

RFID: Opening Doors

Alexander Benn and Molly Piels

8 May 2008
Advisor: Erik Cheever

Abstract
 RFID access systems offer a wealth of features and advantages over traditional key-
based entry, such as low per-user cost, easy administration, and powerful access control
and configuration. This report describes the design and implementation of a low-cost RFID
access system installed in Hicks Hall at Swarthmore College. The system consists of two
major components: a server running PHP and MySQL and a set of PIC microcontroller-
based door controllers.

 1

Table of Contents

1.0 Introduction ... 2
 1.1 System architecture ... 3
 1.2 Component overviews .. 5
2.0 PCB design and construction .. 5
3.0 Programming the microcontroller .. 8
 3.1 Building the project in MPLAB IDE... 8
 3.2 The main application ... 12
 3.3 The clock and timing out ... 13
 3.4 Getting an ID number from the reader .. 14
 3.4.1 Security risks inherent in the use of RFID technology........................... 14
 3.5 The door controller and the network .. 14
 3.5.1 Addressing... 14
 3.5.2 Anatomy of an Ethernet packet ... 15
 3.6 Sending the ID number to the server ... 16
 3.6.1 Connecting to the server... 16
 3.6.2 Sending the ID number to the server .. 17
 3.6.3 Receiving and processing the server’s response...................................... 18
 3.7 Checking and writing EEPROM contents .. 18
 3.8 Board configuration: power outages and startup routine................................ 18
 3.9 Debug techniques... 18
 3.9.1 Packet sniffers... 19
 3.9.2 Debug mode... 19
 3.9.3 The PicDemNet board... 19
4.0 The Server.. 20
 4.1 Installation... 20
 4.2 Administration: An Overview ... 20
 4.3 Elements of the Administration Interface.. 20
 4.3.1 Users.. 21
 4.3.2 Groups ... 23
 4.3.3 Doors.. 24
 4.3.4 Access Configurations... 25
 4.3.5 Administration Users ... 27
 4.3.6 Administration Machines ... 27
 4.4 Server Implementation Details... 28
 4.4.1 Database.. 28
 4.4.2 Administration Panel ... 29
 4.4.3 Remote Query Interface.. 29
 4.4.4 Update Script .. 30
5.0 Conclusion.. 30
6.0 Acknowledgements .. 31
7.0 References .. 31

 2

1.0 Introduction

Presently, Swarthmore College issues keys, which are manufactured and tracked by
a central office, to students, faculty, and staff in order to control access to secure areas.
There are a number of drawbacks to this system. It generally takes several days for the
central office, Key Central, to process requests from academic departments or individuals
for keys. Moreover, if a user loses their key, they face a hefty fine and the entire building
may have to be re-keyed. To reduce the cost and hassle of dealing with a lost key, most
keys only open one or two doors, a system which forces many users to carry a large number
of keys. This is especially a problem in Hicks, where students need after-hours access to
lab equipment that is often spread throughout the building. In large part because of these
difficulties, Swarthmore is moving toward implementing a single, centralized card system
to supplant the existing key-based one. Swarthmore students will eventually be able to use
their regular student ID cards, which will be equipped with radio frequency identification
(RFID) technology, to open all the doors they have permission to open. At present,
however, there is very little space on campus that is accessible by means other than keys.

The College’s decision to use RFID, as opposed to other competing technology, to
control access to buildings was not a forgone conclusion. Several of the technologies that
compete with RFID are used in other entry systems and are already in use in other
applications at Swarthmore. Magnetic stripe cards have been in use at the College and at
other schools for years, as have barcodes. The school’s decision to go with RFID was based
on the considerable drawbacks of both of these. Magnetic stripes experience significant
wear and tear. Even if the stripe itself does not wear out, the printing on the other side of
the card often does. This printing can often include security measures; in Swarthmore’s
case, it is a photo of the cardholder. Barcodes have the benefit of not requiring physical
contact between card and reader, but they are read by lasers, and it is not practical to
mount a laser on a door and keep it on continuously. RFID systems also avoid the problems
caused by physical contact between card and reader, but they do so in a way that is far
more practical for a permanent installation and continuous operation than a barcode
scanner would be.

An interaction between a generic RFID system and one of its users (either a person
or an item the system is designed to track) takes place between two components: the reader
and the tag. Readers are mounted at stationary locations where identification is necessary,
and tags are carried by users or mounted on the objects the system tracks. Each tag is
encoded with a unique identification number. When a tag enters the proximity of a reader,
the reader reads the information encoded on the tag and transmits it to a control unit. No
physical contact between the tag and the reader is necessary: the devices exchange
information via radio-frequency electromagnetic waves. The tags Swarthmore uses are
passive, which means that they do not have on-board power. They use the energy
contained in the wave emitted by the reader to power a small integrated circuit. The circuit
modulates the carrier wave at two distinct frequencies and reflects it back to the reader.
The reader then interprets the modulation as a series of ones and zeroes. The tag’s lack of
a power supply limits both the amount of data that it can hold and the distance at which it
can be read. Active tags, or tags with their own power supply, are more common in

 3

applications where the tag has to hold a lot of data or is placed at a significant distance
from the reader.

Swarthmore does not yet have a fully integrated entry system, but the school has
begun embedding passive tags in student IDs. All members of class years 2011 and
younger already have these new student ID cards and Public Safety will provide a new card
with an RFID tag in it to older students upon request and demonstration of need. There
are also two disjoint systems in place that are administered by different groups. The
Computer Science department runs a system that controls seven doors in the Science
Center. Information and Technology Services (ITS) administers a system that controls
seventeen doors in Beardsley and one in Trotter. These two systems were both very costly
and would not necessarily be well-suited to the needs of the Engineering department. The
ideal system for the department would:

• cost relatively little: commercial systems cost in the tens of thousands of dollars.
• maintain privacy: the department has no need to keep track of who enters a room

when.
• be easy to implement: the system would need to use the technology already in place

at Swarthmore.
• be relatively secure: it should be as hard to wrongfully gain access using the RFID

system as it is to pick a lock.
• be modular: it ought to be easy and inexpensive to add more doors to the system.
• be easily administered by department personnel: system maintenance and data entry must

be able to be performed by an individual with no specialized training.

