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Abstract. We define rank one for Z¢ actions and show that those rank one actions
with a certain tower shape are loosely Bernoulli for d > 1. We also construct a zero
entropy Z* loosely Bernoulli action with a zero entropy, ergodic, non-loosely Bernoulli
one-dimensional subaction.

1. Introduction

The idea of loosely Bernoulli for one-dimensional actions was first introduced by Feldman
[F] and Katok [K] in the late 1970’s in their study of K-automorphisms which were not
Bernoulli. Loosely Bernoulli is the analog of very weak Bernoulli but with the d-metric
replaced by a weaker metric, now called the f-metric. In [ORW], Ornstein, Rudolph
and Weiss use this f-metric to define finitely fixed processes and show that finitely fixed
is equivalent to loosely Bernoulli. They also show that all finite rank transformations are
loosely Bernoulli. The f-metric was defined for higher-dimensional actions by Hasfura-
Buenago [H]. We use this generalized definition to show that Z¢ rank one actions whose
towers are of a certain shape are loosely Bernoulli. Our approach is a traditional ‘nesting
argument’, The new ingredient lies in the complications introduced by working in many
dimensions. The higher-dimensional definition of the f-metric requires that the relative
configuration of points in the d-dimensional lattice not be changed too much. The
nesting argument we provide here is designed to address this geometric issue which does
not arise in the one-dimensional case. We then use this result and a one-dimensional
construction of Feldman [F] to construct a Z? zero entropy, loosely Bernoulli action
with a one-dimensional subaction which is ergodic, has zero entropy and is not loosely
Bernoulli.

§ The research of the first author was partially supported by the Swarthmore College Research Fund.
9 The research of the second author was partially supported by the NSF under grant number DMS-9501103.
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2. Rank one and loosely Bernoulli in 7.8

2.1. Background. Let (X, A, u) be a Lebesgue probability space. Take T to be
an ergodic Z¢ action on (X,.A,n). We can think of T as being generated by d
commuting measure-preserving one-dimensional transformations on X, {73,..., Tz},
where {2), ..., €4) is the standard basis for Z¢. Then T3(x) = TE':' 8-:-0 TE';“ (x), where
b= (v, ..., vq). Wecall (X, A, u), T) a Z¢-dynamical system. Often we will simply
write (X, T).

Let P be a finite label set, or equivalently, a finite measurable partition P =
{p1,..., ps} on X. (T, P) is then the usual process associated with T and the partition
P. Set ||t =max{|vi| : 1 <i <d},and forn e N, B, = {v € Z4 : ||¥|| < n}. For each
x we can then define its P,-name to be P,(x) : B, — P by P,(x)(v) =i if T;(x) € p;.

In order to define a loosely Bernoulli process we start with r © B, — B,, a permutation
of the indices in B,, and define a size for this permutation. This idea is defined and
extended in [H] and [KR].

Definition 2.1.1. Let m : B, — B, be a permutation of the indices of B,. We say  is
of size ¢, denoted by m(w) < ¢, if there exists a subset S of B, satisfying:

(i) 18] > (1 — €)|B,|, where |S] is the cardinality of the set §;

(i) fmwit —nv — (& — V)| < €l|li — || for every i, D € S.

Definition 2.1.2. Given two P,-names 7 and £, we define the f,-distance between them
to be f,(n, £) = infle > 0: there exists a permutation 7 of B, such that:

(i) m(n) <e€;

(i) d(nom, &) <e€).

Here d(., .) denotes the Hamming metric which simply gives the proportion of locations
of B, on which the two names disagree.

Informally, we will think of 7 as rearranging the name n to make it d close to the
name £ and we will often refer to m as acting on a name instead of the (technically
correct) set of indices. If 7, n, and & satisfy (ii) of the above definition we say =
matches a (1 — €)-proportion of » and &,

Intuitively, a zero entropy loosely Bernoulli process has one name up to f. Formally,
Definition 2.1.3. A zero entropy process (T, P) is loosely Bernoulli (LB) iff for any
€ > 0 there exists an integer N, such that for any n > N, and €-a.e. atoms w and o’ of
Vies, ToP. il

[, &) <e.

Definition 2.1.4. We say ((X, A, n), T) is LB if for every partition P of X, (T, P) is LB.

2.2. Square rank one transformations are LB

Definition 2.2.1. ((X, A, p), T) is a Z¢ rank one transformation if there exists a sequence
of sets F; C X and a Fglner sequence D; of subsets of Z¢ such that for each i, {75 F;)
are pairwise disjoint for ¥ € D; and the partition P; = {T;F; : ¥ € Dy, X — Usep, T3 Fi)
converges to A as [ — oo,

In this paper we restrict our attention to rank one transformations with a special tower
shape.



