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ABSTRACT. We study minimal Zd-Cantor systems and the relationship between
their speedups, their collections of invariant Borel measures, their associated uni-
tal dimension groups, and their orbit equivalence classes. In the particular case
of minimal Zd-odometers, we show that their bounded speedups must again be
odometers but, contrary to the 1-dimensional case, they need not be conjugate, or
even isomorphic, to the original.

1. INTRODUCTION

Speedups of measurable dynamical systems have been studied since the 1969
work of Neveu [N1, N2]. In this context, the object under consideration is a
Lebesgue probability space (X,X , µ) with an ergodic, measure-preserving trans-
formation T : X → X , and by its “speedup” we mean a transformation T p where
p : X → Z+. Neveu characterized exactly which functions p lead to T p being bi-
jective, and proved a version of Abramov’s formula relating the entropy of T p to
the entropy of T . In a seminal paper of 1985, Arnoux, Ornstein, and Weiss [AOW]
showed that if T and S are any two ergodic, measure-preserving automorphisms,
there is a speedup of T that is measurably conjugate to S. In other words, if the
integral of p is no object, then one can speed up T to “look like” S. This (triv-
ial) classification of ergodic transformations up to “speedup equivalence” has the
same flavor as work of Dye [D1, D2] in which he proved that all ergodic, measure-
preserving automorphisms are (measurably) orbit equivalent.

The work of Arnoux, Ornstein and Weiss was generalized to ergodic compact
group extensions by Babichev, Burton, and Fieldsteel in 2011 [BBF], and to actions
of commuting transformations (i.e. “higher-dimensional” actions) by the authors
in 2014 [JM1] and 2015 [JM2].

In this paper we consider speedups in the topological category. This was first
done by Ash [A] in 2016 when he studied systems of the form (X,T ) where X is
a minimal Cantor space and T : X → X is a homeomorphism. Similar to how the
result of [AOW] reflects Dye’s Theorem, Ash’s results are closely tied to funda-
mental results about topological orbit equivalence proved by Giordano, Putnam,
and Skau [GPS]. In particular, the last authors showed that orbit equivalence for
such an (X,T ) is governed by a unital ordered dimension group that can be as-
sociated to the system. They proved two such systems are orbit equivalent if and
only if these dimension groups are isomorphic, and also if and only if there is a
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homeomorphism between the phase spaces of the systems that induces a bijection
between their sets of invariant Borel measures. Ash’s work similarly relates these
objects to speedups. For instance, he showed that one minimal Cantor system
is a speedup of another if and only if a surjection between their unital ordered
dimension groups exists, and this is in turn equivalent to the existence of a home-
omorphism between the phase spaces which induces an injection on the sets of
invariant Borel measures.

This work was continued in a 2018 paper by Alvin, Ash, and Ormes [AAO],
with the additional assumption that the speedup function p is bounded. They
studied the family of minimal Cantor systems given by odometers and showed
there is little freedom for their speedups: a minimal bounded speedup of an odome-
ter must be a conjugate odometer.

In this paper, we study these topological notions in the context of actions of
Zd. Section 2 provides further background for our work. In Section 3, we relate
speedups to invariant measures for the actions and to the orbit equivalence theory
of Giordano, Putnam and Skau. This section culminates with a series of results
which we summarize here:

Theorem A. Suppose (X1,T1) is a minimal Zd1 -Cantor system and (X2,T2) is a min-
imal Zd2 -Cantor system. If there is a speedup of T1 conjugate to T2, then:

(1) there is a homeomorphism F : X1 → X2 which induces an injective transforma-
tion from the set of T1-invariant measures to the set of T2-invariant measures;
and

(2) there is a surjective group homomorphism from the dimension group of T2 to the
dimension group of T1 which preserves the positive cones and order units of those
groups.

Theorem B. Suppose (X1,T1) is a Zd1 -odometer and (X2,T2) is a Zd2 -odometer. If
there is a speedup of T1 conjugate to T2, then T1 and T2 are orbit equivalent.

We prove the individual statements of these theorems in Lemma 3.2, Theorem
3.6, and Theorem 3.7.

Section 4 addresses a partial converse of Theorem B for the case where d2 = 1:

Theorem C. Suppose (X1,T1) is a Zd1 -odometer and (X2, T2) is a Z-odometer. If T1

and T2 are orbit equivalent, then for any cone C ⊆ Zd1 , there is a C-speedup S of T1 that
is topologically conjugate to T2.

Finally, in Section 5 we describe what is meant by a “bounded” speedup, and
we discuss the properties of those speedups in the setting of Zd-odometers. We
prove in Theorems 5.3 and 5.5 the following results, which show that in some
ways, bounded speedups of Zd-odometers are similar to the one dimensional set-
ting (statement 1) but in other ways they are not (statement 2).

Theorem D. Suppose (X,T) is a free Zd1 -odometer. If S : Zd2 y X is a minimal
bounded speedup of T, then:

(1) (X,S) is a free Zd2 -odometer, but
(2) (X,S) is not necessarily conjugate to (X,T).

We conclude by showing, via Theorem 5.7 and Corollary 5.10, that the choice of
cone C impacts whether one can obtain a bounded speedup of one Zd-odometer
which is conjugate to a second:
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Theorem E. Z
(1) For any two Zd-odometers that are continuously orbit equivalent, there is a cone

C ⊆ Zd such that one of the odometers is conjugate to a C-speedup of the other.
(2) There exists Z2-odometers that are continuously orbit equivalent and a cone C ⊆

Z2 such that no bounded C-speedup of one odometer is conjugate to the other.

2. TERMINOLOGY

2.1. Dynamical systems. We begin with some standard definitions from topolog-
ical dynamics. First, given a groupG and a topological spaceX , we say that (X,T)
is a G-action, and write T : Gy X , if for every g ∈ G, there is a homeomorphism
Tg : X → X , and these homeomorphisms satisfy Tgh = Tg ◦Th for every g, h ∈ G
and also that T0(x) = x for all x ∈ X , where 0 denotes the identity element of G.
In this paper, we concern ourselves with actions where G = Zd for some d, and
will henceforth only give definitions in this setting. However, the ideas presented
in this section apply to actions of more general groups as well.

Given T : Zd y X and x ∈ X , the orbit of x is the set {Tv(x) : v ∈ Zd}. A
Zd-action (X,T) is called free if, for any x ∈ X , Tv(x) = x implies v = 0. A Zd-
action is called minimal if every orbit is dense in X . A minimal Zd-action (X,T)
on a Cantor space X is called a minimal Zd-Cantor system. Given a minimal Zd-
Cantor system (X,T), the set of Borel probability measures invariant under each
Tv is denotedM(X,T). If for µ ∈ M(X,T), the only Borel sets invariant under
every Tv have µ-measure 0 or 1, then we say (X,T) is ergodic with respect to µ.
It is well known that M(X,T) 6= ∅; if M(X,T) consists of exactly one measure
µ, then (X,T) is ergodic with respect to µ and we say that (X,T) is uniquely
ergodic; we may indicate such a system by (X,T, µ).

2.2. Equivalence relations on actions. A natural problem in topological dynam-
ics is to classify systems up to various notions of equivalence, the most natural
notion being conjugacy. Suppose T : Zd y X and S : Zd y Y . We say (X,T) and
(Y,S) are (topologically) conjugate if there is a homeomorphism Φ : X → Y such
that Φ ◦Tv = Sv ◦ Φ for all v ∈ Zd.

Suppose T : Z2 y X and one defines S by “switching the generators” of T, i.e.
S(v1,v2)(x) = T(v2,v1)(x). In general, such a T and S are not conjugate, but they
must be equivalent in the following weaker sense: if T : Zd y X and S : Zd y Y ,
we say (X,T) and (Y,S) are isomorphic if there is a homeomorphism Φ : X → Y

and a group isomorphism ϑ : Zd → Zd such that Φ ◦Tv = Sϑ(v) ◦Φ for all v ∈ Zd.
In this setting, ϑ must be given by some matrix in GLd(Z).

An even weaker notion of equivalence is when T and S can be said to have “the
same orbits”. More precisely, let T : Zd1 y X and S : Zd2 y Y . We say (X,T)
and (Y,S) are orbit equivalent if there is a homeomorphism Φ : X → Y (called an
orbit equivalence) such that for every x ∈ X ,

Φ

 ⋃
v∈Zd1

Tv(x)

 =
⋃

v∈Zd2

Sv (Φ(x)) .

If T : Zd1 y X and S : Zd2 y Y are free actions which are orbit equivalent via
Φ : X → Y , then there is a function hΦ : X × Zd2 → Zd1 such that for all x ∈ X
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and v ∈ Zd2 ,

Sv(Φ(x)) = Φ
(
ThΦ(x,v)(x)

)
and a function hΦ−1 : Y × Zd1 → Zd2 such that for all y ∈ Y and w ∈ Zd1 ,

Tw(Φ−1(y)) = Φ−1
(
ShΦ−1 (y,w)(y)

)
.

The functions hΦ and hΦ−1 are called the orbit cocycles associated to the orbit
equivalence Φ.

For a general orbit equivalence, the orbit cocycles hΦ and hΦ−1 may or may not
be continuous, but is natural to ask for some sort of continuity. With this in mind,
we say T : Zd1 y X and S : Zd2 y Y are continously orbit equivalent if there is
an orbit equivalence Φ : X → Y whose orbit cocycles hΦ and hΦ−1 are continuous
with respect to the given topologies on X and Y , the discrete topologies on Zd1

and Zd2 , and the product topologies on X × Zd2 and Y × Zd1 .
It is clear that conjugate actions are isomorphic, isomorphic actions are con-

tinuously orbit equivalent, and continuously orbit equivalent actions are orbit
equivalent. However, none of these equivalence relations coincide (see [L], [CM],
[GPS3]).

2.3. Speedups. In this paper, we examine a relation on minimal Zd-Cantor sys-
tems coming from speedups. Speedups were initially studied by Neveu [N1],
[N2], although he did not use the terminology “speedup”. However, the word
“speedup” came to be used because of its interpretation in the one-dimensional
case (i.e. actions of Z). Essentially, if T : X → X is some map, then a “speedup” of
T is a map T p : X → X where p : X → {1, 2, 3, ...}. So (X,T p) is a system in which
points are “sped up”, i.e. they move forward more quickly than they do under T .

To define what is meant by a speedup of a Zd-action, it becomes necessary to
specify what one means by “moving forward”. Toward that end, we make the
following definitions:

Definition 2.1. A filled cone is an open, connected subset of Rd whose boundary con-
sists of d distinct hyperplanes passing through the origin. A cone is the intersection of a
filled cone with (Zd − {0}).

In particular, notice the zero vector does not belong to any cone. There are only
two cones which are subsets of Z: Z+ = {1, 2, 3, ...} and Z− = {...,−3,−2,−1}.

Definition 2.2. Let T : Zd1 y X and let d2 ∈ Z+.
A cocycle for T is a function p : X ×Zd2 → Zd1 such that p(x,0) = 0 for all x ∈ X

and p(x,v) + p(Tp(x,v)(x),w) = p(x,v + w) for all x ∈ X and all v,w ∈ Zd2 .
A speedup of (X,T) is an action S : Zd2 y X where Sv(x) = Tp(x,v)(x) for some

cocycle p called the speedup cocycle.
Given a cone C ⊆ Zd1 , if (X,S) is a speedup of (X,T) such that its speedup cocycle

p satisfies p(x, ej) ∈ C for all j ∈ {1, ..., d2} and all x ∈ X , then we say (X,S) is a
C-speedup of (X,T). Here, and throughout the paper, ej = (0, ..., 0, 1, 0, ..., 0) is the
jth standard basis vector.

Observe that if (X,S) is a C-speedup of (X,T) with speedup cocycle p, then
it follows from the cocycle relation, together with the fact that cones are closed
under addition, that p(x,v) ∈ C for all v ∈ [0,∞)d2 − {0}.
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Suppose (X,T) and (Y,S) are orbit equivalent via Φ : X → Y . Then the orbit
cocycles hΦ and hΦ−1 are indeed cocycles, and h can be thought of as a speedup
cocycle giving a speedup of (X,T) (though not necessarily a C-speedup for a par-
ticular cone C) which is conjugate to (Y,S). However, speedups are not necessarily
orbit equivalences: given T : Z y X , the cocycle p(x, v) = 2v defines (X,T 2) as a
speedup of (X,T ). In many cases, T 2 is not conjugate, nor even orbit equivalent,
to T .

To define a C-speedup of (X,T) with C ⊆ Zd, it is sufficient to specify d func-
tions p1, ...,pd : X → C with the property that, for all i, j ∈ {1, ..., d},

pi(T
ej (x)) + pj(x) = pj(T

ei(x)) + pi(x).

Then by defining Sej = Tpj (in other words, defining p(x, ej) = pj(x) and ex-
tending so that p is a cocycle), so long as S acts by homeomorphisms, the Zd-
action (X,S) will be a speedup of (X,T). We say that the speedup so defined is
generated by the p1, ...,pd.

We remark that by definition, a speedup of (X,T) must be an action by home-
omorphisms, so for example, given T : Z y X and p : X ×Z→ Z with p(x, 1) = 2
and p(T (x), 1) = 1 for some x, p cannot be a speedup cocycle for a speedup of T ,
because said speedup would map both x and T (x) to T 2(x). In [N1], Neveu gave
conditions on the values of p(x, 1) which are necessary and sufficient for a function
p : X × {1} → {1, 2, 3, ...} to generate a valid speedup cocycle for a Z-action.

In general, the speedup cocycle p defining a speedup need not be continuous,
but it must be Borel if the action being sped up is a free action:

Theorem 2.3. Let T : Zd1 y X and S : Zd2 y X . Suppose (X,S) is a speedup of
(X,T). If (X,T) is free, then the speedup cocycle p : X×Zd2 → Zd1 is a Borel function.