This project is a RFID-based entry system for Hicks that meets these general criteria.
The system currently controls access to the two interior doors to which students most often
request keys (rooms 213 and 310), but it will be easy to expand to control any door in the
building at a cost of around $500 per door. It allows administrators to set room access
permissions by connecting to a web server running software developed for this purpose.
Students will be able to use the RFID tags already embedded in student ID cards to open the
doors they are allowed to open. The system works in parallel with already existing locks to
ensure that other groups that need access to Hicks will not need to change their administrative
procedures. When the College moves to a single centralized system, it will be able to use the
hardware that has been installed in the building as a part of this project.

1.1 System architecture

All RFID entry systems consist of five main components: an RFID reader, a door
controller, a door strike, a power supply, and a server. In commercial systems, a magnetic
sensor that detects whether or not a door is open is also included. With that one exception,
this system does not differ from commercial systems in overall architecture; the major
differences lie in the function performed by each component. Figure 1 shows a block
diagram of this system. When a user presents a card to the reader, the reader sends the ID
number to the microcontroller and Ethernet controller, which reformat it and send it over
Ethernet to the server. The server responds over the Ethernet connection, and the

 4

microcontroller operates the door strike accordingly. The module on each door is powered
by power over Ethernet (PoE) injected into the system by a switch, which is located in the
basement of Hicks.

Figure 1. Block diagram of RFID entry system for Hicks.

In a commercial system, when a user presents a card to the reader, the reader sends

the ID number to a controller. Commercially available controllers generally are capable of
controlling more than one door; the controllers Swarthmore uses can usually control four
each. The controller checks the ID number against a locally stored database of user IDs
and permissions. It then operates the door accordingly and creates a log of the transaction.
When administrators change door access permissions, the server updates these local
databases. Administrators can also access the logs stored on the controllers from a
workstation specifically dedicated to this purpose that sends requests to the controllers via
the centralized server.

There are three main differences between this system and commercial ones. At the
hardware level, this system relies on the wiring already present in a building to exchange
information. At Swarthmore, this is a significant cost-cutting measure because of the
preponderance of gray stone as a building material: it cost about $8000 to wire the Science
Center for the Computer Science department system.1 The second difference is that this
system relies on a centralized server, rather than a local door controller, to respond to
requests. To do this, commercial controllers must be about as sophisticated as personal
computers. By decreasing the functionality required of the controller, this system can use a
much less expensive processor (specifically, a microcontroller). This also cuts costs: a
commercial four-door controller costs about $1,500 whereas this system can control four

1 Siemens bid. The analogous value for the ITS system is not comparable because Siemens only replaced an
existing system and the vast majority of the necessary wiring was already in place.

Reader

Strike

Door
controller

PoE
Splitter

12V

Ethernet

PoE
Switch

PoE

Door
Intranet

Server

Database

Query Script

Update Script

Admin Interface

Administrator
Machine

 5

doors for around $350. The third difference is that this system’s server software and
administrative interface run on top of existing machines whereas commercial ones require
their own dedicated server and workstation, the combined cost of which is around $4,000.

1.2 Component overviews

There are six key components in this system. A list of part numbers and market value can
be found in Appendix A. Their function within the system as a whole is briefly described
here and addressed in greater detail in subsequent chapters.

Reader

The reader reads the proximity tag and sends the ID number over two wires in
clock-and-data format to the microcontroller.

Microcontroller

The microcontroller acts as a relay between the reader and the server. It is meant to
use a serial EEPROM with a local hard copy of user codes and permissions in case the
controller is unable to communicate with the server, but this is not yet fully implemented.
The microcontroller interfaces with Ethernet via a small Ethernet controller chip on the
same printed circuit board.

Ethernet Controller

The Ethernet controller sends the request to open the door from the microcontroller
to the server and holds the server’s response until the microcontroller instructs it to do
otherwise.

Strike

The strike mechanically allows the door to open (or does not). It is installed in the
door frame, and thus does not interfere with the lock already in place. It is fail-secure,
which means that if it loses power, it will remain locked.

Power Supply

The door controller communicates with the server via Ethernet. The same Ethernet
cable can be used to power the system using PoE, so only one connection between the door
wiring and the outside world is necessary. The system uses a power splitter to extract
power from an Ethernet cable and supply it to the strike, controller, and reader.

Server

The server manages the database of names and allowed IDs and handles requests
from the door controllers. The server also includes a web-based management interface
accessible to Engineering department staff. The web interface consists of a set of PHP
server scripts, which interface with a local SQL database such as MySQL.

 6

2.0 PCB design and construction

The printed circuit boards for this project are based on Microchip’s PicDemNet
board. Full Multisim and Ultiboard schematics of the board actually printed as well as an
improved second version of the board can be found in Appendix B. Unnecessary features,
such as the LCD, serial port, and RS232 jack have been omitted from the PicDemNet demo
board design and power-related and door control circuitry has been added. The PIC cannot
be programmed while it is on the board. The PIC has to be removed from its socket, placed
on a board that does have a jack for the in-circuit debugger, programmed, and replaced in
order to update the code. Given that the PCB is to be mounted securely in a box attached to
the door and wired to the strike and the reader through a hole in the wall, it is much easier
to remove the chip than to remove the entire board.

The board is powered by Power over Ethernet (PoE). A D-Link splitter located
inside the box separates the Ethernet signal from the power, both of which are then
connected (separately) to the board. The power comes in to the board at 12 VDC and
immediately goes through a diode bridge and a linear voltage regulator. This may be
unnecessary because the PCB is not powered in the exact same way as the PicDemNet
board. The PicDemNet board is usually powered by an AC to DC converter that plugs in to
the AC power in a building. Since these devices are imperfect, the demo board’s power
supply usually fluctuates with the AC signal. The diode bridge and linear voltage regulator
in the demo board’s design are meant to rectify this. PoE, on the other hand, is a DC
supply more akin to a battery, and the D-Link module performs some voltage regulation
function as well. At the time the board was designed, the quality of the power supply was
unknown, so the features were retained, but a second-stage board would test the linearity
of the power supplied by the D-Link to see if the diode bridge and 12 V linear regulator are
redundant. A large (220 µF) capacitor between this supply and ground prevents
fluctuations in the power supply from affecting circuit operation. Both the strike and the
reader operate on the 12 VDC. The PIC and Ethernet controller run on 5 VDC. A linear
voltage regulator is used to step down the voltage to that level. The linear voltage
regulators both generate significant amounts of heat; care should be taken to avoid contact
between the regulators and wires coming in to the box.

