006 Cost/mmBtu March, 2008 
#6 Oil Gallons 150,000 85% $1.24 $9.73 $11.81 

 
Table 20 shows Kohlberg’s average Btu per hour consumption and what the College paid in March 2008 and 

November 2006 for one million Btu. Based on the cost of one million Btu in March 2008, the College’s heating cost for 

Kohlberg is calculated. The results are displayed in the table below: 

 
Table 21: Cost of Heating Kohlberg using March 2008 rates for ($/mmBtu) 
Day of the week Average Heat in - Q (Btu/Hour) Average Cost per day – ($) 

March (Actual), Campus 10,558,000,000 124,756

March31 (Calculated), Kohlberg  1,346,278,916 15,908

 
Equation 46 above to find the heating load for Kohlberg is used to find an average Btu consumption for each weekday 

and weekend. After finding a typical week, the numbers are multiplied by four to find the Btu consumption per month. 

                                                 
30 Tom Sahagian and Betsy Jenkins from Power Concepts LLC. 
31 One month is assumed to be four weeks. 
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The results are based on the fact that air handling units work approximately 13 hours per weekdays and 11.5 hours on 

weekends. Table 21 represent the actual heating bill and consumption for March 2008. If the calculations are correct, 

the numbers indicated that Kohlberg consumes approximately 1/8 of the total heating at campus. I find this result high. 

I would expect a ratio of 1/27, which is the number of sizeable buildings on campus. Figure 13 below shows the heat 

losses from conductivity and convection, ventilation and infiltration. It also displays the heat gains from equipment 

(electrical loads) and humans. 

QuickTime™ and a
 decompressor

are needed to see this picture.

 
Figure 13 
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Hot Box Model – An alternative approach to energy modeling 

There are various ways of modeling the effect of HVAC system and ambient temperature on the electricity 

demand. The hotbox model is an alternative approach to heat loss model discussed above. A hotbox model is developed 

and tested at Kohlberg with several experiments. 

 
Theory 

Thermal systems can be explained by mathematical models that can calculate heat gain, loss and 

accumulation. A hotbox experiment in Kohlberg 115 is conducted to calculate the thermal resistance value, R, and 

thermal capacitance value, C.  

In any given thermodynamic system, the change in total energy can be explained by the following equation: 

∂E = ∂U + ∂KE + ∂PE, Equation 50 
, where U is the internal energy (related to temperature), KE is the kinetic energy (related to motion) and PE is the 

potential energy (related to position). If kinetic energy and potential energy are ignored for the hotbox model, we only 

change the internal energy, U. Internal energy is related to temperature changes by ∂U = m*Cp*∂T, where “m” is the 

mass (in kg or lbm) of material with specific heat at constant pressure Cp, and ∂T is the change in temperature (in Kelvin 

or Fahrenheit) giving rise to the change in U.  

 

Figure 14: Hotbox Schematic 
 

In hotbox model above, q resembles the heat flow in/ out of system. θin is the inside temperature and θa is the 

ambient (outside) temperature. R represents the thermal resistance factor of the box, whereas C is the thermal 

capacitance of the air inside the hotbox. 

For heat flow into and out of a box, the time rate of change of total energy dE/dt is just the difference in power 

qin - qout, where qin is the heat energy per second deposited into hotbox and qout is the heat energy per second flowing 

out through the walls of hotbox. The change in total energy of hotbox is given as: 

p=m*C *dE dT
dt dt

, Equation 51 

The law of thermodynamics are associated generally with two types of thermal elements: thermal capacitance 

and thermal resistance. Thermal capacitance is the mathematical relationship between a system and the heat stored in 
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the given system. The relationship can be considered as linear and the constant C is known as the thermal capacitance. 

It has units of joules per kelvin (J/K or Btu/F). Assuming qin(t) is the heat flowing into the system and qout(t) is the heat 

flowing out of the system, the net heat supplied to system between time t0 and t is 

  
(qin(λ) − qout (λ))dλ

t0

t

∫ , Equation 52 

It is assumend that net heat supplied to hotbox during the time interval equals the thermal capacitance, C, 

times the change in temperature. The temperature of system at t0 is given as θ(t0), then 

0

0
1( ) ( ) ( ( ) ( ))

t

in out
t

t t q q d
C

θ θ λ λ λ= + −∫ , Equation 53 

Differentiating Equation 21 above, an equation for the rate of temperature change to the rate of net heat flow into 

system is obtained:  

( )1( ) ( ) ( )in outt q t q t
C

θ = −& , Equation 54 

The second important element of laws of thermodynamics is the thermal resistance, R. Thermal resistance is the 

proportinality factor of conduction and convection, where net heat flows from one part of system to another through a 

medium. The realtionship below shows the functionality of the thermal resistance, R.  

