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1. INDISPENSABILITY AND JUSTIFICATION

1.1. Introduction

Are there good reasons for including mathematical objects such as num-
bers, sets, and functions as part of our ultimate catalogue of the furniture
of the universe? Recent debates within the philosophy of mathematics
over this sort of general ontological question have centered on the pros
and cons of the so-called Indispensability Argument. The basic idea be-
hind this argument is quite straightforward. When faced with a general
existence question such as ‘Do mathematical objects exist?’, we should
look to our best available theories of the world for guidance. Our current
best theories of the world – by general consensus – are the theories of
empirical science. And current science (especially physics) quantifies over
mathematical objects. Hence we have good reason to believe in the exist-
ence of mathematical objects, unless and until we can do science without
postulating them. In short, mathematics is indispensable for science. One
way of formulating the Indispensability Argument is as follows;

We have good reason to believe in the literal truth of our best
scientific theories.

(1)

Mathematics is indispensable for science.(2)

We have good reason to believe in the existence of (abstract)
mathematical objects.

(3)

The Indispensability Argument has been attractive to platonists as a
defensive tool because it is an external argument for the existence of
mathematical objects. It connects the literal truth of mathematics with the
literal truth of science by claiming that belief in the literal truth of our
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best scientific theories carries with it belief in the literal truth of math-
ematical claims embedded in these theories. By hitching his waggon to
the scientific realist’s train, the platonist hopes to gain external support
for his ontological claims about mathematics. In particular, the Indis-
pensability Argument has the potential to block sweeping fictionalist or
instrumentalist charges that the only arguments for platonism are blatantly
question-begging.

Conversely, the Indispensability Argument has been an attractive target
for nominalists. If a nominalist can persuade herself that the Indispensab-
ility Argument is the only good argument for platonism, then this opens
up the possibility that platonism can be directly undermined by means
of a technical reconstructive program. Remember that the Indispensabil-
ity Argument depends for its force on a strong modal claim, that science
cannot be done without mathematics. If the nominalist can come up with a
mathematics-free reformulation of science then this shows that science can
be done without mathematics, and hence that mathematics is dispensable.
Hartry Field’s 1980 monograph, Science Without Numbers, is probably
the best-known attempt to reconstruct science in a purely nominalistic
fashion.1

A second line of criticism for the nominalist is to attack the valid-
ity of the Indispensability Argument, and in particular the purported link
between indispensability and truth. Van Fraassen has championed this lat-
ter view for the case of concrete unobservables such as electrons, arguing
that inference to the best explanation – on which indispensability-style
arguments are implicitly based – is not in general valid.2 More recently
Maddy, Azzouni and others have questioned this link in the specific case of
abstract mathematical object.3 Although I think that these latter criticisms
raise serious and interesting issues, I will not be addressing them in this
paper. My focus instead will be on criticisms of the first sort, which are
directed specifically toward the claim that mathematics is indispensable
for science.

I shall refer to this latter claim as the Indispensability Thesis. It is a
thesis that the platonist must defend if she is to secure her position against
the Fieldian nominalist attack. It is also a thesis whose truth depends – at
least in part – on contingent facts about current and future science, and
in this sense it is empirical in nature. The possibility of a knockdown
argument either for or against the Indispensability Thesis, proceeding from
general philosophical considerations, therefore appears unlikely. However
this does not mean that arguments cannot be given, based on philosophical
analysis of scientific practice, which may alter our assessment of its plaus-
ibility. I am sympathetic to the platonist side of the argument here, and
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to the reasonableness of the Indispensability Thesis. My aim in this paper
is to show that the Indispensability Thesis is less tendentious and more
plausible than it is normally taken to be, and I shall thus be defending the
Thesis as one that it is reasonable to believe given our current evidence.

Platonists have typically defended the Indispensability Thesis by trying
to expose technical flaws in the various nominalist reconstructive programs
that have been proposed. The defense I wish to mount is more radical,
and if successful then it makes squabbles over technical details largely
irrelevant to evaluating the Thesis.4 I shall argue that recent nominalist
programs have missed the true force of the Indispensability Thesis, and
that even if such programs could be carried out they would not necessar-
ily undermine it. In the debates that have been sparked off by Field and
his sympathizers, both defenders and critics of the Thesis have failed to
appreciate the range of ways in which mathematics functions in science.
They have concentrated on mathematics as a tool for proving scientific
results, and on the question of whether this proof-theoretic power can be
adequately reproduced using mathematics-free theories. My claim is that
reproducing this function alone is not enough to establish that mathematics
is dispensable, for mathematics plays other roles in science that are distinct
from its sheer deductive power. In particular mathematics may function as
a tool for discovering new results, and as a heuristic aid for the develop-
ment of new scientific theories. These dynamic features of mathematics
are crucial to scientific practice and to scientific progress. Unless and until
they too can be adequately reproduced using mathematical-object-free the-
ories, the hypothesis that mathematics is indispensable for science is not
undermined.

There is one theme that will surface repeatedly in the subsequent dis-
cussion and that I want to stress at the outset. It derives from the insight
that – given the naturalistic basis of the Indispensability Argument, which
rejects the idea of philosophy as a higher court of appeal for scientific judg-
ments, – the only sensible way of judging alternatives to current science
is on scientific grounds. If such alternatives are to be adequate, they must
preserve those features of our current scientific theories that are of value
to scientists. Many of these features may also be deemed valuable from
some broader philosophical perspective. But if there is conflict between the
verdicts of the scientist and the philosopher then it is those of the former
that must take precedence.