Rank one and loosely Bernoulli actions in 7 1161

Definition 2.2.2. ((X, A, 1), T) is a Z¢ square rank one transformation if it is rank one
and there exists an o > | such that for all i, the set D; of Definition 2.2.1 satisfies:

(1) D; is a rectangle of dimensions {ii,...,1}};

(2) if s' = min{l]} and &' = max{/}}, then s'/b' > 1/ox.

For each i, Ugep, T; F; will be called the ith-tower and will be denoted by ;. A 74
transformation T is then square rank one if there is a sequence of towers 7; that converge
to A, and these towers are rectangles which are close in geometry to a square of side b'.
Any transformation which is rank one is ergodic and has zero entropy [Fr, PR].

In the following we will assume that ((X, A, i), T) is square rank one and fix € > 0.
We need to show that for an arbitrary partition Q, (T, Q) satisfies Definition 2.1,3. We
will first establish two technical lemmas and then proceed to prove the result in the
subsequent theorem, Both lemmas are designed to show that given two names satisfying
certain properties, we can always match a fixed proportion. The theorem shows that we
can apply the lemmas many times to construct a permutation which matches all but ¢ of
the two names. Neither lemma requires (2) of Definition 2.2.2, This condition is used
to show that the permutation defined in the theorem is small. First, a definition which
will simplify our notation in the following results.

Definition 2.2.3. Given a rectangle R € Z° of size I} x - - x Iy, the e-interior of R is
the collection of indices in R which are at least a distance €l from the kth edge of R.
The e-collar of R is then the complement of the ¢-interior and corresponds to the set of
indices within €/, of the kth edge in the boundary of R.

Denote the volume of D; by v; = I{ x --+ x I} and notice that the volume of the
e-interior of D; is (1 — 2€)li x --+ x (1 — 2e)l}, = (1 — 2€)?v;. Let D; be the rectangle
of size 21| x ++- x 2I}, centered at the orgin unless otherwise specified.

In the following lemma we show that given two words of size n which are full
of k-towers, 1, we can be sure of finding a permutation which will match a certain
percentage of these. The proof rests on counting occurrences of 7 in the two words w
and o’'. The rough idea is to first count the z;'s in @ which are not too close to the edge.
Of these 1 we count those for which there is a 7 in a close-by location in w’. We then
match a subset of this last collection of towers.

LEMMA 2.2.4. (THE MATCHING LEMMA) Let € be fixed and set a = (1 — 2€)?(1 — €)e?.

Given k such that p(t;) > | — €/8, let n be so large that:

() v e B,:Tix) € li/IBy] > 1 —€/d fore-ae. x € X;

(2) ndfvg > 11691 - g);

(3) (n—=b"n?>1-¢a

Let w, o' be (Py),-names of two points x and x' given by (1). There exists a permutation

7t : By — B, such that d(won, ') < 1 — a where the action of 7t can be described as

Jollows:

(A) m translates the indices of B, by a vector b with |0|| < b*, except for those indices
i for which i + v ¢ B,. On these, nt(i) is defined to be one of the indices vacated by
the translation.
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(B) For a subset of the 1 's occurring in w, ™ moves the €-interiors of these towers by
an additional amount which can vary for each tower but is always less in magnitude
than eb*. The resulting location of the €-interiors of these towers matches perfectly
with the corresponding interior of a 1y in '.

Proof. Consider the n-name of a point x satisfying (1). At least n¢(1—&/4) of the indices
in B, correspond to locations of x-towers. By (3), at least n¢(1 — €/2) of the indices
in B, correspond to locations of 7;-towers which intersect B, ) + (255, . .., 26%) and
the number of these towers must be at least n?(1 — €/2)/v;.

Now fix w, ' to be (Pi),-names of two points x and x’ satisfying (1). We want
to construct a permutation 7 which we can think of as changing w to be d-close to
o’. Consider the occurrences of 1 in @ which intersect the Bg,_apy + e [
Enumerate these occurrences by {j} and let {j(1)} be the first lexicographic index in
B, at which the jth 7;-tower occurs, Now consider the box Dy centered at j(1) in o'.
Notice this box is entirely contained in B,. We now count the number of D, + Jj)
which do not contain the first lexicographic occurrence of a 7,-tower in @', Note that
this occurs exactly when (Dy + j(1)) in @’ does not intersect any portion of a t;-tower.
Since there are at most (¢/4)n? locations in B, corresponding to indices of @’ not in a
7 tower and a Dy rectangle has size vy, the number of these D + j(1) which do not
contain a first lexicographic occurrence of a 7, tower is at most (€/4)n? fu;.