( )1 2
1( ) ( ) ( )q t t t
R

θ θ= − , Equation 55 

Thermal systems are analagous to electrical systems. The relationship is described in table below: 

Table 2232 
Electrical System Thermal System 

Voltage Temperature (Kelvin) as θ 

Current Heat flow (Watts) as q 

Resistance Thermal resistance (Kelvin/ Watts) as R 

Capacitance Thermal capacitance (Joules/ Kelvin) as C 

We assume that the thermal resistance of the walls of hotbox is given by R, and is defined by a kind of 

“thermal Ohms Law (V = I*R)”, in which the temperature difference across the walls of the box is like the voltage V. 

                                                 
32 This information is obtained from the following website: 
http://www.swarthmore.edu/NatSci/echeeve1/Class/e12/Lecture/L20_Thermal/L20.html 
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The current, I, is represented by the energy flow through the walls qout. Thus, the temperature loss to ambient is θ = 

qout*R. Let the thermal capacitance of the air in hotbox be given by C = m*Cp, and the equation governing the heat flow 

out of the box looks like that of an R-C circuit: 

inq -  = C * 
R

d
dt

θ θ
, Equation 56 

, because ∂T/∂t is the same as ∂θ/∂t if we reference ∂T to the outside temperature. To solve this first-order differential 

equation, it may be easier to let inqA =  
C

and 
1B=

R*C
so we have: 

( )= A- B*d
dt
θ θ , Equation 57 

,or  

=dt
(A-B* )

d
d

θ
θ

, Equation 58 

Integrating both sides gives will give us:  

( )( )-ln A- B*
= t + K

B
θ

, Equation 59 

, where K is the unknown constant of integration. At t=0, we assume θ = 0. In other words, no temperature difference 

between the temperature inside and outside hotbox exists because we have not started to put heat in yet. Thus, setting 

θ=0 and t=0 into the solution and solving for k gives: ( )( )ln A- B*  = ln(A) - B*t θ  

-ln(A)k = 
B

, Equation 60 

Putting this result for K back in gives: 

-ln(A-B* ) ln(A)= t -
B B

θ
, Equation 61 

 

, or 
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( )( )ln A- B*  = ln(A) - B*t θ , Equation 62 

Taking exponential of both sides yields: 

( ) (-B*t)A - B*  = A*eθ , Equation 63 

, or 

( )(-B*t)A= * 1-
B

eθ ⎛ ⎞
⎜ ⎟
⎝ ⎠

, Equation 64 

and putting back in the definitions of A and B: 

t-
RC

in ambient = q *R 1 - = T - Teθ
⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

, Equation 65 

, where T is the inside temperture and Tambient is the ambient temperature. All we need to do now is solve for T: 

t-
RC

in ambientT = q *R 1 -  + Te
⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

, Equation 66 

This is our solution, which represents an exponentially-saturating rise to an asymptotic value given as t goes to infinity 

as: 

eventually in ambientT  = P  * R + T , Equation 67 
To find the thermal resistance of the box, we can simply rewrite the equation above. 

( )eventually ambientT T  
R =  

inq
−

, Equation 68 

Equation 68 is a method of calculating thermal resistance, R, if you wait long enough until the inside temperature levels 

off with a known heat source inside the box. Once you know the thermal resistance of the box, we can calculate the 

power input for any temperature with the following equation: 

( )eventually ambientT T  
 =  

Rinq
−

, Equation 69 

Knowing R, one can solve for C via the R*C time constant if that is determined from an exponential fit to the rising 

inside temperature.  

 
Procedure – Experiment at Kohlberg 115 
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Several hotbox experiments are conducted at Kohlberg. The final experiment that I will focus on is located at 

Kohlberg 115. Kohlberg 115 is chosen for experiment location since it bears a general resemblance to the whole 

building in terms of its average size and wall-window ratio.  Kohlberg’s walls’ area is approximately three times its 

windows’ area. Kohlberg 115 has two large windows that covers almost one third of internal walls.  

