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Speedups and orbit equivalence of finite

extensions of ergodic Zd
-actions

Aimee S. A. Johnson and David M. McClendon

Abstract. We classify n-point extensions of ergodic Zd-actions up to
relative orbit equivalence and establish criteria under which one n-point
extension of an ergodic Zd-action can be sped up to be relatively iso-
morphic to an n-point extension of another ergodic Zd-action. Both
results are characterized in terms of an algebraic object associated to
each n-point extension which is a conjugacy class of subgroups of the
symmetric group on n elements.
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1. Introduction

In a 1985 paper of Arnoux, Ornstein, and Weiss [AOW], it is shown that
for any two measure-preserving transformations (X,X , µ, T ) and (Y,Y, ⌫, S)
where T is ergodic and S is aperiodic, then one can find a measurable
function p : X ! N such that, by setting T (x) = T p(x)(x), (X,X , µ, T ) is
isomorphic to (Y,Y, ⌫, S). In other words, it is always possible to “speed
up” one such transformation to “look like” another. This idea was extended
in [BBF] to both group and n-point extensions. In this paper Babichev,
Burton, and Fieldsteel showed that for extensions by a locally compact,
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second countable group, the function p can be taken to be measurable with
respect to a factor. They also consider n-point extensions of the form

U : X ⇥ {1, . . . , n} ! X ⇥ {1, . . . , n}
where Un(x, i) = (Tnx,�(x, n)(i)) and � : X⇥Z ! S

n

, the symmetric group
on n elements. They use a conjugacy class of subgroups of S

n

associated to
each such U , originally studied by Mackey [M] and Zimmer [Z1], and use it
to characterize which n-point extensions one can relatively speed up to look
like another.

Classifications of n-point extensions up to relative equivalence has been
performed in other contexts as well. Finite extensions of Bernoulli shifts are
classified up to factor isomorphism in [R] and n-point extensions of ergodic
automorphisms are classified up to factor orbit equivalence in [G]. The
latter work characterizes those which are factor orbit equivalent by defining
something called the “G-interchange property”.

The works mentioned above concern dynamical systems generated by a
single transformation, i.e., actions of Z. It is thus natural to ask what
happens when one generalizes to a Zd-action. In this paper we consider the
questions of when one can “speed up” one n-point extension of a Zd-action
to “look like” another, and when two n-point extensions of Zd-actions are
relatively orbit equivalent. As noted in [JM], it is not clear what “speed
up” means when there is no “up”. As we will define more explicitly below,
we will take this to mean that the measurable function p is now a function
from X to (Zd)d, and that each coordinate p

i

of p can be taken so that
p
i

: X ! C where C is a cone-like region in Zd. We will call this a C-
speedup, and if p is measurable with respect to a factor, we will call the
C-speedup “relative”.

A crucial step in understanding which n-point extensions are orbit equiv-
alent and which ones we can speed up to look like others involves associating
to each n-point extension eT an algebraic object we call gp(eT). This is done
in Section 3, and it relates the conjugacy class of subgroups of S

n

used in
[BBF] to the G-interchange property used in [G]. We show the following:

Theorem 1.1. Let (X,X , µ,T) be an ergodic Zd1
-action and let (Y,Y, ⌫,S)

be an ergodic Zd2
-action. Suppose these actions have respective n-point ex-

tensions

eT and

eS. Then

eS is relatively orbit equivalent to

eT if and only if

gp(eS) = gp(eT).

Theorem 1.2. Let (X,X , µ,T) and (Y,Y, ⌫,S) be ergodic Zd

-actions with

respective n-point extensions eT and

eS. Given any cone C, there is a relative

C-speedup of

eT which is relatively isomorphic to

eS exactly when for each

G
T

2 gp(eT), there exists G
S

2 gp(eS) such that G
S

✓ G
T

.

We begin by providing necessary background definitions and results in
Section 2. The definition and properties of gp(eT) are given in Section 3,
along with results on orbit equivalence and the proof of Theorem 1.1. The
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proof of Theorem 1.2 is given in Section 4, and we conclude in Section 5
with some examples that explore the relationship between gp(eT) and gp(eTv)
where eTv is a subaction of eT.

2. Background and definitions

2.1. Zd-actions. Let X be a Lebesgue probability space with measure µ.
Given d commuting, invertible, measurable, measure-preserving transforma-
tions T1, T2, . . . , T

d

of X, the collection {T
j

} generates a Zd-action T on X.
In particular, given vector v = (v1, . . . , v

d

) 2 Zd we write Tv for the trans-
formation T v1

1 �T v2
2 �· · ·�T vd

d

: X ! X. The Zd-action T is said to be ergodic
if the only sets invariant under every Tv,v 2 Zd, are of zero or full measure,
and is called totally ergodic if for every v 2 Zd, v 6= 0, the transformation
Tv is ergodic.

2.2. Finite extensions. Let [n] = {1, 2, 3, . . . , n}; let 2[n] denote the power
set of [n] and let �

n

be uniform counting measure on [n]. Throughout this
paper, S

n

denotes the symmetric group on n letters.

Definition 2.1. Let (X,X , µ,T) be a measure-preserving (m.p.) Zd-action.
A finite or n-point extension of (X,X , µ,T) is another Zd m.p. system

(X ⇥ [n],X ⇥ 2[n], µ⇥ �
n

, eT)

defined by setting eTv(x, i) = (Tv(x),�(x,v)i) where � : X ⇥ Zd ! S
n

is a
measurable function satisfying

(2.1) �(x,v +w) = �(Tv(x),w)�(x,v) 8v,w 2 Zd, a.e. x 2 X.