The PIC operates the strike by toggling the voltage on the gate of an NMOS
transistor (see Figure 2). The transistor is between one of the door strike leads (the two are
interchangeable) and ground. The other lead is at a constant 12 V. When the door ought to
remain closed, the PIC asserts zero voltage on the gate of the transistor, effectively
preventing current from flowing through the strike, which floats at a constant 12 V. When
the PIC asserts 5 V on the gate, it allows some current to flow through the circuit. Voltage
drops across the strike, which lowers the gate-to-source voltage on the transistor enough to
allow current to flow freely through the strike. This releases the strike from its locked
position and allows the door to open.

 7

Figure 2. Circuit to operate strike.

The board connects to the door strike and reader through an 8-hole socket shown in Figure 3. In

the original design (the one currently installed), an important connection between the Ethernet controller
and its power supply was omitted. To rectify this, extra wires were soldered from the controller to pins
five and eight and then to 5V and ground. A 100 nF capacitor should be inserted connecting these two
pins. In the second generation design provided in Appendix B, pin five should be attached to the green
LED line from the reader (orange) and pin eight should be attached to the beeper line from the reader
(yellow). At present, these two connections are made by two separate female-to-female connectors
attached to wires soldered directly to the board. The shield ground wire (black) from the reader is
attached to the ground pin on the power jack or to the ground pin on the enclosure. The remaining three
wires (violet, blue, and brown) should be wrapped separately with electrical tape.

Figure 3. Socket that connects PCB to door strike and reader.

This version of the PCB suffers from connectivity issues such that (approximately) only every

third attempt to transmit messages from the board succeeds. The microcontrollers currently in place in
the boards have been programmed with this in mind and allow for a much greater number of retries
(twenty) than is optimal. As a result, the amount of time between a card swipe and a server response is
sometimes noticeable. It is important to emphasize that this issue is unique to this printing of the PCBs; it
takes about 0.06 seconds for the demo board to complete a transaction with the server.

 8

3.0 Programming the Microcontroller

The microcontroller is the heart of the door circuitry. It can be programmed on
Microchip’s PicDemNet board using their in-circuit debugger (ICD) 2 and then placed in the
appropriate socket on the PCB. Programming a new microcontroller in order to add
another door to the system can be done by changing the source code in a few key places.
Altering the code to add functionality is substantially more complicated.

3.1 The basics: programming new controllers and working in
MPLAB IDE

The code for this project is written to be compiled by Microchip’s C18 compiler and
MPLINK linker, both of which are available for free online. C18 follows most rules of
standard ANSI C syntax. Microchip’s TCP/IP stack is modular: the code for lower level
functions is in a number of files that can be included in the project as needed. The purpose
of this method of organization is to reduce overall program memory size. The code is meant
to be compiled from within Microchip’s IDE, MPLAB, which is well-suited to projects with
multiple header and source files. MPLAB’s primary components are its main window and
two child windows: the workspace window and the output window (see Figure 4).

 9

Figure 4. The MPLAB IDE main window, with workspace, output, and watch child windows

shown.

The workspace window shows the files to be included in the project. The compiler
will produce object (*.o) files for each of these, regardless of any relationships that exist
between them. The linker resolves any cross-references between files and produces *.coff
and *.hex files to be downloaded to the microcontroller. It will produce errors or warnings
if a file is included twice or if an object is referred to but not defined.

Files can be added to the project either by right clicking on the project (*.mcp) folder
in the workspace window and selecting “add file to project” in the workspace window or
going to Project>Add Files in the main window. They can be removed in an analogous
fashion. Double-clicking on a file opens it in a child window. File names are not case-
sensitive.

The output window has four tabs: the “Build” tab shows the status of the compiler
and linker; the “Version Control” tab is meant to be used with version control software; the
“Find in Files” tab shows the result of the last project-wide search for a term; and the
“MPLAB ICD 2” (or other debugger) tab shows the status of the debugger being used.

 10

Both a project and a workspace file have been created as a part of this project;
opening the project file will automatically load the workspace into MPLAB IDE. However,
these files are not always back-compatible, so a new project may have to be made in order
to program a door microcontroller. The following files should be included in the project:

 C18cfg.asm
 18f4520.lkr
 arp.c
 arp.h
 ARPTsk.c
 ARPTsk.h
 delay.c
 delay.h
 Helpers.c
 Helpers.h
 icmp.c
 icmp.h
 ip.c
 ip.h
 Mac.c
 Mac.h
 StackTsk.c
 StackTsk.h
 tcp.c
 Tcp.h
 Tick.c
 Tick.h
 websrvr.c
 xeeprom.c
 xeeprom.h

Optional files that need to be included if (and only if) the code is compiled in debug
mode are:

 xlcd.c
 xlcd.h

The header file StackTsk.h, in addition to serving as a header file for StackTsk.c,
is used to define the mode of operation of the code; all modules that can be enabled or
disabled, most notably debug mode, are enabled there. The main application code can be
found in websrvr.c.

To compile correctly, a number of settings must be changed from the default. First,
the project needs to be assigned the correct microcontroller. This project is designed to run
on either the PIC 18F452 or 18F4520, though with some modification of C18cfg.asm, other
40-pin PIC 18s could also be used. To change microcontrollers, go to Configure>Select
Device and select the appropriate microcontroller in the dialog box that pops up (see Figure
5).

 11

Figure 5. Select devise dialogue box.

After changing the device, the memory settings for the compiler have to be changed.

Before compiling, in MPLAB IDE, go to Project>Build Options>Project, select the MPLAB
C18 tab, category “General,” and change the default storage class to “Overlay.” This is the
equivalent of using the command-line compiler options:

 -sco -mL -Ou- -Ot- -Ob- -Op- -Or- -Od- -Opa-.