Proof. Fix v ∈ Zd1 and w ∈ Zd2 . We will show that the set

A(v,w) = {x ∈ X : p(x,w) = v}

is closed, from which it follows that for any S ⊆ Zd1 ,

p−1(S) =
⋃
v∈S

⋃
w∈Zd2

A(v,w)

will be Fσ , meaning p is Borel.
Let {xj} ⊆ A(v,w) be such that xj → x. Since Tv and Sw are both homeomor-

phisms, we see that Tv(xj) → Tv(x) and Sw(xj) → Sw(x). Since, by definition
of A(v,w), we know Tv(xj) = Sw(xj) for all j, we see that Tv(x) = Sw(x). Since
(X,T) is free, it follows that p(x,w) = v, meaning x ∈ A(v,w). �

Speedups of measure-preserving (as opposed to topological) actions of Zd were
studied in [AOW] and [BBF] (for d = 1) and [JM1] and [JM2] for (d > 1). In
particular, a main result of [JM1] is a version of Dye’s theorem [D1, D2] stating
that given any two ergodic measure-preserving actions of Zd, they are “speedup
equivalent”, in the sense that for any cone C ⊂ Zd, there is a measurable C-speedup
of one which is measurably conjugate to the other. A major aim of this paper is to
investigate analogous results in the topological category.
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2.4. Odometers. We will especially consider a well-studied class of minimal Can-
tor systems called odometers. These can be defined in a variety of ways; the two
approaches we review here are a construction due to Cortez [Cor] and an equiva-
lent characterization given by Giordano, Putnam and Skau [GPS3].

For Cortez’ construction, we begin by considering any decreasing sequence G =
{Gj}∞j=1 of subgroups of Zd, where each Gj has finite index in Zd. For each j ≥ 1,
let qj : Zd/Gj+1 → Zd/Gj be the quotient map. Then, define

XG =lim
←−

(Zd/Gj)

= {(x1,x2,x3, ...) : xj ∈ Zd/Gj and qj(xj+1) = xj for all j}.
XG is a topological group (the topology is the product of the discrete topologies on
each Zd/Gn); for each j ≥ 1 there is a natural coordinate map πj : XG → Zd/Gj .
More importantly, there is a minimal action σG : Zd y XG given by

σv
G(x1,x2,x3, ...) = (x1 + v,x2 + v,x3 + v, ...)

where the sum in the jth component is taken mod Gj .

Definition 2.4 (Cortez definition of odometer). A Zd-odometer is any Zd-action con-
jugate to one of the form (XG, σG) described above, where G is some decreasing sequence
of finite-index subgroups of Zd.

We remark that G-odometers can be defined for any residually finite group G
(not just Zd); for more, see [CP] or [D].

Theorem 2.5 (Basic properties of odometers). Let G = {G1, G2, ...} be a decreasing
sequence of finite-index subgroups of Zd.

(1) So long as Gj 6= Gj+1 for infinitely many j, (XG, σG) is a minimal Zd-Cantor
system;

(2) (XG, σG) is free if and only if
∞⋂
j=1

Gj = {0};

(3) (XG, σG) is uniquely ergodic with invariant Borel probability measure µG satis-
fying µG

(
π−1
j (x +Gj)

)
= [Zd : Gj ]

−1 for all j ≥ 1 and all x ∈ Zd.

We say that a Zd-odometer is product-type if it is conjugate to a product of d Z-
odometers. Equivalently, this means the odometer is conjugate to some (XG, σG),

where each group Gj ∈ G is of the form Gj =
d
×
k=1

(Z/mj,kZ).

A second characterization of Zd-odometers, given by Giordano, Putnam and
Skau, uses Pontryagin duality. Given any compact abelian groupK, its Pontryagin
dual is K̂, the set of continuous group homomorphisms from K to the circle T =
R/Z. Now let H be a group such that Zd ≤ H ≤ Qd; give both H and H/Zd the
discrete topology. Then

H/Zd ⊆ Qd/Zd ⊆ Rd/Zd ∼= Td,

so there is an inclusion map ρ : H/Zd → Td. Let YH = Ĥ/Zd; using duality we
have T̂d ∼= R̂d/Zd ⊆ YH . Since Zd ∼= T̂d, we have ρ̂ : Zd → YH . Thus for every
v ∈ Zd, ρ̂(v) is a continuous homomorphism from H/Zd to T. We can then define
an action ψH : Zd y YH by, for each v ∈ Zd,

ψv
H(x) = x+ ρ̂(v),
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i.e. for any group homomorphism x : H/Zd → T,

(ψv
H(x))(h + Zd) = x(h)e2πi(h·v).

Definition 2.6 (Giordano-Putnam-Skau definition of odometer). A Zd-odometer
is any Zd-action conjugate to one of the form (YH , ψH) described above. In this setting,
we call H the first cohomology group of the odometer.

The reason H is called the “first cohomology group” comes from the following
ideas first studied by Forrest and Hunton [FH]. Given a minimal Zd-Cantor system
(X,T), let C(X,Z) be the set of continuous functions fromX to Z. C(X,Z) is a Zd-
module via usual addition and the scalar multiplication v · f = f ◦Tv for v ∈ Zd,
f ∈ C(X,Z). In this context, for an odometer (YH , ψH), H = H1(X,T), the first
cohomology group of Zd with coefficients in the module C(X,Z).

It turns out that the Cortez and Giordano-Putnam-Skau definitions produce the
same class of systems. More precisely, given any sequence G = {G1, G2, ...} as in
the Cortez definition, define for each j,

Hj = {v ∈ Rd : v · x ∈ Z for all x ∈ Gj}

and set H =
∞⋃
j=1

Hj . The odometer (YH , ψH) is conjugate to (XG, σG). For the

reverse direction, given anyH with Zd ≤ H ≤ Qd, define for each j,Hj =
(

1
j!Z

d
)
∩

H and set
Gj = {v ∈ Rd : v · x ∈ Z for all x ∈ Hj}.

This produces a sequence G = {G1, G2, ...} for which the corresponding odometer
(XG, σG) is conjugate to (YH , ψH).

Notice, in the previous paragraph, the “dual” relationship between the Gj and
the Hj in the two definitions of Zd-odometer actions. As we will need notation for
this relationship later, we define, for any set E ⊆ Rd, the set E∗ by

E∗ = {v ∈ Rd : v · x ∈ Z for all x ∈ E}.
An advantage of the Giordano-Putnam-Skau approach to defining odometers

is that the equivalence relations outlined in Section 1.2 can be easily characterized,
for Z and Z2-odometers, in terms of the first cohomology group of the action:

Theorem 2.7 (Theorem 1.5, [GPS3]). Let (X,T) be a free Zd1 -odometer whose first
cohomology group is H(T), and let (Y,S) be a free Zd2 -odometer whose first cohomology
group is H(S).

(1) If d1, d2 ≤ 2, then (X,T) and (Y,S) are conjugate if and only if d1 = d2 and
H(T) = H(S).

(2) If d1, d2 ≤ 2, then (X,T) and (Y,S) are isomorphic if and only if d1 = d2 and
α(H(T)) = H(S) for some α ∈ GLd1(Z).

(3) If d1, d2 ≤ 2, then (X,T) and (Y,S) are continuously orbit equivalent if and
only if d1 = d2 and α(H(T)) = H(S) for some α ∈ GLd1

(Q) with detα = ±1.
(4) (X,T) and (Y,S) are orbit equivalent if and only if the superindex (see [GPS3])

of H(T) in Zd1 equals the superindex of H(S) in Zd2 .

2.5. Towers, refinements and Kakutani-Rohklin partitions. This section describes
some machinery that will be used in subsequent proofs. First, for any nonnegative
integer h, let [h] = {0, 1, 2, ..., h − 1}. Second, for any vector h = (h1, ..., hd) ∈ Zd
with h ≥ 0 (meaning hj ≥ 0 for all j), set [h] = [h1]× [h2]× ...× [hd].
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2.5.1. Pretowers and precastles. A “pretower” is simply a rectangular array of dis-
joint subsets of X of equal measure:

Definition 2.8. Let µ be a Borel probability measure on a Cantor space X and let h ∈ Zd
be such that h ≥ 0. A pretower (in X) is a collection {E(v) : v ∈ [h]} of clopen subsets
E(v) ⊆ X , where the sets are pairwise disjoint and all have the same µ-measure. The
vector h is called the size or height of the pretower; d is the dimension of the pretower;
the individual setsE(v) are called levels of the pretower, and µ is the pretower measure.

Definition 2.9. A precastle (in X) is a set of finitely many pretowers in X , all having
the same dimension and same µ for their pretower measure, and where the levels of the
pretowers are all disjoint from one another. We denote a precastle by P = {E(α,v) : 1 ≤
α ≤ t,v ∈ [h(α)]}, which indicates that the precastle consists of t many pretowers of
respective heights h(α).

A one-dimensional (i.e. d = 1) pretower can be subdivided into three disjoint
pieces: the base, the top, and the interior. We define the base and top of a one-
dimensional precastle to be the sets

P0 =

t⊔
α=1

E(α, 0) and P2 =

t⊔
α=1

E(α, h(α)− 1),

while the interior of a precastle is P1 =
t⊔

α=1

h(α)−2⊔
v=1

E(α, v). Setting the boundary

of a precastle P , denoted ∂P , to be the union of its base and top, we note that
P1 = P − ∂P is the set of points in the precastle that are not in its boundary.

2.5.2. Towers and castles. First, given clopen subsets A and B of a Cantor space, we
write T : A

∼=→ B if T is a homeomorphism from A to B. If we define an action
by homeomorphisms between the levels of a pretower (precastle), the pretower
(precastle) becomes a tower (castle).

Definition 2.10. Let h ∈ Zd and suppose {E(v) : v ∈ [h]} is a pretower in a Cantor
space X . If for each v,w ∈ [h], there is Tw−v : E(v)

∼=→ E(w) such that:
(1) for every v ∈ [h], T0 : E(v)

∼=→ E(v) is the identity map,
(2) Tx ◦Ty = Tx+y wherever these maps are defined, and
(3) each Tw−v preserves the pretower measure µ, meaning for any Borel A ⊆ E(w),

µ(T−(w−v))(A) = µ(A),
then we call the pretower a T-tower. A T-castle is a union of finitely many T-towers of
the same dimension and with the same µ as their pretower measure, and all of whose levels
are disjoint. Given a T-castle {E(α,v) : 1 ≤ α ≤ t,v ∈ [h(α)]}, for any x ∈ E(α,v)
we define the T-column over x to be {Tw(x) : w ∈ [h(α)]− v}.

2.5.3. Kakutani-Rohklin partitions. Castles are closely related to Kakutani-Rohklin
partitions:

Definition 2.11. Let X be a Cantor space and let T : Zd y X . A Kakutani-Rohklin
(K-R) partition for (X,T) is a partition of X into finitely many clopen sets {B(j,v) :
1 ≤ j ≤ t,v ∈ A(j)}, where for each j, A(j) is a finite subset of Zd containing 0, such
that for each v ∈ A(j), B(j,v) = Tv(B(j,0)).
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If (X,T) is a minimal Zd-Cantor system with µ ∈M(X,T), then any Kakutani-
Rohklin partition for (X,T) with each A(j) = [hj ] for some hj ∈ Zd is a T-castle
with pretower measure µ. However, T-castles need not be K-R partitions for a Zd-
action, because it is possible that T is not defined on every level, e.g. those levels
one could think of as being on the boundary of the rectangle [hj ].

Odometers possess a useful, standard sequence of K-R partitions, described in
the following theorem:

Theorem 2.12 (K-R partitions for odometers). Given a Zd-odometer (XG, σG) with
unique invariant measure µ, there exists a sequence {Pj}∞j=1 of partitions of X with the
following properties:

(1) each Pj is a K-R partition for (XG, σG) consisting of one rectangular tower;
(2) the partitions Pj refine, i.e. each atom of Pj is a union of atoms of Pj+1;
(3) the partitions Pj generate the topology on X ;
(4) each atom of Pj has measure [Zd : Gj ]

−1;
(5) µ(∂Pj)→ 0 as j →∞; and
(6) the maximum diameter of any atom of Pj tends to 0 as j →∞.

Proof. Let G = {G1, G2, ...}. For each j, define d integers as follows: let

mj,1 = min{n > 0 : ne1 ∈ Gj}.

Since Gj has finite index, such an integer exists. Then let

mj,2 = min{n > 0 : ∃ i such that ne2 +Gj = (i, 0, ..., 0) +Gj}.

Analogously, for each k = 1, ..., d, define

mj,k = min{n > 0 : ∃ i1, i2, ..., ik−1 such that

nek +Gj = (i1, i2, ..., ik−1, 0, ..., 0) +Gj}.

Defining mj = (mj,1,mj,2, ...,mj,d), we see that each rectangle [mj ] contains ex-
actly one representative element from each coset in Zd/Gj .

Finally, for each j ≥ 1 and each v ∈ [mj ], set B(j,v) = π−1
j (v +Gj), and define

Pj = {B(j,v) : v ∈ [mj ]}. The partitions so defined satisfy the requirements of
the theorem. �

2.5.4. Refinements. Let T = {E(α, v) : 1 ≤ α ≤ t, v ∈ [h(α)]} be a one-dimensional
T -castle (these constructions extend to higher dimensions, but we will only use
them when d = 1). A refinement of T is another T -castle T ′, where each level of T ′
is a subset of a singleE(α, v). One way to construct a refinement of T is to partition
each E(α, 0) into finitely many clopen sets P(α) = {E(α, 0, 1), ..., E(α, 0, s(α))}.
The map T then induces a partition on each E(α, v) in such a way that each T -
tower in T is divided into s(α) disjoint T -towers. We call the T ′ so obtained a
castle refinement over {P (α) : α ∈ {1, ..., t} }.

We next describe two specific methods of obtaining such a castle refinement
that will be used in the proof of Theorem 4.3. For the first, suppose {xj} is some
finite set where the T -columns over each xj are pairwise disjoint. For each α, par-
tition E(α, 0) into finitely many disjoint clopen sets E(α, 0, i) such that E(α, 0, i)
intersects at most one T -column of an xj . This yields a refinement of T so that
the xj are in separate T -towers, and we say the resulting T -castle is obtained by
separating the xj into distinct towers.
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For the second, let P be any finite clopen partition of X . For each α ∈ {1, ..., t},
let P(α) be the partition of E(α, 0) into “P-names”, i.e. we partition each E(α, 0)
into maximal clopen atomsE(α, 0, 1), ..., E(α, 0, s(α)), where for every x ∈ E(α, 0, i)
and every v ∈ [h(α)], the atom of P to which T v(x) belongs depends only on v and
i, and not on x. The resulting T -castle is called the refinement of T into pure P-
columns.