The function � is called the cocycle of eT, and Equation (2.1) above is called
the cocycle equation.

2.3. Group extensions. Let G be a locally compact, second countable
group; let � be Haar measure on G (� need not be finite).

Definition 2.2. Let (X,X , µ,T) be a measure-preserving (m.p.) Zd-action.
A G-extension of (X,X , µ,T) is another Zd m.p. system

(X ⇥G,X ⇥ G, µ⇥ �,T�)

defined by setting

T�

v(x, g) = (Tv(x),�(x,v)g)

for each v 2 Zd, where � : X ⇥ Zd ! G is a measurable function satisfying
(2.1). The Zd-action T is then referred to as the base or base factor of T�.

In fact, a locally compact, second-countable group G admits an ergodic
G-extension if and only if G is amenable [H], [Z2].
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Definition 2.3. Let eT be an n-point extension of T with cocycle �. Then
the S

n

-extension of T, T� : X ⇥ S
n

! X ⇥ S
n

, defined by

T�

v(x, g) = (Tv(x),�(x,v)g)

is called the full extension or S
n

-extension associated to

eT.

In the setting of either a finite extension or G-extension, we can also define
a cocycle on the orbit relation of T, which is again labelled �: if z = Tv(x)
for some v 2 Zd, we set �(x, z) = �(x,v).

In this paper we use the symbol � to refer to most of our cocycles and
when necessary, distinguish between the cocycles for di↵erent actions with
subscripts (i.e., �T is the cocycle associated to an n-point or S

n

-extension
of T).

2.4. Iterates and speedups. We define a filled cone C to be any open,
connected subset of Rd whose boundary is contained in d distinct hyper-
planes passing through the origin. For example, the interior of the first
quadrant is a filled cone in R2, and the set of points (x, y, z) satisfying
x > 0, y > x and z > y is a filled cone in R3. A cone is the intersection of
a filled cone with (Zd � {0}). In particular, notice the zero vector does not
belong to any cone.

Given a Zd-action (X,X , µ,T), an iterate of T is an element of the full
group of T. In other words, it is a 1�1, measurable and measure-preserving
function R : X ! X given by R(x) = Tk(x)(x) for some measurable function

k : X ! Zd. The function k is called the iterate function (of R). If the
iterate function of R takes values in a cone C, then we call R a C-iterate.

Definition 2.4. Given two Zd�actions (Z,Z, ⇣,U) and (Z,Z, ⇣,U), and
given a cone C, we say U is a C-speedup (or just speedup) of U if there
is a measurable map p = (p1, . . . ,p

d

) : Z ! Cd such that the iterates
Up1 , . . . ,Upd commute and generate U, i.e., Uej = Upj for each j. p is

called the speedup function of U.

As we mentioned in Section 1, the word “speedup” is used in analogy to
the 1-dimensional results from [AOW] and [BBF].

If we are considering a finite extension eT or group extension T�, then a
relative speedup of such an action is a speedup whose speedup function is
measurable with respect to the base factor.

2.5. Orbit equivalence. Suppose we are given a Zd1-action (X,X , µ,T)
and a Zd2-action (Y,Y, ⌫,S). We say T and S are orbit equivalent if there is
an isomorphism � of the measure spaces (X,X , µ) and (Y,Y, ⌫) which pre-
serves orbits, i.e., if x2 = Tv(x1) for some v 2 Zd1 , then �(x2) = Sw(�(x1))
for some w 2 Zd2 (and similarly for ��1).

Two finite extensions are called relatively orbit equivalent if they are orbit
equivalent via a map � which is measurable with respect to the base factors,
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i.e., for all measurable B 2 Y, ��1(B ⇥ [n]) = A⇥ [n] a.s. for some A 2 X .
Similarly, two group extensions by G are called relatively orbit equivalent

if they are orbit equivalent via � such that for all measurable B 2 Y,
��1(B ⇥G) = A⇥G a.s. for some A 2 X .

Dye [D1, D2] proved that any ergodic action of Zd is orbit equivalent to
any ergodic action of Z, and later Fieldsteel [F] proved a relative version
of Dye’s theorem, showing that any two group extensions by a compact
group are relatively orbit equivalent. In 1987 Gerber [G] proved that two
n-point extensions of ergodic Z-actions are orbit equivalent if they have the
“G-interchange property” for the same group G; in this paper we show how
the Gerber result naturally extends to Zd-actions.

2.6. Isomorphisms. Let (X,X , µ,T) and (Y,Y, ⌫,S) be two measure-pre-
serving Zd-actions with respective G-extensions T� and S�. We say S� and
T� are G-isomorphic if there is a measure space isomorphism

� : (X ⇥G,X ⇥ G, µ⇥ �) ! (Y ⇥G,Y ⇥ G, ⌫ ⇥ �)

that intertwines the dynamics (i.e., � � T�

v = S�

v � � a.s. for each v 2 Zd)
and is measurable with respect to the base factors. Equivalently, this means
the base transformations are isomorphic via some isomorphism �, and that
the cocycles are cohomologous after the spaces are identified by �, i.e.,

(2.2) �(x, g) = (�(x),↵(x)g)

where � is an isomorphism from (X,X , µ,T) to (Y,Y, ⌫,S) and ↵ : X ! G
is measurable. The ↵ in the previous sentence is called the transfer function
relating the cocycles. In particular, if T� is G-isomorphic to S� by the map
� described above, then the cocycle �S must satisfy

�S(�(x),v) = ↵(Tvx)�T(x,v)↵(x)
�1.