Putting the estimates of the last two paragraphs together, the number of 1; towers in
@ which intersect B, _apty + (2B%, .. ., 2b*) and for which «’ has the first lexicographic
occurrence of a 7i tower in the corresponding Dy box is at least n?(1 — €)/v;. Let ii;
be the vector which begins at j(1) and ends at the first location of this corresponding
7; tower in . If there is more than one corresponding tower, choose the tower which
lexicographically appears first. Note that &; € D,.

Next, divide Dy into (1/€)? boxes of size 2elf x -+- x 2¢l*. Since (n?/vi)(1 — €) >
(1/€)? by assumption (2), there must be at least one sub-box of Dy with at least two i 5
in it. Let v be the midpoint of the sub-box with the most #; in it and notice this sub-box
must contain at least (n?/vg)(1 — €)€? of the it;’s.

We will now define m, a permutation of B, for which d(wor, w)<l—a.lfi € B,
is such that i + ¥ € B,, then m(i) = { + U. For those indices with i + ¥ ¢ B,, (i) is
an arbitrarily choosen vector not in the range of the translation by v. & will be further
modified on the collection of indices corresponding to 7;'s for which ||i; — U] < eb*.
The e-interiors of these towers are moved rigidly by an additional vector, ii; — U. Those
points in the e-collar which are in the range of this additional shift come in rectangular
pieces. They are moved, in blocks, to the rectangular pieces left vacant by this last
translation. Note that the e-interiors of these towers have now been matched with their
counterparts in o',

If we have matched the e-interiors of A4 towers, then we have matched A(1 — 2¢€)%u;
indices which means we have matched a proportion h(1 — 2¢)%v;/n? of B,. We have
by our previous calculation that £ > (n¢/u)(1 — €)€?, so we have matched at least
(1 —2€)4(1 — €)e? = a of B,. i
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The nesting lemma which follows will assure us of being able to continue the process
started in the matching lemma; if we have two n-words which disagree on a set of
indices G° C B, and we know that on this set G° the two words are full of ri-towers,
then we can construct a permutation of G° which will match a certain percentage of
these towers. We think of G as being the ‘good’ set on which matching has already been
done and G° as being the set on which we still need to match. The proof of the nesting
lemma is similar to that of the matching lemma except now the ‘edge’ of G is more
complicated than simply the edge of B,. Thus when we count the number of towers
which are not too close to the edge of G° we must consider both the outside edge of B,
and the inside edges consisting of the boundary of G.

LEMMA 2.2.5. (THE NESTING LEMMA) Let € be fixed and set a = (1 — 2¢)4(1 — €)e?.

Suppose that n > Kkp_y > kpa > -+« > ki and 0,0' € Viep, Ti(Pi,_,) are given

such that there exists G C B, which is a disjoint union of boxes with sides of length

(1 —2¢)l A (1= Zs)ld for j between i and m — 1, satisfying:

(@) olg=w lc,

M) €< |G < (1 —a)y"";

(c) bh/shivi < €2/32d(m — VD) fori<j<m-—2

(d) b*-/n < €e*/32d(m — 1).

Then if ki) < k; satisfies:

(e) bh-1/s% < €2/32d(m —1);

() i e G°:w(i) € w /|G| > 1 —¢/8 for b = w, o,

there is a permutation it : B, — B, such that:

(A) diwom, w) < (1 —a)"'+;

(B) 7lg =id;

(C) 7 moves G° by translation by a vector v with ||3|| < bk-', except for those i € G*
for which i + 0 & G*; there (i) is defined to be one of the postions left vacant by
the translation. For a subset of the 7,_'s occurring in w, n is further defined to
move their ¢-interiors by an amount less than eb%-' so that the resulting location is
exactly that of the interior of a Ty, _, in o',

Proof. We first want to count the number of indices in G which lie in a 74,_, and are not
too close to the boundary of G¢. Note that the boundary of G consists of the edge of B,
and the edges of the boxes making up G. We know from (f) that at least (1 — ¢/8)|G|
of the indices of G° lie in k;_;-towers. There are at most (2d)(26%-)n?"! indices that
lie within 2b%- of the faces of B,, which is at most (2d)(2b%-)n?~1/1G¢| of G¢. Using
(b) we see that this is less than (24)(2b%-')/ne, which by (e) is less than €/8 of G‘
The proportion of indices in G¢ which lie within 2b%-1 of G is at most

i 2(217’“_') Z ll.gl MK K lid—lej
1G| ’

i=i

where z;, is the number of boxes in G of volume (1 — Ze)tj' X «ve X (1 — 26)1;1 and the
inside summation is over all possible combinations of (d — 1) elements choosen from
{1,...,d). Note that for any j, zx, must be less than n“’/uj. Thus the proportion of
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indices within 2b%-' of G is