2.6. Dimension groups. We next describe an algebraic object which is a useful
tool for studying Cantor minimal systems and that we will use in Theorem 3.7.
This algebraic object, called a “dimension group”, was originally introduced by
Elliott [E] as an isomorphism invariant of approximately finite algebras. A dif-
ferent, but equivalent, approach to defining dimension groups, which we follow
here, originates in [EHS].

Definition 2.13. A partially ordered group (G,G+) is a countable abelian group G
together with a subset G+ ⊆ G called the positive cone, satisfying:

(1) G+ +G+ ⊆ G+;
(2) G+ −G+ = G;
(3) G+ ∩ (−G+) = {0}.

A partially ordered group is called unperforated if for any g ∈ G, g + g + · · ·+ g ∈ G+

implies g ∈ G+. Given a partially ordered group (G,G+) and g, h ∈ G, we say g ≤ h if
h− g ∈ G+ and g < h if h− g ∈ G+ − {0}.

Definition 2.14. A dimension group is an unperforated, partially ordered group (G,G+)
which satisfies the following property (called the Riesz interpolation property):

• Given any a1, b1, a2, b2 ∈ G with ai ≤ bj for all i, j ∈ {1, 2}, there is c ∈ G such
that ai ≤ c ≤ bj for all i, j ∈ {1, 2}.

Definition 2.15. Let (G,G+) be a partially ordered group. We call u ∈ G+ an order
unit if for every g ∈ G there is n ∈ N such that g ≤ nu. A dimension group with an
order unit is called a unital dimension group and is denoted by (G,G+, u).

In this paper, we will deal only with dimension groups which have the addi-
tional property that they are “simple”:

Definition 2.16. Let (G,G+) be a partially ordered group. An order ideal is a subgroup
J ≤ G such that

(1) J = J+ − J+, where J+ = J ∩G+; and
(2) whenever 0 ≤ a ≤ b and b ∈ J , it follows that a ∈ J .

A dimension group is called simple if it has no non-trivial order ideals.

Definition 2.17. Let (G,G+, u) be a simple, unital dimension group. A homomorphism
p : G→ R is called a state if p is positive (i.e. p(G+) ⊆ [0,∞)) and p(u) = 1.

An infinitesimal on (G,G+, u) is an element a ∈ G such that p(a) = 0 for every
state p of G. The subgroup consisting of all infinitesimals on (G,G+, u) is denoted Inf
(G).

Observe that the quotient group G/Inf(G) has a natural induced ordering, i.e.
[g] > 0 if g > 0, where [g] is the coset of g ∈ G. IfG has a distinguished order unit u,
then G/Inf(G) inherits the distinguished order unit [u]. Thus if (G,G+, u) is a uni-
tal dimension group then (G/Inf(G), (G/Inf(G))+, [u]) is also a unital dimension
group which has no infinitesimals other than the coset of 0.
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A simple, unital dimension groupG always has at least one state, and the states
determine the order structure of the dimension group, in that

G+ = {g ∈ G : p(g) > 0 for all states p of G} ∪ {0}.
(This is essentially Corollary 4.2 of [Ef].)

2.7. Dimension groups and dynamical systems. Having laid out the abstract def-
inition of a dimension group, we now turn to the connections between such objects
and dynamics (for additional references, see [HPS], [GPS], [Du], [GMPS]). To get
started, given a minimal Zd-Cantor system (X,T), let C(X,Z) denote the collec-
tion of all continuous integer-valued functions on X . Under addition, C(X,Z)
forms a countable abelian group. Next, define the set of coboundaries in C(X,Z),
denoted BT, to be the subgroup of C(X,Z) generated by all functions of the form
f − f ◦Tv where f ∈ C(X,Z) and v ∈ Zd. Then set

K0(X,T) = C(X,Z)/BT.

We define an ordering on K0(X,T) by decreeing that a coset f + BT ∈ K0(X,T)
belongs to K0(X,T)+ precisely when there is a g ∈ f + BT such that g(x) ≥ 0 for
all x ∈ X . We then have:

Theorem 2.18 ([For], Theorem 1.4). Let (X,T) be a Cantor minimal Zd-system. Then
(K0(X,T),K0(X,T)+, 1 +BT) is a simple, unital dimension group.

By the comments at the end of Section 2.6, we then also have:

Corollary 2.19. Let (X,T) be a Cantor minimal Zd-system and let

G(X,T ) = K0(X,T)/Inf(K0(X,T)).

Then (G(X,T), G(X,T)+, [1 +BT]) is a simple, unital dimension group.

Giordano, Putnam and Skau [GPS] proved a converse of the preceding theorem,
showing that any simple, unital dimension group (G,G+, u) other than Z can be
realized as (K0(X,R),K0(X,R)+, 1 +BR) for a minimal Z-Cantor system (X,R).
Furthermore, they also showed that orbit equivalence of two minimal Z-Cantor
systems (X,T ) and (Y, S) corresponds exactly with isomorphism of the systems’
associated dimension groups G(X,T ) and G(Y, S); this result was extended to
actions of Zd in [GPS2] and [GMPS].

We will see that these ideas carry over to the realm of speedups. If one minimal
Zd-Cantor system can be sped up to obtain a conjugate version of a second, then
one can construct a surjective group homomorphism from the dimension group
associated to the second system to the dimension group associated to the first.
This is our upcoming Lemma 3.7.

The infinitesimal subgroup Inf(K0(X,T)) has an alternate characterization which
will help us simplify G(X,T). We first need the following relationship between
states on the dimension group K0(X,T)) and T-invariant measures on X :

Theorem 2.20 ([For], Lemma 7.3). Let (X,T) be a Cantor minimal Zd-system. Then:
(1) Every µ ∈M(X,T) induces a state pµ on (K0(X,T),K0(X,T)+, 1 +BT) by

pµ(f +BT) =

∫
f dµ.

(2) The map µ 7→ pµ is a bijective correspondence betweenM(X,T) and the set of
states on (K0(X,T),K0(X,T)+, 1 +BT).
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We can then note that the infinitesimals of (K0(X,T),K0(X,T)+, 1 + BT) are
exactly the cosets of functions which integrate to 0 against every T-invariant prob-
ability measure. Defining

ZT =

{
f ∈ C(X,Z) :

∫
f dµ = 0 for all µ ∈M(X,T)

}
,

we can conclude that Inf(K0(X,T)) ∼= ZT/BT, and finally that

G(X,T) = K0(X,T)/Inf(K0(X,T)) ∼= C(X,Z)/ZT,

where the unit of G(X,T) is exactly the coset 1 + ZT. Note that each state p on
K0(X,T) then induces a state p on G(X,T) simply by defining, for h ∈ K0(X,T),
p(h+ Inf(K0(X,T)) = p(h).

3. SPEEDUPS, INVARIANT MEASURES AND ORBIT EQUIVALENCE

In this section, we explore the relationship between speedups and the associ-
ated sets of invariant measures, along with how these relate to orbit equivalence.
We also give a result about speedups and the dimension group.

We begin by comparing the sets of invariant measures for a minimal Cantor
system and a minimal speedup of that Cantor system.

Lemma 3.1. Let (X,T) be a minimal Zd1 -Cantor system. If minimal Zd2 -Cantor system
(X,S) is a speedup of (X,T), thenM(X,T) ⊆M(X,S).

Proof. Let µ ∈M(X,T) and let A ⊆ X be Borel. Fix v ∈ Zd2 and for each w ∈ Zd1 ,
let Aw = {x ∈ A : Sv(x) = Tw(x)}. Notice that {Aw : w ∈ Zd1} is a Borel
partition of A and since Sv is a homeomorphism, {Tw(Aw) : w ∈ Zd1} must
partition Sv(A). Therefore:

µ(Sv(A)) = µ

 ⊔
w∈Zd1

Tw(Aw)


=
∑

w∈Zd1

µ(Tw(Aw))

=
∑

w∈Zd1

µ(Aw)

= µ

 ⊔
w∈Zd1

Aw


= µ(A).

Thus µ ∈M(X,S) as desired. �

We need only slightly modify this to find the relationship between the sets of
invariant measures of two minimal Cantor systems when one is conjugate to a
speedup of the other.

Lemma 3.2. Let (X1,T1) be a minimal Zd1 -Cantor system with speedup (X1,S) that is
a minimal Zd2 -Cantor system. Suppose (X1,S) is conjugate to (X2,T2). Then there is a
homeomorphism F : X1 → X2 such that F ∗ :M(X1,T1)→M(X2,T2) is injective.
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Proof. Let F be a homeomorphism F : X1 → X2 such that F ◦ Sv = Tv
2 ◦ F , as

given to us by the conjugacy between (X1,S) and (X2,T2). We know by Lemma
3.1 that M(X1,T1) ⊆ M(X1,S). Given µ ∈ M(X1,T1) and Borel set A ⊆ X2,
note that

F ∗ (µ) (Tv
2 A) = µ

(
F−1 (Tv

2 A)
)

= µ
(
Sv
(
F−1A

))
= µ

(
F−1(A)

)
= F ∗ (µ) (A),

and thus F ∗ does send measures inM(X1,T1) toM(X2,T2). If µ, ν ∈M(X1,T1)
are such that µ 6= ν, then there is some Borel set A ⊆ X1 with µ(A) 6= ν(A). But
then F ∗(µ) and F ∗(ν) give different values to the Borel set F (A) ⊆ X2, showing
that F ∗ is injective. �

If the systems mentioned in Lemma 3.1 are uniquely ergodic, then we can
rephrase that result as follows.

Corollary 3.3. Let (X,T, µ) be a uniquely ergodic, minimal Zd1 -Cantor system. If
uniquely ergodic, minimal Zd2 -Cantor system (X,S, ν) is a speedup of (X,T), then

(1) µ = ν; and
(2) (X,S) and (X,T) share the same clopen value set, meaning

{µ(E) : E ⊆ X is clopen} = {ν(E) : E ⊆ X is clopen}.

If, in addition, the systems have one-dimensional actions, then we can say even
more:

Corollary 3.4. Let (X,T ) be a uniquely ergodic, minimal Z-Cantor system. If uniquely
ergodic, minimal Z-Cantor system (X,S) is a speedup of (X,T ), then (X,S) and (X,T )
are orbit equivalent.

Proof. This follows from Theorem 2.2 in [GPS]. �

And if the uniquely ergodic, minimal Z-Cantor systems are in fact odometers,
we get an even stronger result:

Corollary 3.5. Let (X1, T1) and (X2, T2) be two Z-odometers. If (X2, T2) is conjugate
to a speedup of (X1, T1), then (X1, T1) and (X2, T2) are themselves conjugate.

Proof. (X1, T1) and (X2, T2) are orbit equivalent by Corollary 3.4. Orbit equivalent
Z-odometers are isomorphic, and therefore conjugate, by the rigidity theorem of
Boyle and Tomiyama [BT] (see also Corollary 5.9 in [GPS3]). �

However, our main interest is in higher-dimensional odometers. We summarize
what we know thus far for that context.

Theorem 3.6. Let (X1,T1, µ1) be a Zd1 -odometer and let (X2,T2, µ2) be a Zd2 -odometer.
Let C ⊆ Zd1 be any cone. Then, for the following statements:

(1) There is a C-speedup of (X1,T1) that is conjugate to (X2,T2).
(2) There is a homeomorphism F : X1 → X2 such that F ∗(µ1) = µ2.
(3) (X1,T1) and (X2,T2) are orbit equivalent.
(4) (X1,T1) and (X2,T2) have the same clopen value sets.

we have the implications (1)⇒ (2)⇔ (3)⇔ (4).

Proof. (1)⇒ (2) comes from Lemma 3.2, together with the fact that odometers are
uniquely ergodic. The equivalence of (2), (3) and (4) follows from Corollaries 2.6
and 2.7 of [GMPS]. �
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In the next section we will prove a partial converse to this theorem, where we
must assume d2 = 1. But first we recall that the invariant measures for (X,T)
correspond to states on K0(X,T). These in turn induce states on the dimension
group G(X,T ) = K0(X,T)/Inf(K0(X,T)) and thus Lemma 3.1 suggests a con-
nection between speedups and maps between the dimension groups. The precise
nature of this relationship is as follows:

Theorem 3.7. Let (X1,T1) be a minimal Zd1 -Cantor system with dimension groupG1 =
C(X1,Z)/ZT1

. Let (X2,T2) be a minimal Zd2−Cantor system, with dimension group
G2 = C(X2,Z)/ZT2

.
If there is a speedup of T1 conjugate to T2, then there is a surjective group homo-

morphism ϕ : (G2, G
+
2 , 1 + ZT2

) → (G1, G
+
1 , 1 + ZT1

) such that ϕ(G+
2 ) = G+

1 and
ϕ(1 + ZT2

) = 1 + ZT1
.

Proof. Let S be the speedup of T1 conjugate to T2. Let G = C(X1,Z)/ZS so that
(G,G+, 1+ZS) is the unital dimension group associated to (X1,S). The conjugacy
between (X1,S) and (X2,T2) induces a unital dimension group isomorphism ϕ1 :
(G2, G

+
2 , 1 + ZT2

)→ (G,G+, 1 + ZS). Define ϕ2 : (G,G+, 1 + ZS)→ (G1, G
+
1 , 1 +

ZT1
) by

ϕ2(g + ZS) = g + ZT1
.

By Lemma 3.1,M(X,T1) ⊆ M(X,S), so ZS ≤ ZT1 . Therefore ϕ2 is well-defined
and surjective. The function ϕ = ϕ2 ◦ ϕ1 gives the desired group homomorphism.