 Hotbox experiment is designed to find the thermal resistance of Kohlberg 115’s walls and windows. The wall-

window ratio is important since this will affect the thermal resistance of the room directly. The experiment started on 

1:15 AM and ran until 7:00 AM when the air handling units start to operate at 6:50 AM. This time interval is chosen so 

that Kohlberg residents and community are not disturbed and air handling units don’t intervene the experiment. Data 

was collected through data loggers and College’s data gathering system. Since the data by the College’s system is 

enough to continue with the experiment, I will not use my data from temperature data loggers.  

 At 1:15 AM, three heaters and a fan were placed in Kohlberg 115. Before the experiment, room’s windows 

and door were opened for fifteen minutes to decrease the inside temperature through ventilation. The power input by 

each heater is as following: 
Table 23: Power input to Kohlberg 115 
Fan (low speed) 0.159 KW 

Hot air blower 1.164 KW 

Delonghi heater 1.057 KW 

Sears heater 1.035 KW 

Total power input 3.414 KW 

 
After the cooling, the doors and windows were closed. Starting at 1:30 AM, Kohlberg 115 was heated until 7:00 AM. 

The purpose of the project is to find the thermal resistance at Kohlberg 115. Equation 68 above shows how we can find 

the thermal resistance. Therefore, we need to find the inside temperature, Teventually and P. Inside temperature is recorded 

by the data loggers. To find Teventually, Kohlberg 115 is heated until the inside temperature levels off. The maximum 

temperature or the final temperature where inside temperature levels off is called Teventual. This is the maximum 

temperature that the room can bear given the properties of the room and the heat source inside. The figure below shows 

the heating process at Kohlberg 115 on April 8, 2008.  
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Kohlberg 115 Experiment, April 8
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Figure 15 
  
Results, Discussion and Future Work 

With the experiment on April 8, 2008, the variables on the right hand side of Equation 68, TEventually. Tinside, and 

power input are measured. Based on this data, the thermal resistance of Kohlberg is calculated as 6.75 

(F*ft2*Hour/Btu). Inputting this thermal resistance into Equation 69, the electricity demand due to heating load for 

different days can be calculated. I applied Equation 69 to the period of time between April 1 and April 9. The 

electricity load due to heating in Kohlberg 115 is interpolated for the whole building by calculating the volume of the 

room and the whole building. Kohlberg 115 is 932 ft3, whereas the whole building without the basement is 34,828 ft3. I 

choose to not include the basement since the thermal resistance of basement walls has no importance because it is 

assumed that there is no heat loss from basement. The volumetric ratio between the room and the building is calculated 

as 33.2. Since the ratio between the room and the building is known, calculated electricity demand at Kohlberg can be 

found. The result is presented in Figure 17 below with yellow data line.  

It was surprising to observe that the calculated electricity demand to be higher than the total electricity 

demand. I would expect the calculated electricity load due to heating to be lower than the total electricity demand of the 

college since it is only a part of it. I think that the volumetric assumption I made to find the heating load for the whole 

building from the heating load of Kohlberg 115 is to high. For future work, I will only count the classrooms’ volumes 

and find a new ratio. Another reason for the overestimation of the heating load might be de to the thermal resistance 

calculation. I think that I might have underestimated the Teventually. I believe I would have gotten a larger number if I 

waited for a much longer period heating Kohlberg 115. A higher Teventually will give a higher thermal resistance number 

that will lower the calculated electricity load due to heating.  

We can adjust the electricity load due to heating by multiplying the thermal resistance with adjustment factors. 

Let’s assume that the whole electricity demand at Kohlberg is due to heating. In other words, we want to have no 
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difference between electricity load due to heating and actual electricity load. We can find the electricity demand due to 

heating of Kohlberg 115 at a given time by using Equation 69 above.  

Actual and Forecasted Electricity Demands
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Figure 16 
 

Calculated electricity demand for Kohlberg is adjusted with two different adjustment factors. Electricity 

forecast 1 and 2 belongs to adjustment factors 1 and 2, respectively, where adjusted thermal resistances, R2 and R3, 

become 13.51 and 11.04 (F*ft2*Hour/Btu) respectively. Thermal resistance R3 is found by minimizing the mean 

squared error. Testing these two adjustment factors between April 1 and April 9, following results are obtained.  