XA T X x B, 0
<
|G€ly;

1=

Using that v; = l,j X v X lj we have this is

m—1 it d
Abki-idn
E — hich by (b) i
; = |G€| sk el i) da
m—1 T
Abki-id
£ - which by (e) is
e
s 4de? E
e e
< Le3dm—1) 8
j=t

Altogether, the number of indices in G which lie in a k;_j-tower and are at least
2b%-1 from the boundary of G¢ is at least (1 — 3¢/8)|G*|. Now follow the steps of the
matching lemma; enumerate the above k;_j-towers by [j} and their first occurrences
by {j(1)}. Consider the box T)—k,._, centered at j(1) in @’. At most (€/8)|G|/v;_; of
these do not contain a first occurrence of a 7;,_,. Thus we have at least |G°|(1 —€)/v;_;
ki_i-towers in w with a corresponding 7, , in @'. Label the #;’s as before, divide Eh‘,
as before and pick v as before. Define & similarly to the matching lemma, moving all of
|G€| by a fixed vector and the e-interiors of a subset of the 7;,_, by an additional amount
less in magnitude than eb*-'. We will be assured of matching the interiors of at least
(1G|(1 — €)/vi_; )€ k;_;-towers, thus at least (JGE|(1 —€)/vi_;)e?(1 — 2€)%v;_, indices
which is (1 — €)(1 —2¢)4€? = a of |G®|. This yields (A) of the result, and (B) and (C)
follow from the construction of x. & |

Now we will prove the main result of this section. This involves three steps. First
we carefully pick a sequence of tower sizes that assure that the n-names of most atoms
will contain many copies of these towers. Next we apply one of the last two lemmas for
each size tower and compose together the resulting permutations to yield a permutation
on the n-name. Finally, we show this permutation satisfies Definition 2.1.2. It is in this
last step that we will use the geometry of our rectangles.

THEOREM 2.2.6. Square rank one implies LB.

Proof. Assume (X, A, ), T is a square rank one Z? transformation. Let Q be an
arbitrary partition on X and consider (T, @). Let € be fixed and set € = €?/16d%a?. Put
a = (1 = 2e)4(1 — €)&? and take m such that (1 —a)""! < e/2.
We first choose an increasing sequence of towers [z, } by taking integers 0 < ky <
- < kp_y SO that:
(i) b4 sh < E2/40d(m — 1);
(i) p(m,) > 1—e*/80.
Now pick K > 0 so that for every n > K:
(i) nd/u, , > 1/€9(1 —€);
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@iv) (n —4b*-1)4/nd » | —€/4;

(v} for (e/2)-ae.x € X,fori=1,...,m—1,|{v € B, : T5(x) € i }|/n? > 1 —&%/40,
Choose t € N such that + > ku_; and there exists @; C \/i_, P; such that

d(@, 0,) < €/8. Use this with (v) above to find a set A with u(A) > 1 — € and

neNsuchthatfori=1,...,m—1,

[V € By : Tox € 1 . l_g
|B,| 40’
and for all x € A, the ((3,),-name of x and the @,-name of x differ less than €/4 of the
time.
Consider w, o', two (\/;_, P;),-names of points in A. We will define a permutation
w : B, — B, such that

dworn, w) < % and m(m) <e. (0

We can then use this same 7 on the associated Q, atoms and again obtain equation (1).
Finally, we use this same 7 on the associated (@ atoms to show that (T, Q) is LB.

First apply the matching lemma to w and ' with tower 7, , and € = € to obtain
fm—1 + By — B, such that (A) and (B) of that lemma hold.

Now set G,_; to be the indices of the e-interiors of the 7, , matched by ;.
If |Gp_i1]/n? > 1 — €/2 then we need only show m(m) < € to complete this proof.
Otherwise, in the nesting lemma set G = G,y—1, ki = kw1, and € = €. It is immediate
that (b)-(e) hold, and (a) holds for @ o 7,,_1, @'. We now show that (f) is satisfied, i.e.
that G¢ is full of 1;,_,-towers. We do this by first noting that @ and &' are all but €2/40
covered by 1, ,-towers. When we applied the matching lemma we potentially increased
this error with the rigid translations that we applied. We count the number of suspect
indices, and remove them from consideration.