�

4. A CONVERSE OF THEOREM 3.6

In this section, we prove that the converse of (1)⇒ (2,3,4) of Theorem 3.6 holds
when d2 = 1. This will be Theorem 4.3; we first need a pair of preliminary lemmas:

Lemma 4.1. Let (X,T, µ) be a Zd-odometer.
(1) Given two disjoint, clopen subsets A,B ⊆ X with µ(A) ≤ µ(B), there exists a

clopen subset B′ ⊆ B with µ(A) = µ(B′).
(2) Given two disjoint, clopen subsets A,B ⊆ X with µ(A) = µ(B) and any par-

tition of A into clopen subsets A1, ..., An, there is a partition of B into clopen
subsets B1, ..., Bn with µ(Aj) = µ(Bj) for all j.

Proof. Let {Pn} denote the sequence of K-R partitions for (X,T) coming from The-
orem 2.12. As this sequence generates the topology of X , we can write the two
clopen sets A and B as unions of atoms from the Pn’s. But A and B are also closed
subsets of the compact setX and thus are themselves compact sets. This means the
union of atoms covering A and B have finite subcovers, meaning we can choose
N ∈ N such that A and B are both unions of atoms of PN .

Furthermore, since µ(A) ≤ µ(B), and sincePN consists of equal-measure atoms,
the number of atoms of PN whose union is A (say a) must be less than or equal
the number of atoms of PN whose union is B. Choose a of the atoms of PN com-
prising B, and let B′ be the union of those atoms. This proves (1), and statement
(2) clearly follows. �

Lemma 4.2. Fix a cone C ⊆ Zd, and suppose that (X,T, µ) is a Zd-odometer. Given two
disjoint, clopen subsets of A,B ⊆ X of equal positive measure, then there is a function
p : A→ C such that Tp : A

∼=→ B.
Furthermore, given xA ∈ A and xB ∈ B, p can be chosen so that Tp(xA) 6= xB .
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Proof. Let {Pn} denote the sequence of K-R partitions for (X,T) coming from The-
orem 2.12. As in the proof of Lemma 4.1, we can choose N ∈ N such that A and
B are both unions of atoms of PN , and since µ(A) = µ(B), the number of atoms
of PN whose union is A must equal the number of atoms of PN whose union is B.
We can thus write, using the notation of Theorem 2.12,

A =

m⊔
j=1

π−1
N (vj +GN ); B =

m⊔
j=1

π−1
N (wj +GN ),

where, without loss of generality, xA ∈ π−1
N (v1 + GN ). For j = 1, choose a vector

p1 ∈ C∩ (w1−v1 +GN ) so that Tp1(xA) 6= xB , and for each j ∈ {2, ...,m}, choose
any vector pj ∈ C∩ (wj − vj +GN ). Then define p : A→ Zd by setting p(x) = pj
whenever x ∈ π−1

N (vj +GN ); we have Tp which maps A homeomorphically to B
as wanted. �

We now come to the aforementioned converse of Theorem 3.6. Essentially, the
proof uses the homeomorphism described in (2) of Theorem 3.6 to mimic the K-R
sequence of partitions for the Z-odometer in the phase space of the other odometer,
and applies Lemma 4.2 to define the speedup on these partition elements. This
argument follows the general framework of [A], with modifications to allow for
higher dimensions.

Theorem 4.3. Let (X1,T1, µ1) be a free Zd-odometer and let (X2, T2, µ2) be a free Z-
odometer. If (X1,T1) and (X2, T2) are orbit equivalent, then for any cone C ⊆ Zd, there
is a C-speedup S of T1 that is topologically conjugate to T2.

Proof. Choose a vector u ∈ C and choose any x0 ∈ X1; let x2 = T−u1 (x0). Let
{A0,n}∞n=0 be a nested, decreasing sequence of clopen sets in X1 with ∩

n
A0,n =

{x0} and diam(A0,n) < 1
2n . Similarly, let {A2,n}∞n=0 be a nested, decreasing se-

quence of clopen sets in X1 with ∩
n
A2,n = {x2} and diam(A2,n) < 1

2n . Without

loss of generality, assume A0,0 ∩ A2,0 = ∅ and that µ1(A0,n) = µ1(A2,n) for every
n.

By the equivalence of (2) and (3) in Theorem 3.6, there is a homeomorphism
F : X1 → X2 such that F ∗(µ1) = µ2.

Main idea of the proof:
We want to mimic the structure of (X2, T2) on X1, so we begin by considering
the sequence of K-R partitions for (X2, T2) described in Theorem 2.12. We denote
this sequence of partitions by {P2(k)}∞k=1; the sets comprising P2(k) are labeled as
{B(k, v) : v ∈ [h2(k)]}. Similarly, let {P1(k)}∞k=1 be the sequence of K-R partitions
for (X1,T1) coming from Theorem 2.12 which, we recall, generates the topology
of X1.

We construct the speedup S by induction, with S being defined on more and
more of X1 at each step. At the end of the induction, we will have defined S at all
points in X1 except for x2 and we will have defined S−1 at all points in X1 except
for x0; we can then set S(x2) = x0 to complete the construction.

Base case: We begin the induction by considering the base case, which consists
of six steps.
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Step 1: choose partition P2(n0) of X2 and copy that partition over to X1 to obtain
Q̃1(0). Fix ε0 such that 0 < ε0 < µ1(A0,0), and then choose n0 > 0 such that the
measure of each atom of P2(n0) is less than ε0. We move the structure given by
P2(n0) onX2 over toX1 by considering, for each v ∈ [h2(n0)]}, the set Ẽ1(0, (1, v)) =

F−1(B2(n0, v)). This collection of sets {Ẽ1(0, (1, v)) : v ∈ [h2(n0)]} forms a parti-
tion of X1 we call Q̃1(0).

A remark regarding our notation: the reason for the extra “1” in the sets com-
prising Q̃1(0) is that all these sets are coming from the first (and only) pretower
comprising the precastle Q̃1(0). Later, there will be multiple (pre)towers, but we
want to be able to use the same notation; for instance, by Ẽ1(k, (α, v)) we mean the
level at height v in the αth tower of the partition of X1 used in the kth induction
step.

Step 2: “Swap” sets in Q̃1(0) to create the partition Q1(0) of X1, and define sets F (0)

and R(0). We next adjust Q̃1(0) so that the resulting partition Q1(0) will have
xq ∈ (Q1(0))q ⊆ Aq,0 for each q ∈ {0, 2}, where we recall that (Q1(0))0 is the
base and (Q1(0))2 is the top of the pretower Q1(0). This adjustment is done by a
procedure we will call “swapping”, and we will repeat this procedure twice, once
for q = 0 and again for q = 2. At the q = 0 step, we will delete from Ẽ1(0, (1, 0))
the points not in the set A(0,0) and then add in points from A(0,0), including x0 if
necessary. More specifically, first define

D0(0) = Ẽ1(0, (1, 0))− A0,0.

We know that

µ1

(
Ẽ1(0, (1, 0))

)
< ε0 ≤ µ1 (A0,0) ,

so by Lemma 4.1, we can choose a clopen set C0(0) ⊆ A0,0− Ẽ1(0, (1, 0)) such that

µ1(C0(0)) = µ1(D0(0))

and such that x0 ∈ C0(0) whenever x0 /∈ Ẽ1(0, (1, 0)).
Basically, we want to swap out D0(0) for C0(0). To do this rigorously, note that

the set C0(0) may intersect a variety of the sets Ẽ1(0, (1, w)) from Q̃1(0). Use this
to partition C0(0) into clopen sets

C0(0, (1, w)) = C0(0) ∩ Ẽ1(0, (1, w)).

We think of (1, w) as the current location of this set in the first (and only) pretower.
Next, use Lemma 4.1 to partition D0(0) into clopen sets {D0(0, (1, w))} such

that
µ1 (D0(0, (1, w))) = µ1 (C0(0, (1, w))) .

We think of the (1, w) as the location this subset of D0(0) will be moved to.
We now wish to exchange D0(0, (1, w)) and C0(0, (1, w)) for all w. This means,

for each Ẽ1(0, (1, x)), some points might be swapped out and others swapped in.
The specifics depend on whether or not Ẽ1(0, (1, x)) = Ẽ1(0, (1, 0)). If it is, set

Ê1(0, (1, x)) =
(
Ẽ1(0, (1, x))

⋃
C0(0)

)
−D0(0).
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Otherwise, set

Ê1(0, (1, x)) =
(
Ẽ1(0, (1, x))− C0(0, (1, x))

)
∪D0(0, (1, x)).

After these changes have been made to create the partition {Ê1(0, (1, v)) : v ∈
[h2(n0)]}, rename the sets in this partition back to {Ẽ1(0, (1, v))} and repeat for the
q = 2 step. That is, let u be such that x2 ∈ Ẽ1(0, (1, u)) and swap out someD2(0) ⊆
Ẽ1(0, (1, h2(n0)− 1)) for some C2(0) ⊆ A2,0 − Ẽ1(0, (1, h2(n0)− 1)), ensuring x2 ∈
C2(0) unless u = h2(n0)− 1. Note that when performing this swapping procedure
for q = 2, we will have Ê(0, (1, 0)) = Ẽ(0, (1, 0)), as this set is already a subset of
A0,0, a set that is disjoint from A2,0.

When this process has been completed, rename the resulting partition

Q1(0) =
{
E1(0, (1, v)) : v ∈ [h2(n0)]

}
and note that this partition of X1 satisfies

xq ∈
(
Q1(0)

)
q
⊆ Aq,0

for all q ∈ {0, 2}.

Define F (0) = ∅ (in the inductive steps, we will use F (k) to record which points
have been swapped, but it is not important to keep track of whether or not points
have been swapped in the base step). Also set R(0) = ∅ (in the inductive steps,
R(k) will denote the set of points where the definition of Sk−1 was altered in the
kth step, but in the base step, there is no S−1 to alter, so R(0) is trivially empty).
This completes the “swapping” procedure.

Step 3: Construct a C-speedup S0 of T1 on the pretower Q1(0). For each v ∈
[h2(n0)− 1], use Lemma 4.2 to construct a map

S0 : E1(0, (1, v))
∼=→ E1(0, (1, v + 1))

such that S0(x) = Tp0(x)(x) for some p0 :
h2(n0)−2⊔
v=0

E1(0, (1, v)) → C. We want

to ensure x0 and x2 do not end up in the same S0-orbit, so toward that end let
x∗ = S

h2(n0)−1
0 (x0). Then, use Lemma 4.2 to construct S0 : E1(0, (1, h2(n0)−2))

∼=→
E1(0, (1, h2(n0) − 1)) such that S0(x) = Tp0(x)(x) for p0 taking values in C, but
with the additional property that S0(x∗) 6= x2. This converts the pretower Q1(0)
into an S0-tower.

Step 4: Refine Q1(0). We make two modifications to the partition Q1(0), based
on constructions described in Section 2.5.4. First, separate the two points x0 and
x2 into distinct towers, creating an S0-castle with two different towers. Second,
to ensure that we end up with a sequence of partitions that generate the topology
of X1, we refine this S0-castle into pure P1(0)-columns. We denote the resulting
partition, which is a refinement of Q1(0) into t(0) many [h2(n0)]-sized S0-towers,
by

Q1(0) = {E1(0, (α, v)) : 1 ≤ α ≤ t(0), v ∈ [h2(n0)]} .
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Step 5: Copy the refinement of Step 4 over to X2. Next, we “copy” the partition
Q1(0) over to X2, producing a refinement of P2(n0) we call Q2(0). To accomplish
this, note that

µ2(B2(n0, 0)) = µ1

(
Ẽ1(0, (1, 0))

)
= µ1

(
E1(0, (1, 0))

)
.

and

E1(0, (1, 0)) =

t(0)⊔
α=1

E1(0, (α, 0)).

Partition B2(n0, 0) into disjoint clopen subsets {E2(0, (α, 0)) : 1 ≤ α ≤ t(0)} such
that for each α, µ1(E1(0, (α, 0))) = µ2(E2(0, (α, 0))). Then let Q2(0) be the castle
refinement of P2(n0) over this partition of B2(n0, 0). We denote this refinement by

Q2(0) = {E2(0, (α, v)) : 1 ≤ α ≤ t(0), v ∈ [h2(n0)]}
and observe that Q2(0) is a T2-castle, i.e. T v2 (E2(0, (α, 0)) = E2(0, (α, v)) for all
1 ≤ α ≤ t(0) and all v ∈ [h2(n0)].

Step 6: Define a partial set-wise conjugacy Φ0. Finally, define Φ0 : Q1(0) → Q2(0)
by setting Φ0(E1(0, (α, v))) = E2(0, (α, v)). This map satisfies

T2 ◦ Φ0 (E1(0, (α, v)) ) = Φ0 ◦ S0 (E1(0, (α, v)) )

for all α ∈ {1, ..., t(0)} and all v ∈ [h2(n0)− 1].

This completes the base case of the proof. Note that we have now defined inte-
gers n0 and t(0), along with partitions Q1(0) of X1 and Q2(0) of X2, subsets F (0)
and R(0) of X1, a “partially-defined speedup” S0 of T1 and a set map Φ0 inter-
twining S0 and T2.

Inductive step: Let k ≥ 1 and suppose we have constructed
(1) nonnegative integers n0 < n1 < ... < nk−1;
(2) positive integers t(0), t(1), t(2), ..., t(k − 1);
(3) subsets F (0), F (1), ..., F (k − 1) of X1 with µ1(F (j)) < 4µ1(A0,j) for j ∈
{0, 1, ..., , k − 1};

(4) subsets R(0), R(1), ..., R(k − 1) of X1;
(5) finite clopen partitions Q1(0),Q1(1), ...,Q1(k − 1) of X1 with

Q1(j) = {E1(j, (α, v)) : 1 ≤ α ≤ t(j), v ∈ [h2(nj)]}
and finite clopen partitions Q2(0),Q2(1), ...,Q2(k − 1) of X2 with

Q2(j) = {E2(j, (α, v)) : 1 ≤ α ≤ t(j), v ∈ [h2(nj)]}
which satisfy, for all j ∈ {0, ..., k − 1}:
(a) Q1(j) refines P1(j);
(b) xq ∈ (Q1(j))q ⊆ Aq,j for q = 0, 2;
(c) Q2(j) refines P2(nj);
(d) Q2(j) is a T2-castle, i.e. T2 : E2(j, (α, v))

∼=→ E2(j, (α, v + 1)) for all α
and all v ∈ [h2(nj)− 1];

(6) homeomorphisms S0, S1, ..., Sk−1, where

Sj : Q1(j)− (Q1(j))2 → Q1(j)− (Q1(j))0

so that, for all j ∈ {0, 1, ..., k − 1}:
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(a) Q1(j) is an Sj-castle;
(b) Sj is a “partially defined C-speedup” of T1, meaning there is a Borel

function pj : Q1(j)− (Q1(j))2 → C so that Sj(x) = T
pj(x)
1 (x);

(c) x0 and x2 are not in the same Sj-orbit;
(d) for every x in the domain of Sj−1, we have pj = pj−1 (i.e. Sj(x) =

Sj−1(x)) unless x ∈ Rj ;
(7) and bijections Φ0,Φ1, ...,Φk−1 where each Φj : Q1(j)→ Q2(j) such that

T2 ◦ Φj(E1(j, (α, v))) = Φj ◦ Sj(E1(j, (α, v)))

for all α ∈ {1, ..., t(j)} and all v ∈ [h2(nj)− 1].
As with the base case, the inductive step itself subdivides into six steps.

