E91
Embedded System

Why embedded systems?

* Big bang-for-the-buck by adding
some Intelligence to systems.
« Embedded Systems are ubiquitous.

« Embedded Systems more common
as prices drop, and power decreases.

Which Embedded System?

 We will use Texas Instruments MSP-430
+ very popular (#2 next to microchip)
+ 16 bits (instead of 8)
+ low power
+ clean architecture
+ low cost (free) development tools

- relatively low speed/capacity (i.e., no video
or fancy audio)

- low level tools (compared to Stamp,
Arduino...)

- 16 bits (instead of 32)

course overview

Mix of hardware and software
Mostly C, some assembly

Lots of information, less conceptual than many
courses.

Two hardware kits, EZ430 and the 430
Experimenter’s Board

About 2 hours of lecture per week.
More hours in lab — writeups will be short.

In lab you will need to become familiar with a
broad set of documentation. | will try to keep a
complete list on website. Let me know if you find
good documents | have not listed.

You will need to be more self-reliant than in many
courses (though | am always ready to help).

Maybe some assignments.

Policy on working together :

e Lab groups should be 2 (preferably) or 3 students.

* We expect labs to be done as a group with your lab
partners. You may discuss your lab with other
groups, but you may not copy anything from their
reports. Each group will submit a single report
(with all members of the group listed).

Today

* Brief overview of
o logic
O numbers
oC
o MSP430 digital 1/0

Today’s lecture will be very densely packed so you can start on the
lab. We will come back and repeat some of the material in more
depth as needed.

Brief Review of Logic

* In this class we will deal with logical
circuits (i.e., Inputs are either true
(logical 1, for us this i1s 3.3V) or false
(logical O, for us this is OV). In class
you will learn why this is useful, for
now, accept It.

* To deal with these signal levels we
develop a special form of
mathematics, Boolean algebra.

Boolean Operators

* Operators:
O0AND : C=A-B (Read as C equals A and B).

o “Truth Table”

Input A Input B Output C
0 0 0
0 1 0
1 0 0
1 1 1

A — C=A'B
B _

AND

Sometimes the “-” is dropped: C=AB

logic gate images adapted from: http://www.ee.surrey.ac.uk/Projects/Labview/gatesfunc/index.html

More logic...

0
0
1

D=A+B

OR

<L O

NOT

H=A+B

MNOR

< O

... and even more.

A

MNAND

A -
B J=A®B

XOR

eXclusive OR

Note:
XOR with 1 inverts bit,
XOR with 0 passes bit.

A B G
0 0 1
0 1 1
1 0 1
1 1 0
A B J
0 0 0
0 1 1
1 0 1
1 1 0

Decimal

Binary

Hex

Number Systems

o

0000

0001

0010

Binary: 00001101, =1-23+ 1-22+ 0-2t + 1-20 =

0011

8+4+1=13

0100

0101

Hex: 00101010, = 2A,; = Ox2A = 2-16 + 10-16° =

0110

32 + 10 =42

0111

1000

(check 1-25 + 1-23+ 2:21 =32 + 8 + 2 = 42)

Ol | I N Uu]~ WIN]E

1001

=
o

1010

8 bits = 1 byte

[y
=

1011

0000 0000, —» 1111 1111,

[EEN
N

1100

Ox00 — Oxff

[EEN
w

1101

0 — 28-1=255 (or -128 — 127 (-(27) — 27-1)))

[ERN
SN

1110

MmOl |>>lOo|lx|IN|lojlun]lbd|lw]IN]|F]|]O

[EEN
(2]

1111

16 bits = 2 bytes = 1 word
0000 0000 0000 0000, — 1111 1111 1111 1111,
Ox0000 — Oxffff

0 — 216-1=65535 (or -32768 — 32767 (-(215) — 215-1)))

4 bits = 1 nybble (0 —» 24-1=15)

A simple

#include <msp430x20x3-h>*/////////

void main(void)*j;______————————————
volatile int 1;

WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer

PIDIR |= OxO1; //

C program

Constants associated with our chip
Every program needs a “main” routine
(between braces)

{au=n
|

Declare “i” as volatile so compiler doesn’t optimize
it out of existence (or turn optimizations off).
All variables must be declare before they are used.

et P1.0 to output direction

“1” is always true, so loop forever.

while (1)&{’ //Do this forever
P1OUT = P10UT | OxO01;x
for (i=0; i<0x5000; i
P10OUT =
for (1=0;

1<0x5000;

Don’t worry about for now.