The first rigid translation by U,y may have affected the 7;,_, which intersect both the

interior and exterior of By_aptn-1y T (2b*=- . .., 2b*-1). The total number of indices in
question is less than (2d)n®~'b*-2, so the proportion of B, they take up is less than
b&,,,_z =2 =3
Bl i 2

2 < 2—.
n 40d(m — 1) 40
After we throw these indices away, B, is all but 3g2 /40 covered by 7, ,.

Secondly, we may have disturbed some k,,_»-towers when the €-interiors of some
of the k,_;-towers were moved. The number of indices in question now is less than
2 Z‘le If"“l[]_[ P I;'"“] X Zm—1, where z,,,_1 is the number of k,_;-towers matched at the
last stage. Since zn—) < n%/Un—1, We remove from consideration at most the proportion

A il R o |
2Y i T T 5 2 z 2 i i T 5 Ly bt
d km—l km_
n l”[ [j §fm-1
=¥ =2
€
2d——— < 2—.
40d(m — 1) 40

As a result, we have that B, is all but 5?2/40 covered by T, , which are undisturbed
by mm—;. Now note that n"/len_ll < 1/€ implies that the proportion of G¢,_, not in a

<
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km_a-tower is

- 561 €

40165 | T 40Z B
So assumption (f) of the nesting lemma holds. Apply the lemma to obtain a permutation
Mm-2 : By = B, which has the desired effect on w|g- and is the identity on w|g. Hence
d(w 6 Tp_2 0 Tm_1, @) < (1 —a)l.

Repeat this process at most (m — 1) times. At the ith stage we will have permutations
i, Wiss v+ Wm—y Such that d(wom; 0+« 0 My, @) < (1 —a)™" and a set G; which
is the union of -interiors of 7, matched by n; fori < j <m — 1. If |G{|/n? > € then
since (i) and (v) hold for all necessary k; we can argue as before that (f) of the nesting
lemma holds. Hence we can apply the nesting lemma to yield a permutation m;_;.

Setm = momyo- - omy—_y. To finish the proof all that remains is to show m(w) < e.
Thus, according to Definition 2.1.1 we need a set C C B, such that |C| > (1 — €)n?,
and for every i,V € C, |wit — nd — (i — V)| < €||it — ¥).

Note that (G; — Gj4)) is the set of €-interiors of 7z, matched by m;. Let C; be the
union of the +/€-interiors of these matched boxes and put C = U:";]'C,-. Note that C is
entirely contained in U'(G; — Gi41). If @ is the exact percentage of G¢,; matched
by i, then the percentage of B, being removed with these +/@-collars at stage i is
2d+v/a; T];,(1 — a;). Thus in total we have removed Y/"' 2d+/€a; [, (1 — a) <
2d+/Z(1) and we have |C|/|B,| > 1 —€/2 —2d+/E > | — €.

Assume i, ¥ € C lie in 13, Ty, two towers that are matched by 7; and m; respectively.
If i = j and i, 9 lie in the exact same 7, then ||n& — n¥ — (& — ¥)| = 0.
If i, ¥ lie in different k;-towers matched by m;, note that || — §|f > +/és* and
Imit — v — (i — v)|| < 2€b%. Now assume { > j (thus # is matched first in our
construction). Then ||z — w9 — (i — V)| < €b% + bb-1 + ...+ b% +Eb%. We can use
(i) to show this is less than 2eb%,

Finally,
* e _Ey 2Eepk |
lzxg —mv~{H—-0)) = —=——Ju—1j= = lu —vll
1 — vl Jzsk
< 2Jealli - || < el - D,
as needed. O

3. A loosely Bernoulli Z*? Action with a non-loosely Bernoulli subaction

3.1. Background. 1In [F] Feldman constructed an example of a zero entropy Z action
which is not LB, In this section we use his example to construct a Z? zero entropy LB
action with a non-LB subaction.

We first remind the reader of Feldman's construction. Start with N(1) = 200 .24
symbols {ay 1, .-.,a1,nm}, of length L'(1) = 1. Call this collection the 1-array. In-
ductively form strings of length L’(n 4+ 1) by concatenating members of the n-array.
The strings a, ; are called n-symbols. There will be N(n + 1) = 200 - 2"** different
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(n + 1)-symbols, which are listed in the n 4 1-array:

2 2 2N (1+1)
Ty l,l + ((an,l)N(n) AL (an,N(n))N(n) )N(")

4 4 AN (a+1)-1)
etz = W@ )™ <o (e pem) VYN

N(n) N 2i N AN (ALY ~i+1)
Ayl = ((an.l} L "‘(an,N(n)) ) ) )

2N(a+1)} IN(a+1) 2
Busliminely = L) v (B nm) Y yHar,

The sub-blocks of a,4y; of length L/(n)N(n)%*! consisting of repeated strings of
n-symbols will be referred to as cycles and denoted by c¢p41,4. Thus @,y ; consists of
Cns1,i Tepeated N(n)2V+D=i+D times Note that L'(n + 1) = L'(n)N(n)2N0+D+3

Let X = [0,1] and u be Lebesgue measure. Denote by (X, u, T) the point
transformation constructed in [F] from the symbolic construction described above, An
extensive analysis of the properties of T can be found in [F] and [ORW]. We state here,
without proof, the results from [F] pertinent to our work.