Step 1: Choose a partition P2(nk) of X2, refine it with respect to Q2(k − 1) and copy
the refined partition over to X1 to obtain Q̃1(k). Fix εk such that 0 < εk < µ(A0,k) and

8εk

k−1∑
j=0

µ1(A0,j) <
1

3
µ1(A0,k).

Choose nk > nk−1 such that

µ2 (∂P2(nk)) < min

{
εk,

1

3
µ1(A0,k)

}
,

recalling that ∂P2(nk) is the union of the base and top levels of the K-R partition
P2(nk).

At the completion of the (k − 1)th step, we have a partition Q2(k − 1) on X2

where

Q2(k − 1) = {E2(k − 1, (α, v)) : 1 ≤ α ≤ t(k − 1), v ∈ [h2(nk−1)]}.

This partition has t(k − 1) towers, each of height [h2(nk−1)].
The first part of step 1 is to refine P2(nk) into pure Q2(k − 1)-columns; this

divides P2(nk)–which is one tower of height h2(nk)–into many (say s(k)) towers,
denoted by

P̃2(nk) =
{
B̃2(k, (β,w)) : 1 ≤ β ≤ s(k), w ∈ [h2(nk)]

}
.

We can also think of this first part of step 1 as dividing the towers of Q2(k − 1)
into sub-towers, which are then grouped together to form the s(k) subdivisions of
P2(nk) comprising P̃2(nk). We notate this as follows: each set E2(k− 1, (α, v)), for
1 ≤ α ≤ t(k − 1) and v ∈ [h2(nk−1)], is subdivided into

E2(k − 1, (α, v)) =

m(α)⊔
j=1

E2(k − 1, (α, v), j)

where for each (α, v) and j there exists β = β((α, v), j) and w = w((α, v), j) such
that

E2(k − 1, (α, v), j) = B̃2(k, (β,w)).

Importantly, the map ((α, v), j) 7→ (β,w) is a bijection, since P̃2(nk) consists of
pure Q2(k − 1)-columns.
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The second part of step 1 is to partition and rearrangeQ1(k−1) in an analogous
way, creating a partition Q̃1(k) of X1. More specifically, for every α, 1 ≤ α ≤
t(k − 1), use Lemma 4.1 to partition E1(k − 1, (α, 0)) into disjoint clopen subsets
{E1(k − 1, (α, 0), j), 1 ≤ j ≤ m(α)}where

µ1 (E1(k − 1, (α, 0), j) ) = µ2 (E2(k − 1, (α, 0), j) ) .

Then, let {E1(k − 1, (α, v), j) : 1 ≤ α ≤ t(k − 1), 1 ≤ j ≤ m(α), v ∈ [h2(nk−1)] }
be the castle refinement of Q1(k − 1) over these partitions. Finally, we define the
partition Q̃1(k) of X1 into s(k) pretowers of height h2(nk) as follows: given β =

β((α, v), j) ∈ {1, ..., s(k)} andw = w((α, v), j) ∈ [h2(nk)], we define Ẽ1(k, (β,w)) =
E1(k, (α, v), j). We may assume that the two special points x0 and x2 are in two
different pretowers of the precastle Q̃1(k); if not, separate them as described in
Section 2.5.4.

The third part of Step 1 is to make some adjustments to Q̃1(k), ensuring that
xq ∈ (Q̃1(k))q for q = 0, 2. To get started with this part, notice that for every level
Ẽ1(k, (β,w)) of Q̃1(k), there is v ∈ [h2(nk−1)] and an α ∈ {1, ..., t(k − 1)} such that

Ẽ1(k, (β,w)) ⊆ E1(k − 1, (α, v)).

Now, consider the pretower of Q̃1(k) containing x0; suppose this pretower is

{Ẽ1(k, (β0, w)) : w ∈ [h2(nk)]}

and that x0 ∈ Ẽ1(k, (β0, w0)). Let γ0 be so that

x0 ∈ Ẽ1(k, (β0, w0)) ⊆ E1(k − 1, (γ0, 0)).

Now, we “change the base” of the tower of Q̃1(k) containing x0 by setting, for each
w ∈ [h2(nk)], ˜̃

E1(k, (β0, w)) = Ẽ1(k, (β0, w + w0 mod h2(nk)))

where by “x mod h” we mean the unique integer in [h] which is congruent to x
modulo h. Renaming the sets in this tower as Ẽ1(k, (α, v)), we now have that

x0 ∈
(
Q̃1(k)

)
0
.

Repeat the procedure described in the preceding paragraph a second time (if
necessary) on a different tower in Q̃1(k), “changing its base” so that after the al-
teration, x2 ∈ (Q̃1(k))2.

Step 2: “Swap” sets in Q̃1(k) to create the partitionQ1(k) and adjust Sk−1 as needed.
We next adjust Q̃1(k) so that the resulting partition Q1(k) will have sets such that
(Q1(k))q ⊂ Aq,k for q = 0, 2. This adjustment is done analogously to how it was
done in the base case, using the “swapping” procedure twice, once for q = 0 and
once for q = 2. At the qth step, for each Ẽ1(k, (β,w)) ∈ (Q̃1(k))q , we first delete
from it the points in Ẽ1(k, (β,w)) that are not in the setAq,k and then add in points
from Aq,k not already used in another set Ẽ1(k, (β,w′)) ∈ (Q̃1(k))q . After this al-
teration, we will end up with a new partition Q1(k) which has sets of the same
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measure and configuration as Q̃1(k), but has an additional property (akin to Prop-
erty 5(b) from the induction hypothesis) that xq ∈

(
Q1(k)

)
q
⊆ Aq,k.

The details are the same as the base case, but are repeated here to establish the
notation needed to adjust Sk−1. First, let q = 0 and define

Dq(k) =
(
Q̃1(k)

)
q
− Aq,k.

We know
µ1

(
∂Q̃1(k)

)
= µ2 (∂P2(nk)) <

1

3
µ1(Aq,k),

so by Lemma 4.1 we can choose a clopen set

Cq(k) ⊆ Aq,k − ∂Q̃1(k)

such that
µ1(Cq(k)) = µ1(Dq(k)).

We next swap out Dq(k) for Cq(k), exactly the way this swapping was done
in the base case (so the details are omitted). After repeating this same swapping
procedure for q = 2, define

F (k) =
⋃

q∈{0,2}

(
Cq(k)

⋃
Dq(k)

)
;

so that F (k) is the set of all points which are swapped during this step. Observe
that

µ1 (F (k)) ≤ 2
∑

q∈{0,2}

µ1 (Aq,k) = 4µ1 (A0,k) ;

establishing statement (3) of the induction.

When this process has been completed for q = 0, 2, rename the resulting parti-
tion

Q1(k) = {E1(k, (α, v)) : 1 ≤ α ≤ s(k), v ∈ [h2(nk)]}
and note that this partition of X1 satisfies xq ∈

(
Q1(k)

)
q
⊆ Aq,k for q = 0, 2.

Unlike the base case, we need to adjust the definition of Sk−1 to account for the
swapping that has taken place.

Let
Q̌1(k) = {Ě1(k, (α, v)) : 1 ≤ α ≤ r(k), v ∈ [h2(nk)]}

be the castle refinement of Q1(k) into pure {F (k), F (k)C}-columns. Fix one pre-
tower in this partition, say

{Ě1(k, (α, v)) : v ∈ [h2(nk)]}.
This pretower divides into blocks of length h2(nk−1), each based at some Ě1(k, (1, w))
with w a multiple of h2(nk−1). For those blocks with no levels contained in F (k),
the block forms a Sk−1-tower and we do not alter the definition of Sk−1.

However, suppose that a block has one or more levels which are subsets of
F (k). For instance, suppose there is exactly one such level, at height v. We can
think of this block as looking something like the figure below (where the block
is arranged sideways to save space). Notice that since Ě1(k, (1, v)) was swapped
from its previous location, the Sk−1 defined in the prior induction step no longer
maps to and/or from this set as wanted:
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Ě1(k, (1, w))

��

Ě1(k, (1, w + h2(nk−1)− 1))

��
•

Sk−1 // •
Sk−1 // • • •

Sk−1 // •
Sk−1 // •

Ě1(k, (1, v))

CC

Use Lemma 4.2 to (re)define Sk−1 : Ě1(k, (1, v − 1))
∼=→ Ě1(k, (1, v)) and/or

Sk−1 : Ě1(k, (1, v))
∼=→ Ě1(k, (1, v + 1)), so that Sk−1 = T

p(x)
1 for p taking values

in C (the places where Sk−1 may have been redefined are indicated by the dashed
arrows below). We remark that if Ě1(k, (1, v)) is the base or top of this block, Sk−1

only needs to be redefined on one set.

•
Sk−1 // •

Sk−1 // •
Sk−1 // •

Sk−1 // •
Sk−1 // •

Sk−1 // •

Ě1(k, (1, v))

LL

Repeat the procedure outlined above for each level of each block comprising
the tower which is a subset of F (k).

Let R(k) be the set of all points in X1 such that Sk−1 has been redefined via this
procedure (this set is the union of the Ě1(k, (1, v))s and the Ě1(k, (1, v − 1))s over
the v such that Ě1(k, (1, v)) ⊆ F (k)). This completes the “swapping” procedure
and the readjustment of Sk−1.

Step 3: Construct the partial speedup Sk on the pretower Q1(k). Note that Q1(k)
consists of s(k) pretowers, each of which is made up of blocks of length h2(nk−1)
on which Sk−1 is defined. In other words, each pretower consists of unions of
smaller Sk−1-towers, as indicated in the diagram below (again, the tower is pre-
sented horizontally).

•
Sk−1 // •

Sk−1 // •
Sk−1 // • •

Sk−1 // •
Sk−1 // •

Sk−1 // •
Notice the heights of the bases of the smaller towers are integers in [h2(nk)] that

are multiples of h2(nk−1).
For each v ∈ [h2(nk)−1], define Sk : E1(k, (α, v))

∼=→ E1(k, (α, v+1)) to coincide
with Sk−1 if v + 1 is not a multiple of h2(nk−1). If v + 1 is a multiple of h2(nk−1),
use Lemma 4.2 so that Sk = T

p(x)
1 for p taking values in C. This yields the partial

speedup Sk and makes Q1(k) into a Sk-castle, establishing (6) of the induction.

Step 4: Refine Q1(k). Denote by

Q1(k) = {E1(k, (α, v)) : 1 ≤ α ≤ t(k), v ∈ [h2(nk)]} ;

the refinement of Q1(k) into pure P1(k)-columns. This partition has t(k)-many
Sk-towers, each of height [h2(nk)]. (5a) of the induction is immediate, and (5b)
follows from our work in Step 2 above.
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Step 5: Copy the refinement of Step 4 over to X2. Recall that we had, for each α,

µ2

(
B̃2(nk, (α, 0))

)
= µ1

(
Ẽ1(k, (α, 0))

)
= µ1

(
E1(k, (α, 0))

)
.

Define, for each α, the sets {E1(k, (α, 0), j) : 1 ≤ j ≤ q(α)}; these are the atoms
of Q1(k) contained in the atom E1(k, (α, 0)) which belongs to the base of Q1(k).

Thus E1(k, (α, 0)) =
q(α)⊔
j=1

E1(k, (α, 0), j) gives different notation for the refinement

constructed in Step 4. Then choose disjoint clopen subsets {E2(k, (α, 0), j)}, whose
union is all of B̃2(nk, (α, 0)), with µ2(E2(k, (α, 0), j) = µ1(E1(k, (α, 0), j). Denote
by

Q2(k) = {E2(k, (α, v)) : 1 ≤ α ≤ t(k), v ∈ [h2(nk)]}
the castle refinement of P̃2(nk) over these partitions; we now have (5c) and (5d) of
the induction.

Step 6: Define the partial set-wise conjugacy Φl. Finally, define Φk : Q1(k)→ Q2(k)
by setting Φk (E1(k, (α, v))) = E2(k, (α, v)). This map satisfies

T2 ◦ Φk (E1(k, (α, v)) ) = Φk ◦ Sk (E1(k, (α, v)) )

for all α ∈ {1, ..., t(k)} and all v ∈ [h2(nk)−1]. This establishes (7) of the induction,
and completes the induction step.