P10UT & ~0x01%
I+

// Set P1.0 with “or”
// Delay

// Clear P1.0

// Delay

Set bit 0 high (connected to LED)
Loop to waste time
Set bit O low (LED turns off)

Loop to waste time

Set bit 0 in “P1DIR” - this makes it an output (next page).

Comments start with “//” and go to end of line.
Also note that every statement ends with “;” or “}’

Port P1 (P1.0) pin schematics, MSP430x20x3

INCH=0

AD+

A typical 1/0 pin

Analog switch

Inverted input

SD1GAEOm

SD16AE=0, by default

PIREN.Om

P1REN=0, by default

Direction

P1D|H.0|th

0: Input

1: Qutput

C]
F'1DUT.0I—L 0
1

Module X OUT —

P1SELQ
P1SEL=0, by default
P10 <

! I
Bus

Keeper
] EN

Module X IN

P10
P11RG0 <—C_J-

P1IFG.0

P1SEL.0 B—
P1IES.0 m—

Set *—4|
Interrupt

Edge

Select

Electronically controlled digital switch

2-1 Mux (multiplexer)

Tri-State Output

P1.OTACLK/ACLE/AD-

Schmitt trigger (hysteresis)

Transparent latch

Effect of P1DIR

Port P1 (P1.0) pin schematics, MSP430x20x3

INGH=0 | Pad Logic |
I
AD+ i |
0 SDIGAE(Om , :
I Y |
r | |
0 PIRENOm 4) 0, switchlis open
| 9
P1DIR=0 | :
P1DIR=1 | bvesH 0] b= |
P1DIR 0 | e "
P1DI Hﬂ.’th Direction | o 0 L :
1 0: Input }— 3
T 1 1: Output ! .(){1 < |
T . |
POUT Ome. P10UT | i I Vin
1
Module X OUT — I T : P1.0/TAGLK/ACLK/AD=
. | Keeper
Vin I
P1OUT PTINC < ¢! N !
| e y
Module X IN D I T_—Di :
Latch is disabled | [
e o o ———————— — —

P10
EN
P1IRQ.0 4—C_J Q

: Set
P1iF3.0
F1SELD m |I'ItE'FFLJFIt

Edge
FlIES.0O = salect |—

Variant 1 (more readable)

#include <msp430x20x3.h>
#define LED Ox01 «—

Give constants meaningful names.

void main(void) {
volatile Int 1;
WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer

P1DIR |= LED; // set P1.0 (LED bit) to output
while (1) { //Do this forever

P10UT |= LED; // Turn on LED

for (\=0; 1<0x5000; i1++) {} // Delay

~0x01; // Turn off LED
<0x5000; 1++) {} // Delay

Equivalent to: P1IOUT = P10UT | LED;

Variant 2 (macros)

#include <msp430x20x3.h>
#define LED Ox01

#def? ne SETBIT(p,b) (p I= (b)) '\ Use Macros sparingly, but they can make
#define CLRBIT(p,b) (p &= ~(b)) code look much cleaner (see below)

void main(void) {
volatile Int 1;
WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer

P1DIR |= LED; // Set P1.0 to output direction
while (1) { //Do this forever
SETBIT(P10UT,LED); // Set P1.0
for (1=0; 1<0x5000; 1++) {} // Delay
CLRBIT(P10UT,LED); // Clear P1.0

for (1=0; 1<0x5000; 1++) {} // Delay }

Expandsto: (P10OUT |= (0x01))
Note “;” must be added.