Table 24: Test results for thermal resistances 
Electricity forecast type Average error per data point in (%) 
Type 1, adjusted thermal resistance 2 36.40 
Type 2, adjusted thermal resistance 3 0 

 

As I mentioned in our discussion above, if we assume that the Kohlberg’s electricity demand is a result of only 

heating, then to get a good forecast for electricity demand we have to adjust the thermal resistance or change our 

volumetric expansion assumption. Another valid reason for the overestimated heating electricity demand calculation 

might be as a result of the limited data set we have. This data set does not allow me to test the results for a bigger time 

span. Therefore, I would like to be conservative in my discussion since the test results and errors I get here might 

change with additional data.  

 

Another useful property – the thermal capacitance 

To find the thermal capacitance at Kohlberg, we need to fit an exponential curve to the existing data set. The 

time constant, RC, will equal to thermal resistance times thermal capacitance. Since we can find the thermal resistance 

from equation 68 as discussed above, the thermal capacitance can be easily determined. An exponential fit to the data 

set from April 8, 2008 is presented below. The temperature range is from the minimum inside temperature to the 

maximum inside temperature. 
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QuickTime™ and a
 decompressor

are needed to see this picture.

 
Figure 17: The graph shows the temperature rise from the minimum inside temperature to maximum inside 
temperature at Kohlberg 115. The thermal capacitance times thermal resistance is 4657 and the increase in 
inside temperature is 9.8 F. 
 
Assuming that the thermal resistance of 6.75 (F*ft2*Hour/Btu) is calculated correctly, the thermal capacitance is 

calculated as 690 (Btu/(lbm*F)). 

  
The Forecasting Model – Combining everything together 
 
Theory 

The forecasting model is created to combine the three forecasting models, time series model, class schedule 

model and heat loss model, in order to get the best possible forecasted results and minimize the sum of squared errors. 

As I mentioned at the beginning of this paper, there are different approaches to combine the models that represent the 

decision variables. A multi variable linear regression model might be the simplest and perhaps the most effective way 

to do so. Given the nature of the final forecasting model, a linear regression is a good start. Let me recall the final 

forecasting model for one more time: 

  X = α * X1 + β * X2 + γ * X3 , Equation 70 

, where X1, X2, and X3 represent the uncontrollable variables, the controllable variables, and the HVAC variables, 

respectively. The forecasting models that calculate these decision variables are discussed above. I use Holt – Winter 

Model to forecast electricity demand based on uncontrollable variables, Class Schedule Model to forecast electricity 

demand based on controllable variables, and I use Heat Loss Model to forecast electricity demand based on HVAC 

variables (air handling units).   

The coefficients in front of the decision variables are the weighting factors to finalize the forecasted electricity 

demand. These coefficients display how much each model contribute to final forecast. The higher its weighting factor, 

the more a model affects the forecasted electricity demand.  
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Procedure 

The forecasting model, “FM.m”, creates paths to each models’ folders and calls them separately. A portion of 

the code to call the time series model is presented below: 

Code 10 
% Time Series Model 
    addpath('\\data-software\Class Folders\Natural Sciences + 
Engineering\Engineering\ENGR015.F07\AndresAbhayOmer\omer\e90e\ceap4\Time Series Model'); 
    load kohlberg_cleaned_data_Sep1_Dec14 
    R = cleaned_data(:,1); 
    [Elec_Forecast,raw_data] = HoltWinterModel(wday,R); 

 
Raw data is imported to compare the forecasted results with actual electricity demand data. After calculating the 

forecasted electricity demand based on three different models, the forecasting model places the results in an array. The 

forecasting model is ready to estimate the factors, α, β, and γ, with a regression analysis. Least square estimate method 

is used to run the multivariable linear regression as it can be seen in Code 11 below.  

Code 11 
    A = [Elec_Forecast' classsch_weekday' Demand_KW']; 
    size(A); 
    B = One_Day_Data1'; 
    size(B); 
    X = lsqr(A,B); 

 
Matrix “B” represents the raw data and matrix “A” stands for the forecasted electricity demand by the three models. 