Motivated by this fact, if T� is a G-extension of a Zd action and ↵ : X ! G
is any measurable function, we define the skewing of � by ↵ to be the cocycle

�↵(x,v) = ↵(Tvx)�(x,v)↵(x)
�1

and remark that T� is G�isomorphic to T(�↵) (the “skewing of T� by ↵”)
by the map (x, g) 7! (x,↵(x)g).

We can also talk about relative isomorphisms of finite extensions: given
measure-preserving Zd-actions (X,X , µ,T) and (Y,Y, ⌫,S) with respective
n-point extensions eT and eS, we say eT and eS are relatively isomorphic if there
is a measure space isomorphism � : X ⇥ [n] ! Y ⇥ [n] which intertwines
the dynamics and is measurable with respect to the base factors. The map
� is called a relative isomorphism. Equivalently, this means there is an
isomorphism � from (X,T) to (X,S) and a measurable transfer function
↵ : X ! S

n

such that

(2.3) �(x, i) = (�(x),↵(x)i).
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In this paper we will need to convert between maps on X⇥S
n

and maps on
X ⇥ [n]. Toward that end, we establish the following notation:

Definition 2.5. Given a function � : X ⇥ [n] ! Y ⇥ [n] of the form
�(x, i) = (�(x),↵(x)i) where � : X ! Y and ↵ : X ! S

n

, define �⇤ to be
the function

�⇤ : X ⇥ S
n

! Y ⇥ S
n

given by �⇤(x, g) = (�(x),↵(x)g).
Given a function � : X⇥S

n

! Y ⇥S
n

of the form �(x, g) = (�(x),↵(x)g)
where � : X ! Y and ↵ : X ! S

n

, define �⇤ to be the function

�⇤ : X ⇥ [n] ! Y ⇥ [n]

given by �⇤(x, i) = (�(x),↵(x)i).
In either of these settings we call �⇤ or �⇤ the associated map of �.

In light of the characterizations of G- and relative isomorphisms given in
(2.2) and (2.3), we see that an associated map of a relative isomorphism is a
relative isomorphism (and record this observation in the following lemma).

Lemma 2.6. Let (X,X , µ,T) and (Y,Y, ⌫,S) be Zd

-actions with respective

n-point extensions eT,

eS whose full extensions are T�

and S�

.

(1) If � : X ⇥ [n] ! Y ⇥ [n] is a relative isomorphism between

eT and

eS,
then �⇤ : X ⇥ S

n

! Y ⇥ S
n

is an S
n

-isomorphism between T�

and

S�

.

(2) If � : X ⇥ S
n

! Y ⇥ S
n

is an S
n

-isomorphism between T�

and S�

,

then �⇤ : X ⇥ [n] ! Y ⇥ [n] is a relative isomorphism between

eT

and

eS.

The following theorem, proven in [JM], makes use of a G-isomorphism to
relate two G-extensions under certain assumptions:

Theorem 2.7. Fix a locally compact, second countable group G and a neigh-

borhood U ✓ G of the identity element of G. Let (X,X , µ,T) and (Y,Y, ⌫,S)
be measure-preserving Zd

-actions with (Y,Y, ⌫,S) aperiodic. Let T�

be an

ergodic G-extension of T and S�

be a G�extension of S. Let C ✓ Zd

be

any cone.

Then there is a relative C-speedup T
�

of T�

, such that T
�

is G-isomorphic

to S�

via a G-isomorphism whose transfer function ↵ takes values in U al-

most surely.

In dimension one, a result of [N] states that when the speedup function p
is integrable, then the entropies of T and T p satisfy h(T p) = (

R

p du)h(T ).
How this statement generalizes to higher dimensions is an open question.

The proof of Theorem 2.7 in [JM] can be straightforwardly adapted to
give the following more general result, which we will use in Section 4:
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Theorem 2.8. Fix a locally compact, second countable group G and a neigh-

borhood U ✓ G of the identity element of G. Let (X,X , µ,T) and (Y,Y, ⌫,S)
be measure-preserving actions of Zd1

and Zd2
, respectively, with (Y,Y, ⌫,S)

aperiodic. Let T�

be an ergodic G-extension of T and S�

be a G�extension

of S. Let C ✓ Zd1
be any cone.

Then there are d2 commuting C-iterates T
�

1 , . . . , T
�

d2
of T�

which generate

a Zd2
-action T

�

such that T
�

is G-isomorphic to S�

via a G-isomorphism

whose transfer function ↵ takes values in U almost surely.

3. An algebraic invariant associated to orbit equivalence of

finite extensions

In this section, we describe an algebraic invariant of a finite extension
originally studied in [M] and [Z1] and independently discovered in [R]. First,
observe the following, which is part of Theorem 3.25 in [Gl]:

Theorem 3.1. Let G be a compact group and let T�

be a G-extension of

an ergodic Zd

-action (X,X , µ,T). Then there is a subgroup G ✓ G and a

G-extension T�

0
of T, such that:

(1) T�

0
is G-isomorphic to T�

, via a G-isomorphism of the form

(x, g) 7! (x,↵(x)g).

