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Abstract. We define directional recurrence for infinite measure pre-
serving Zd actions both intrinsically and via the unit suspension flow
and prove that the two definitions are equivalent. We study the struc-
ture of the set of recurrent directions and show it is always a Gδ set.
We construct an example of a recurrent action with no recurrent direc-
tions, answering a question posed in a 2007 paper of Daniel J. Rudolph.
We also show by example that it is possible for a recurrent action to
not be recurrent in an irrational direction even if all its sub-actions are
recurrent.

1. Introduction

Given a dynamical system defined by the action of a group G, it is natural
to study the sub-dynamics of the action. In particular, one can ask what
dynamical properties of the action of G are inherited by the dynamical sys-
tems one obtains by restricting the original action to sub-groups of G. In
the 1980’s Milnor introduced the more general idea of directional dynamics
[7]. He defined the directional entropy of a Zd action in all (i.e. including ir-
rational) directions. The study of directional entropy has been a productive
line of research (see for example [14], [8], [9], [10]). In addition, the idea of
defining directional dynamical properties more generally has led to other ad-
vances in dynamics, most notably expansive sub-dynamics introduced in [2].
In this paper we define directional recurrence for infinite measure preserv-
ing Zd actions and we study the structure of the set of recurrent directions
under the assumption that the action is also recurrent.

The motivation for the project originally was a question posed by Rudolph
in response to Feldman’s proof in [3] of the ratio ergodic theorem for conser-
vative Zd actions. Feldman’s proof required that the generators of the action
also be recurrent. Rudolph asked in [12] whether this was an additional as-
sumption or if it is the case that the recurrence properties of a group action
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are necessarily inherited by its sub-actions. In 2008 the authors answered
the question in the negative.

Theorem 1.1. There exists an infinite measure preserving, recurrent, and
ergodic Z2 action, (X,µ, {T �n}�n∈Z2), on a σ-finite Lebesgue space, with the
property that (X,µ, {T k�n}k∈Z) is not recurrent for all �n ∈ Z2.

The question became moot from the point of view of the ratio ergodic
theorem when Hochman [5] gave an alternative proof that does not require
the recurrence of any sub-actions. When Rudolph saw the example con-
structed to prove Theorem 1.1, and others displaying a range of possibilities
for the recurrence properties of particular sets of sub-actions, he suggested
that we extend the definition of directional recurrence to include irrational
directions and that we analyze the structure of possible recurrent directions
in this more general setting. The results on directional recurrence presented
here were established jointly with Rudolph, but unfortunately the final ex-
position was completed after his untimely death in 2010. The authors are
grateful to have had this chance to collaborate with Rudolph who was both
their friend and advisor.

For ease of exposition from here on out we restrict our attention to d = 2
but we note that the proofs and examples generalize readily to all d > 1.

Denote the directions in R2 by angles in [0, π). There are two ways of
defining directional properties for Z2 actions. Milnor’s approach is to define
the property intrinsically in the Z2 action. Namely, we say that an action
{T �n}�n∈Z2 has a dynamic property in the direction θ if there exist a collec-
tion of arbitrarily good rational approximants �ni of θ so that the set {T �ni}
has that property. Alternatively, given a direction θ, one can associate to
{T �n}�n∈Z2 an R action in that direction by considering the unit suspension
flow of {T �n}�n∈Z2 , restricted to the direction θ. For directional entropy the
two approaches yield equivalent definitions [9]. Here we define directional
recurrence both intrinsically and via the unit suspension and we prove that
the two definitions are equivalent.

Theorem 1.2. An ergodic, infinite measure preserving Z2 action on a σ-
finite Lebesgue space is recurrent in a direction θ if and only if its unit
suspension restricted to the direction θ is recurrent as an R action.

We show that there are some restrictions on the types of subsets of [0, π)
that can appear as recurrent directions for a Z2 action. Deferring the formal
definition until later, let RT ⊂ [0, π) denote the directions of recurrence for
a Z2 action {T �n}�n∈Z2 .

Theorem 1.3. The set of recurrent directions, RT , of an infinite measure
preserving, recurrent, and ergodic Z2 action on a σ-finite Lebesgue space,
(X,µ, {T �n}�n∈Z2) is a Gδ subset of [0, π).