LEMMA 3.1.1. If N(n) > 200 . 2"*2, then for all positive integers s and t and all n, if

T )
FtAS 1 1
flagi.a; )21~ §(1 - (5))

Recall that the proof of Lemma 3.1.1 rests on two ingredients:
1. if i < j the length of a cycle in a,; is exponentially smaller than the length of a
repeated block in aj, j;
2. each n-symbol appears exactly 1/N(n) of the time in any given (n + 1)-symbol.
In particular, the proof is independent of the particular order the n-symbols appear in an
(n + 1)-symbol.
As a consequence of this lemma, [F] has the following result.

THEOREM 3.1.2. (X, u, T) is an ergodic, measure-preserving transformation of zero
entropy which is not LB.

3.2. The symbolic structure of the Z* action. Our two-dimensional construction is
designed so its horizontal action will mimic the periodic structure of Feldman’s example.
To prove that the horizontal action is not LB we will prove the analog of Lemma 3.1.1
and proceed as in [F].

We now inductively define the two-dimensional symbolic blocks we will use in
our construction, At each stage n 4 1, there will be one two-dimensional block
labelled 7,4j, which we call the (n + 1)-tower. It will be a rectangle of width
L{n + 1) = L(n) (N(n)F(n))*V**+D43_ and height

Lin+1)
Fin+ DNFn+1)

Lin+1) =[ ]F(n+ DN(n + 1),
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where L(2) = L'(2), F(2) = |, N(n) is as above and F(n+1) = L(n)+ F(n)N(n) — 1.
Here, for x € R, [x] denotes the integer part of x.

The symbolic structure of the rows of 7,4; will be of special interest; we label the ith
row of the (n + 1)-tower by r,4, ;. Our convention will be that r,  is the bottom row
in 7,4;. The symbols used in the towers will be the symbols in Feldman’s 1-array and
the symbol *. The symbol % will be called a spacer, and any row containing a spacer
will be called a spacer row.

We start by describing 13, a rectangle of width L(2) and height L(2). It will consist
of copies of a block B, stacked vertically on top of each other, where B, consists of
N(2) distinct sub-blocks, CA'ZY j» and C‘l j is constructed from horizontal repetitions of the
cycle c; ;. More specifically, C»,; equals cﬁ”wm_”” and Bj is the block of symbols
obtained by stacking these sub-blocks on top of each other in ascending order of j. Then
73 is constructed by stacking L(2)/N(2) copies of B; on top of each other. We then
have, for each 0 < i < L(2) with kN(2) < i < (k + 1)N(2) for some k > 0,

i = G2 i-kN(2)-

For the inductive step, suppose 7, is given. The next tower, 1,.,, will be a rectangle
of width L{n + 1) and height L(n + 1) and again will consist of copies of a block B,
stacked vertically, where B, consists of N(n 4 1) distinct sub-blocks, CA',H.L j- A sub-
block again is constructed from horizontal repetitions of a cycle, now denoted Cy41, ;.
Cn+1,j will be a rectangular block of symbols of width L(n)(N(n)F(n))**! and height
F(n+ 1) = L(n) + N(n)F(n) — 1. We first describe how to construct 7, using the
Cuq1,j, then describe the cycles themselves.

Define Cpy1; to be (Cpyy ) FONOF% Then B,y is the block of symbols
obtained by stacking Cpy1, ; on top of each other in ascending order of j (see Figure 1).
Then 1,4, is constructed by stacking [L(n 4 1)/F(n 4 1)] copies of B, on top of each
other. Note that this number is greater than (N (n) F(n))2N+D+2,

A
Cha1,N@+1)

n+1,2

> >

Ch+lL

FIGURE 1. By

Now for the C,41,; themselves. The cycle C,y; will consist of spacers and
(F(n)N(n))**! copies of 1,. Notate the entries in this rectangle as one would a matrix
so (i, j) denotes the symbol in the ith row, jth column, except that our convention
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is still that the bottom row is row number 1. The copies of 7, will be placed in
groups of (F(n)N(n))¥, where the copies within a grouping are placed on the same
row. The first grouping will be placed at (F(r)N(n), 1) and the second grouping
at (F(n)N(n) — 1, L(n)(F(n)N(n))*) etc, until the last grouping starts at coordinate
(1, (L)(F )N )W F )N () —1))). The remaining coordinates will be filled with
the symbol * (see Figure 2),