(2) X ⇥G is an ergodic component of T�

0
.

Moreover, the set of G with this property is a conjugacy class of subgroups

of G.

In our setting, we call this conjugacy class the “interchange class” because
this machinery relates to what Gerber called the “G-interchange property”
in [G]. More precisely:

Definition 3.2. Let (X,X , µ,T) be an ergodic Zd-action and let eT be an
n-point extension of T whose full S

n

-extension is T�. The interchange class

of eT, denoted gp(eT), is the conjugacy class of subgroups G of S
n

such that
T� is S

n

-isomorphic to an S
n

-extension of T with ergodic component X⇥G.

We remark that gp(eT) depends only on the orbit relation of T and the
cocycle � (see Proposition 3.6 below). As such, in [BBF] this object was
denoted gp(T,�). We use slightly di↵erent notation because in this paper,
we are most interested in the application of this object to n-point extensions.

The next theorem provides an equivalent characterization of the inter-
change class, generalizing the description in [G] to classify finite extensions
of ergodic Z-actions up to relative orbit equivalence.

Theorem 3.3. Let (X,X , µ,T) be an ergodic Zd

-action, and let � : X !
S
n

be a cocycle. Let T�

and

eT be the S
n

- and n-point extensions of T
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determined by �. Let G ✓ S
n

. Then G 2 gp(eT) if and only if T�

is G-

isomorphic to another S
n

-extension S�S
of some ergodic action (Y,Y, ⌫,S)

satisfying the following conditions:

(1) For every v 2 Zd

, �S(y,v) 2 G a.s.

(2) For any g 2 G and any sets A and B of equal positive measure in

Y , there is an iterate R of S, given by iterate function k, such that

R(A) = B and for almost every y 2 A, �S(y,k) = g.

Proof. ()): Suppose G ✓ S
n

where X⇥G is an ergodic component of T�

0
,

some S
n

-extension of T which is G-isomorphic to T�. Note that since X⇥G
is invariant under T�

0
, for a.e. x 2 X and v 2 Zd, we have that �0(x,v)

must be in G. If we take g 2 G and A,B ✓ X with µ(A) = µ(B) > 0, then
by the ergodicity of T�

0
on X ⇥ G, there is an iterate R of T�

0
mapping

A⇥{id} to B⇥{g} (see Lemma 3.3 of [JM]). Thus the equivalent condition
is satisfied with Y = X, S = T, �S = �0, and this R.

((): Let S�S be an S
n

-extension of (Y,Y, ⌫,S) which is S
n

-isomorphic to
T� and satisfies (1) and (2) with respect to G. By (1), Y ⇥ G is invariant
under S�S and by (2), Y ⇥ G has no nontrivial invariant subsets. Let �1

be a S
n

-isomorphism from (X ⇥ G,T�) to (Y ⇥ G,S�S); this isomorphism
(since it is a S

n

-isomorphism) has the form

�1(x, g) = (�1(x),�1(x)g)

for suitable functions �1 and �1. Now define �2 : Y ⇥ S
n

! X ⇥ S
n

by

�2(y, g) = (��1
1 (y), g);

this is a S
n

-isomorphism between S�S and some other S
n

-extension T�

0
of

T. Observe that �2(Y ⇥G) = X⇥G is an ergodic component of T�

0
, and the

composition �2 ��1 gives a S
n

-isomorphism from T� to T�

0
as desired. ⇤

We remark also that for any G 2 gp(eT), the action of S
n

on the set of
right cosets G\S

n

is the Mackey range of the cocycle � (see Section 3.5 of
[Gl] for a definition of the Mackey range).

The following two results will be used when studying examples con-
structed in Section 5.

Proposition 3.4. eT is ergodic if and only if there is some G 2 gp(eT) which
is transitive if and only if every G 2 gp(eT) is transitive.

Proof. Suppose eT, the n-point extension of T, is ergodic. Let G 2 gp(eT).
By Theorem 3.3 and Lemma 2.6, eT is relatively isomorphic to some eS whose
full extension S�S satisfies (1) and (2) of Theorem 3.3. But then eS is also
ergodic, so given sets A⇥ {i} and B⇥ {j}, there is an iterate R with iterate
function k such that R(A⇥ {i}) intersects B⇥ {j}. That is, for a nontrivial
set of y 2 A, (Sk(y)y,�S(y,k(y)) i) 2 B⇥ {j}, i.e., �S(y,k(y)) i = j. But by
(1) of Theorem 3.3, �S(y,k(y)) 2 G, so for every pair i, j 2 [n], there is an
element of G that sends i to j and thus this G is transitive.
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It remains to show that if there is G 2 gp(eT) that is transitive, then
eT is ergodic. Suppose there exists G 2 gp(eT) which is transitive. By
Theorem 3.3 and Lemma 2.6, eT is relatively isomorphic to some eS, which
has a full extension S�S satisfying (1) and (2) of Theorem 3.3. We first show
that eS is ergodic: suppose not, but rather that it has a nontrivial, nonproper
invariant subset. Then we can find A ⇥ {i} in this invariant subset and
B ⇥ {j} outside it, where ⌫(A) = ⌫(B) > 0. Since G is transitive, there
exists g 2 G which maps i to j. By (2) we can find an iterate that takes A
to B and iterate function k with �S(y,k(y)) = g for a.e. x 2 A. But then
this iterate maps A⇥{i} to B⇥{j}, a contradiction. Thus eS is ergodic and
by isomorphism, so is eT. ⇤
Proposition 3.5. Let (X,X , µ,T) be an ergodic Zd

-action. Let

eT be an

n-point extension of T and fix v 2 Zd

. Then for each G 2 gp(eT), there

exists H 2 gp(eTv) such that H is a subgroup of G.