The code should also be compiled using the large code and large data models, which
can be changed in the same tab as the default storage class, under the category “Memory
Model.” If the code is compiled using the wrong memory model or default storage class, the
linker will be unable to resolve an arbitrary object; it will produce one of the two following
error messages:

 Error - section '.*.o' can not fit the section. Section '.*.o'
 length=0x000001bd

 Error - could not find definition of symbol 'X' in *.o"

where ‘*’ is a source file and X is the name of a function or a variable. The compiler
generates four warnings about suspicious pointer conversions in websrvr.c, but these can
be ignored.

Once the code has been compiled, it can be downloaded to the PIC. To do this, select
Programmer>MPLAB ICD 2 to program or Debugger>MPLAB ICD 2 to debug. An error
message saying that it is no longer permissible to define both a debugger and a programmer
simultaneously may pop up; click “OK.” Then click on either Programmer>Program or
Debugger>Program. If programming, the PIC will be ready; in debug mode, to start the
program click on the blue triangle in the upper right-hand corner of the IDE main window.

 12

If adding a new door to the system, the following lines should be changed before

compiling and programming:
• At line 144 in websrvr.c, change the line:

ROM BYTE q2[] = \
"&doorname=testdoor HTTP/1.1\r\n";

 to reflect the door name specified by the server.
• At line 278 in StackTsk.h, modify the IP address of the microcontroller

(MY_DEFAULT_IP_ADDR).
• At line 293 in StackTsk.h, modify the MAC address of the microcontroller

(MY_DEFAULT_MAC).

Other than obtaining a static IP address from ITS (see p. 14), this is the only work that
needs to be done on the microcontroller in order to add a door to the system.

If the server’s IP or MAC addresses change, the fields SERVER_IP_ADDR and
SERVER_MAC can be changed in StackTsk.h beginning at line 343.

If changing the function of the code, MPLAB IDE offers a number of other tools that
can be very useful. The watch and memory gauge windows, which can be opened by
clicking View>Watch or View>Memory Gauge, are both helpful. Given the number of files
associated with this project, the “Find in Files” command is also of use; it can be found
under Edit or by pressing CTRL+SHIFT+F. A description of main program functions
follows.

3.2 Main application

The main application coordinates all operations that the door controller performs
(see Figure 6). It uses a single control byte, OpenDoor, to identify and prioritize tasks. In
its idle state, the controller delays, responds to network addressing requests, and updates
the clock. Its top priority is to respond when a card is swiped. Both a card swipe and an
overflow on the on-board timer will generate an interrupt, and the program will
immediately jump into the interrupt service routine (there is only one ISR). The routine
prioritizes the card interrupt over the timer. The card swipe interrupt changes the value of
the control byte so that the main routine will send the ID number to the server. The send
function, when called, takes top priority within main. If it works (i.e. if the server returns
an unambiguous response), the main loop opens the door, waits five seconds (to allow the
user to open it), resets all flags, and then returns to its normal routine. If the send function
does not work, it changes the control byte to tell main to check the serial EEPROM. The
main while loop then checks the EEPROM, which either does or does not set the door open
flag. Once daily, main calls Download2EEPROM(), which synchronizes the door controller
clock with the server clock and downloads the list of ID numbers and access codes from it.

 13

Figure 6. Main function map.

3.3 Clock and timing out

The PIC uses internal device clock generated interrupts on Timer 1 to keep the time.
When the Timer 1 counter overflows, the ISR increments the program tick counter, which is
stored in tick.c. When other stack modules call the function TickGet(), they read this
value. The clock is used for two main purposes: timing operations and determining, using
the contents of the serial EEPROM, whether or not a user should be allowed access to the
room at a particular time.

All attempts to send data to or read data from the server can time out, as can all
other while loops. At the beginning of these segments of code, the tick count is recorded
and stored in the value Timer. All lower-level stack modules (those provided by Microchip)
have functions that test whether or not a particular task is ready to be performed. While
that task is not ready, the program checks to see if the current tick count exceeds the saved
tick count by a set amount. These sections of code look like:

 if(TickGet()-Timer>1.5*TICK_SECOND)
 {
 /* Give up */
 }

A TICK_SECOND is slightly less than two seconds long, so this function would time
out after about three seconds. This is an approximate value, but sufficient for this

IDLE
-delay if no flags

-open door if flag set
-update clock

ISR
-read ID bit and

set send flag
- or increment
time counter

interrupt from
timer or card

SEND
-contact server

-set door open flag
-set check

EEPROM flag

send ID flag set

PROCESS
ID

-rewrite ID
number as an

unsigned long int

CHECK
EEPROM

-read EEPROM

-set open door flag

check
EEPROM
 flag set

WRITE
EEPROM

-contact server
-write usernames and
access to EEPROM

-sync clock once daily

DOOR STRIKE
- opens door

open door
flag set

 14

application. For tasks that involve contacting the server, the number of retries is also
counted. As discussed above, this is limited to twenty because of mechanical issues. The
value can be easily changed by modifying the line

 #define NUM_RETRIES 20

at the top of websrvr.c.

The time kept by the main application is far less approximate because the constant
TICK_SECOND is multiplied by a floating point number that has been experimentally
determined to be accurate within a few seconds in 24 hours. Clock skew may increase as
the device ages, and when a user swipes their card, the clock pauses briefly. To ensure that
the clock is always within a few seconds of the actual time, the door controller synchronizes
its clock with the server’s clock at 3 am every 24 hours when it updates its list of ID
numbers and permissions.

3.4 Getting an ID number from the reader

Swarthmore uses HID brand readers and RFID cards. HID readers can be

configured to output data in clock and data or Wiegand format; the cards can also encoded
in either clock and data or Wiegand format, but a clock and data reader can read a Wiegand
card. Swarthmore uses Wiegand-encoded cards, and the door controllers output the card
number in clock and data format. The readers are powered by 12 VDC and have a read
range of about three inches, though the range decreases as a card ages.

3.4.1 Security risks inherent in the use of RFID technology

With the US Federal Government’s recent move to add embedded RFID tags to
passports, the amount of research into methods of duplicating another person’s RFID
number has grown. It is now well-established that with commercially available equipment
costing around $200, it is possible to read a card as it is being carried by another person
and copy its information well enough to fool a reader. Most institutions that have chosen to
implement RFID systems have done so only after weighing the increased risk of key
duplication against the many benefits of those systems. There are some commercially
available card sleeves and wallets that prevent a card from being read for high-risk
applications, but it is not likely that they will ever be used at Swarthmore.