Conclusion: After completing the induction procedure, we have constructed:
(1) subsets R(0), R(1), R(2), ... of X1, where each R(k) is the set of points

where Sk does not equal Sk−1;
(2) finite clopen partitions Q1(0),Q1(1),Q1(2), ... which refine and generate

the topology of X1 with

Q1(k) = {E1(k, (α, v)) : 1 ≤ α ≤ t(k), v ∈ [h2(nk)]}
and finite clopen partitionsQ2(0),Q2(1),Q2(2), ... which refine and gener-
ate the topology of X2 with

Q2(k) = {E2(k, (α, v)) : 1 ≤ α ≤ t(k), v ∈ [h2(nk)]}
which satisfy, for all k:
(a) xq ∈ (Q1(k))q ⊆ Aq,k for q = 0, 2;
(b) Q2(k) is a T2-castle;
(c) Q1(k) is an Sk-castle, where Sk(x) = T

p(x)
1 (x) for p taking values in C

and x0 and x2 are never in the same Sk-orbit; and
(3) bijections Φ0,Φ1,Φ2, ... where each Φk : Q1(k)→ Q2(k) is such that

T2 ◦ Φk (E1(k, (α, v))) = Φk ◦ Sk (E1(k, (α, v)))

for all α ∈ {1, ..., t(k)} and all v ∈ [h2(nk)− 1].
We next claim that no x belongs to infinitely many R(k). We first show this

is true for the point x0. Based on the third part of Step 1 of the induction proce-
dure, we know x0 always belongs to (Q̃1(k))0. Since x0 ∈ A0,k for every k, it is
never swapped in Step 2 of the induction procedure. It is possible that for some
k, Sk−1(x0) is part of a set swapped in Step 2 of the induction procedure, neces-
sitating that Sk(x0) 6= Sk−1(x0), i.e. x0 ∈ R(k). If this is the case, then the set
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that contained Sk−1(x0) would have been swapped with a set disjoint from A0,k

meaning Sk(x0) /∈ A0,k and thus Sk(x0) /∈ A0,k′ for every k′ ≥ k. This would mean
Sk(x0) /∈ F (k′) for every k′ > k and so x0 /∈ R(k′) for every k′ > k.

We next note that x2 belongs to no R(k). This is because Sk(x2) is not even
defined for any k, since x2 is in the top of every Q̃1(k) after the third part of Step 1
of the induction.

Last, we consider x /∈ {x0, x2}. Then for some k, x /∈ A0,k

⋃
A2,k. At the kth

induction stage and beyond, if x /∈ ∂Q̃1(k), xwould never be swapped into ∂Q̃1(k)

(since it isn’t in A0,k or A2,k). If x ∈ ∂Q̃1(k) at the kth induction stage, x would
be swapped out of its location at that time (since it isn’t in A0,k or A2,k), but then
for l > k, x /∈ A0,l ∪ A0,l so x would never be swapped back into ∂Q̃1(l). Thus
x /∈ F (l) for every l > k. Therefore, the only way x ∈ R(l) is if Sl−1(x) ∈ F (l)
for some l > k. But this can only happen once, analagous to the situation of x0.
Therefore there is an L so that x /∈ R(l) for l > L.

Since no x belongs to infinitely manyR(k), and because for x /∈ R(k), Sk−1(x) =
Sk(x), and since the boundaries of Q1(l) shrink to the two exceptional points
{x0, x2} mentioned earlier, we see that for every x other than x2, we can define
S : X − {x2} → X − {x0} by

S(x) =

∞⋂
j=0

∞⋃
k=j

Sk(x).

Extend the definition of S to the exceptional point x2 by defining S(x2) = x0. By
the way these points were originally chosen, we know that this specially defined
S is of the form Tp

1 for p : X1 → C. Thus we obtain a C-speedup S of (X1,T1)
defined on the entirety of X1.

Now, for any point x ∈ X , x is only swapped at finitely many induction steps.
Suppose x is not swapped after the kth induction step; since Q1(l) refine and gen-
erate, every x ∈ X1 is determined by the sequence of atoms ofQ1(l) (starting with
l = k + 1) to which it belongs. Call those atoms Q1(l)(x). Then, define

Φ(x) =

∞⋂
l=k+1

Φl(Q1(l)(x));

since the atoms of Q2(l) also refine and generate, Φ is a homeomorphism from X1

to X2. By property (3) above, Φ ◦ S = T2 ◦ Φ, meaning that we have a C-speedup
S of (X1,T1) conjugate to (X2, T2) as wanted.

�

There are two directions in which one might hope to generalize the result of
Theorem 4.3. We end this section by discussing the challenges involved.

First, ideally one would be able to conclude an analogous result for arbitrary
minimal Zd-Cantor systems (X1,T1) (as opposed to just Zd-odometers). A major
problem here is that one needs an analogue of Lemma 3.1, which says that given
two subsets of equal measure, there is a function p taking values in C such that
Tp

1 homeomorphically maps one subset to the other. When d = 1, such a result
exists (see Lemma 3.16 of [A]). But the proof uses induced transformations (first
return maps to subsets of the phase space), which are not well-defined for minimal
actions of Zd when d ≥ 2.
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Second, we conjecture that our Theorem 4.3 is valid even if T2 is a higher-
dimensional odometer action. The problem here is that while K-R partitions ex-
ist for Zd-odometers (and indeed, for all minimal Zd-Cantor systems [For]), the
boundaries of the K-R partitions decrease to an uncountable collection of points
(as opposed to our situation in Theorem 4.3, where we have just the two excep-
tional points x0 and x2). Our argument does not allow for this, as we have no
method of defining one or more generators of the speedup S on this uncountable
boundary.

5. BOUNDED SPEEDUPS OF ODOMETERS

We now turn our attention to speedups where the speedup cocycle is bounded.

Definition 5.1. Suppose S : Zd2 y X is a speedup of T : Zd1 y X with speedup
cocycle p. We say the speedup is bounded if for each v ∈ Zd2 , the set {p(x,v) : x ∈ X}
is a bounded subset of Zd1 .

First, we note the connection between boundedness of a speedup and continu-
ity of the speedup cocycle:

Lemma 5.2. Let T : Zd1 y X be a Zd-Cantor system and suppose S : Zd2 y X is a
speedup of T. The following are equivalent:

(1) The speedup is bounded.
(2) For each j ∈ {1, ..., d2},the sets {p(x, ej) : x ∈ X} are bounded.
(3) For each j ∈ {1, ..., d2}, the function x 7→ p(x, ej) is continuous.
(4) For each v ∈ Zd2 , the function x 7→ p(x,v) is continuous.
(5) The speedup cocycle p : X × Zd2 → Zd1 is continuous.

Proof. It is obvious that (1) implies (2); the fact that (2) implies (1) follows from the
cocycle equation; and clearly conditions (3), (4) and (5) are equivalent. We have (3)
implies (2), because under any continuous function, X is mapped to a compact,
hence bounded, subset of the codomain.

Finally, to show that (2) implies (3), fix j and note that if {p(x, ej) : x ∈ X}

is bounded, then there is a finite set {p1, ...,pn} ⊆ Zd so that X =
n⊔
i=1

{x ∈ X :

p(x, ej) = pi}. By the proof of Theorem 2.3, each set in this union is closed;
since the union is finite, each set is also open, making x 7→ p(x, ej) continuous
as wanted. �

In [AAO], the authors prove that a Z-action that is a minimal bounded speedup
of a Z-odometer is an odometer which is conjugate to the original odometer. We
prove below in Theorem 5.3 that a minimal bounded speedup of a Zd-odometer is
an odometer. In light of Theorem 3.6, this speedup must be orbit equivalent to the
original odometer. However, we prove in Theorem 5.5 that a bounded speedup of
a Zd-odometer is not necessarily isomorphic, and thus not necessarily conjugate,
to the original system, even if it is also an action of Zd.

Theorem 5.3. Let (XG, σG) be a free Zd1 -odometer and suppose S : Zd2 y X is a
minimal speedup of σG, where the speedup cocycle p is bounded. Then (XG,S) is a free
Zd2 -odometer.

Proof. We first find a decreasing sequence of subgroups H = {H1, H2, H3, ...}with
appropriate properties, so that by Definition 2.4 and Theorem 2.5, (XH, σH) is a
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free, minimal Zd2 -odometer. The proof is then concluded by establishing that
(XH, σH) is conjugate to (XG,S).

To find the subgroups making up H, we start by considering p : XG × Zd2 →
Zd1 , the speedup cocycle generating S from σG. As XG is compact and for each
v ∈ Zd2 the map x 7→ p(x,v) is continuous, each such map must also be uniformly
continuous.

Now consider the sequence {Pj} of partitions of XG as described in Theorem
2.12. As the maximum diameter of any atom of Pj tends to zero as j increases,
there is J such that for all j ≥ J , whenever x and y lie in the same atom of Pj ,
p(x,v) = p(y,v) for all v ∈ Zd2 . So without any loss of generality, we can assume
J = 1 by renaming our sequence G from {G1, G2, ...} to {GJ , GJ+1, GJ+2, ...}. This
produces a conjugate version of the original odometer σG by Lemma 1 of [Cor].

Recalling from the proof of Theorem 2.12 that Pj = {B(j,v) : v ∈ [mj ]} and
noting that σw

G(B(j,v)) = B(j,x) where x ∈ [mj ] is congruent to v + w mod Gj ,
we see that for each w ∈ Zd1 , σw

G takes atoms of Pj to atoms of Pj . Since p is
constant on elements of Pj , it follows that σp(x,v)

G = Sv(x) also takes atoms of Pj
to atoms of Pj for each v ∈ Zd2 . In other words, for each v ∈ Zd2 and any atom A
of Pj , Sv(A) is also an atom of Pj . As each Sv is a homeomorphism, this means
that for every j, each Sv simply permutes the elements of Pj . Letting Ej denote
the atom of Pj containing the identity element 0 of the group XG, we can then
define

Hj = {h ∈ Zd2 : Sh(Ej) = Ej}.

It is clear that each Hj is a subgroup of Zd2 .

Claim 1: For all j, Hj ≥ Hj+1.
Suppose h ∈ Hj+1. This means Sh(Ej+1) = Ej+1. Since Ej+1 ⊆ Ej , it fol-

lows that Sh(Ej) ∩ Ej ⊇ Ej+1 6= ∅. But from our earlier observation that each Sv

permutes the atoms of Pj , we can conclude that Sh(Ej) = Ej and so h ∈ Hj as
desired.

Claim 2:
⋂
j Hj = {0}.

Let w ∈
⋂
j Hj . Then Sw(Ej) = Ej for all j, which means that Sw(0) = 0. If

w 6= 0, this means that σv
G(0) = 0 for some nonzero vector v ∈ Zd1 , contradicting

the freeness of σG.

Claim 3: Hj is a finite-index subgroup of Zd2 .
We need to show there are only finitely many cosets of Hj . We know there are

only finitely many atoms in Pj : denote them by A0 = Ej , A1, ... , Ak. Since S is
minimal, we can find v0, v1, ..., vk such that Svi(Ej) = Ai. Our claim will then
be proved by showing that the cosets of Hj are exactly {vi + Hj : 0 ≤ i ≤ k}. So
let w ∈ Zd2 : we want to show that w is in one of {vi + Hj : 0 ≤ i ≤ k}. Since
Sw permutes the elements of Pj , we know Sw(Ej) is one of those atoms of Pj ,
say Ai. We also know that S−vi(Ai) = Ej . Thus S−vi+w(Ej) = Ej , meaning that
−vi + w ∈ Hj , i.e. w ∈ vi +Hj as wanted.

In light of Claims 1, 2, and 3, we can conclude that (XH, σH) is a free Zd2 -
odometer. What remains is to find φ : XG → XH with φ ◦ Sv = σv

H ◦ φ for each
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v ∈ Zd2 , which we will build out of a sequence of maps φj : Pj → Zd2/Hj . To
define φj , let A be an atom in Pj and set

Hj(Ej , A) = {h ∈ Zd2 : Sh(Ej) = A}.

We then set φj(A) = h + Hj where h ∈ Hj(Ej , A). This map is well-defined be-
cause of the following:

Claim 4: Fix A to be an atom in Pj and h1 and h2 to be any two elements in
Hj(Ej , A). Then h1 +Hj = h2 +Hj .

We need to show that h1 − h2 ∈ Hj . But since Sh1(Ej) = A and Sh2(Ej) = A
by the definition of Hj(Ej , A), we immediately see that Sh1−h2(Ej) = Ej , which
gives us the result.

The map φj respects the Zd2 action in the following way:

Claim 5: For all j ∈ N, all A ∈ Pj and all v ∈ Zd2 , φj(Sv(A)) = φj(A) +v (where
the addition is modulo Hj).

Let w ∈ φj(Sv(A)). So w ∈ h+Hj where h ∈ Hj(Ej ,S
v(A)), meaning Sh(Ej) =

Sv(A). But then Sh−v(Ej) = A so h − v ∈ Hj(Ej , A). On the other hand, w ∈
h+Hj tells us that w− v ∈ h− v +Hj and thus w− v ∈ φj(A) or w ∈ v + φj(A),
as wanted.

For the other direction, let w ∈ v+φj(A) = v+(h+Hj) for some h ∈ Hj(Ej , A).
But if Sh(Ej) = A then Sh+v(Ej) = Sv(A) and we have h+v ∈ Hj(Ej ,S

vA). This
tells us that w ∈ (v + h) +Hj = φj(S

v(A)), as wanted.

We are now ready to define φ : XG → XH. Given x ∈ XG, let Pj(x) be the atom
of Pj containing x. Note that x is determined by this decreasing sequence of atoms
of Pj . We can then define

φ(x) = (φ1(P1(x)), φ2(P2(x)), ... ).

The remaining claims show that φ is the wanted conjugacy.

Claim 6: φ(x) ∈ XH.
By definition, φj(Pj(x)) ∈ Zd2/Hj for all j, so we need only show that for each

j,
qj(φj+1(Pj+1(x)) = φj(Pj(x)),

where we recall that qj : Zd2/Hj+1 → Zd2/Hj is the quotient map. In other
words, if we denote φj+1(Pj+1(x)) by k + Hj+1 and φj(Pj(x)) by h + Hj , we
just need to show that k ≡ h mod Hj . To do this, note that Ej+1 ⊆ Ej and
Pj+1(x) ⊆ Pj(x). Since by definition of φj+1 we have that Sk(Ej+1) = Pj+1(x),
this means Sk(Ej) ∩ Pj(x) 6= ∅. Since Sk simply permutes the elements of Pj , we
have Sk(Ej) = Pj(x). We also know by definition of φj that h ∈ Hj(Ej ,Pj(x)) or
Sh(Ej) = Pj(x). Thus Sk−h(Ej) = Ej and k− h ∈ Hj , as needed.