There are directional properties with stronger restrictions on the structure
of the bad set of directions. For example an ergodic and probability measure
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preserving Z2 action can have at most countably many directions along
which it is not ergodic. A similar statement holds for directional weak
mixing for a weak mixing Z2 action (see for example [11]). Here we show that
there is a great deal more flexibility in the structure of RT . In particular,
the original example proving Theorem 1.1 has no recurrent directions even
under the extended definition of directional recurrence.

Theorem 1.4. There exists an infinite measure preserving, recurrent, and
ergodic Z2 action on a σ-finite Lebesgue space, (X,µ, {T �n}�n∈Z2), with the
property that RT = ∅.

The example proving Theorems 1.1 and 1.4 is a rank one action that
is constructed using a cutting and stacking procedure. The construction
has enough flexibility built into it so that many specific examples can be
obtained by choosing the parameters of the procedure appropriately. Note
that by Theorem 1.3 we know that RT cannot consist only of the rational
directions in [0, π). Using our technique we construct an explicit example
that shows that it is possible for RT to contain all the rational directions,
but still not be all of [0, π).

Theorem 1.5. Let α1, . . . , αk ∈ [0, π) be irrational. There exists an infinite
measure preserving, recurrent, and ergodic Z2 action on a σ-finite Lebesgue
space, (X,µ, {T �n}�n∈Z2), with the property that RT contains all rational di-
rections but αi /∈ RT for i = 1, . . . , k.

It is, however, an open question as to whether any Gδ subset of [0, π) can
be achieved as a set of recurrence.

The organization of the paper is as follows. In Section 2 we define di-
rectional recurrence intrinsically and via the unit suspension flow and prove
that the two definitions are equivalent. We also show that for rational di-
rections the definition coincides with the usual definition of recurrence for
the Z action obtained by restricting to the corresponding subgroup of Z2.
In Section 3 we give a third characterization of recurrence in terms of a
sweeping out property and we prove Theorem 1.3. In Section 4 we establish
the notation we use to construct the cutting and stacking examples, give
some basic properties of infinite measure preserving rank one actions and
the proofs of Theorems 1.4 and 1.5.

2. Directional recurrence

In what follows we letX denote a σ-finite Lebesgue space and (X,µ, {T �n}�n∈Z2)
denote an infinite measure preserving, and ergodic Z2 action on X. Our
goal in this section is to extend the notion of recurrence to include direc-
tions that do not correspond to a subgroup action of {T �n}�n∈Z2 . We begin
by establishing some notation to describe directions and vectors associated
to a direction. We then define directional recurrence intrinsically and via
the unit suspension. Finally, we prove that the definitions are equivalent.
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2.1. Notation. Recall that a direction is an angle θ ∈ [0, π). For ease of
exposition we introduce some terminology to help associate directions to
vectors in the plane.

Notation 2.1. Let �u = (u1, u2) ∈ R2. If u2 �= 0 then the direction associated
to �u is the angle it makes with the vector sign(u2) · (1, 0). If u2 = 0, then
the direction associated to �u is 0.

Notation 2.2. Given θ ∈ [0, π), a vector �v = �v(θ) ∈ R2 is said to be
associated to the direction θ if the direction associated to �v is θ.

Notation 2.3. A direction θ ∈ [0, π) is rational if it has an associated vector
�n ∈ Z2.

The concept of a tunnel is the key geometric tool that we will use to define
directional recurrence.

Definition 2.4. Let θ ∈ [0, π) and � > 0. The �-tunnel of θ is the set of
points in R2 within � of the line through the origin in direction θ, namely
the set �

t∈R
B�(t�u)

where B�(�x) denotes the �-ball around the point �x ∈ R2, and �u ∈ R2 is any
vector associated to θ.

Finally, we introduce some notation which we will use in working with
unit suspension flows.

Notation 2.5. Recall �x� is the greatest integer n ≤ x. For a vector �v =
(v1, v2) ∈ R2, we set ��v� = (�v1�, �v2�) ∈ Z2. For a set R ⊂ R2, �R� =
{��v� : �v ∈ R}.