3.5 The door controller and the network

The door controller works primarily as a relay between the card reader and a central
server. It communicates with the server using established Ethernet protocols over the
building’s network.

3.5.1 Addressing

Every node (machine) on a network contains a Media Access Control (MAC) address
and an Internet Protocol (IP) address. The MAC address is unique to the device, though on
computers it can be changed easily. On Swarthmore’s network, the IP address is assigned

 15

from a pool of addresses through a process called Dynamic Host Configuration (DHCP).
Thus the MAC address of a particular machine will not change unless an administrator
changes it, but its IP address could change every time it is turned on. Because this system
uses the IP address of the requesting node as a security measure, it is important to ensure
that the IP address is static (i.e. not assigned through DHCP gleaning but rather hard-
coded on to the device). To avoid collisions, the network needs to be able to identify the
door controllers through their MAC addresses and not attempt to assign them new IP
addresses; it also needs to remove door controllers’ static IP addresses from the DHCP pool
and not assign them to other machines. Before installing a door, it is important to consult
ITS to obtain a static IP address and remove the device from the DHCP gleaning process.
The IP and MAC addresses of the door controller and server are defined in StackTsk.h.
The doors used in this project have the MAC and IP addresses shown below:

Table 1: Doors and their associated addresses
Door MAC IP
Testdoor 00:04:a3:00:06:39 130.58.84.138
Hicks310 00:04:a3:00:06:10 130.58.84.139
Hicks213 00:04:a3:00:06:11 130.58.84.140

Both addresses are loaded into program memory in the function InitAppConfig()

in websrvr.c. The server, like the door controller, should have a constant IP address; if it
changes, the door controller will no longer be able to form a connection with it and will have
to be reprogrammed.

Every networked machine has a number of ports associated with it. Port 80 is
reserved for incoming HTTP requests, and is thus it is the server port to which the door
controller requests to connect. Ports above 1024 have no pre-assigned meaning; the door
controller initially attempts to connect to the server from port 1026, but will increment the
port number with each retry.

3.5.2 Anatomy of an Ethernet Packet

Ethernet packets consist of at least 64 bytes of data arranged in nested frames.
These proceed from the lowest level (Ethernet) to the highest (HTTP) (see Figure 7). With
the exception of HTTP, each frame consists of a header, a data field that contains higher
level protocols, and a checksum.

 16

Figure 7. TCP/IP protocol stack (only the protocols used by the RFID entry system are

shown).

The door microcontroller uses Ethernet, IP, and TCP to connect to and disconnect
from the server. It uses HTTP to transmit its query and receive the server’s response. If it
is the first time the server and microcontroller are communicating, ARP is used to help the
server locate the microcontroller. ICMP functionality is included but not strictly necessary.
However, it may be desirable to allow the system administrator to determine whether or
not the door microcontroller is connected to the network by pinging it, and pings are ICMP
messages.

3.6 Sending the ID number to the server: the TCP state
machine

The main TCP state machine consists of four stages: connect, send, receive, and
disconnect. Connecting and disconnecting are done using stack layers up through TCP and
sending and receiving include HTTP in addition. If any stage takes too long, the door
controller stops trying to get information from the server and reads the serial EEPROM
instead.

3.6.1 Connecting to the server

Before the door controller transmits the ID number to the server, it establishes a
connection using a TCP handshake. The TCP handshake consists of three steps (see Figure
8). First, the door controller sends a synchronize packet (SYN) requesting that the server
open a connection with it and with a start sequence number. Then, the server responds
with an acknowledgement (ACK) and its own start sequence number. Finally, the door
controller acknowledges that it has received the server’s SYN+ACK packet and begins
transmitting data.

HTTP

TCP
Transmission

Control

IP

Ethernet

ICMP
ARP

Address
Resolution

 17

Figure 8. The TCP handshake.

Upon receiving the initial SYN packet, the server attempts to locate the door

controller using Address Resolution Protocol (ARP) requests. In order for the handshake to
proceed, the server must resolve the IP address of the door controller. The line:

 StackTask();

in the main TCP state machine in websrvr.c handles incoming ARP packets and
completes the TCP handshake.

The door controller initially attempts to connect to the server from its own port 1026.
If this connection is denied or times out (after one second), it moves to port 1027, and so on,
until a connection is established or the attempt to contact the server times out.

3.6.2 Sending the ID number to the server

The door controller sends the ID number to the server in the form of an HTTP GET
request. The Microchip stack does not implement HTTP client functionality; The TCP state
machine puts both the header and the query are into the transmit buffer, then flushes that
buffer. A HTTP header consists of an action (GET), protocol specification (HTTP 1.1), host
(the server), and a series of options. The HTTP header is as follows:

 GET /php-rfid/query.php?rfid=xxxxxx&doorname=testdoor HTTP/1.1\r\n
 Host: 130.58.84.55\r\n
 User-Agent: Door microcontroller\r\n
 Accept: text/html,text/plain\r\n
 Accept-Language: en-us,en;q=0.5\r\n
 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7\r\n";
 Keep-Alive: 300\r\n
 Connection: keep-alive\r\n
 http:\\130.58.84.138\r\n
 \r\n\r\n

This string is stored in ROM and defined in websrvr.c. To change door or server
IP addresses, door name, HTTP version, or agent name, this text must be modified. The
remaining fields specify the kinds of data the door controller is configured to receive. The
ID number is converted from an integer to a string in the main TCP state machine.

SYN

SYN +
ACK

ACK

Door Server

 18

3.6.3 Receiving and processing the server’s response

After sending the ID number, the door controller waits until the server’s response
appears in the Ethernet controller’s receive buffer. The response consists of an HTTP
header followed by a single line of text, either “true,” “false,” or “ERR:”

 HTTP/1.1 200 OK

Date: Fri, 25 Apr 2008 02:10:06 GMT
Server: Apache/2.2.3 (Debian) PHP/4.4.4-8+etch4
X-Powered-By: PHP/4.4.4-8+etch4
Content-Length: 4
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html; charset=UTF-8

 true

When the controller receives the response, it discards the HTTP header and scans
the remaining five bytes in the receive buffer for all three of these possible messages. It
then sets the open door flag accordingly. If it receives an error, it re-transmits the request
once. If the server returns an error again, it returns to main and reads the serial EEPROM
to see whether or not to open the door.