Variant 3 (shorter)

#include <msp430x20x3.h>
#define LED 0x01

#define SETBIT(p,b) (p [= (b))
#define CLRBIT(p,b) (p &= ~(b))

#define TGLBIT(p,b) (p "= (sz\\\\\\\
void main(void) { New macro to toggle (xor) bit

volatile Int 1;
WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer
P1DIR |= 0x01; // Set P1.0 to output direction

while (1) { //Do this forever
TGLBIT(P10UT,LED); // Toggle LED
for (1=0; 1<0x5000; i1++) {} // Delay

+ \
¥ Loop is half as long as before

C Data Types

(that we will use)

Type Size Representation Minimum Maximum
(bits)

char, signed char 8 ASCI| -128 +127
unsigned char, bool 8 ASCII 0 255
int, signed int 16 2s complement -32 768 32767
unsigned int 16 Binary 0 65 535
long, signed long 32 2s complement -2 147 483 648 2147 483 647
unsigned long 32 Binary 0 4294 967 295
enum 16 2s complement -32 768 32767
float 32 IEEE 32-bit +1.175 495e-38 | +3.40 282 35e+38

C Operators

(Arithmetic)

Arithmetic Operator name Syntax

Basic assignment =b
Addition a+b
Subtraction a-b
Unary plus +a
Unary minus (additive inverse) -a
Multiplication a*b
Division a/b
Modulo (remainder) a%b

Prefix ++a
Increment

Suffix a++

Prefix --a
Decrement

Suffix 3--

More C Operators

(Relational, Logical, Bitwise and Compound)

Relational Operator name Syntax
Equal to a==
Not equal to al=b
Greater than a>b
Less than a<b
Greater than or equal to a>=b
Less than or equal to a<=b

Bitwise Operator name Syntax
Bitwise NOT ~a
Bitwise AND a&b
Bitwise OR alb
Bitwise XOR a’rb
Bitwise left shift a<<b
Bitwise right shift a>>b

Logical Operator name
Logical negation (NOT)
Logical AND
Logical OR

Compound Operator name
Addition assignment
Subtraction assignment
Multiplication assignment
Division assignment
Modulo assignment
Bitwise AND assignment
Bitwise OR assignment
Bitwise XOR assignment
Bitwise left shift assignment

Bitwise right shift assignment

Syntax
la
a &&b
allb

Syntax
a+=b
a-=b
a*=b
a/=b
a%=b
a&=b
al=b
af=b
a <<=b

a>>=b

More C
Statements

* a simple statement is a single statement that ends ina “
* a compound statement is several statements inside braces:

{

simple statement;

simple statement;

}

Indenting
There are no rules about indenting code, but if you don’t adopt a standard
style, your code becomes unreadable.

(x == vy) { (x == vy) (x < 0)
something () ; { { printf ("Negative");
somethingelse () ; something () ; negative (x) ;
(some error) somethingelse () ; }
do correct(); }
finalthing() ; { printf ("Positive") ;
continue as usual(); positive (x) ;
} }

Even more C

Array definition
int a [100]; //Array elements are a[0] to a[99]. Don’t use aJ100]!

if...then
1T (<expression>)
<statement>
<statement> may be a compound statement.

if...then...else
1T (<expression>)
<statementl>
else
<statement2>

Yet more C

Iteration (do...while while... for...)
do
<statement>
while (<expression>);

while (<expression>)
<statement>

for (<expression> ; <expression> ; <expression>)
<statement>

Recall: for (i=0; i<0x5000; i++) {} // Delay

for (el; e2; el3)

S;
is equivalent to
el;
while (e2) {
S;
e3;
+

The break statement is used to end a for loop, while loop, do loop, or switch statement.
Control passes to the statement following the terminated statement.

Again with the C

switch (one choice of many)
switch (<expression>) {
case <labell> :
<statements 1>
case <label2> :
<statements 2>
break;
default :
<statements 3>

» <expression> is compared against the label, and execution of the associated
statements occur (i.e., if <expression> is equal to <labell>, <statements 1> are
exectuted.

* No two of the case constants may have the same value.

* There may be at most one default label.

* If none of the case labels are equal to the expression in the parentheses
following switch, control passes to the default label, or if there is no default label,
execution resumes just beyond the entire construct.

* Switch statements can "fall through", that is, when one case section has completed
its execution, statements will continue to be executed downward until

a break; statement is encountered. This is usually not wanted, so be careful

Material taken from:

http://en.wikipedia.org/wiki/C_syntax
http://en.wikipedia.org/wiki/Indent_style
http://en.wikipedia.org/wiki/Operators_in_C _and_C++
http://focus.ti.com/lit/ug/slaul44e/slaul44e.pdf
http://focus.ti.com/lit/ds/slas491e/slas491e.pdf
http://focus.ti.com/lit/ug/slaul32c/slaul32c.pdf