Recall also that {x} is the fractional part of the real number x, i.e. {x} =
x− �x�. We define {�v} = ({v1}, {v2}) and {R} = {{�v} : �v ∈ R}.

2.2. Defining directional recurrence by rational approximants. We
begin by recalling the definition of a recurrent group action. For an extensive
treatment of the properties of recurrent actions see for example [1].

Definition 2.6. An ergodic, infinite measure preserving action of a group
G on a σ-finite Lebesgue space, (X,µ, {T γ}γ∈G), is recurrent if for every
measurable set A with µ(A) > 0, there exists γ ∈ G such that µ(A∩T γA) >
0.

We are now ready to define directional recurrence for actions of the group
Z2.

Definition 2.7. A direction θ is recurrent for an infinite measure preserv-
ing, ergodic, and recurrent Z2 action on a σ-finite Lebesgue space, (X,µ, {T �n}�n∈Z2),
if for all � > 0 and all measurable sets A of positive measure there is a vector
�n in the �-tunnel of θ so that µ(A ∩ T �nA) > 0.
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Notation 2.8. We denote the set of recurrent directions for (X,µ, {T �n}�n∈Z2)
by RT .

The next result shows that recurrence along a rational direction as given
by Definition 2.7 is equivalent to the recurrence of the group elements cor-
responding to that direction as given by Definition 2.6.

Lemma 2.9. Let (X,µ, {T �n}�n∈Z2) be an infinite measure preserving Zd

action on a σ-finite Lebesgue space. A rational direction θ ∈ [0, π) ∈ RT if
and only if (X,µ, {T k�n}k∈Z) is a recurrent Z action for all �n ∈ Z2 whose
associated direction is θ.

Proof. Fix (X,µ, {T �n}�n∈Z2) as in the statement of the lemma and suppose
there is a rational θ ∈ RT . Let �n ∈ Z2 be a vector with associated direction θ
and choose � > 0 that is smaller than the distance between the line {t�n}t∈R
and Z2 \ {k�n}k∈Z. For any set A of positive measure the vector �w ∈ Z2

satisfying Definition 2.7 for θ with this � must necessarily be of the form k�n,
showing that T �n satisfies Definition 2.6. The converse is immediate. �
2.3. Directional recurrence via the unit suspension. We begin by re-
calling the definition of the unit suspension of the Z2 action (X,µ, {T�v}�v∈Z2).

Definition 2.10. The unit suspension of a Z2 action on a σ-finite measure
space, (X,µ, {T �n}�n∈Z2), is the R2-action T̂ defined on X × [0, 1)2 by

T̂�v(x,�r) = (T (��v+�r�x, {�v + �r} ).
Note that T̂ preserves the product measure µ×λ where λ is Lebesgue measure
on [0, 1)2.

We now prove Theorem 1.2, restated more precisely below.

Theorem 2.11. Let (X,µ, {T �n}�n∈Z2) be an infinite measure preserving Z2

action on a σ-finite Lebesgue space and let (X × [0, 1)2, µ × λ, {T̂�v}�v∈R2)
denote its unit suspension. The direction θ ∈ RT if and only if the R action
(X×[0, 1)2, µ×λ, {T̂ t�u}t∈R) is recurrent for any �u associated to the direction
θ.

Proof. Assume first that the Z2 action is recurrent in direction θ. Note that
to prove the unit suspension is recurrent in direction θ it suffices to show
that it is recurrent for sets of the form A × R where A ⊂ X is a subset of
positive measure and R ⊂ [0, 1)2 is a rectangle [i1, i2]× [j1, j2]. Fix � > 0 to
be less than 1

4 min{i2 − i1, j2 − j1}. By the directional recurrence of the Z2

action we can find �n ∈ Z2 in the �-tunnel of θ so that µ(A ∩ T �nA) > 0.
Choose �u ∈ R2 to be the vector associated with direction θ that is closest

to �n. Note that ��u−�n� < �. Let R̃ ⊂ R be the subset of R consisting of those
(i, j) ∈ R that are at least a fraction 1