3.7 Checking and writing EEPROM contents

The serial EEPROM attached to the door controller is used as a backup system in
case the server does not respond to the controller. Each user takes up 92 bytes of memory;
8 for their ID number and 84 that correspond to each two hour segment of the day for an
entire week (so that each bit corresponds to a 15-minute segment). The CheckEEPROM
function scans the serial memory for the appropriate ID number, then scrolls to the
appropriate bit, reads it, and returns the value to main. At present, the download routine
is not functional; the problem has to do with space limitations on the Ethernet controller’s
receive buffer.

3.8 Board configuration: power outages and startup routine

The board and web applications are initialized in two functions that are called on
startup, InitializeBoard(), and InitAppConfig(). The board initialization sets the
status of all used input and output pins and enables the appropriate interrupts. The
application configuration loads the door controller and server MAC and IP addresses into
program memory. As part of the startup routine, the door controller transmits a query
about the ID number 123456 to the server. Given Swarthmore’s facility code, it is not
possible for there to be a user with this number in the database, but for security OpenDoor
is set to keep the door closed immediately after the number is sent.

 19

3.9 Debug techniques

There are a number of techniques that are useful for debugging the code, should
changes become necessary. If the suspected problem has to do with server-controller
communication, a packet sniffer can be used. If the suspected problem is on the controller
side, StackTsk.h defines a debug mode that can be used to read the Ethernet controller
buffers into program memory, and store all data coming from an ID card, among other
things.

3.9.1 Packet sniffers

The best of these is Wireshark. It caches all incoming packets, can filter them,
displays them in real time, and has a nice graphical interface. To start Wireshark (after
installing it), type “sudo wireshark” at the command line in Linux. Go to
Configure>Options, click the box “Update packet list in real time,” then “start.” A window
displaying the number of packets sniffed, organized by type, will pop up. Killing this
window will stop the capture. The filter:

 (ip.addr==130.58.84.138)||(eth.addr==00:19:B9:4B:FC:8C)||
 (eth.addr==00:04:A3:00:06:39)

where the IP address is the address of the controller and the Ethernet addresses are its
MAC address and the MAC address of the server will catch all packets coming from or
going to the door controller. A correct exchange between server and door is shown in Figure
9. The complete transcript of a similar exchange can be found in Appendix D.

Figure 9. Correct conversation between door controller and server as captured by

Wireshark.

3.9.2 Debug mode

Uncommenting the line

 #define STACK_DEBUG_MODE

in StackTsk.h will enable the LCD.

 20

3.9.3 The PicDemNet board
If the PicDemNet board is being used to debug, the files XLCD.h and XLCD.c can be

included in the project and used to print to the LCD at any point in the code; this can be
useful as the PIC18F452 only supports one breakpoint and the PIC18F4520 only supports
two.

4.0 The Server

The other main component of the system is the server software. The server processes
incoming door requests, and also provides the web-based administration tools.

4.1 Installation

This software package requires a server machine which meets the following system
requirements:

 Pentium III, 500 MHz or faster
 an installed and updated Linux distribution, such as Debian or Red Hat
 Apache 1.3 or 2.1
 PHP 4.4 or later (tested on 4.4.4-8)
 MySQL 5.0 (tested on 5.0.32)
 Web browser, such as Firefox

To install, copy the script files to a directory that Apache can see, such as
/var/www/php-rfid/. Currently, we do not have an installer script, but this will be included
with the final version of the software. This installer script will configure the MySQL
database and tables and set up a default Administration Machine and Administration User.
It is also important to configure the global variables in common.php, such as MySQL
username and password.

4.2 Administration: An Overview

Once an operational installation of the software package has been configured, the
administrator can log in to the web administration interface. Until you an Administration
Machine has been configured, the administrator will need to log in from the server itself (by
typing http://localhost/php-rfid [for example] into Firefox). The default username is user
and the default password is pass. Both of these must be changed to increase the security of
the administration interface.

Once the login process is complete, a list of available panels appears at the left. The
sections below discussing Administration Users and Administration Machines will outline
both how to both change the administration password and how to add an additional
Administration Machine.

4.3 Elements of the Administration Interface

There are six key types of objects in the administration package. They are Users,

 21

Groups, Doors, Access Configurations, Administration Users and Administration Machines.
Their behavior and mechanism of configuration is laid out in the sections below.

4.3.1 Users

A User describes an entity for which access may be specified for a Door. A User has a
specific set of associated fields:

 ID (unique number)
 Last name
 First name
 List of doors this User may enter
 Facility code
 Card code
 Email address

One or more users may be created using the Add Users panel. Figure 10 shows this
panel; the Add Users button is at the bottom of the page.

Figure 10: The Add Users Panel.

 22

When creating a user, any field may be omitted except the Card code. If a Card code is
not specified, it will default to a value of -1 and the User will not be able to enter any doors.
The Facility code depends on the set of RFID cards distributed to students, and the Card
code is unique to each card. See Figure 11 for an example of the card code on a Swarthmore
ID card. The ID is given to the User by the system and cannot be changed later.

The RFID Users panel displays a list of users currently entered into the system and
provides mechanisms to modify and delete users. This panel can be selected by clicking
“Edit Users” on the left. Users are alphabetized by last name; to search for a name, type it
in the Search box at the top. If there are more than 30 users in the system, the list may run
to multiple pages, which can be accessed by clicking the numbers at the bottom of the
current page. Note that this list is cached by the PHP script to speed lookup time; if it
seems that the listing is outdated, navigate to another panel and back to get the freshest
listing.
 Certain operations in the Edit Users panel can be applied to multiple users using
the checkboxes along the left side of the user listing table. Select one or more checkboxes
and click one of the buttons at the bottom of the page to delete or modify a set of users, or to
add these users to a Group.

Figure 11: A Swarthmore ID card. Card code is boxed.

 23

Note that the list of doors each User may access is stored as a comma-separated list

of door IDs; when modifying an individual user, it is important to maintain this format to
guarantee functionality of the scripts.