“FM.m” returns the coefficient numbers, α, β, and γ, for one day. Using an extension of this code, “FM2.m”, the 

multivariable regression is run for multiple days or even for weeks. The Code 12 is rewritten slightly for this purpose: 

Code 1233 
wday = '11/2/2007'; 
number_date = datenum(wday); 
i = 1; 
while number_date < datenum('11/25/2007') 
… 
A = [Elec_Forecast' classsch_weekday' Demand_KW']; 
    size(A); 
    B = One_Day_Data1'; 
    size(B); 
    X = lsqr(A,B); 
… 
    K(:,i) = X; 
    [num_date string_date]=weekday(datestr(number_date)); 
    if(strcmp(string_date,'Fri')) 
        number_date = number_date + 3; % to jump the weekend. 
    else 
        number_date = number_date + 1; % to go to next day. 
    End 
   % Don't forget to increase the index. 
    i = i+1; 
end 
 

The essential parts of the code are displayed above. The variable “K” will accumulate all the factors over the course of 

the selected time interval. The final values for factors, α, β, and γ, can be determined by taking an average or a moving 

average of the regression results from variable “K”. The model is run from Friday, November 2, 2007 until Friday, 

November 9, 2007 only on the weekdays. The results are presented below: 

Table 25: The weighting factors obtained from the regression analysis between November 2, 2007 and November 
9, 2007   
Weighting  November 2 November 5  November 6  November 7  November 8  November 9 Average  

                                                 
33 The code is designed to avoid the weekends and only forecast the weekdays. Therefore, the last rows are written to 
jump over the weekends. 
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Factors 

α 0.936 1.813 1.199 1.720 1.657 1.607 1.599

β 0.106 -0.465 -0.252 -0.425 -0.744 -0.482 -0.474

γ -0.062 -0.340 0.037 -0.268 0.079 -0.192 -0.137

 
The same procedure is repeated for April 2008. The forecasting model is run for five days between April 21 and 25, 
2008. The weighting factors are averaged in the last column in Table 26 below. 
 
Table 26: The weighting factors obtained from the regression analysis between April 21 and 25, 2008  
Weighting 
Factors 

Monday  Tuesday Wednesday Thursday Friday Average  

α 1.2210 1.1052 1.6474 0.8164 0.5571 1.0694 
β -0.0448 0.1360 -0.2808 0.3511 0.2853 0.0893 
γ -0.2107 -0.1744 -0.2665 -0.0419 0.0776 -0.1232 

 
The goodness of the fit between actual data and forecasted data is tested by a R2 analysis. R2 is the coefficient of 

determination, which is the proportion of variability in a data set that is accounted by a model. The high numbers for R2 

below proves the success of the forecasting model.  
 Monday  Tuesday Wednesday Thursday Friday Average  

R 0.95 0.93 0.95 0.94 0.87 0.93 

 

The results indicate that the forecasting model heavily relies on the time series model while the class schedule model 

and the heat loss model are less relevant. This result is expected since the time series model is devoted to forecast 

regular days. In other words, time series model returns good results if tomorrow resembles similar characteristics like 

past data. Class schedule model, on the other hand, becomes important when there are more classes scheduled at the 

forecasted calendar day. Finally, heat loss model forecasts electricity based on ambient temperature. If there is a 

significant change in ambient temperature, the model’s weighting factor will increase34.  

 

Discussion and Future Work 

The multivariable regression model above is a dynamic model. The forecasting model will run multi-variable 

regression with least square estimate method for a selected period of time each time it forecasts the electricity demand 

for Kohlberg. At the end, the forecasting model finds the average weighting factors needed to forecast the requested 

calendar day’s one day electricity demand profile. With additional data, the weighting factors’ averages will improve 

and the model is expected to return better results with higher R2 values. 

Collecting data is essential for the project’s success. Although I have been tedious about data gathering and 

collected data for this project since October 2006, I still had difficulty of finding extensive data for variables in heat 

loss model. I only had one week in November 2006 and another week in April 2008 to build my heat loss model on. I 

calculated heat loss model with both weeks but used April 2008 for airflow and temperature data since it is the most 

recent set of data. Any additional data will decrease the sum of squared errors and improve the models. 