4 min{i2 − i1, j2 − j1} away from the

edges of the square. By our choice of � we then know that if (s, t) ∈ R̃ then
�u+(s, t) ∈ �n+R and therefore ��u+R̃� = �n and {�u+R̃} ⊂ R. Thus, if we set
Ã = A ∩ T �nA we have T̂ �u(Ã× R̃) = (T �nÃ×R�) for some R� ⊂ R with area
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at least half of the area of R and therefore µ× λ
�
T̂ �u(Ã× R̃) ∩ (A×R)

�
≥

1
2 µ× λ(Ã× R̃) > 0.
Now suppose that the unit suspension is recurrent in a direction θ. Fix

A ⊂ X, a set of positive measure and � > 0. Let R ∈ [0, 1)2 be a square based
at the origin of side length 1

4�. By the recurrence of the unit suspension there

is a vector �u associated to θ for which the measure of (A×R)∩ T̂ �u(A×R) is
positive. Consider (x,�r) in this intersection. Since T̂ �u(x,�r) = (T ��u+�r�x, {�u+
�r}) ∈ A×R we have �n = ��u+ �r� with T �nx ∈ A. It remains to prove that �n
must lie in the �-tunnel of θ. To see this note that both �r and �j = {�u + �r}
are in R. On the other hand �j = �u + �r − �n so ��u − �n� = ��j − �r� and the
latter is less than � by the definition of R.

�

3. The structure of RT

3.1. Uniform sweeping out. We give an alternative characterization of
recurrence that is useful for our arguments in this section. In what follows
we fix an infinite measure preserving Z2 action on a σ-finite Lebesgue space
(X,µ, {T �n}�n∈Z2) and we denote the σ-algebra of µ-measurable sets by B.

Definition 3.1. Let A ∈ B be such that 0 < µ(A) < ∞. A direction θ is said
to have the � sweeping out property for A if for all α with 0 < α < 1

2 ,
there exist pairwise disjoint subsets A1, A2, . . . , Ak of A of positive measure
and vectors �v1, . . . , �vk in the �-tunnel of θ so that the sets T�v1A1, . . . , T�vkAk

are a pairwise disjoint collection of subsets of A satisfying:

µ(
k�

i=1

Ai) > α · µ(A), and(1)

µ(
k�

i=1

T�vi(Ai)) > α · µ(A).(2)

If θ has the � sweeping out property for A for every � > 0 we say it is
uniform sweeping out for A.

The next two results show that the recurrence of a direction can be char-
acterized in terms of Definition 3.1.

Proposition 3.2. A recurrent direction is uniform sweeping out for all
measurable sets A of finite positive measure.

Proof. Let θ be a recurrent direction. Choose � > 0, 0 < α < 1
2 , and

A, a measurable set of finite positive measure. Since θ is recurrent, there
is a vector �v1 in the �-tunnel of θ such that µ(A ∩ T�v1A) > 0. Define
Â1 = A ∩ T�v1A and A1 = T−�v1Â1.
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Assume we have found �vj , Âj , and Aj for 1 ≤ j ≤ i and set A
�
i+1 =

A− (
�i

j=1(Âj ∪Aj) ). If µ(A
�
i+1) > 0, use the recurrence of θ to find �vi+1 in

the �-tunnel of θ so that µ(A
�
i+1 ∩ T�vi+1A

�
i+1) > 0. Define

Âi+1 = A
�
i+1 ∩ T�vi+1A

�
i+1 and Ai+1 = T−�vi+1Âi+1.

Fix �v1 and note that the choices of �vi with i > 1 described above are not
unique. Consider all possible extensions of (A1, T�v1A1) as defined above:

(A1, T
�v1A1),

� 2�

i=1

Ai,
2�

i=1

T�viAi

�
, · · · ,

� k�

i=1

Ai,
k�

i=1

T�viAi

�
, · · · .

Each such sequence forms a chain in the partially ordered set of pairs of
measurable subsets of A×A under the relation (B,C) ≤ (B�, C �) if and only
if B ⊂ B� and C ⊂ C �. Since (A,A) is a maximal element of this set, each
chain is contained in a maximal chain. Choose such a maximal chain and
note that if

µ
� ∞�

i=1

(Ai ∪ T�viAi)
�
< µ(A)

it would be possible to extend the chain; therefore we must have equality.
But then it follows that

µ(A) = µ(
∞�

i=1

(Ai ∪ T�viAi)) ≤
∞�

i=1

µ(Ai ∪ T�viAi)

≤
∞�

i=1

2µ(Ai) = 2
∞�

i=1

µ(Ai).

