

RFID key entry system for Hicks labs

E90 Proposal
Alex Benn and Molly Piels

Wednesday, December 5, 2007

 1

Abstract

A key card access system to two labs in Hicks is proposed. The system will be based on Radio
Frequency ID (RFID) tags embedded in or attached to student ID cards. Design activities will
consist primarily of programming and debugging, with installation to be performed in large part
by Facilities. Total expenditures are estimated at about $1000.

Introduction

The current system for controlling after-hours access to Hicks is time-consuming and puts an
unnecessary burden on the student. At present, engineering students who need to use labs in
Hicks outside of normal business hours must use keys. Key distribution is controlled by Key
Central, which receives key requests from the department administrative assistant. The requests
can take up to two weeks to process. Each room has its own key and as a result many students
carry many keys. Since there is a significant fine for losing each key, some students would face
fines of over $200 if they lost their sets. A digital access system based on RFID tags would
solve this problem, but professionally installed digital access systems like the ones used in the
Science Center and by Information Technology Services cost tens of thousands of dollars. To
add such a system to Hicks would cost between five and twenty thousand dollars.

The purpose of this project is to build a low-cost RFID system that could be administered by
Engineering Department personnel. The system will initially control access to the two doors to
which students most often request keys (213 and 310), but it will be easy to expand to control all
doors in the building. It will allow an administrator to set room access permissions by
connecting to a web server built for this purpose. Students will be able to use the RFID
transponders embedded in student IDs to open the doors they are allowed to open. The system
will work in parallel with already existing locks to ensure that other groups that need access to
Hicks will not need to change their administrative procedures. Whereas professional systems
tend to include components adaptable to a wide variety of environments, this system will cut
costs by being specially designed for the needs of the department. It will also cut costs by using
wiring already in the building.

This proposal presents a brief introduction to the technical issues that will be addressed, our plan
for completing the project, and total project costs.

Technical Discussion

Figure 1 shows a block diagram of the proposed system. The system has six key components:
the reader, the door controller, the Ethernet controller, the door strike, the power supply, and the
server.

Figure 1. Block diagram of proposed entry system.

1.) Reader
The proximity tag reader reads 26 bits of data from a chip embedded in student IDs and outputs
the ID number to the microcontroller using a Wiegand protocol (the standard data transmission
format for RFID readers). The Wiegand protocol requires three wires: common ground, data
high, and data low. When there is no data to transmit, both data high and data low remain at
high voltage (usually 5 V). When the device transmits a ‘0’, data low is low and data high stays
high. When the device transmits a ‘1’, data high goes low and data low stays high. The number
of parity bits and form of stop and start bits vary device-to-device. The AWID SR2400 is an
appropriate reader; it can be supplied by 5-12 VDC and has a maximum power consumption
under 1.0 W.

2.) Controller
The controller will read the data from the reader and send it to a server over Ethernet. The
controller will receive “open” or “don’t open” commands from the server and connect power to
the door strike or turn on an error/permission denied indicator accordingly. A serial EEPROM
with a local hard copy of user codes and permissions will be used if the controller is unable to
communicate with the server. The microcontroller will interface with Ethernet via a small
Ethernet controller chip. The Ethernet chip requires 16 inputs from the controller. The
PIC16F873A has enough I/O pins to communicate with the Ethernet controller, the reader, and
the EEPROM.

3.) Ethernet Controller
The Ethernet controller will send the request to open the door from the microcontroller to the
server. The RealTek Full-Duplex Ethernet Controller with Plug and Play Function (US
RTL8019) is appropriate for this function.

 2

 3

4.) Strike
The strike will be a HES 4500 series, which takes 24 or 12 VDC and has a peak power demand
of 2.88 W. It is installed in the door frame, and thus does not interfere with the lock already in
place.

5.) Power Supply
The door controller will communicate with the server via Ethernet. The same Ethernet cable can
be used to power the system using Power over Ethernet (PoE). The system will use a power
splitter (the D-Link DWL-P50) to extract power from an Ethernet cable and supply it to the
strike, controller, and reader. PoE can supply up to approximately 15 watts to a device at 48 V,
and the above device steps down to 12V delivering 12 W; our combined approximate power
consumption envelope is around 5 W peak. The switches installed in Hicks are already capable
of injecting PoE power to an Ethernet port, so no additional hardware will be needed at the far
end.

6.) Server
The server will manage the database of names and allowed IDs. When a user swipes his or her
card, the door's microcontroller sends a request to the server, which then either confirms or
rejects the request in a return message. If the request is confirmed, the microcontroller opens the
door. The server also manages a web-based management interface, accessible by Engineering
department staff. The web interface consists of a set of PHP server scripts, which interface with
a local SQL database such as MySQL. The idea behind the web interface is to ease system
management. All code will be well-documented and editable, so a future administrator could fix
bugs or add features as desired.

Project Plan

The project is divided into three main parts: controller programming, server programming, and
testing. The controller and server can be programmed, designed, and debugged simultaneously,
but final testing must occur after both components are completed. Molly will be primarily
responsible for the controller, Alex for the server, and both for testing. Detailed tasks, estimated
completion times, and dependencies are listed in Table 1. A Gantt chart showing projected start
and completion dates is shown in Figure 2. Since the major design constraint is that the system
be robust, ample time is given to testing and debugging.

 4

Table 1. Tasks, estimated completion times, and dependencies.
Section Task Time Needs Feeds

1.1 select
controller 1 h - 1.2

1.2 order
controller 1 w 1.1 1.5

1.3 design PCB 10-15 h - 1.4

1.4 order PCB 2 w 1.3 1.5

1.5 program
controller 40 h 1.2, 1.4 1.6

1. Controller

1.6 bugfixing 30 h 1.5 -

2.1 research
server setup
requirements

2 h - 2.2, 2.3

 4 h 2.1 2.3, 2.4, 2.5

2.2 configure
server

2.3 configure
database 2-4 h 2.1, 2.2 2.4

2.4 write data
manipulation

scripts
20 h 2.1, 2.2, 2.3 2.5, 2.6

2.5 write web-
based user

interface scripts
20 h 2.2, 2.4 2.6

2. Server

2.6 server
bugfixing 40 h 2.4, 2.5 -

3.1 door latch 4 h 1 5

3.2 wiring 8 h 1 5 3. Installation
3.3 box 2 h 1 5

4. Documentation
4.1 manual

writing 10 h 2 -

5. Testing 5.1 testing 20 d 1-3 -

 5

Task Work January February March April

 Controller 56 days

 select controller 1 day Completed prior to start of project
 design PCB 14 days
 order PCB 14 days
 program controller 28 days
 controller bug fixes 28 days

 Server 20 days

 configure server 4 days
 configure database 4 days
 write data manip. scripts 5 days
 write UI scripts 5 days
 server bugfixes 10 days

 Installation 14 days

 door latch 1 day
 wiring 2 days
 box 1 days

 Documentation 50 days

 Testing 30 days

Legend: Alex Molly Both Outside party
Figure 2. Gantt chart showing tasks, estimated completion times, and personnel assignments. .

Project Costs

Table 3 shows a list of components, the required quantity, and the cost per unit. Certain
components (the EEPROM, for example) are omitted because their costs are negligibly small.

Table 3. Estimated costs of components, cost per door, and total cost.

Component Quantity Cost per unit
Proximity Reader 2 $86
Controller 2 To be supplied by department
Ethernet Controller 2 $16
Door Strike 2 $300
Power Splitter 2 $40
Server 1 To be supplied by department
PCB 2 $50
Cost per door $492
Total estimated cost $1000