1.2. The Nominalist View of Theories

The most definitive way to refute the Indispensability Thesis is to construct
a theory (or a concatenation of theories) that is nominalistic and that is
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at least as good as the totality of our current scientific theories. This is
indeed the strategy that is favored by most contemporary nominalist.5 I
shall argue, however, that the standard nominalist conception of the nature
of scientific theories has led the bulk of these nominalist projects to be
misdirected.

For most nominalists, a scientific theory is essentially a tool for making
inferences about the concrete, physical world. When the nominalist looks
for alternatives to current science she is concerned above all that this proof-
theoretic power be preserved. If every physical fact which is accounted
for in the original theory is accounted for in the alternative nominalistic
theory, then the alternative is ‘minimally adequate’ from the nominalist’s
point of view. In other words, the nominalist is looking for a theory which
has the same physical consequences as current science, but which does not
quantify over mathematical objects.6

It is generally conceded – on both sides of the debate –, however, that
more than mere duplication of physical consequences is required of a
nominalistic theory for it to undermine the Indispensability Thesis. This
is because a nominalistic theory which fulfills this condition can trivially
be generated using a couple of logical tricks. Let S be current science,
viewed in the Quinean manner as a single, monolithic theory. Let T be
the nominalistic restriction of S, in other words the set of nominalistically
statable consequences of T. Then T has (by definition) the same physical
consequences as S, and T does not quantify over mathematical objects. If
required, T can also be axiomatized using Craig’s Theorem, providing that
there is a systematic way of distinguishing the nominalistically acceptable
vocabulary of T. The existence of this sort of ‘alternative’ has struck nom-
inalists and platonists alike as philosophically irrelevant to the status of the
Indispensability Thesis, principally because the collection of axioms of T
will lack coherence and unity. To circumvent this sort of logical trickery,
it is normally stipulated that the nominalistic alternatives in question be
“reasonably attractive”.7 I have argued, however, (at the end of Chapter I)
that the inclusion of this extra condition – even if it can be made precise – is
not enough to establish that the nominalistic alternative theory is relevant
to the assessment of the Indispensability Thesis. The only way in which
this Thesis can be undermined is by showing that there are nominalistic
alternatives to current scientific theories that are at least as good – judged
on scientific grounds – as these theories. My claim is that the features of
theories that are scientifically valuable go well beyond their use as tools
for proving physical facts.

This view of scientific theories as tools for proving physical facts is an
example of what Lakatos called the ‘deductivist caricature’ of science.8
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with most caricatures, there may be an element of truth to it. But by focus-
ing solely on this aspect of scientific theories, the nominalist ignores the
many other roles which theories play in the context of scientific practice.
These functions include the discovery of new results and the development
of new theories, and there is no reason to think that such functions will
automatically be preserved by the nominalist’s alternative theories. By
taking a narrow view of scientific theories, the nominalist ends up with
a correspondingly narrow view of indispensability according to which the
indispensability of mathematics is exhausted by its indispensability as a
tool for deriving physical results. Looking more closely at actual scientific
practice reveals several other ways in which theories are used in science,
and this in turn makes indispensability for science a correspondingly richer
notion.

Even the arch-nominalist Hartry Field has had occasion to point to this
multifaceted aspect of indispensability. Field summarizes the thesis that
mathematics is indispensable for science as the thesis that “we need to
postulate [mathematical] entities in order to carry out inferences about the
physical world and in order to do science”.9 In this passage Field implicitly
draws a distinction between ‘carrying out inferences about the physical
world’ and ‘doing science’, but without indicating that he takes there to be
any important difference between these two activities. I hope to show that
the practice of science has other important aspects which Field ignores,
aspects which go beyond the mere derivation of physical results If this
is the case – and if indispensability implies not just indispensability for
proving physical claims but also indispensability for doing science – then
the Indispensability Thesis is correspondingly more robust.

The philosophically narrow view of scientific theorizing which under-
pins contemporary debates over indispensability is especially ironic given
the historical pedigree of the Indispensability Argument. For – as we have
seen in Chapter 1 – the Indispensability Argument has its roots in Quinean
naturalism, a philosophical stance that prides itself on deferring to ac-
tual scientific practice and refraining from external critiques of science
from the point of view of ‘first philosophy’. For Quine, the ontological
disagreement between platonists and nominalists is at root a scientific dis-
agreement; the issue is whether our scientifically best theories quantify
over abstract objects. What started out with Quine as a debate ostensibly
over the scientific merits of nominalistic alternatives has gradually evolved
into a debate over their philosophical merits. Not only this, but the range
of features of scientific practice that are deemed to be relevant to this
philosophical debate is remarkably narrow.
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This shifting of the indispensability debate away from its naturalistic
roots has provoked the complaint from certain quarters that the recon-
structive programs of contemporary nominalism are simply irrelevant
to the ontological debate. The nominalist strives to produce alternative
mathematics-free theories which are at least as good as our best current
theories. But from what perspective are these alternatives to be judged? If
the claim is that they are at least as good from the perspective of the work-
ing scientist, then we can cut through the debate simply by presenting the
nominalist alternatives to scientists and waiting to see if they take them up.
Nominalists themselves concede that this would be highly unlikely. If the
claim is that the alternatives are at least as good from some other perspect-
ive – for example that of the parsimoniously (or nominalistically) inclined
philosopher – then the onus is on the nominalist to explain why this claim
should undermine our confidence in the indispensability of mathematics
for science.10