4.3.2 Groups

The RFID system includes a powerful mechanism for controlling access on a set of
Users. This mechanism is called a Group. A Group entry contains:

 Group ID
 Description
 List of Users

A User can be a member of zero, one, or more groups. An Access Configuration,
described shortly, can be applied to an entire Group. To create a new Group, it is
recommended that the administrator use the RFID User panel or a User Search. If it is for
some reason more convenient to manually add a new Group or modify an existing Group, it
is important to conform to the following rules for entering or modifying the list of UIDs. The
list must start with a space, end with a space, and contain exactly one space between
individual UIDs. This format guarantees that internal algorithms within the scripts can
correctly parse these lists. A possible extension of the project would be to provide an
interface that enforces these rules.

Figure 12: RFID User Panel.

 24

Figure 13: RFID Group Panel.

4.3.3 Doors

A Door is a point-of-entry controlled by the system. Each Door has an associated set of
fields:

 ID
 Door Name
 Location
 Internal/External
 IP Address
 Default Configuration Setting

All fields are optional except Internal/External. ID is specified by the system and cannot
be changed. The Door Name should be chosen carefully: this is the string sent by the door
controller to the server to verify its identity, and probably shouldn't be too long or contain
any spaces. Location is only used for administrators to remember where the Door is, as is
Internal/External. The IP Address field must match the IP address of the door controller.
Finally, the Default Configuration Setting is a string representing the default allow/deny
rules to be applied to this door. It must be formatted in a specific way; this formatting is
specified in the Access Configuration section below.

 25

Figure 14: RFID Door Panel.

Doors are managed in the Door panel, shown in Figure 14. Here, an administrator

can modify and delete existing Doors, or add a new Door. Keep in mind that deleting a Door
may have unintended consequences: since a User's list of accessible doors simply lists
Door's ID numbers, if a Door is deleted and another Door is later added that has the same
ID, a User may be allowed into that new Door even if they were not explicitly given access
to that Door. A future project may be to automatically update all Users' accessible door lists
to reflect deletions of Doors.

4.3.4 Access Configurations

Basic door access control can be executed using the List of Doors field for each user, or
by setting up a Default Configuration Setting on each door, but for more precise and
powerful control, Access Configurations can be used. An Access Configuration (AC) is a rule
for precisely controlling access to a door on a per-door, per-group, or per-user basis. An AC
specifies a period or set of periods of time during which a subset of users are granted or
denied access to a Door or Doors. There are several fields in an AC record:

 Access ID
 UID – User ID
 GID – Group ID
 Door
 A/D – Allow / Deny
 Times

Any or all of UID, GID, and Door may be omitted; a blank field specifies that that AC
will apply to all possible values of that field. For example, an AC can specify GID and Door,
but not UID, which will cause it to be applied to all Users in the specified Group who are
trying to open a specific Door.

 26

ACs are managed through the Access Configuration panel, shown in Figure 15. The

topmost element of this panel is a map of the allowed times for the currently selected
combination of Door, Group and User. To select a specific User, click “Grab ID” and select
“Access Cfg” for the desired user, or type the user's ID in the UID box. Next, if the AC is
intended to apply to access on a single door, choose it from the Door drop-down menu. Next,
choose a day or days for this configuration to apply on, a start time, an end time, and
whether the User is allowed or denied within the time range.

ACs are applied hierarchically: more specific ACs override the effect of more general

ones. For example, an AC that specifies GID 10 and Door 1 will override an AC that only
specifies Door 1 for all members of GID 10. Similarly, an AC that specifies both GID 10 and
Door 1 will override an AC that only specifies GID 10. Deny ACs secondarily override Allow
ACs, so if there are two ACs with the same UID, GID, and Door, but one specifies Allow
times and the other specifies Deny times, the Deny AC will apply during times that fall
within the time ranges of both ACs.

The complexity of the Times field warrants some discussion. When creating an AC, this
field will be initialized to a single time range for a specified list of days of the week. Later,
however, additional time ranges can be added to an AC, so a single AC could, for example,
cover Tuesdays from 1-4 PM and Thursdays from 2-6PM. A single time entry contains one
or more day characters, a colon, a start time, a hyphen, and an end time. The Times field
may contain one or more time entries, separated by commas. Our example Times field
would then look like “T:1300-1600,R:1400-1800”. Times of day are in four-digit 24 hour

Figure 15: Access Control panel with example field values.

 27

military time, 0000 to 2359. Note that the internal representation of this field is managed
by the administration scripts; the user need only worry about this field when reading the
Times field or when manually modifying the database fields themselves.

4.3.5 Administration Users

In order to access the administration interface, an administrator must log in with a
username and password. Administration Users (AUs) are used to manage this log-in
information. Each AU account stores a username, password, and email address. The
password cannot be retrieved once it is set; the password must either be reset or manually
changed, or a new account must be created.

AUs are managed through the Admin Users panel, which is selected by clicking
Users under the Admin heading on the left side of the web interface. AUs can be added,
edited, or deleted here. To add a user, type a username and password into the form labeled
“Add new user.” This form is shown in Figure 16. Users' usernames and passwords can be
updated by selecting Modify next to the corresponding username.

4.3.6 Administration Machines

As an additional layer of security, administrators can only connect to the web
administration interface from computers on the list of designated Administration Machines
(AMs). Each Machine has a Name, Location, and IP address. A request to log into the web
interface is rejected if it does not come from an IP of an AM. It is vitally important to keep
the list of AMs up-to-date in order to ease web administration. Failure to do so may require
physical access to the server machine to make changes, or manual manipulation of the
MySQL database structures.

Figure 16: Adding an AU

 28

Figure 17: Adding an AM

AMs may be configured from the Machines panel under the Admin heading of the

web interface, shown in Figure 17. Adding an AM with a new IP address allows an
administrator to connect to the server using a machine with that IP.

4.4 Server Implementation Details

As time goes on it may become necessary to modify the existing implementation to
provide bugfixes, add new features, etc. Below are the details of the administration panel,
the remote query interface, and the underlying database.

4.4.1 Database

All of the configuration information is stored on the server machine in a MySQL
database. The default database and login information is stored in global variables declared
in the file common.php. The tables in this database and their fields are listed in Table 2.