Proof. Let G 2 gp(eT). Then by the definition of interchange class, the full
extension T� is S

n

-isomorphic to another S
n

-extension T�

0
which has X⇥G

as an ergodic component. This S
n

-isomorphism induces an S
n

-isomorphism
between T�

v and T�

0
v . Applying Theorem 3.1 to the system (X ⇥ G,T�

0
v ),

we find a subgroup H ✓ G which satisfies H 2 gp(eTv). ⇤
The next result allows us to convert the results of [G] to actions of Zd (in

fact, the next three results hold for the actions of any amenable group, not
just Zd):

Proposition 3.6. Suppose (X,X , µ,T) and (Y,Y, ⌫,S) are orbit equivalent

actions of Zd1
and Zd2

, respectively, where the orbit equivalence is given

by � : X ! Y . Then if �T : X ! S
n

is a cocycle for T, the function

�S : Y ! S
n

defined by

�S(y,v) = �T(�
�1(y),��1(Sv(y)))

is a cocycle, and if

eT and

eS are the n-point extensions determined by �T
and �S, we have gp(eT) = gp(eS).

Proof. That �S satisfies the cocycle equation is clear. To show gp(eT) =
gp(eS), suppose G 2 gp(eT). By definition, there is a measurable transfer
function ↵ : X ! S

n

such that X ⇥ G is an ergodic component of (X ⇥
S
n

,T(�↵)).

Let � = ↵���1 and consider the system (Y ⇥S
n

,S(��)): note this system
is S

n

-isomorphic to (Y ⇥S
n

,S�). Now note that � : X⇥S
n

! Y ⇥S
n

defined

by �(x, g) = (�(x), g) is a relative orbit equivalence betweenT(�↵) and S(��).
Since orbit equivalences preserve ergodic components, and because X ⇥ G
is an ergodic component of T(�↵), we have that �(X ⇥ G) = Y ⇥ G is an

ergodic component of S(��). Thus G 2 gp(eS) and therefore gp(eT) ✓ gp(eS).
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A symmetric argument shows the reverse inclusion and establishes the
theorem. ⇤

Proposition 3.7. Let (X,X , µ,T) be any ergodic Zd

-action. Given any

subgroup G of S
n

, there is a cocycle � : X ! S
n

for T so that the n-point

extension

eT determined by � satisfies G 2 gp(eT).

Proof. Let (GZ, S) be the full shift with alphabet G. Define a cocycle
�
S

: GZ ⇥ Z ! G by

�
S

(x, n) = x
n�1 · · ·x1x0

where concatenation indicates the group operation. Letting eS be the n-point
extension of S defined by this cocycle, we have G 2 gp(eS) by the proposition
on page 34 of [G]. By Dye’s theorem, S is orbit equivalent (via some map
� : GZ ! X) to T. Now define �T : X ⇥ Zd ! S

n

setting

�T(x,v) = �
S

(��1(x),��1(Tv(x))).

By Proposition 3.6, �T is a cocycle with gp(eT) = gp(eS) 3 G. ⇤

The next result is the first theorem mentioned in the introduction (The-
orem 1.1).

Theorem 3.8. Let (X,X , µ,T) be an ergodic Zd1
-action and let (Y,Y, ⌫,S)

be an ergodic Zd2
-action. Suppose these actions have respective n-point ex-

tensions

eT and

eS. Then

eS is relatively orbit equivalent to

eT if and only if

gp(eS) = gp(eT).

Proof. T and S are orbit equivalent to Z-actions T 0 and S0, respectively,
via maps �

T

and �
S

. Let

�0
T

(x0, n) = �T(�
�1
T

(x0),��1
T

(T 0n(x0)))

and let eT 0 be the n-point extension of T 0 given by �0 (and define eS0 similarly).
eT and eS are relatively orbit equivalent if and only if eT 0 and eS0 are relatively
orbit equivalent if and only if gp( eT 0) = gp( eS0) (by [G]) if and only if gp(eT) =
gp(eS) (by Proposition 3.6). ⇤

4. Speedups and relative isomorphisms

In this section we want to consider ergodic n-point extensions of two Zd-
actions, and ask when one can be “sped up” to “look like” the other. This
will generalize Theorem 2 of [BBF].

Recall that given an ergodic Z-action f : X ! X and a subset A ✓ X, it
is well known how to induce an action f

A

: A ! A. We begin this section
with the following preliminary lemma, which modifies the above notion to
our situation.
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Lemma 4.1. Let (X,X , µ,T) be an ergodic Zd

-action and let G be a sub-

group of S
n

. Let T�

be an ergodic G-extension of (X,X , µ,T). Given any

cone C and any subgroup H ✓ G, there is a relative C-iterate of T�

which

has X ⇥H as an ergodic component.