I find the basic thrust of this argument very compelling, indeed one
aim of this chapter is to analyze in more detail some of the scientifically
important features of theories that nominalistic reconstructions have failed
to reproduce. To make a forceful case for nominalism – against a broadly
naturalistic background – the alternative theories on offer must be judged
from the perspective of science, not ‘first philosophy’. Whether the ac-
tual judgments of working scientists should be taken as incorrigible is a
separate issue. It may well be that extraneous social factors have system-
atic effects on scientists’ assessments of alternative theories. Factors such
as institutional inertia, epistemological conservativeness, and the costs of
‘retooling’ will tend to skew judgments in favor of established theories.
Also, the apparent simplicity and elegance of an alternative theory may
be diminished when considered from the viewpoint of the established
theoretical paradigms. These issues may cast doubt on the reliability of
simply ‘reading off’ claims about theory assessment from the behavior of
scientists, but the essential point remains that it is the scientific merits of
alternative theories that make them relevant to the ontological debate.

2. INDISPENSABILITY AND DISCOVERY

2.1. Mathematics as a Tool for Discovery

Philosophers who discuss provability tend to think of the concept in purely
logical terms, as a deductive relationship between a theory and a sen-
tence. In the context of the indispensability debate, however, this point
of view obscures a pragmatic distinction between two separate ways in
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which proof can function. One function of proof is to verify or justify res-
ults which are already known; call this proof-verification. An example of
proof-verification is the demonstration that Kepler’s Laws for the motion
of planets around the sun follow from Newton’s Laws of Motion. Proofs of
this sort help to organize and unify existing bodies of results, even where
no new results are derived.11 A second function of proof is to discover new
(i.e. previously unknown) results; call this proof-discovery. An example
of proof-discovery is Chandresekhar’s proof, from the General Theory of
Relativity, that any star greater than 1.4 times the mass of the Sun will
eventually collapse under the force of its own gravity to form a neutron
star. This involved the derivation of a previously unknown result from a
pre-existing body of theory.12

In general the resources required for proof-discovery exceed the re-
sources required for proof-verification. This point is familiar to anyone
who has ever taken a mathematics or physics test. Questions of the form
‘show that x’ or ‘verify that y’ are typically easier than open-ended ques-
tions where the answer is not given in advance. If you know what you are
aiming for then constructing the intermediate chain of reasoning is much
more straightforward.

The science of cryptology provides a vivid illustration of how this
discrepancy in resources can be exploited. The basic aim in designing a
coding system is to make encoding a message as easy as possible, and to
make decoding it as difficult as possible, for someone who does not know
the secret key.13 Here encoding is analogous to verification, and decoding
is analogous to discovery. One popular current technique – known as the
RSA system – is based on the multiplication and factorization of pairs of
large primes. The RSA system is a ‘public key’ system, so-called because
the method of encoding messages is made public so that anyone can in
principle send a message. The public key consists of some large number,
k, which is the product of two large primes. Encoding a message involves
multiplying the digitized message by k, which is a comparatively trivial
computational task, and then performing some further operations on the
result. Decoding a message, however, involves factoring k into its two
prime factors. This is a much more complex computational task (since
the prime factors of k have not been made public); for instance the fac-
torization of a 100-digit product would take decades at current computing
speed.14

How does this asymmetry connect up with the issue of indispensability?
The point is that if the resources needed for proof-discovery exceed those
required for proof-verification then mathematics might be dispensable for
the latter task without being dispensable for the former one. It might turn
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out that our mathematics-free theories enable us to prove all the nominal-
istic results which we could prove before, but that they do not enable us
to prove as many (or any) new results. By concentrating on the context of
verification and ignoring the context of discovery, the nominalist ends up
operating with an unnaturally narrow conception of indispensability. Even
if mathematics can be shown to be dispensable for proof-verification, this
does not imply that it is dispensable in the broader sense which includes the
role which mathematics plays in the discovery of new scientific results.15

2.2. Mathematics as a Tool for the Development of Science

It is clear from even the most cursory examination of science over the
last three centuries that mathematics has been inextricably bound up not
only with the discovery of new results but also with the development
of new scientific theories. Moreover there has been a constant interplay
between developments in physical theory and developments in mathemat-
ical formalism. Sometimes the physics suggests mathematical innovations,
as in the case of Fourier analysis.16 But more often it is the mathematical
formalism which suggests the development of new physical theories. One
well-known example is the application of group theory to particle physics
which allowed the prediction of the existence of whole families of hitherto
unobserved subatomic particles.17 ,18

This contribution of mathematics to the development of science over
time is ignored in the indispensability debate since attention is focused
on a temporal cross-section of science. This time-slice of current science
is examined, and nominalistic alternatives to it are suggested. But though
these alternatives may mimic the ‘static’ features of current theories, they
will not necessarily preserve those features which are crucial to the on-
going development of science. John Burgess puts the point nicely when
he complains that if scientists were to put on “nominalistic blinders” then
many of the potential avenues for future development may be closed off.

[T]he physicist who puts on nominalistic blinders may be unable to see certain potentially
important paths for the development of science. . . . [T]he danger I have in mind is that if
science goes nominalistic today, that future theory may simply never be discovered.19

The argument is a straightforward one. It is all very well for the nominalist
to piggy-back her reformulations on each new platonistic theory that is
developed, but this does not suffice to show that the corresponding nom-
inalistic theory could have been developed independently of its platonist
‘inspiration’. And if not, it is unclear to what extent the platonistic theories
have been shown to be dispensable.