-4 . T

F(n)N(n)l oy 1w

LO)N@F@)

FIGURE 2. Cry1,j

Denote the ith row in Cpy1,;j by Chya,ji- Then for 1 <i < F(n)N(n) —1

L(n)(F(n)N(n)”)(F(n)N(n)—i)r(F;(ﬂ)N("))”r(F(")N(n))” v pFONGY
n, =

Cutrn fi =2 {n) .2 i

We will refer to rows such as these, which consist of spacers along with copies of rows
from t,, as new spacer rows. After the (F(n)N(n) — 1)th row, the new spacer rows end
and do not start again until the (F(n + 1) — L(n))th row. In between the rows are of the

form
FEONON (FONGYE | (FmN@a)

ni ni+l ni+Fn)N(n)—-1"

When the new spacer rows start again, this time the spacers appear in increasing
amounts starting at the end of the rows. If we are at the ith row from the top with
0<i < F(n)N(n) — 1, then the row is of the form

pFQONOYY (FMNGY | (FeN @)Y (R LAXFERN W N1
n,L(n)—i n,L{n)—i+1 n,L(n)

As in Feldman's example, there are N(n + 1) cycles, each with a distinct periodic
structure. A row from (AI,,H.,- will be called an (n 4 1)-row of type i. The periodic
structure of rows of different types are related to each other in the same way as different
(n + 1)-names in Feldman's construction. There now are, however, many different rows
of the same type. Each CA',,H,,- has F(n + 1) rows, each a distinct L(n + 1) name. We
thus have F(n+ 1)N(n+ 1) distinct horizontal L(n 4+ 1)-names in 7,1, but these names
divide into N(n + 1) distinct types. Notice that each name appears [L(n + 1)/F(n + 1)]
times in 7,4.

3.3. Cutting and stacking. 'We now wish to find a process (T, P) whose names have
the symbolic structure described in the previous section. We will indicate a cutting and
stacking construction which will yield a subset I C [0, 1] of full measure, a partition P
of I, and a Z? action T so the process (T, P) is as desired.
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Set Iy = [0, z;) with 0 < z; < 1 to be defined later. We first divide I, into subintervals
and label these by the symbols ay,,, 1 < p < N(1) and define TB‘ so that the orbit of
these points have the same symbolic structure as 7. The interval [z, 1] will serve as
our spacer interval and will be labeled with the symbol x.

Suppose T is defined on [0, z,). Then at the next stage of the construction we will
cut an appropriate size interval from [z,, 1] to use as the new spacers. We then cut and
stack this interval and the domain of T} so that the symbolic structure of the orbit of
points in [0, z,+1) under Ta"“ has the same structure as t4;.

For the construction to be complete, we need to show that z; can be chosen so that
the sequence {z;} is well defined. This follows from the fact that the total length of the
new spacer used at the nth stage of the construction is less than 1/2%", Hence, the total
length of spacer used in the entire construction is finite.

PROPOSITION 3.3.1. The Z? transformation (X, ., T) is measure-preserving, ergodic,
zero entropy and loosely Bernonlli.

Proof. That T is measure preserving follows easily from the construction of the T3, ,.
Note also that L(n)/L(n) > 1 —1/F(n)N(n), so in particular Definition 2.2.2 is satisfied
with &« = 2, T is then square rank one, and the remaining facts follow from [Fr] and
[PR]. O

3.4, The horizontal subaction. We now turn our attention to the horizontal action
(X, u, T3,). To ease notation we refer to new spacer rows in a tower as bad rows, and
to non-new spacer rows as good rows.

PROPOSITION 3.4.1, The Z action (X, i, T3,) is measure preserving, ergodic, and has zero
entropy.

Proof. The cutting and stacking construction of T guarantees that 7; is measure
preserving.