Proof. This result is obtained by speeding up the original G-extension T�

and then picking a particular iterate of this speedup. First, let

(Y ⇥G,Y ⇥ G, ⌫ ⇥ �,S�)

be any totally ergodic Zd G-extension. By Theorem 2.7, there is a relative

C-speedup T
�

of T� which is G-isomorphic to S�.
Second, let v = e1 (the first element of the standard basis of Rd), and

consider the ergodic transformation
�

T
�

�

v
. Construct the first return time

map of
�

T
�

�

v
to X ⇥H, i.e., let j : X ⇥H ! N be defined by

j(x, h) = min
n

i 2 N :
�

T
�

�

iv
(x, h) 2 X ⇥H

o

.

In fact, j depends only on x (and we therefore subsequently write j(x)
instead of j(x, h)), because for any (x, h) 2 X ⇥H and any i 2 N, we have

�

T
�

�

iv
(x, h) 2 X ⇥H , �(x, iv)h 2 H , �(x, iv) 2 H

(since H is a subgroup) and this last condition depends on x but not on h.
To complete this second step, define R to the C-iterate given by

R(x, h) =
�

T
�

�

j(x)v
(x, h).

Composing the speedup functions from these two steps, the transformation
R is the relative C-speedup of T�, as desired. ⇤

The following result is the main result of our paper; it includes Theo-
rem 1.2 as mentioned in the introduction in the case where d1 = d2.

Theorem 4.2. Let (X,X , µ,T) and (Y,Y, ⌫,S) be ergodic actions of Zd1

and Zd2
, respectively, with respective n-point extensions eT and

eS. Then, the

following are equivalent:

(1) Given any cone C, there are d2 commuting C-iterates of

eT which

generate a Zd2
-action relatively isomorphic to

eS.

(2) For some cone C, there are d2 commuting C-iterates of

eT which

generate a Zd2
-action relatively isomorphic to

eS.

(3) Given any G
T

2 gp(eT), there exists G
S

2 gp(eS) such that G
S

✓ G
T

.

(4) For some G
T

2 gp(eT), there exists G
S

2 gp(eS) such that G
S

✓ G
T

.

Proof. (1) ) (2) is obvious; we will first show (2) ) (3). We know by
assumption that there are d2 relative C-iterates of eT which generate a Zd2-
action relatively isomorphic to eS; let p1, . . . ,p

d2 be the associated iterate
functions of these iterates (see Section 2.4). Note that by Lemma 2.6, the
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Zd-action T
�

generated by the C-iterates of T� given by the same iterate
functions p1, . . . ,p

d2 is S
n

-isomorphic to S�.

Now let G
T

2 gp(eT). By Definition 3.2, there is an S
n

-extension T�

0
, S

n

-
isomorphic to T�, which has X ⇥G

T

as an ergodic component. Again use
the same iterate functions p1, . . . ,p

d2 to yield d2 commuting C-iterates of

T�

0
which generate a Zd2 action of T�

0
, denoted T

�

0
, which is S

n

-isomorphic

to T
�

.

Composing these two isomorphisms gives a S
n

-isomorphism between T
�

0

and S�.

Next, note that X ⇥ G
T

is an invariant set for T
�

0
and therefore by

applying Theorem 3.1, we obtain a subgroup of G
T

, which we denote by G
S

,

such that T
�

0
is S

n

-isomorphic to another S
n

-extension which has ergodic
component X ⇥G

S

. Composing these isomorphisms, we get that S� is S
n

-
isomorphic to an S

n

-extension satisfying (1) and (2) of Theorem 3.3 and
thus G

S

2 gp(eS), as desired.
Note that (3) ) (4) is obvious, so it only remains to show (4) ) (1). For

this, let C be a cone. By assumption, there is some G
T

2 gp(eT) for which
there exists G

S

2 gp(eS) with G
S

✓ G
T

. By the definition of interchange
class, T� is S

n

-isomorphic to T�

0
which hasX⇥G

T

as an ergodic component
and S� is S

n

-isomorphic to S�

0
which has X⇥G

S

as an ergodic component.
Consider T�

0
restricted to this ergodic component X ⇥ G

T

. By Lem-
ma 4.1 we can find a C-iterate R of T�

0
(R is an action of Z), which has

X ⇥ G
S

as an ergodic component. We can now use Theorem 2.8, applied
to the restriction of R to X ⇥G

S

, to yield a relative C-speedup of R (this
speedup is a Zd2-action) which is G

S

-isomorphic to S�

0
. Composing the two

speedup functions, we have a C-speedup of T�

0
which is G

S

-isomorphic to
S�

0
. Using the same speedup function yields a C-speedup of eT which by

Lemma 2.6 is relatively isomorphic to eS, as desired. ⇤

5. Relationship between the interchange classes of a

Zd
-action and its generators

In this section we examine the (lack of) relationship between the inter-
change class of an n-point extension of a Zd-action and the interchange
classes of its generators and directions. First, the following result demon-
strates that the interchange class of a Zd-action cannot be discerned by
looking at the interchange classes of its generators. Recall that gp(eTv) is
only defined when Tv is ergodic; we therefore consider only totally ergodic
actions in the next two results.

Proposition 5.1. For any totally ergodic Z2
-action T, there exist two 4-

point extensions

eT and

eT0
such that gp(eT(1,0)) = gp(eT0

(1,0)) and gp(eT(0,1)) =

gp(eT0
(0,1)) but gp(

eT) 6= gp(eT0).
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Proof. Define cocycles �,�0 : X ⇥ Z2 ! S4 by setting

�(x, (v1, v2)) = (12)v1+v2 ;

�0(x, (v1, v2)) = (12)v1(34)v2

for all x 2 X (i.e., � and �0 depend only on v = (v1, v2) and not on x). Let
eT and eT0 be the respective 4-point extensions of T. Note that

h(12)i 2 gp(eT(1,0)) and h(12)i 2 gp(eT0
(1,0)).