This dynamic aspect of theory development has not been completely ig-
nored in the philosophical literature. Certain passages in Quine’s writings,
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for instance, indicate that he is sensitive to the way in which mathematical
theories can function as heuristic aids for the development of science. The
term he uses here is ‘fecundity’, and he lists it as one of five key virtues
which a theory may possess, along with simplicity, strength, unity, and
familiarity. Quine defines the fecundity of a theory to be the extent to which
“successful further extensions of the theory are expedited”, and this seems
to point to a concern for how the current resources of a theory may impact
its future developmenk.20 Gödel is similarly sensitive to these issues, and
to the role of what he terms ‘fruitfulness’. In the ‘proto-indispensability ar-
gument’ articulated in his well-known paper, ‘What Is Cantor’s Continuum
Problem?’, Gödel writes,

[B]esides mathematical intuition, there exists another (though only probable) criterion of
the truth of mathematical axioms, namely their fruitfulness in mathematics and, one may
add, possibly also in physics.21

Fruitfulness – or fecundity – is an important positive feature of sci-
entific theories, and mathematical apparatus can often contribute to the
fruitfulness of a physical theory. What happens to a mathematical theory
if it is not fruitful for the development of physics? A mathematical theory
that is persistently unfruitful may eventually be discarded by working sci-
entists and the physical theory reformulated using different mathematical
apparatus.22 Even when this happens – and it is by no means inevitable
– the mathematical theory may well continue to be used and studied by
mathematicians for its intrinsic mathematical interest, and its potential to
cast light on other areas of mathematics. In some cases the reformula-
tion of a mathematical theory for the purposes of physics is little more
than the streamlining of the mathematical notation.23 In other cases it in-
volves a wholesale replacement of one mathematical theory by another. A
particularly clear example of this latter sort of case concerns the 19th-
century theory of quaternions and its eventual replacement by modern
vector analysis.

2.3. Case Study: Quaternions

Quaternions are a noncommutative algebraic number-system developed
by William Rowan Hamilton in 1843 while he was searching for 3-
dimensional extensions of complex numbers. It had already been es-
tablished, early in the 19th Century, that complex numbers could be
represented graphically using Cartesian coordinates by taking the x-axis
as the real component and the y-axis as the imaginary component, in
which case multiplication by i corresponds to a rotation of π/2 about the
origin. Hamilton was eager to find an extension of complex numbers, of
the form x + yi + zj , which could be graphically represented as points



94 ALAN BAKER

in 3-dimensional space and which would preserve most of the important
algebraic properties of complex numbers. Since 3 is the number of di-
mensions of actual physical space, Hamilton hoped that such a system
would serve as a useful framework for the formulation of physical the-
ories. Hamilton was unsuccessful in his quest (indeed it was later proved
that no such 3-dimensional extension is possible) but he did discover a 4-
dimensional extension of complex numbers, of the form w +xi +yj + zk;
he christened these numbers ‘quaternions’. Each quaternion has one scalar
and three vector components, and there are simple rules for the addi-
tion and multiplication of quaternions. The key property of quaternion
multiplication is that it is non-commutative; for example, ij = k, but
ji = −k.

In tracing the subsequent fortunes of quaternions I shall distinguish
between the role of quaternions in mathematics and their role in sci-
ence (more specifically, in physics). From a mathematical point of view,
quaternions provided impetus to the early development of algebra as an
autonomous subdiscipline within mathematics. Hamilton’s discovery of
quaternions was of considerable mathematical importance because he was
one of the first to identify commutativity as a distinct property, and to
realize that there could be mathematically legitimate systems which give
it up.24 As the study of algebraic systems developed through the latter part
of the 19th Century, it became apparent that quaternions are just one ex-
ample of a more general family of algebraic structures known as division
algebra.25 A division algebra is an algebra with two operations, addition
and multiplication, in which there are no non-zero divisors of zero. It turns
out that there are only four division algebras26 – real numbers, complex
numbers, quaternions, and octonions (which are 8-dimensional extensions
of quaternions).

No. of components Associative? Commutative?

Reals 1 yes yes

Complexes 2 yes yes

Quaternions 4 yes no

Octonions 8 no no

A second way in which quaternions contributed to developments within
mathematics was as a stepping-stone on the path to the modern system
of vectors and scalars. Quaternions have both a vector and a scalar com-
ponent; however, in the case of ‘pure’ quaternions where the scalar part
is zero, the structural similarity with modern vectors is much closer. The
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main difference is that quaternions have a single multiplication rule. The
result of multiplying together two pure quaternions is as follows:

(xi + yj + zk)(x′i + y′j + z′k) = −xx′ + xy′k + xz′j − yx′k
−yy′ + yz′i − zx′j − zy′i − zz′

= −(xx′ + yy′ + zz′) + [(yz′ − zy′)i
+ (xz′ − zx′)j + (xy′ − yx′)k].

