Another approach to finding Moment of Inertia

Let \(I_z \) be the moment of inertia around the \(z \)-axis. This is what we have computed so far, but in this problem we will also compute \(I_y \) and \(I_x \). Of course, for a ball or sphere with center at the origin they will all be the same by symmetry. This observation makes this method computationally simpler than the original method.

Let a point \(dM \) of mass be at position \((x, y, z)\). Then what we have written as

\[
\,dI_z = r^2 \,dM
\]

could just as well be written

\[
\,dI_z = (x^2 + y^2) \,dM,
\]

since the distance \(r \) of the point-mass from the \(z \)-axis is \(r = \sqrt{x^2 + y^2} \).

Similarly, you should write down expressions using \((x, y, z)\) coordinates for \(I_y \) and \(I_x \).

Now, let \(a = \sqrt{x^2 + y^2 + z^2} \). Thus \(a \) is the distance of the point mass from the origin. We would normally call this distance \(r \) or \(\rho \) or \(R \), but all these letters are already taken!

Anyway, if we had to integrate \(a^2 \,dM \), that would be a lot easier (for either a ball or a sphere) than integrating \(r^2 \,dM \). Why?

Last piece of the puzzle: What is a simplified integral formula for \(I_x + I_y + I_z \), and what is the relationship between \(I_x + I_y + I_z \) and \(I_z \)?