We can thus find k so that

µ(
k�

i=1

Ai) =
k�

i=1

µ(Ai) > αµ(A),

satisfying (1).
Since the action is measure preserving

k�

i=1

µ(Ai) =
k�

i=1

µ(T�viAi)

and (2) is also satisfied. �

The following is a converse result, showing that if a direction has the
uniform sweeping property for a sufficiently good collection of sets, then it
is a recurrent direction.

Proposition 3.3. Let A be a countable collection of sets of finite positive
measure which are dense in the σ-algebra B. If θ is a direction which is
uniform sweeping out for all A ∈ A, then θ is a recurrent direction.
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Proof. Let C be a subset of X with infinite measure. Since X is σ-finite we
can write C = ∪∞

i=1Ci with Ci ⊂ Ci+1 and 0 < µ(Ci) < ∞ for all i. Thus it
suffices to prove that θ is a direction of recurrence for sets of finite positive
measure.

Fix a set C of finite, positive measure and � > 0. As the collection A is
dense there is a set A ∈ A of positive, finite measure, with the property that

(3) µ(A�C) < �µ(A).

Fix 1
4 < α < 1

2 . Choose sets Ai ⊂ A and vectors {�vi} in the �-tunnel
of θ, i = 1, . . . , k, satisfying Definition 3.1 for the direction θ. The rest of
the argument, while technical, relies on the idea that since the sets ∪Ai and
∪T�viAi both cover at least α of the set A, and A is an approximation of
the set C, provided � is chosen small enough, there is an index i with the
property that both

(4) µ(Ai ∩ C) >
1

2
µ(Ai) and µ(T�viAi ∩ C) >

1

2
µ(T�viAi).

We thus have �vi ∈ Z2 in the �-tunnel of θ for which µ(C ∩ T�viC) > 0. Now
the details.

It follows easily from (3) that if we consider ∪Ai ∩ C, rather than ∪Ai,
we lose a set of small measure. More formally

µ
�
∪k
i=1Ai ∩ C

�
≥ µ

�
∪k
i=1Ai

�
− µ(A�C)

≥ µ
�
∪k
i=1Ai

�
− � µ(A).

On the other hand, our choice of α and the statement in (1) gives that
4µ(∪k

i=1Ai) > µ(A) so we have

µ
�
∪k
i=1Ai ∩ C

�
> (1− 4�)µ(∪k

i=1Ai).

We now argue that the collection of sets Ai that are well covered by C
make up most of the union, in measure. Let I ⊂ {1, ..., k} be the collection
of i’s such that µ(Ai ∩ C) > (1− 2

√
�)µ(Ai).

Note that

µ
�
∪k
i=1Ai ∩ C

�
= µ (∪i∈IAi ∩ C) + µ (∪i/∈IAi ∩ C)

≤ µ (∪i∈IAi) + (1− 2
√
�)µ (∪i/∈IAi)

= µ
�
∪k
i=1Ai

�
− 2

√
� µ (∪i/∈IAi) .

We thus have

(1− 4�)µ
�
∪k
i=1Ai

�
< µ

�
∪k
i=1Ai ∩ C

�
< µ

�
∪k
i=1Ai

�
− 2

√
�µ (∪i/∈IAi)

which implies that

µ (∪i/∈IAi) ≤ 2
√
�µ

�
∪k
i=1Ai

�
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We now make an analogous argument for the sets T�viAi. We begin by
using (2) to argue, similarly to before, that we have

µ
�
∪k
i=1T

�viAi ∩ C
�
> (1− 4�)µ

�
∪k
i=1T

�viAi

�
.

We can similarly define J ⊂ {1, ..., k} to be the collection of j’s such that
µ(T�vjAj ∩ C) > (1− 2

√
�)µ(Aj) and show that

2
√
�µ

�
∪k
i=1T

�vjAj

�
= 2

√
�µ

�
∪k
i=1Ai

�
≥ µ (∪i/∈JAj) = µ

�
∪j /∈J T

�vjAj

�
.