In modern terminology, the result is equal to the sum of the vector product
and the negation of the scalar product of the two quaternions. Vector al-
gebra differs from quaternion algebra in having separate operators for the
scalar product and the vector product. Yet from a broader perspective –
and in comparison to Cartesian geometry – both quaternions and vectors
are examples of ‘vectorial’ systems.27

To summarize, the significance of quaternions within mathematics has
principally been as a stepping-stone – to algebraic systems on the one hand
and to vectors on the other. What about the role of quaternions in science?
Hamilton hoped from the beginning that quaternions might form a suitable
mathematical model for the analysis of force and motion in 3 dimensions,
and that this would in turn lead to fruitful applications in various areas of
physics. Indeed it seems that even as he was experimenting with different
rules for quaternion multiplication, Hamilton always had a geometrical
interpretation in the back of his mind. Hamilton made it a requirement, for
example, that any adequate definition of quaternion multiplication satisfy
the following ‘law of moduli’;

N(p ⊗ q) = N(p)N(q),(1)

where N(q) is the norm of q (i.e., the product of q and its conjugate). This
law guarantees that every multiplication operation has an inverse. Since
Hamilton was hoping that unit quaternion multiplication would correspond
to three-dimensional rotation, and since it is always geometrically possible
to undo a rotation, the law of moduli follows naturally from Hamilton’s
quest for a geometrical interpretation for quaternions. It is the fact that
this law of moduli holds that makes quaternions a division algebra, since
it implies that there are no non-zero divisors of zero.28 Here we see an in-
teresting example of the potential physical applications of a mathematical
theory influencing the logical structure of the theory. It is no accident that
quaternions are a division algebra, since Hamilton in effect made this a
requirement as he set out to construct them.29

Despite their potential for physical applications, quaternions never
really established themselves as an indispensable tool for physics, and
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by the end of the 19th Century interest in quaternions had more-or-less
died out among the mainstream of the scientific community. The reasons
for their demise were probably as much sociological as mathematical, yet
there are several mathematically significant factors that can be pointed
to. Part of the problem was that Hamilton – and a number of other early
supporters of quaternions – concentrated on developing the mathematical
properties of quaternions at the expense of investigating their physical ap-
plications. Moreover, Hamilton’s choice of geometrical interpretation for
quaternions seems to have actively hindered their application to physics.
Hamilton identified the imaginary part of a quaternion with a vector. The
problem was that he also identified the rotation of a vector with its multi-
plication by a pure quaternion (i.e. a quaternion whose scalar part is zero).
Hence the result of multiplying a vector by a pure quaternion must result in
another pure quaternion (since rotating a vector produces another vector).
This is fine for cases where a vector is rotated about an axis perpendicular
to its direction. However, in the case of conical rotations, the result will
not in general be another pure quaternion.30

Quaternions were initially presented to physicists as an alternative to
Cartesian coordinates. Supporters of quaternions, such as the mathem-
atician and physicist William Tait, argued that they revealed the “physical
meaning” of equations more “transparently”, and that they avoided “the
artificiality of Cartesian co-ordinates”. Directly comparing the two ways
of formulating physical theories, it is hard to avoid the conclusion that
quaternions are syntactically simpler and more elegant. Such advantages
were more than outweighed, however, by the unfamiliarity of most phys-
icists with the new (and often arcane) notation of quaternions, and their
consequent reluctance to rewrite existing physical theories in quaternionic
language. Perhaps given time these pragmatic factors would have re-
ceded in importance. Before this could happen, however, quaternions were
superseded by a third alternative, namely vectors.

I have already discussed how quaternions laid the mathematical
groundwork for the development of the modern system of vectors. As
vectorial systems rose to prominence at the end of the 19th Century it
became clear that they were in many ways better suited than quaternions
to the formulation and development of physical theories. Vectors have sev-
eral advantages over quaternions. First, the fact that vector multiplication
is separated into the scalar (or ‘dot’) product and the vector (or ‘cross’)
product avoids the unwieldiness of quaternion multiplication. Second, the
separate treatment of vectors and scalars often helps in the formulation
of specific physical theories. One example is Maxwell’s theory of electro-
magnetism, for which the separation of vector and scalar parts facilitates
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the independent representation of electric and magnetic effects.31 Using
Cartesian components, Maxwell’s theory can be formulated using eight
equations; using vectors, this number can be reduced to four.32 Third, the
geometrical interpretation of vectors fitted more closely with physical in-
tuition. One problem with quaternions was that the physical interpretation
of the (fourth) scalar component of a quaternion was obscure. It was also
unclear why the square of a quaternion with no scalar component should be
negative, as the formalism required. The net result of these various factors,
combined with the respective states of mathematics and physics at the end
of the 19th Century, was that vectors quickly superseded quaternions as
the main alternative to Cartesian coordinates. Over time the new vectorial
methods gradually gained converts among the scientific community, and
by the early decades of this century it is fair to say that vector algebra had
established itself as the preferred language of physics.

What does the status of quaternions look like from the perspective of
the Indispensability Argument? The first thing to say is that the whole
story of the introduction of quaternions, their decline, and their eventual
replacement by vectors is a phenomenon which cannot be analyzed in
terms of deductive indispensability. This is because both quaternions and
vectors are dispensable from a deductive point of view, for they are no
stronger deductively than the Cartesian geometrical methods in use before
the 19th Century. This is a point that is stressed by Michael Crowe in his
(excellent) book, A History of Vector Analysis. Crowe writes:

[M]athematically anything that could be done by the application of quaternions in geo-
metry and physics could also be done with the Cartesian methods, though usually by longer
processes.33

This point applies equally well to vectors. Both quaternions and vectors
can be identified with sets of Cartesian coordinates, and suitably modified
analogs of operations such as multiplication and differentiation can be
defined for them. The resulting calculations may be cumbersome and inel-
egant, but it can be shown that the surrogate system is proof-theoretically
equivalent to the original. Hence anything provable in a quaternion or
vector system is also provable in Cartesian geometry.