Ergodicity follows easily from the geometry of the cutting and stacking construction.
The key facts are that for all k and n, each good row in 7,4, sees all the rows from 1,,
and the good rows of t,44 are a proportion greater than 1 — 1/100 - 2"+ of the rows in
Tn+k-

To complete the proof, note that the total number of strings of length L(r) is at most
L(n)(L(n) + 1) a

Our construction was arranged so that names of different types have vastly differing
periodic structures. We now need a result analogous to Lemma 3.1.1 to show that they
are ? far from one another. In particular, the rows in 73 which are not new spacer rows
consist of either Feldman names or permutations of Feldman names. We have made the
observation that the proof of Lemma 3.1.1 does not depend on the particular order that
the sub-blocks appear in Feldman's construction, so Lemma 3.1.1 will still hold, and two
such rows of different type from 73 will match at best %(1 — 1/2%). New spacer rows
from 73, however, are a different story. Two such rows could match exceedingly well.
These rows, however, are a small proportion of the rows in 73, and hence do not affect
the induction needed to prove a non-matching lemma.
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LEMMA 3.4.2. Let ry; and r,p be good rows from t, which are of different type. Then
Jor all positive integers s and t,

Flrs ) =1= % (I — %ﬂ) '
Proof. We will essentially repeat the argument in [F] with modifications made for the
appearances of spacers in our construction.

Recall from the construction that two rows are of different type if and only if they
come from different cycles. We prove the result by induction. As observed earlier, a
straightforward application of the proof of Lemma 3.1.1 will show that the result is true
for the case n = 3,

Now suppose that the result is true for some n, and let r,,41,; and ry4y » be as in the
statement of the lemma. Suppose further that r, 1, comes from CA',,+|,,~ and ry41 r comes
from ﬁ‘,,+|, j with j = i + k, k some positive integer. Then r,.; is of the form

(rNF ) NEFE)H  (NFm)* YF N e+n=aes
Tnv Fnovt T ut F(n)N(m) -1 -

Let o, = r,f"';("’"("”y. The row can then be written as

(av av+‘ 7 -av+F(n)N(n)_‘)‘(F(")N(n))lh’(nﬂ)-ﬁi-l ¢

and the row 7,4 p is then of the form

(F NG afvio‘v)rv(n»” = fﬂ'}’{:f";@gin)‘(F(")N("DM(M_W-

The significant facts to note here are that these strings each see all the distinct rows
from 7, and each row occurs exactly once. Further, the periodic structures of the two
strings are different.

As in [F] we observe that each sub-block o
matched with a substring of the first row of the form

2k
(FNY™ of the second row must be

(b{oty Otyt1 * = > Qo FemyN (m)—1)7€),

where b and ¢ are end and beginning blocks of the repeated string. We compare instead

2%
the strings af” " with the completed strings

X = (0 Oyy1- ‘“v+F(n)N(n))q+2:

and argue as in [F] that the match may be decreased from the original but by a factor
less than @ = (1 — 1/100- 2"+1).

Now, because of the relative lengths of af,F("’N("»u and x each «, in x must be
matched with a substring of a,(IF(")N("nu. These are of the form a’(e))*d’, where a’
and &' are end and beginning blocks respectively of ;. We argue as before that if we
compare o, with {;)“*? we will decrease the match by a factor no more than .

We are now comparing the two strings e, = r{f "V " and git? = rﬁf"’"‘"”h(“ﬂ).
If both r,,, and r, » are good rows from 7, then we can apply the induction hypothesis.
If not, then they could match well.
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We can now specify the match between r;, |, and r;,, , with the two modifications
made of completing strings. Let g, denote the proportion of good rows in 1, and
b, = 1 — g,. Then g, proportion of the time, o), will be constructed from a good row.
Also, g, proportion of the time, r, , will be a good row. In this case 1/N(n) of the
time we will have two rows of the same type and they will match well. The rest of the
time we can apply the inductive hypothesis. The remaining b, percentage of the time,
ra,p Will be a bad row and we will assume that the strings can match arbitrarily well.
Finally, b, percentage of the time r, j itself is a bad row where again we estimate by a
perfect match.

The final match then is:

Nm -1\ 1 1 1 1

1/1 1 1 1 1
iy o [ SRR Pt MR Y S ) O
<e2(8( 2")+N(n)+ )‘a( 2n+l)

THEOREM 3.4.3. The one-dimensional subgroup actions of a zero entropy, LB Z? action
are not all necessarily LB.

Proof Consider the Z2 action (X,u,T) construction in this section. By
Propositions 3.3.1 and 3.4.1 we have that T and T3, satisfy the hypotheses above.

To argue that (X, u, T3,) is not LB we let P be the time zero partition into the symbols
{1,..., N(1)} and slightly modify the argument in [F] to adjust for the spacers in our
construction. As in [F], Lemma 3.4.2 guarantees that if the L(n)-names of two points
¥1, ¥z are constructed from good rows in 7, which are of different type, then the L(n)-
names of y; and y; match no better than %. The bad rows are a very small proportion
of the rows in 7,, hence in any set of large measure, there exist points y; and y; as

described above. |
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