By Theorem 3.1 this means gp(eT(1,0)) and gp(eT0
(1,0)) are the same conjugacy

class of subgroups of S
n

, i.e., gp(eT(1,0)) = gp(eT0
(1,0)).

Next, note that

h(12)i 2 gp(eT(0,1)) and h(34)i 2 gp(eT0
(0,1));

since h(12)i and h(34)i are conjugate subgroups, Theorem 3.1 again says
that gp(eT(0,1)) = gp(eT0

(0,1)).
However,

h(12)i 2 gp(eT) while h(12), (34)i 2 gp(eT0).

As h(12)i is a subgroup of S4 of order two and h(12), (34)i is a subgroup of
S4 of order four, gp(eT) 6= gp(eT0). ⇤

Applying Theorems 3.8 and 4.2 to the two extensions described in the
previous proposition, we see:

Corollary 5.2. For any totally ergodic Z2
-action T, there exist two 4-point

extensions

eT and

eT0
such that:

(1) Each generator of

eT is relatively orbit equivalent to the corresponding

generator of

eT0
, and each generator can be relatively sped up to obtain

a relatively isomorphic copy of the respective generator of

eT0
, but

(2) eT is not relatively orbit equivalent to

eT0
, and for any cone C ✓ Z2

,

there is no relative C-speedup of

eT which is relatively isomorphic to

eT0
.

We now move to an example illustrating the reverse situation, i.e., when
the interchange classes of the Z2-actions coincide but the properties of the
directions of those actions are quite di↵erent. We first build an example
that, similar to eT0 above, shows how di↵erent the interchange class for the
action can be from the interchange classes of its generators.

Lemma 5.3. There exists an ergodic Z2
-action (X,X , µ,T) which has an

ergodic 2-point extension

eT such that gp(eT(1,0)) = gp(eT(0,1)) = {id}, but

gp(eT) = S2.
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Proof. Let X = {0, 1}Z2 ⇥ [2]. Then X is a 2-point extension of the full
shift on two symbols (i.e., the base space in this example is itself a 2-point
extension). Let ⌃ be the usual two-dimensional shift map, and define T to
be the Z2-action

T(v1,v2)(x, i) =
�

⌃(v1,v2)x, (12)
v1+v2i

�

.

In other words, this action is defined via a cocycle that only depends on the
vector (v1, v2) and not on x. The cocycle satisfies the cocycle condition and
thus the two-dimensional action T is well-defined. Note that although this
action T is ergodic, and its generators T(1,0) and T(0,1) are both ergodic,
there are other subactions of T which are not.

Next define a 2-point extension of (X,T) via the cocycle

� ((x, i), (v1, v2)) = �(v1, v2) = (12)v1 .

The cocycle � also satisfies the cocycle condition and thus yields the action
eT on the space eX = X ⇥ [2]. We note that

eT(1,0) ((x, i), j ) =
�

(⌃(1,0)x, (12)i), (12)j
�

and
eT(0,1) ((x, i), j ) =

�

(⌃(0,1)x, (12)i), j
�

.

The space eX can be divided into four disjoint sets D11, D12, D21 and D22

where

D
ij

=
⇣

{0, 1}Z2 ⇥ {i}
⌘

⇥ {j}.

Observe that the set D11[D22 is an invariant set for eT(1,0) while D11[D21 is

an invariant set for eT(0,1), showing that these two actions are not ergodic. By
Proposition 3.4, their interchange classes must contain only non-transitive
subgroups of S2. Therefore gp(eT(1,0)) and gp(eT(0,1)) each consists only of
the trivial subgroup {id}.

However, we can see that eT is ergodic as follows: let eA and eB be nontrivial
subsets of X ⇥ [2]. We can then find nontrivial subsets A, B ✓ {0, 1}Z2

and
i1, i2, j1, j2 such that (A⇥ i1) ⇥ {j1} ✓ A and (B ⇥ i2) ⇥ {j2} ✓ B. If
j1 = j2, we use the structure of {0, 1}Z2

to find (0, k), where k is even if
i1 = i2 and odd otherwise, such that ⌃(0,k)A intersects B nontrivially. This

is turn tells us that eT(0,k)
eA intersects eB nontrivially. If j1 6= j2, we again

use the structure of {0, 1}Z2
to find (1, k), where k + 1 is even if i1 = i2

and odd otherwise, so that ⌃(1,k)A intersects B nontrivially. Again this

tells us that eT(1,k)
eA intersects eB nontrivially. Thus eT is ergodic and by

Proposition 3.4, gp(eT) is a conjugacy class of transitive subgroups of S2, so
gp(eT) = {S2}. ⇤

We now use this example, along with one constructed in the proposi-
tion below, to show that it is possible for the relationship between two
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2-dimensional actions to be quite di↵erent than the relationship between
their respective generators.