As with the case of infinitesimals, what is needed for a satisfactory
analysis of quaternions is a concept of indispensability that goes beyond
sheer deductive power to take account of the way in which mathematical
theories can contribute to the discovery and development of new scientific
theories. In the latter part of the 19th Century both quaternions and vectors
were used to rewrite various existing scientific theories. In this respect
vectors turned out to have decisive advantages over quaternions. Though
neither theory was deductively indispensable, it seems clear that by the
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early decades of this century vectors were indispensable (in the broader
sense discussed above) for physics and thus for science as a whole.

(A) Twentieth-Century Physics

Having been eclipsed by vectors as the preferred tool for physics, and
with their intrinsic mathematical interest being marginal at best the pro-
spects for quaternions at the turn of the century looked distinctly gloomy.
However, the radical and unpredicted changes that shook physics in the
early decades of the 20th Century have led – somewhat ironically – to
a recent resurgence of interest in quaternions as a tool for physics. Qua-
ternions have turned out to be peculiarly appropriate for two of the major
theories that arose out of Einstein’s groundbreaking work, namely spe-
cial relativity and quantum mechanics. In the context of these theories,
the mathematical features that distinguish quaternions from vectors - their
four-dimensionality and their non-commutativity – turn out to be virtues
rather than liabilities. An examination of this potential new role for qua-
ternions serves as an interesting postscript to the debate over their possible
indispensability for physics.

(B) Special Relativity

The first distinctive feature of quaternions I want to examine is their four-
dimensionality. As early as 1844, Hamilton had himself wondered whether
the vector part of a quaternion could represent the three spatial dimen-
sions and the scalar part the time dimension. This idea resurfaced with
the development of special relativity, which was itself based on the four-
dimensional structure of Minkowski space-time.34 Unfortunately it is not
possible simply to represent space-time points as quaternions, because this
does not give the correct metric for space-time. In special relativity the sep-
aration between two space-time points is equal to their spatial separation
minus their temporal separation. The norm of a (real-valued) quaternion,
however, is equal to the magnitude of the vector part plus the magnitude of
the scalar part [if q = w + xi + yj + zk, then N(q) = (qq∗)1/2 = w2 + x2 + y2 +
z2]. The easiest way around this difficulty is to represent space-time points
using quaternions with complex – rather than real – coefficients. The use
of complexified quaternions (also called ‘biquaternions’) has a couple of
drawbacks. The formulation is slightly less compact, since each space-time
point is represented by eight numbers, rather than four; also biquaternions
do not form a division algebra, since the complex coefficients permit the
presence of non-zero divisors of zero.35

Quaternions provide a tool for the elegant reformulation of special re-
lativity, and their use in this context has been developed in various different
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directions. As with earlier physical theories, however, it does not appear
that quaternionic reformulations of special relativity are deductively any
stronger – they do not permit the derivation of any substantive new results.
The difference between special relativity and previous theories, however,
is that the [3 + 1] dimensionality of space-time is peculiarly appropriate
for modeling using the 3 vector and l scalar components of quaternions.
As one contemporary physicist remarked, quaternions provide a valuable
tool for those “prepared to exploit the accident of having been born in
space-time”.36

(C) Quantum Mechanics

Recent applications of quaternions in quantum mechanics have exploited
a second distinctive property of quaternions, namely non-commutativity.
These quaternionic approaches are of particular interest because they have
led to formulations of quantum mechanics which – unlike the case of spe-
cial relativity – have structural and physical implications that go beyond
those of the standard theories. In other words, the role of quaternions in
quantum mechanics seems to go beyond that of mere reformulation.

Birkhoff and von Neumann – in a 1936 paper – were the first to point
out the possibility of using quaternions as a basis for quantum mechan-
ics. One of the basic tenets of quantum mechanics is the superposition
principle for probability amplitudes; this implies that probabilities obey
the ‘law of moduli’, and hence that they form a division algebra. This
implies that quantum mechanics can in principle be represented as a vec-
tor space over any one of the four division algebras (reals, complexes,
quaternions, or octonions).37 ,38 However, if – as is generally assumed –
probability amplitudes are associative, then this rules out the possibility of
using octonions.

The Birkhoff–von Neumann result establishes only that it is possible to
base quantum mechanics on quaternions and not that it is advantageous to
do so. In their 1962 survey paper, Finkelstein et al. write;

We can thus formulate the following precise problem: Which of the three possibilities
for the representation of general quantum mechanics is the one most suitable for the
description of the actual physical world?39

In fact it turns out – for reasons too technical to elaborate here – that
real numbers are also flawed as a potential basis for quantum mechanics
because the formalism requires the existence of a distinct conjugate pair
for each state of the system.40 We are left, then, with just two possible
candidates: complex numbers and quaternions. Standard formulations of
quantum mechanics are invariably based on complex numbers. There is a
general feeling among physicists that complex numbers can do everything
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that might be required, and this – combined with their familiarity – makes
physicists reluctant to move away from formalizations based on them. In
recent years, however, some physicists have begun to question whether
complex numbers provide the optimal formulation of quantum mechanics
in all cases, and this has led them to explore quaternions as an alternative.