Finally, if we consider only those indices that lie in both I and J we can
conclude

µ (∪i∈I∩JAi) ≥ (1− 4
√
�)µ

�
∪k
i=1Ai

�
and

µ
�
∪i∈I∩J T

�viAi

�
≥ (1− 4

√
�)µ

�
∪k
i=1T

�viAi

�
.

Thus I ∩ J �= ∅ and for any i ∈ I ∩ J we will have

µ(Ai ∩ C) > (1− 2
√
�)µ(Ai) and

µ(T�viAi ∩ C) > (1− 2
√
�)µ(T�viAi).

Clearly if � is chosen small enough then (4) holds.
�

3.2. Proof of Theorem 1.3. We now have all the ingredients in place to
prove that RT must be a Gδ set.

Let A = {Ai} be a countable collection of sets of finite positive measure
which are dense in B. Then by Propositions 3.2 and 3.3, we have

RT = ∩∞
i=1{θ : θ has the uniform sweeping out property under T for Ai}.

By Definition 3.1, we can rewrite this set as:

RT = ∩∞
i=1 ∩∞

n=1 {θ : θ has the 1
n sweeping out property under T for Ai}.

Thus we just need to show that for any set A ∈ B of positive finite measure,
a set of the form

{θ : θ has the � sweeping out property under T for set A}

is open.
Fix such a set A and � > 0, and let θ be in the set defined above. Fix a

vector �vi in the �-tunnel of θ given by Definition 3.1 and denote its associated
direction by ωi. By the continuity of the sine function there exists an ηi =
η(�vi) so that �vi lies in the �-tunnel of all directions in the interval (ωi −
ηi, ωi+ηi). Further, ηi can be chosen in such a way that θ lies in this interval.
Choose δi so that (θ − δi, θ + δi) ⊂ (ωi − ηi, ωi + ηi). Let δ = mini=1,··· ,k δi.
Then the interval (θ − δ, θ + δ) consists of directions that contain all the
�vi’s in their �-tunnel, and thus all have the �-uniform sweeping out property
under T for the set A, as wanted.



10 AIMEE S. A. JOHNSON AND AYŞE A. ŞAHİN

4. Examples of RT

4.1. Infinite measure preserving rank one actions. The examples we
construct in this paper will be rank one infinite measure preserving actions
defined on measurable subsets of R+ . We will construct them using standard
cutting and stacking methods. In this section we establish the notation and
facts about such actions which we need for our arguments. For more general
discussions of rank one transformations and cutting and stacking we refer
the reader to [4] and for discussions of rank one actions in higher dimensions
to [6] and [10].

The following notation will be of use to us in our constructions.

Notation 4.1. Let B ⊂ R2, �v ∈ R2. The �v-tunnel of B is the set B +
{t�v}t∈R.

Notation 4.2. For n ∈ N we set Bn = [0, n)2∩Z2 and Bn = (−n, n)2∩Z2.
Given a square B = �v + Bn or �v + Bn we call the point �v the base point of
B. A vector �v = (x, y) ∈ Z2 with x, y > 0 will be called a positive vector.

Fix n1 ∈ N and let {I1�v}�v∈Bn1
be a pairwise disjoint collection of equal

finite length interval subsets of R indexed by Bn1 . Geometrically we think
of the intervals as arranged in the shape of Bn1 according to their indexing
vector. We start defining an action T by mapping levels to each other by
translation:

T �w(I1�v ) = I1�v+�w

whenever �v, �w ∈ Bn1 are such that �v+ �w ∈ Bn1 . The collection of intervals,
denoted by τ1, is clearly a tower for the Z2 action. Each interval will be
called a level of the tower and I1�0 will be called the base of the tower.