Proposition 5.4. There exist two Z2
-actions (X,X , µ,T) and (Y,Y, ⌫,S)

with respective 2-point extensions eT and

eS such that:

(1) eT and

eS are relatively orbit equivalent and there is a relative speedup

of

eT which is relatively isomorphic to

eS; but

(2) given any v 2 Z2
and any w 6= (0, 0) in Z2

,

eTv is not relatively orbit

equivalent to

eSw, and, for any cone C, there is no relative C-speedup

of

eTv which is relatively isomorphic to

eSw.

Proof. eS will be defined as a 2-point extension of a Z2 subshift of finite
type: first, let ⌦ = S2 ⇥ S2 = {id, (12)}2 and define ⇡1,⇡2 : ⌦ ! S2 to
be projection onto the first and second coordinate, respectively. Next, let
Y ✓ ⌦Z2

be the set of 2-dimensional infinite arrays {yv : v 2 Z2} of symbols
in ⌦ which satisfy, for every v = (v1, v2) 2 Zd,

(5.1) ⇡2(yv+(1,0))⇡1(yv) = ⇡1(yv+(0,1))⇡2(yv).

This set Y is invariant under the 2-dimensional shift S, and in fact S pre-
serves a measure ⌫ on Y which can be informally described as follows: to
specify a point y = {y(i,j)}(i,j)2Z2 2 Y , start by taking an i.i.d. sequence of
S2-valued random variables, each uniform on S2. Think of this sequence as
giving the values of y(i,0) where i ranges over Z. Now, independent of this
sequence, for each i 2 Z take another sequence of i.i.d. random variables,
where each random variable is again uniform on S2, and think of this se-
quence as giving the values of y(i,j) where j ranges over Z. Note that the
sequences associated to di↵erent i’s are chosen independently of one another.
The coordinates of y so chosen determine the remaining coordinates using
(5.1). To define ⌫, let the measure of any cylinder be the probability that a
point y so chosen lies in that cylinder.

Note that under ⌫, knowing the coordinates at a single index (or even
a finite set of indices) of some y 2 Y does not a↵ect the coordinates of y
that are some distance away, so cylinder sets in Y that are “su�ciently far
apart” are independent. It follows that (Y,Y, ⌫,S) is totally ergodic.

Now define a cocycle � : Y ⇥ Zd ! S2 by setting

�(y, (v1, v2)) = ⇡2(y(v1,v2�1))⇡2(y(v1,v2�2)) · · ·⇡2(y(v1,0))⇡1(y(v1�1,0)) · · ·
· · ·⇡1(y(2,0))⇡1(y(1,0))⇡1(y(0,0)).

By the definition of Y , this � satisfies the cocycle condition and therefore
determines a 2-point extension eS of S. Fix any w = (w1, w2) 2 Zd with w 6=
(0, 0). One can show, using the independence property of ⌫ and the definition
of �, that eSw is ergodic. Thus by Proposition 3.4 we have gp(eSw) = {S2}.
It follows that eS is also ergodic and gp(eS) = {S2} as well.

Let eT be the system from Lemma 5.3. In that result we saw that gp(eT) =
{S2}, so by Theorems 3.8 and 4.2 we obtain statement (1) of the proposition.
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Now let v,w 2 Z2 with w 6= (0, 0). We have already said gp(eSw) = {S2}.
To verify statement (2) of this proposition, we consider two cases: when
v1 + v2 is even and v1 + v2 is odd. First, assume v1 + v2 is even. Then

T(v1,v2)(x, i) =
�

⌃(v1,v2)x, (12)
v1+v2i

�

=
�

⌃(v1,v2)x, i
�

and we see that the action T(v1,v2) has, for instance, {0, 1}Z2 ⇥ {1} as an
invariant set and thus is not ergodic. Since Sw is ergodic, it is clear that the
two base actions Tv and Sw are not orbit equivalent and that no speedup of
Tv is isomorphic to Sw. It then follows that eTv and eSw cannot be relatively
orbit equivalent, nor is there a speedup of eTv relatively isomorphic to eSw,
yielding statement (2) of the proposition for this case.

Next we assume v1 + v2 is odd. Then

T(v1,v2)(x, i) =
�

⌃(v1,v2)x, (12)
v1+v2i

�

=
�

⌃(v1,v2)x, (12)i
�

This action is ergodic and we proceed to compute gp(eTv). We again look
at two cases: when v1 is even and when v1 is odd. In the first case we have

eT(v1,v2) ((x, i), j) =
��

⌃(v1,v2)x, (12)
v1+v2i

�

, j
�

=
��

⌃(v1,v2)x, (12)i
�

, j
�

and, similar to how we argued for eT(0,1) in Lemma 5.3, we see that D11[D21

is an invariant set for eTv. Thus eTv is not ergodic and gp(eTv) = {id}. On
the other hand, if v1 is odd we have

eT(v1,v2) ((x, i), j) =
��

⌃(v1,v2)x, (12)
v1+v2i

�

, (12)j
�

=
��

⌃(v1,v2)x, (12)i
�

, (12)j
�

and, again similar to how we argued for eT(1,0) in Lemma 5.3, we see that

D11 [D22 is an invariant set for eTv. Again we have eTv is not ergodic and
therefore gp(eTv) = {id}.

In all cases we have gp(eTv) = {id} while gp(eSw) = {S2}. Theorem 3.8
then tells us that eTv and S̃w are not relatively orbit equivalent. We use
Theorem 4.2 to show that it is not possible to find a relative speedup of eTv

which is relatively isomorphic to eSw, yielding statement (2) of the proposi-
tion, as wanted. ⇤
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