It turns out that the property of non-commutativity gives quaternionic
formulations of quantum mechanics some very interesting and distinct-
ive properties. Perhaps the most important of these pertains to tensor
products. A tensor product is a multiplication of wave functions from
different systems, and is used – for example – to calculate interactions
between particles of different kinds. Calculating a tensor product requires
specifying a common coordinate basis for the two systems, hence tensor
products are a so-called coordinate-dependent method. Such methods are
acceptable only if it can be shown that the result is not dependent on the
particular choice of coordinates. If quaternions are used however, then their
non-commutativity blocks any such independence result. Hence tensor
products are not acceptable in quaternionic quantum mechanics.

Another way of expressing this result is in terms of complementarity.
Two observable properties are said to be complementary if it is impossible
for both properties to be simultaneously determined. [One example is
position and momentum, whose complementarity is expressed in the Heis-
enberg Uncertainty Principle.] In quaternionic quantum mechanics, given
any two systems there is a complementarity between at least some of the
properties of the systems. In a sense, then, the properties of quaternions
rule out the possibility of any two systems being truly independent.41 This
is a striking example of the way in which significant consequences about
the nature of the physical world may flow from the choice of the under-
lying mathematical formalism. In this case it is their distinctive feature of
non-commutativity which allows quaternions to play this substantive role.

Results of the above sort have led some physicists to suggest that
quaternions might provide a promising framework for the formulation of
Grand Unification Theories (or GUTs).42 In his 1996 paper on this topic,
De Leo conjectures that “a successful unification of the fundamental forces
will require a generalization beyond the complex”.43 Investigations into
using quaternions for GUTs have shown other ways in which the dis-
tinctive properties of quaternions have concrete physical implications. De
Leo discusses the example of determining which group best represents the
quark colors. In the standard model there are three quark colors: red, green,
and blue. One possibility that is consistent with the experimental evidence
is that the quark color group is a quaternionic group. Another possibility
is that the quark color group is a complex group. The interesting point
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about the quaternionic group is that its adoption implies the existence of
a fourth quark color, call it white, which is not implied by the choice of a
complex group. De Leo writes, “the existence of white quarks is probably
esoteric, but not a priori wrong”. The choice of a quaternionic group as
the mathematical basis for quark color makes a prediction which can (at
least in principle) be experimentally tested. For the supporter of the Indis-
pensability Argument, the discovery of white quarks would provide good
grounds for believing in the existence of quaternions.

I conclude that quantum mechanics provides for the first time the real
possibility that quaternions might be deductively indispensable for our best
physical theories. If it turns out that quaternionic quantum mechanics be-
comes widely accepted by physicists, and maybe even confirmed by future
experimental evidence, it is likely that the distinctive mathematical prop-
erties of quaternions will make them deductively indispensable. Their role
in such a theory will not merely be one of streamlining and reformulation,
but also to allow the deduction of physical consequences that could not
otherwise be derived.

It might be objected that, even in the context of quantum mechanics,
quaternions are deductively dispensable because they need not be taken
as primitive. For example, quaternions can be defined as suitable sets of
quadruples from R.44 This situation is different from that of quaternions
in 19th-century physics, however, because in that case the alternative
– and heuristically preferable – vector-based theory contained no ob-
jects which duplicate the mathematical properties of quaternions. In the
quantum mechanics case, by contrast, eliminating quaternions in favor of
quadruples of real numbers produces a theory which (by design) has the
same mathematical structure. In claiming that quaternions may turn out to
be deductively indispensable for quantum mechanics, what I mean is that
quantum mechanics may turn out to require for its optimal formulation
mathematical objects with the structural properties of quaternions.

For a mathematical theory actually to be successfully dispensed with is
the best evidence that it is dispensable. The strength of the Indispensability
Argument derives in large part from the unlikeliness that mathematics as
a whole will ever actually be dispensed with by scientists. The case of
quaternions is encouraging to the nominalist because it provides a rare
example of a piece of mathematics which was dispensed with by work-
ing scientists and which also stopped being studied by mathematicians.
Of course this case provides no direct support for the nominalist position
because quaternions were dispensed with in favor of another mathemat-
ical theory – namely vector analysis. In addition, recent developments



102 ALAN BAKER

in quantum mechanics suggest that quaternions may be indispensable for
science after all.

3. THEORY CHOICE AND ONTOLOGY

3.1. What Features of Theories are Relevant to Ontology?

There are a number of ways in which the nominalist might try to counter
the arguments I have given. He might – for example – concede that he
is using the term ‘indispensable’ in a narrow sense which ignores many
interesting ways in which mathematics functions within science as a tool
for discovery and development, but claim that it is only this narrow sense of
indispensability which is relevant to the issue of ontological commitment

The first thing to say about this response is that it is dubious if offered
from the perspective of the scientific naturalist framework within which we
are investigating the Indispensability Argument. The nominalist concedes
that there are aspects of the use of mathematics in science which are not
captured by his narrow concept of indispensability, but dismisses these
aspects as irrelevant to his philosophical enterprise. But when the philo-
sopher decides to pronounce on which are and which are not the salient
aspects of scientific practice, he is setting off down the start of a very
slippery slope. Naturalism involves deferring to scientific practice in toto,
rather than deferring merely to those aspects of scientific practice which
have been deemed philosophically relevant. It may be possible to develop
a view based on this sort of ‘partial naturalism’. But any such view is going
to be vulnerable to charges of arbitrariness and circularity concerning its
choice of which features of science to focus on.

If the uses of mathematics in science which I have highlighted are
genuine uses, then I think that the onus is on the nominalist either to
take account of them or to explain his justification for ignoring them I
am doubtful whether any non-question-begging justification can be found.
But I want to examine one line of argument that aims to provide grounds
for ignoring the discovery-based role of mathematics.