Given a tower τi, i ≥ 1, we define the next tower τi+1 by dividing the base
Ii�0 into k(i) equal length subintervals, Ii,j�0

, j = 1, . . . , k(i) for some choice of

k(i) ∈ N. For j = 1, · · · , k(i) we call the subsets

τ ji = ∪�v∈Bni
T�vIi,j�0

the slices of τi. The tower τi+1 is then constructed by first placing these slices
of τi at k(i) locations in Z2 so that they do not intersect. These locations are
denoted by Pi(1). In our constructions, Pi(1) will always include �0. Define
ni+1 ∈ N to be the smallest integer so that Bni+1 contains the set

�

�v∈Pi(1)

(Bni + �v)

and set Si+1 = Bni+1 \
�
∪�v∈Pi Bni + �v). For each �v ∈ Si+1 we choose an

interval s�v of length equal to that of the intervals constituting the slices of
τi in such a way that the resulting collection of intervals is pairwise disjoint.
These are called the spacer intervals of the i+1 stage, or of τi+1. To complete
the construction of τi+1 we assign spacer intervals to the locations in Bni+1

not occupied by the slices of τi according to their indexing vector.
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We rename the intervals {Ii+1
�v }�v∈Bni+1

with Ii+1
�0

denoting the base of the
tower. Finally, the definition of T is extended to τi+1 by setting

T �w(Ii+1
�v ) = Ii+1

�v+�w

whenever �v, �w ∈ Bni+1 are such that �v + �w ∈ Bni+1 .
Let X denote the subset of R given by the union of the towers, with the

σ-algebra generated by the levels of the towers. In the case that ni → ∞
and the measure of the levels of the towers goes to 0, the resulting action
(X,µ, {T�v}�v∈Z2) is a rank one Z2 action. We say that τi is a sequence of
towers associated to T . As the levels of τi all have the same measure, T is
clearly (possibly infinite) measure preserving.

Note that just as we can see slices of τi inside τi+1, we can find slices of
those slices inside τi+2, and so on.

The relative positions of all the slices of τi inside later towers are important
for our arguments. To this end, for all j ≥ 1 we define Pi(j) to be those
vectors �u ∈ Bni+j with the property that T �u maps the base of one slice of
τi in τi+j to the base of another slice. Let Pi = ∪j≥1Pi(j). We call the
elements of Pi times of strong recurrence for the tower τi. The next lemma
is immediate.

Lemma 4.3. Let I = Ii�v be a level of tower τi. Then T �uI ∩ I �= ∅ if and
only if �u is a time of strong recurrence for tower τi.

There are several well known properties of rank one actions that we will
use extensively.

Proposition 4.4. Let (X,µ, {T�v}�v∈Z2) be a rank one action, and τi an
associated sequence of towers. Given a measurable set A with 0 < µ(A) < ∞
and � > 0 there is an i0 such that for all i > i0 there is a level I of τi with
the property that

(5) µ(A ∩ I) > (1− �)µ(I).

Theorem 4.5. A rank one measure preserving Z2 action is ergodic and
recurrent.

Proof. Let (X,µ, {T�v}�v∈Z2) be a measure preserving, rank one Z2 action
with τi an associated sequence of towers. To see that T is a recurrent Z2

action fix A ⊂ X, a measurable set of finite positive measure, and � where
0 < � < 1

4 . Apply Proposition 4.4 to obtain an i0 and choose i > i0. Let I
be the level of τi satisfying (5). By construction, τi+1 is created from slices
of τi: in doing so the level I is divided into k(i) equal measure subintervals,
each belonging to a slice τ ji of τi. By a standard Fubini argument there
must be at least two of these subintervals, call them Ij1 and Ij2 , for which
µ(A ∩ Ijk) > (1 −

√
�)µ(Ijk) > 1

2µ(I
jk) for k = 1, 2. Let �u ∈ P1(i) denote

the vector that maps the base of τ j1i to the base of τ j2i . In particular,
T �uIj1 = Ij2 . We are then guaranteed that µ

�
T �uA ∩A

�
> 0.

�
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Finally note that to construct a rank one Z2 action using the procedure
we describe above it suffices to establish a value for n1 and then for each i
to choose the number k(i) of slices of τi used to construct τi+1, along with
the set Pi(1) ⊂ Z2 describing the location of these slices. These parameters
completely determine the values of the rest of the ni, i ≥ 2 and sets Pi.

4.2. Proof of Theorem 1.4. To start the construction let n1 = 2, and
construct τ1 from the levels {[0, 1), [1, 2), [2, 3), [3, 4)} indexed by B2 with
I1�0 = [0, 1). Set k(i) = 2 for all i and let P1(1) = {�0, (2, 2)}.