                                                 
34 Since the data for AHU1 airflows and temperatures is limited, I ran the model based on the first week of April 2008. 



 46

As a future work, I would like to include a feedback loop to the final forecasting model. The feedback loop 

can be an adaptive filter design to find the weighting coefficients through a linear combiner. At this point, a feedback 

loop discussed above is not possible as a results of the limited data. This forecasting model has to be tested for a 

significant period of time before such a model can be developed. 

Once there is more data, an additional artificial intelligence code can be developed. This code looks for any 

extraordinary fluctuations in input data such as huge drops in ambient temperature. If there are remarkable changes in 

ambient temperature in a short period of time (overnight), the code will warn the final forecasting model so that the 

model will weight heat loss model’s factor the heaviest compared to other weighting factors. Similarly, the code will 

increase the weighting factor for Class Schedule Model if there are other classes scheduled for the requested day 

besides the regular class schedule. 

Another important reason for the discrepancy between the forecasted and actual results is that not all the 

factors that affect the electricity at Kohlberg are (or can be) observed. This takes us back to my early discussion of 

fourth variable, other variables. Other variables represent all the other factors that affect the electricity but they are not 

explained with the models presented above. 

 

Graphical User Interface (GUI) 

 A graphical user interface (GUI) is built in Matlab to serve two purposes. The first rationale is to create a 

Windows based interface so that the Facilities can improve its energy management with the help of this Project. By 

using this GUI, the Facilities can decrease the total electricity demand or shave down the peaks that result in penalties. 

Since the GUI is designed to be user-friendly, its users with any level of computer knowledge can plot raw data, 

forecast future data using different models and compare the results. 
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Figure 18: A snapshot from the graphical user interface 

 

The second rationale is the Project’s educational goal. The Project aims to increase community awareness about 

energy consumption. As a future work, the GUI can be uploaded to the College’s website. Student body and faculty can 

display electricity demand for a day in the past and/ or forecast electricity demand for a day in the future. It is expected 

that the student body and faculty will become more environmentally friendly with this feedback mechanism and they 

will change their consumption behaviors accordingly.  For instance, the faculty might turn off their computers over 

night after seeing that they can decrease the electricity demand and reduce carbon footprint by a simple push on their 

computers’ turn-off button. 

As it can be seen from Figure 18, the GUI has a calendar. If the user wants to display a day in the past, he or she 

can select a day in the past from the calendar and choose “One Day Plot” from the drop-down menu. By clicking “Plot” 

GUI will display one day profile of electricity demand for the selected day. The user can also choose to display the 

average for weekdays or weekends from the same drop-down menu. If the user wants to forecast a day in the future, he 

or she can choose a day in the future from the calendar and choose a forecasting model from the second drop-down 

menu. By clicking “Forecast”, the forested electricity demand for the requested day will be displayed. The GUI code 

behind the “Forecast” pushbutton is displayed below: 

Code 13 
% --- Executes on selection change in ForecastChoicePopup. 
function ForecastChoicePopup_Callback(hObject, eventdata, handles) 
% hObject    handle to ForecastChoicePopup (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
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% Hints: contents = get(hObject,'String') returns ForecastChoicePopup contents as cell array 
% contents{get(hObject,'Value')} returns selected item from ForecastChoicePopup 
% Determine the selected data set 
str = get(hObject, 'String'); 
val = get(hObject, 'Value'); 
% Set the current data to selected data set. 
switch str{val}; 
    case 'AR Model' % User selects Auto Regressive Model. 
        handles.current_data = handles.day; 
    case 'Time Series Model' % User selects Time Series Model. 
        handles.current_data = handles.day; 
    case 'Class Schedule Model' % User selects Class Schedule Model. 
        handles.current_data = handles.day; 
    case 'Heat Loss Model' % User selects Heat Loss Model. 
        handles.current_data = handles.day; 
    case 'The Forecasting Model' % User selects the Forecasting Model. 
        handles.current_data = handles.day; 
end 
% Save the handles structure. 
guidata(hObject, handles) 

 
The user can also forecast a day in the past to compare actual data to forecasted results.  

 

Project Cost 

The Project’s cost was minimal since no additional hardware or software was needed. I took advantage of the 

already installed infrastructure and software during my Project. For my hotbox experiment at Kohlberg, I used 

Engineering Department’s and my personal devices. 
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