Table 2: List of MySQL Database Tables and Their Fields
Table name What goes here Fields
rfid_access_configs ACs aid, uid, gid, door_id, allow_deny, times
rfid_admin_machin
e

AMs id, name, location, ip_addr

rfid_admin_user AUs uid, username, password, email
rfid_door Doors id, name, ip_addr, location, int_ext, defaults
rfid_user Users id, u_lastname, u_firstname, doors_accessible, tag,

email
rfid_group Groups id, uid_list, desc

 29

Italic fields are primary keys and should never be modified or manually set when

inserting new entries into a table. Underlined fields are indexed for fast lookup. Be aware
of the size limits on these fields when writing code that modifies the MySQL data
structures.

There are a few fields for which formatting is important to ensure correct
functioning of the server software. The 'times' field in rfid_access_configs must be formatted
as described in the AC section above. The 'defaults' field in rfid_door must also follow this
format. In rfid_user, 'doors_accessible' must be a list of door ids, separated by commas, with
no other characters. In rfid_group, 'uid_list' needs to be a list of User ids separated by
spaces. The first uid must have a space before it, and the last uid must have a space after
it. This has to do with the way uids are searched to determine which Groups a specific User
is in.

4.4.2 Administration Panel

The administration panel is entirely coded in PHP. There are four primary script
files that the client interacts directly with, and three common files that are used by the
primary scripts.

Primary script files:

 admin_login.php – log-in prompt window
 admin_verify.php – user credential verification: username, password, Admin

Machine
 admin.php – administration panels and entry modification prompts
 admin_update.php – effect changes on the database

Common files:

 common.php – stores global constants, such as MySQL database, and a few common
functions

 admin_common.php – stores functions used by admin.php, admin_login.php and
admin_update.php

 query_common.php – stores functions needed by both query.php (described in next
section) and admin.php

For more details of the inner workings of these scripts, look to the comments in each

script file. Beware, though: admin_update.php weighs in at 1500+ lines, and admin.php is
over 2000 lines long!

4.4.3 Remote Query Interface

When a user swipes his or her card, the controller reads the card and sends a query
request with the card information to the server. The card's tag consists of an 8-bit facilities
code and a 16-bit card code. This is carried out by making an HTTP request to the script
query.php. HTTP is carried by TCP/IP connections, which provide packet delivery
guarantees, unlike UDP/IP, an alternative we examined whose main virtue is its simplicity.

There are two request types that can be made to query.php. Since RFID tags are broken
down into facilities code and card code, the controller can send a request with both

 30

components separate, or can combine them into a single integer and send this integer
instead. Both methods must send the parameters using HTTP GET. Method 1: facilities
code is sent in the variable rfid-fac, and card code is sent in the variable rfid-card. Method
2: the combined code is sent in the variable rfid. Since the facilities code is 8 bits and the
card code is 16 bits, the combined code is constructed by bit shifting the facilities code left
16 bits and bitwise ORing the result with the card code. If Method 1 is used, both rfid-fac
and rfid-card must be set.

The result of this request is either the text “true”, “false”, or “ERR=” followed by an
error code number and description. Error codes that may be encountered:

 1 – script error: include file could not be found at runtime
 3 – The requesting IP does not match the IP address of any Doors in the Door

database
 4 – The requesting controller's IP is in the database, but it supplied the incorrect

door name
 5 – error in GET parameter: one or more GET parameters could not be found or

were malformed
Other error numbers may be added as the software is revised.

For additional details on the implementation of the query scripts, read the
comments in the files query.php and query_common.php. It is worth noting that query
requests are never logged or otherwise stored; this was a design choice made to guarantee
privacy of individuals using the system.

4.4.4 Update Script
 The update script provides a mechanism for the controller to update its time, local
access tables, and server IP address. Since the update involves sending a large amount of
information, and the PIC has very limited memory resources, the update script breaks this
information into small chunks before sending. No message is longer than approximately
100 bytes, not including the header. Since the PIC must simultaneously juggle performing
the TCP transaction and writing the lookup table to EEPROM, it is vital to keep the update
script’s messages small.

 An update transaction involves the following steps. First, the controller requests the
script update.php, passing its door name as a GET variable. Next, the server responds with
a message containing a unique session id, or SID. Then the controller requests the first
user’s access table, passing the SID with each request to help the server track each update
request. The server sends each user’s information in small chunks. When no more users
remain, the server sends the current time and the IP address that the controller should use
for future server requests. The time is in seconds since the beginning of the week.

 Further details can be found in the comments of update.php.

 31

5.0 Conclusion

 This project sought to provide an affordable and feature-complete alternative to
expensive commercial RFID entry systems. The result has achieved all design goals, and is
already in use in Hicks 310. The completion and successful demonstration of the system
should serve as a launching point to promote campus-wide use of RFID. All code will be
made publicly available as well, potentially providing countless others with the tools they
need to set up their own inexpensive RFID-based systems.

6.0 Acknowledgements

We would like to thank Professor Erik Cheever both for advising this project and, as
department chair, for clearly defining department’s goals for this system. Mary Hasbrouck
was instrumental to this project: she provided all the information we have regarding the
Computer Science and ITS administered systems and the RFID cards that Swarthmore
uses. She also prepared a guide to RFID entry system-related issues that was instrumental
in the planning phase of this project. Tom Cochrane helped us understand hardware-
related concerns and ordered the door strikes on our behalf. Doug Judy and Grant Smith
performed all installation on short notice and without very clear direction from us. Finally,
Edmond Jaoudi put up with our incessant and probably obnoxious requests for parts, most
notably the Ethernet controller, which was difficult to order in the small quantity desired.

7.0 References

HID, Application Note 002 by B. Postma, last updated 2004.

Informal documents relating to the Science Center and ITS systems prepared by Mary

Hasbrouck.

Microchip, Application Note 833: the Microchip TCP/IP Stack v. 2.15 by Nilesh Rajbarti,

2002.

Microchip, MPLAB C18 C Compiler Libraries.

Microchip, MPLAB C18 C Compiler User’s Guide.

Microchip, PIC18F 2420/2520/4420/4520 datasheet.

Microchip, PICDEM.net Embedded Internet/Ethernet Demonstration Board User’s Guide.

RealTek, RTL8019AS RealTek Full Duplex Ethernet Controller with Plug and Play (PNP)

Function datasheet.

 32

Siemens, proposal for Dupont Science Center Access System, 22 March 2004.

Siemens, proposal for ITS Checkpoint System Replacement System, 8 June 2004.