To define the induction let �v∗i denote the non-zero element of all the times
of strong recurrence that have thus far been created that has the smallest
slope. Call this slope m∗

i . Choose a positive vector �v ∈ Z2

and k ∈ Z so that if k�v = (x, y) then

y > ni(6)

y

x
<

1

2
m∗

i(7)

k�v lies below the �v∗i -tunnel of Bni , and(8)

if �w is a time of strong recurrence that has been created up to this point
then

k�v +Bni does not intersect the �w-tunnels of Bni .(9)

Let Pi(1) = {�0, k�v}.
Let (X,µ, {T�v}�v∈Z2) denote the ergodic, infinite measure preserving, con-

servative Z2 action constructed in this way. To see thatRT = ∅ first consider
the case where there exists a rational direction θ with an associated vector
�v ∈ Z2 so that �v ∈ Pi for some i. Choose the first stage i for which this is
true and let s denote a spacer level from this stage. If there exists n ∈ Z
such that µ(Tn�v(s)∩s) > 0 then by Lemma 4.3 one slice of τi must intersect
the �v-tunnel of another slice of τi at some stage k > i. By condition (9) this
is impossible since it implies that one of the two slices of τk−1 must then
intersect the �v-tunnel of the other.

Now suppose θ does not have an associated vector in Z2 which is a time
of strong recurrence. If θ = 0, then if � = 1, condition (6) implies that all
slices of τ1 save one have to lie above the 1-tunnel of the horizontal axis. If
θ �= 0, then by (7) we can find i such that �v∗k has slope smaller than tan θ
for all k ≥ i. Let s be a spacer level in τi+1 and suppose there exists �w ∈ Z2

in the �-tunnel of θ for some � > 0 such that µ(T �ws ∩ s) > 0. Arguing as
above this implies there exists a k > i such that one slice of τk intersects the
�u(θ)-tunel of the other at stage k+1. But by (8) and (9) this is impossible.

4.3. Proof of Theorem 1.5. Let {θj} denote the set of rational directions.
We first describe the construction that will guarantee θj ∈ RT for all j. Let
U = {ui} denote an enumeration of the elements of Z2. The towers will be
of shape Bn centered at the origin, and the construction can start with an
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arbitrary choice for n1. For i > 1 the remaining parameters are chosen to
be k(i) = 2 and Pi(1) = {�0, �wi} with �wi = ti�ui where ti ∈ Z is chosen so
that �wi +Bni is disjoint from Bni .

Let (X,µ, {T�v}�v∈Z2) denote the resulting Z2 action. To see that RT

contains all rational directions fix a rational θj , a measurable set A of finite
positive measure, and 0 < � < 1

4 and apply Proposition 4.4 to obtain i0.
Note that there are infinitely many vectors �uk ∈ Z2 associated with θj and
therefore there are infinitely many i > i0 so that Pi(1) consists of �0 and a
vector associated with θj . For such an i let I be the level in τ i satisfying
(5). This implies that both slices of I in τ i+1 must be strictly more than 1

2

covered by A and therefore µ(T �uA∩A) > 0 for the non-zero vector �u ∈ Pi(1)
associated with θj .

It follows from Theorem 1.3 thatRT must contain other directions besides
the θj . We now describe how to modify the construction so that we can
guarantee the given collection of irrational directions α1, . . . , αk are not in
RT . First note that for any � > 0 every time a vector t�w associated to θk
appears as a time of strong recurrence, it is in the � tunnel for only the

interval of directions (θk − δ(�, t), θk + δ(�, t)) where δ(�, t) = arcsin
�

�
�t �w�

�
.

There is some flexibility in the construction to choose t as large as we like,
thereby shrinking this interval as much as we like. We next describe how to
use this flexibility to guarantee that none of the αi are recurrent directions
for T .

Fix a sequence �i decreasing to zero and at each stage of the construction
choose ti so that the interval (θk(i) − δ(�i, t), θk(i) + δ(�i, t)) does not contain
any of the directions αj . For any � > 0 there exists io such that for all i ≥ i0
�i < �. Let I be a level of τi0 . By Lemma 4.3 we have that for all j, αj

cannot be � recurrent for I.
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