Claim 7: φ is injective.
We first show that each φj is injective. Let A,B ∈ Pj . Denote φj(A) by h1 +Hj

and φj(B) by h2 + Hj , so Sh1(Ej) = A and Sh2(Ej) = B. If φj(A) = φj(B)
then we must have h1 − h2 ∈ Hj or Sh1−h2(Ej) = Ej . We can rewrite this as
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S−h2+h1(Ej) = S−h2(A) = Ej or Sh2(Ej) = A. But then we have that A = B and
thus φ is injective.

We now consider x, y ∈ XG. If φ(x) = φ(y) then we have φj(Pj(x)) = φj(Pj(y))
for every j. By the above this means Pj(x) = Pj(y) for every j, which can only
happen if x = y.

Claim 8: φ is surjective.
We first show that each φj is surjective. Let h +Hj ∈ Zd2/Hj . We know Sh(Ej)

is some atom of Pj : call it A. Thus h ∈ Hj(Ej , A) and φj(A) = h +Hj , as wanted.
Now consider (x1, x2, ...) ∈ XH. Since xj ∈ Zd2/Hj , we can write it as xj =

hj + Hj and, by the above, find Aj such that φj(Aj) = hj + Hj . Since we have
qj(xj+1) = xj for every j by assumption, we then have hj+1 ≡ hj mod Hj and so
Shj+1(Ej) = Aj as well as Shj+1(Ej+1) = Aj+1. But we know that Ej+1 ⊆ Ej and
thus we must have Aj+1 ⊆ Aj , meaning {Aj} is a decreasing sequence of nested
atoms. By Theorem 2.12 there is exactly one point x ∈ ∩jAj and we then have
φ(x) = (x1, x2, ...) as wanted.

Claim 9: φ and φ−1 are continuous.
This follows because the image and pre-image of any cylinder set is a cylinder

set.

Claim 10: φ intertwines the actions of S and σH.
If x is an element ofA ∈ Pj , then Sv(x) is an element of Sv(A) and we have that

Pj(Sv(x)) = Sv(Pj(x)). Thus

φ(Sv(x)) = (φ1(P1(Sv(x))), φ2(P2(Sv(x))), ... )

= (φ1(Sv(P1(x))), φ2(Sv(P2(x))), ... )

= (v + φ1(P1(x)), v + φ2(P2(x)), ... )

(by applying Claim 5)

= σv
H(φ1(P1(x)), φ2(P2(x), ... )

= σv
H(φ(x)).

Thus φ gives a conjugacy between (XH, σH) and (XG,S), making S an odometer
as wanted.

�

Our work yields the following result in dimension 1, first proven by Alvin, Ash
and Ormes [AAO] using combinatorial methods:

Corollary 5.4. Let (X,T ) be a Z-odometer and suppose S is a minimal speedup of T ,
where the speedup function p is bounded. Then (X,S) is a Z-odometer, conjugate to
(X,T ).

Proof. By Theorem 5.3, (X,S) is a Z-odometer. The result then follows from Corol-
lary 3.5. �

Despite the fact that the bounded speedup of an odometer is an odometer, in
the higher-dimensional case the speedup is not necessarily conjugate, nor even iso-
morphic, to the original odometer. We show this in the following theorem where
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we find a Z2-odometer and construct a bounded speedup of it that is not isomor-
phic to the original odometer.

Theorem 5.5. There exists a pair of nonisomorphic Z2-odometers, for which one is a
speedup of the other.

Proof. To describe the first odometer, set Gj = 3jZ × 2jZ for each j ≥ 1. As
described in Theorem 2.5, the sequence G = {G1, G2, G3, ...} then yields a minimal
Z2-odometer (XG, σG). The second odometer will be a speedup of (XG, σG), using
the partition P1 as described in Theorem 2.12 to define the speedup cocycles. Note
that P1 in this case consists of six sets associated to the six cosets in Z2/G1. We
then define p1,p2 : X → Z2 by setting p1(x) = (1, 0) and

p2(x) =

{
(0, 1) if x ∈ π−1

1 ({(0, 0) +G1, (1, 0) +G1, (2, 0) +G1})
(1, 1) if x ∈ π−1

1 ({(0, 1) +G1, (1, 1) +G1, (2, 1) +G1}).
The Z2-action (XG,S) generated by p1 and p2 is therefore a bounded C-speedup
of σG for any cone C containing the positive x-axis and the portion of the line y = x
lying in the first quadrant; by Theorem 5.3, (XG,S) is a Z2-odometer. Note that
(XG, σG) and (XG,S) are continuously orbit equivalent using the identity map
and the speedup cocycle p for the orbit cocycle. Therefore the orbits of (XG, σG)
are exactly the same sets as the orbits of (XG,S), so since (XG, σG) is minimal,
(XG,S) is minimal as well.

It remains to show that (XG, σG) and (XG,S) are not isomorphic. We will do
this by computing the first cohomology group of each odometer and then using
Theorem 2.7. For H(σG), note that Gj = 3jZ × 2jZ has G∗j = 1

3j Z × 1
2j Z and thus

H(σG) =
∞
∪
j=1

G∗j = Z[ 1
3 ]×Z[ 1

2 ]. To findH(S), we will follow the construction in the

proof of Theorem 5.3 to find a sequence of subgroups {G′1, G′2, G′3, ...} associated

to (XG, S) and then similarly compute H(S) =
∞
∪
j=1

(G′j)
∗.

Beginning with G′1, recall it is defined to be {h ∈ Z2 : Sh(E1) = E1}, where E1

is the atom of P1 containing the identity element of XG. We can see that (3, 0) and
(2, 2) are inG′1 by definition of p1 and p2 and then check that these in fact generate
all of G′1. Thus

G′1 =

(
3 2
0 2

)
Z2.

In a similar fashion, we can show that

G′j =

(
3j 3j − 2j−1

0 2j

)
Z2.

We can therefore calculate

(G′1)∗ = {(p, q) ∈ R2 : (p, q) · (a, b) ∈ Z for all (a, b) ∈ G′1}
= {(p, q) ∈ R2 : (p, q) · (3, 0) ∈ Z and (p, q) · (2, 2) ∈ Z}

= {(p, q) ∈ R2 :

(
3 0
2 2

)(
p
q

)
∈ Z2}

= {(p, q) ∈ R2 : there exists(m,n) ∈ Z2 with
(
p
q

)
=

(
3 0
2 2

)−1(
m
n

)
}

=

(
1/3 0
−1/3 1/2

)
Z2 =

1

6

(
2 0
−2 3

)
Z2.
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In a similar fashion, we can show that

(G′j)
∗ =

1

6j

(
2j 0

2j−1 − 3j 3j

)
Z2

=

{(
1
3jm

( 1
6·3j−1 − 1

2j )m+ 1
2j n

)
: m,n ∈ Z

}
But if (x, y) ∈ (G′j)

∗, then x = 1
3jm and y = ( 1

2 − ( 3
2 )j)x + 1

2j n or y − 1/2x =
1
2j n− 3j

2j x = 1
2j n− 1

2jm. Thus

H(S) =

∞⋃
j=1

(G′j)
∗ =

{
(x, y) ∈ Z2 : x ∈ Z

[
1

3

]
, y − 1

2
x ∈ Z

[
1

2

]}
.

We then see that H(S) contains
(

1
3 ,

1
6

)
but H(σG) does not. So by (1) of Theorem

2.7, (XG, σG) and (XG,S) are not conjugate.
To show that they are not isomorphic, we use contradiction. Suppose they are

isomorphic: then by (2) of Theorem 2.7, there is α ∈ GL2(Z) such that α(H(σG)) =

H(S). Denote α as
(
a b
c d

)
∈ GL2(Z). Since (0, 1/2j) ∈ H(σG) for every j, we

must have (
a b
c d

)(
0

1/2j

)
=

(
b/2j

d/2j

)
∈ H(S)

for every j. In other words, b/2j ∈ Z[ 1
3 ] for every j, which implies b = 0. We also

know (1/3j , 0) ∈ H(σG) for every j, and thus we must have(
a 0
c d

)(
1/3j

0

)
=

(
a/3j

c/3j

)
∈ H(S)

for every j. This means c
3j − 1

2
1
3j = 1

3j (c− 1
2a) ∈ Z[ 1

2 ] for every j, and thus c = 1
2a.

But this means the determinant of matrix α is

det

(
2c 0
c d

)
= 2cd.

But 2cd cannot equal ±1 for any c, d ∈ Z, contradicting our assumption that α ∈
GL2(Z). �

As mentioned in the above proof, the odometers (XG, σG) and (XH, σH) are
continuously orbit equivalent even though they are not isomorphic. We conjecture
that this is always true, at least in the d = 2 case, and leave it as an open problem:

Conjecture 5.6. Let (XG, σG) be a free Z2-odometer and suppose S : Z2 y X is a
minimal speedup of σG, where the speedup cocycle p is bounded. Then the Z2-odometer
(XG,S) is continuously orbit equivalent to (XG, σG).

The result in the other direction is almost immediate:

Theorem 5.7. Let (XG, σG) and and (XH, σH) be Zd-odometers that are continuously
orbit equivalent. Then there exists a cone C ⊆ Zd such that (XH, σH) is conjugate to a
C-speedup of (XG, σG).

Proof. The definition of continuous orbit equivalence gives us a homeomorphism
Φ : XG → XH and a continuous orbit cocycle h such that Φ ◦ σh(x,v)

G (x) = σv
H◦Φ(x)

for all x ∈ X and v ∈ Zd. Since h is continuous and XG compact, we see that
each function x 7→ h(x, ej) can only take finitely many values as x ranges over
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XG. Let C be any cone that contains all the values of the h(x, ej). We can then
define a speedup cocycle by p(x,v) = h(x,v): the homeomorphism Φ then gives
a conjugacy between the C-speedup so defined and (XH, σH). �

The above theorem assures us that given two continuously orbit equivalent
odometers, there is a cone C (in fact, many cones) such that one odometer is a
bounded C-speedup of the other. But does this remain true for an arbitrary cone
C? The answer can be no, even if the odometers are assumed conjugate. We prove
this in Corollary 5.10 via an example constructed in Theorem 5.10. We also show
in Theorem 5.11 that there are odometers for which the shape of the cone C is not
an obstruction. We first need this preliminary lemma:

Lemma 5.8. Let G < Z2 be a group with index [Z2 : G] = 6j for some integer j. If there
exist m, m̃ ∈ N with

3mZ× 2mZ ≤ G ≤ 3m̃Z× 2m̃Z,

then G = 3jZ× 2jZ.

Proof. This result follows from investigating the form of the elements in G. We
begin by noting that (3m, 0) ∈ 3mZ × 2mZ ≤ G. Let x be the smallest positive
integer such that (x, 0) ∈ G and note x ∈ 3m̃Z, i.e. x = 3m̃z for z ∈ Z. We then
have that the group generated by the two vectors (3m, 0) and (x, 0) is a subgroup
of G. Looking just at the first coordinates of the elements in this subgroup, note
that these coordinates must be generated by the greatest common divisor of x and
3m, which thus will have the form 3k for some integer k (later, we will show k = j).
So we have (3k, 0) ∈ G and by definition of x, it must in fact be that x = 3k.

We next define b ∈ Z to be the smallest positive number such that there exists
a nonnegative integer a with (a, b) ∈ G. We may assume a < 3k, else subtract a
multiple of (3k, 0) until it is so.

We claim that G is generated by (3k, 0) and (a, b). To show this, let g ∈ G and
write g = (g1, g2). If g2 = 0, then g1 must be a multiple of 3k and thus (g1, g2)
is in the group generated by (3k, 0) and (a, b), as wanted. So assume g2 6= 0.
Note that g2 must be a multiple of b, else we can add to (g1, g2) multiples of (a, b)
and (0, 3k) until the second coordinate is between 0 and b and the first coordinate
is between 0 and 3k, contradicting our definition of b. So we have g2 = hb for
h ∈ Z. We can then say that (g1, g2) − h(a, b) = (g1 − ha, 0) ∈ G, which means
3k must divide g1 − ha, or g1 = ha + c3k for some integer c. We thus have that
g = (g1, g2) = (ha+ c3k, hb) = h(a, b) + c(3k, 0), as wanted.

This tells us that G =

(
3k a
0 b

)
Z2. What remains is to show is that j = k,

b = 2j and a = 0.
To investigate the form of b, we note that since the index [Z2 : G] is the deter-

minant of the matrix, it must be that 3kb = 6j . We thus have that b = 2j3j−k. On
the other hand, we know that (0, 2m) ∈ 3mZ × 2mZ ≤ G and thus there must be
integers p and q such that (0, 2m) = p(3k, 0) + q(a, b) = (p 3k + q a, q b) or 2m = q b.
Thus b = 2j3j−k must divide 2m. This implies that j = k and b = 2j , yielding

G =

(
3j a
0 2j

)
Z2.
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Finally, we consider a. Since 3mZ×2mZ ≤ G, we know that (3m, 2m) ∈ G. Thus
there must be integers z and w such that

(3m, 2m) = z(3j , 0) + w(a, 2j) = (z3j + wa, w2j).

This tells us that 2m = w2j and 3m = z3j + wa. The first says that w is a power of
2; together with the second equality we then have that a must be a multiple of 3.
But we know that 3k = 3j divides 3m and thus must divide wa, hence divide a as
well. If a is nonzero, it follows that a = 3l for some l ≥ k. But we assumed a < 3k,
and thus we must have a = 0, as wanted. �

With this technical result in hand, we can show that in some cases, a C-speedup
must have a very specific structure:

Theorem 5.9. For each j, define Gj = 3jZ × 2jZ and let (XG, σG) be the Z2-odometer
given by G = {G1, G2, G3, ...}. Let C = {0, 1, 2, ...} × {0, 1, 2, ...} − {(0, 0)}.

Suppose (XG,S) is a bounded C-speedup of (XG, σG) which is conjugate to (XG, σG).
Then the speedup is “a product of two one-dimensional speedups”, meaning that Se1 is a
speedup of σe1

G and Se2 is a speedup of σe2

G .

Proof. Suppose S is a bounded C-speedup of σG that is conjugate to σG, and let
p be its speedup cocycle. We will prove the theorem by showing that p(x, e1) =
p1(x)e1 and p(x, e2) = p2(x)e2 for functions p1, p2 : XG → Z+.

We begin by considering some of the structure of an odometer and its speedup.
For instance, let Pj be the sequence of K-R partitions for (XG, σG) as described
in Theorem 2.12. Just as was done in Theorem 5.3, we can let J be the smallest
j ≥ 0 such that for each v ∈ Z2, p(x,v) is constant on the atoms of PJ (and hence
constant on all atoms of any Pj for any j ≥ J). Thus we can think of σGp(·,v) = Sv

as simply permuting the 6j elements of Pj .
Also similar to what we did in Theorem 5.3, let Hj = {v ∈ Z2 : Sv(Ej) = Ej},

where Ej is the atom of Pj containing the zero element of XG. Recall this yields a
sequence of groups withHJ ≥ HJ+1 ≥ ...which can be used to define (a conjugate
version of) the odometer (XG,S).

Choose any x ∈ XG. For each j ≥ J , let Aj be the atom of Pj containing x.
Observe that it follows from the justification of Claim 3 in the proof of Theorem
5.3 that for any j ≥ J ,

Hj = {v ∈ Z2 : Sv(Aj) = Aj}.
Next, since we are assuming (XG,S) and (XG, σG) are conjugate, we can use

Lemma 1 of [Cor] to say that for each j, there exists mj and m̃j such that

3mjZ× 2mjZ ≤ Hj ≤ 3m̃jZ× 2m̃jZ.
By Lemma 5.8, we then know there is some kj ∈ N such that Hj = 3kjZ × 2kjZ.
In particular, this says that (3kJ , 0) ∈ HJ and so S(3kJ ,0) sends AJ to itself. We can
rewrite this as saying that σGp(·,(3kJ ,0)) sends AJ to AJ . But we said above that
p(·, (3kJ , 0)) is constant onAJ and thus we can find a constant vector (αJ , βJ) ∈ Z2

which equals p(·, (3kJ , x)) when restricted to AJ . That is, S(3kJ ,0) = σG
(αJ ,βJ )

when restricted to AJ .
Our goal is to show βJ = 0, and our main tool will be the fact that by the

definition of σG, we know that for all j,

{v ∈ Z2 : σv
G(Aj) = Aj} = 3jZ× 2jZ.
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We begin by noting that when j = J , the above tells us that (αJ , βJ) = (3Ja, 2Jb)
for some nonnegative integers a and b.

We next consider j = J + 1. We similarly find that S(3kJ+1 ,0) sends AJ+1 to
AJ+1. But for all points in AJ+1 ⊂ AJ ,

S(3kJ+1 ,0) =
(
S(3kJ ,0)

)3kJ+1−kJ

=
(
σG

(3Ja,2Jb)
)3kJ+1−kJ

= σ
(3kJ+1−kJ 3Ja,3kJ+1−kJ 2Jb)
G .

We then know that σ(3kJ+1−kJ 3Ja,3kJ+1−kJ 2Jb)
G sends AJ+1 to AJ+1. But we also

know that the only vectors v ∈ Z2 such that σv
G sends AJ+1 to AJ+1 are those in

3J+1Z× 2J+1Z, and thus we have that

(3kJ+1−kJ 3Ja, 3kJ+1−kJ 2Jb) = (3J+1m, 2J+1n) for some m,n ∈ Z.

In particular, this says that 3kJ+1−kJ 2Jb = 2J+1n, implying that bmust be divisible
by 2.

We can then repeat this argument for each j > J . In other words, we have
S(3kj ,0) sends Aj to Aj and, for points in Aj , we can rewrite S(3kj ,0) as

S(3kj ,0) =
(
S(3kJ ,0)

)3kj−kJ

=
(
σG

(3Ja,2Jb)
)3kj−kJ

= σ
(3kj−kJ 3Ja,3kj−kJ 2Jb)
G .

We then again use that the only vectors v ∈ Z2 such that σv
G sends Aj to Aj must

be of the form 3jZ× 2jZ to conclude that

(3kj−kJ 3Ja, 3kj−kJ 2Jb) = (3jp, 2jq) for some p, q ∈ Z.

In particular, this says that 3kj−kJ 2Jb = 2jq, implying that b must be divisible by
2j−J . As this holds for all j > J , b must be zero.

We now proceed with proving p(x, e1) = (p1(x), 0) for every x ∈ XG. Since
b = 0, the vector (αJ , βJ) found above actually can be written (αJ , 0) and thus,

(5.1) S(3kJ ,0)(x) = σ
(αJ ,βJ )
G (x) = σ

(αJ ,0)
G (x).

We have now shown that for every x ∈ XG, p(x, 3kJe1) = (αJ , 0) for some αJ =
αJ(x) ∈ Z+.

Next, we see from the cocycle equation that

(5.2) p(x, 3kJe1) = p(x, e1) +p(Se1x, e1) +p(S2e1x, e1) + ...+p(S(3kJ−1)e1x, e1).

From the choice of C, each vector in this sum has a second coordinate which is
non-negative, so if any of these vectors have a positive second coordinate, then
p(x, 3kJe1) = (αJ , 0) must also have a positive second coordinate, a contradiction.
In particular, this says that the second coordinate of p(x, e1) must be zero and we
can write p(x, e1) = (p1(x), 0) for some function p1 : XG → Z+, as wanted.
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A similar argument shows that there is a function p2 : XG → Z+ such that
p(x, e2) = (0, p2(x)) for all x ∈ XG. In particular, we can write S(0,2kJ ) as σ(γJ ,δJ )

G

where (γJ , δJ) = (3Jc, 2Jd). We can prove c = 0, and therefore γJ = 0, by ob-
serving that whenever j > J , S(0,2kj ) sends each atom of each Pj to itself, which
implies c is divisible by 3j−J for all j > J . �

The following corollary then says that the form of the cone C can severely re-
strict what a bounded C-speedup can be conjugate to.

Corollary 5.10. For each j, define Gj = 3jZ×2jZ and let (XG, σG) be the Z2-odometer
given by G = {G1, G2, G3, ...}. Let C ⊆ Z2 be a cone. If there is a bounded C-speedup of
(XG, σG) which is conjugate to (XG, σG), then C must contain points along both coordi-
nate axes.

Proof. Notice from the proof of Theorem 5.9 that equation (5.1) can be obtained
irrespective of the cone C, i.e. the speedup cocycle p defining S must satisfy
p(x, 3kJe1) = (αJ(x), 0) for all x ∈ XG. If C contains no points along the hor-
izontal axis, then by definition of it being a cone, it must lie entirely above or
entirely below the horizontal axis. Thus the second coordinate of p(·, e1) will al-
ways be positive or will always be negative. By using equation (5.2), this in turn
tells us that the second coordinate of p(x, 3kJe1) cannot be zero, contrary to what
we said above. Thus we know that C must indeed contain some points on the
horizontal axis. Similarly, we can obtain p(x, 2kJe2) = (0, δJ(x)) for all x ∈ XG;
since C contains the range of p(·, e2), it must also contain points along the vertical
axis. �

Thus for the odometer σG given by the groupsGj = 3jZ×2jZ, there is substan-
tial rigidity in the speedups of σG which are conjugate to σG. In the next example,
we demonstrate that this rigidity does not always exist:

Theorem 5.11. Let G = {Gn}∞n=1, where Gn = 2nZ× 2nZ. Then, for any cone C ⊆ Z2,
there is a C-speedup of the Z2-odometer (XG , σG) which is conjugate to (XG , σG).

Proof. Given C ⊆ Z2, choose an integer vector p̃ = (p1, p2) such that p̃ ∈ C,
p̃ + (0, 1) ∈ C, and p1 is odd. We use this p̃ to define the speedup of (XG , σG):
define the cocycle p(x, (v1, v2)) = v1p̃ + v2(p̃ + (0, 1)) for all x ∈ XG , and let
(XG ,S) be the C-speedup of (XG , σG) given by cocycle p.

Claim 1: S is minimal.
Consider the refining and generating sequence of partitions Pn described in

Theorem 2.12. We will show that the S-orbit of the identity element 0 ∈ XG inter-
sects every atom of Pn for every n. So fix n and an atom of Pn: such an atom must
be the inverse image of some coset (u1, u2) + Gn under the map πn, as defined in
Section 2.4. We will know the orbit of 0 intersects this atom if we can find v ∈ Z2

such that the nth coordinate of Sv(0) equals (u1, u2) mod Gn = 2nZ× 2nZ.
Since p1 is odd, we can find an integer m such that mp1 = u1 mod 2n. With this

m fixed, we can then pick an integer k such that (mp2 +m) +k = u2 mod 2n. Now
let v1 = −k and v2 = k +m. Then

S(v1,v2)(0) = σ
p(0,(v1,v2))
G (0)

= (v1p̃ + v2(p̃ + (0, 1)) mod G1, v1p̃ + v2(p̃ + (0, 1)) mod G2, ...).
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The nth coordinate is thus

v1p̃ + v2(p̃ + (0, 1)) = (v1p1 + v2p1, v1p2 + v2(p2 + 1))

= (mp1, k +mp2 +m)

= (u1, u2) mod 2nZ× 2nZ,

as wanted.
Because the partitions Pn generate the topology of XG , the above tells us that

the S-orbit of 0 must be dense in XG . Since the S-orbit of any x ∈ XG is just the
S-orbit of 0 translated by x, it follows that every S-orbit is dense, meaning S is
minimal.

By Theorem 5.3, (XG ,S) is therefore a Z2-odometer and is thus associated to
some decreasing sequence {G′n} of finite-index subgroups of Z2. One such se-
quence can be obtained by following the construction in the proof of Theorem 5.3,
where we found that G′n = {h ∈ Z2 : Sh(En) = En}, where En is the atom of Pn
containing 0.

Claim 2: For every n there are positive integers an and bn such that G′n = 2anZ ×
2bnZ.
We prove this by induction. Consider G′1 = {h ∈ Z2 : Sh(E1) = E1}. Note that
(2, 0) ∈ G′1 because

S(2,0) = σ
p(·,(2,0))
G = σ2p̃

G = σ
(2p1,2p2)
G

and (2p1, 2p2) = (0, 0) mod 2Z × 2Z. Similarly we have (0, 2) ∈ G′1 and thus
2Z× 2Z ⊆ G′1. If they are not equal, we can find (a, b) ∈ G′1 with at least one of a, b
odd. By subtracting off elements from 2Z × 2Z we can then find (ã, b̃) ∈ G′1 with
one or both of ã, b̃ equal to 1. But note that (1, 0) /∈ G′1, since

S(1,0) = σ
p(·,(1,0))
G = σp̃

G = σ
(p1,p2)
G

and p1 is odd. We similarly see that (0, 1) /∈ G′1. This leaves (1, 1) as the only
possibility, yet

S(1,1) = σ
p(·,(1,1))
G = σ

2p̃+(0,1)
G = σ

(2p1,2p2+1)
G .

But 2p2 + 1 6= 0 mod 2, and thus σ(2p1,2p2+1)
G cannot send E1 to E1.

Now assume G′n = 2anZ × 2bnZ for nonnegative integers an and bn. We will
in fact show that G′n+1 = 2an+1Z × 2bn+1Z, where an+1 ∈ {an, an + 1} and bn ∈
{bn, bn + 1}. To do so, it suffices to show that if (w1, w2) ∈ G′n, then (2w1, 2w2) ∈
G′n+1. Toward that end, suppose (w1, w2) ∈ G′n. Then

S(w1,w2)(0) = σ
w1p̃+w2(p̃+(0,1))
G (0) ∈ En.

Note that when the partition Pn is refined into Pn+1, the atom En of Pn is sub-
divided into four atoms of Pn+1, namely π−1((0, 0) +Gn+1), π−1((2n, 0) +Gn+1),
π−1((0, 2n)+Gn+1) and π−1((2n, 2n)+Gn+1). Thus S(w1,w2)(0) lies in exactly one of
these four atoms. No matter which of these atoms contains S(w1,w2)(0), it must be
the case that S(2w1,2w2)(0) ∈ π−1((0, 0)+Gn+1) = En+1, making (2w1, 2w2) ∈ G′n+1

as wanted.
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At this point, we have G′n = 2anZ × 2bnZ for sequences {an}, {bn} of integers
satisfying a1 = b1 = 1 and an+1 − an ∈ {0, 1}, bn+1 − bn ∈ {0, 1} for all n.

Claim 3: The sequences an →∞ and bn →∞.
We prove this by contradiction. So assume one of these, say an, does not diverge

to infinity. That means there is N such that an = aN for all n ≥ N . So for all
n ≥ N , G′n = 2aNZ × 2bnZ, which implies (2aN , 0) ∈ G′n. By the definition of G′n,
this means

S(2aN ,0)(0) = σ2aN p̃
G (0) ∈ En

for all n ≥ N , and it follows that σ2aN p̃
G (0) = 0. This contradicts the freeness of σG .

Therefore an →∞, and a similar proof shows bn →∞.

Since (XG ,S) is conjugate to (XG′ , σG′), where G′ = {G′1, G′2, ...} and each G′n is
of the form 2anZ× 2bnZ with an, bn →∞, we see that

H(S) =

∞⋃
n=1

(G′n)∗ = Z
[

1

2

]
× Z

[
1

2

]
= H(σG).

By Theorem 2.7, (XG ,S) is conjugate to (XG , σG). �

Theorems 5.9 and 5.11 show a role that the particular structure of the speedup
and the choice of cone C play in the theory of bounded C-speedups of higher-
dimensional odometers. In dimension 1, a bounded minimal speedup of an odome-
ter is a conjugate odometer [AAO]. Furthermore, there are only two cones in Z,
namely the positive integers and negative integers. Since any Z-odometer σG is
conjugate to its inverse σ−1

G , the structure of speedups whose cocycle takes values
in the positive cone is identical to the structure of speedups whose cocycle takes
negative values.

But in higher dimensions, there are many cones one could be interested in, and
depending on the odometer being sped up, the choice of cone C can play a sub-
stantial role in the structure of its bounded, minimal C-speedups. For example,
while any resulting speedup must be an odometer, no matter the cone (see The-
orem 5.3), whether or not said speedup can be conjugate to the original may be
completely independent of C, exemplified in Theorem 5.11, or highly dependent
on the choice of C, as demonstrated in Corollary 5.10.
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