3.2. Pragmatic versus Theoretical Features of Theories

In deciding what to believe we are concerned with what is entailed by
our best available theories, and this presupposes that we have some sort
of systematic way of comparing rival theories. One argument for tak-
ing a narrow view of indispensability is that when comparing theories
we should distinguish between theoretical virtues and merely pragmatic
virtues. The theoretical virtues of a theory are the only ones which are
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important when it comes to determining ontological commitment. These
theoretical virtues include unity, simplicity, explanatory power, deductive
strength, and economy of postulates and primitive terms. The theory which
achieves the best balance of theoretical virtues is the one we should use in
assessing our ontological commitments. If our ‘theoretically best’ theory
entails the existence of mathematical objects, then we have good grounds
for being mathematical realists. Otherwise, not. Theories may also have
other sorts of virtues – so-called ‘pragmatic’ virtues – which are relevant
to the practical business of choosing theories. These include features such
as manipulative elegance, fruitfulness, familiarity, and perspicuity. These
pragmatic features are important when it comes to using theories on a day
to day basis, but they should not be taken into account when it comes to
deciding which theory to believe. Theoretical virtues make a theory a better
candidate for truth; pragmatic virtues merely make a theory more useful.45

What can be said in support of this claim that the pragmatic aspects
of theory choice are irrelevant to ontological decision-making? This view
is an initially attractive one – I think – because it is tempting to think
of pragmatic features of theories as somehow ‘subjective’ and dependent
on us and our cognitive and computational powers. Theoretical features,
on the other hand, seem more ‘objective’ and therefore more real.46 By
focusing on the theoretical virtues of theories we are transcending our own
cognitive limitations. The objectively ‘best’ theory is the best guide we
have to the real furniture of the universe.

I think that something like this chain of reasoning lies behind the logical
positivist’s dismissal of pragmatic features as philosophically irrelevant. In
his influential book, Experience and Prediction, Hans Reichenbach distin-
guishes between “context of discovery” and “context of justification”, and
claims that “epistemology is only occupied in constructing the context of
justification”.47 He argues that the investigation of the process of discovery
is properly the task of psychology, not epistemology, since it involves the
detailed examination of actual mental processes. What is or is not required
for discovery is dependent on the contingent details of our psychological
and sensory make-up. This downplaying of the pragmatic aspects of theory
development has been part of the enduring legacy of logical positivism,
and it is this attitude which has persisted in contemporary discussions of
indispensability.

I have said that this view is initially attractive, but I do not think that
it can be correct. For it depends on there being some sort of principled
division between the theoretical and the pragmatic features of theories, and
it seems unlikely that any such division can be convincingly made. Take
the feature of simplicity, for example. We tend to prefer simpler theories
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over more complex ones. But is this merely a quirk of human psychology
or does it reflect the deeper fact that simpler theories are more likely to
be true? Another example is explanatory power. Van Fraassen argues – in
support of the view he calls ‘constructive empiricism’ – that explanatory
power is a pragmatic rather than a theoretical virtue of theories; the fact
that people tend to prefer theories with explanatory depth, and make infer-
ences to the ‘best explanation’, provides no grounds for thinking that there
is an objective link between explanation and truth.48 In general, for any
feature which is claimed to be theoretical, ‘objective’, and a reliable guide
to truth, it is possible to make the skeptical counter-claim that it is merely
a reflection of human psychological preferences.

Quine’s solution to this problem is – in characteristic style – to reject
the distinction between pragmatic and theoretical features as confused. For
Quine, all of our criteria of theory choice are to some degree pragmatic.
Science proceeds using pragmatic criteria, and the theories of science are
the best we have. Hence it is wrong to dismiss pragmatic criteria as ontolo-
gically irrelevant on philosophical grounds, since to do so is to allow ‘first
philosophy’ to trump the internal standards of science. Quine’s stress on
the legitimacy of pragmatic considerations has gradually disappeared from
current debates over indispensability, and this is one reason why contem-
porary nominalists have been able to shift the focus to purely deductive
aspects of the role of abstract objects in science. Once again, I think,
the burden of proof lies with those who wish to draw a philosophically
significant distinction between the pragmatic and the theoretical to show
how and why such a distinction ought to be drawn.

4. CASE STUDY – A BRIEF HISTORY OF INFINITESIMALS

The above points will become clearer if we examine how the twin roles
of mathematics for justification and for discovery play out in an actual
historical example. I shall focus on the theory of infinitesimals. This is an
example which Quine discusses in some detail in the final chapter of Word
and Object, and his discussion provides a paradigm case of what I referred
to as the “narrow” view of the role of mathematics.49 I shall use Quine’s
analysis as a starting point, and then go on to argue that it misrepresents
the historical realities of the dispute over infinitesimal methods.

Infinitesimals rose to central prominence in mathematics and physics
with the invention of the calculus in the late 17th Century. For the first 150
years of its existence the calculus was based around the postulation and
manipulation of infinitesimals – magnitudes smaller than any given finite
magnitude yet larger than zero – one legacy of which is the ‘dx’ notation
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still in use today. To calculate the slope of a graph at a point, x, the 18th-
century mathematician would take the point (x + dx) and consider the slope
of the graph between these two points.

For example, iff(x) = x2 then

S = (x + dx)2 − x2

dx
(1)

= x2 + 2xdx + dx2 − x2

dx
(2)

= 2x + dx(3)

= 2x.(4)

The main conceptual problem with this method is that the infinites-
imal is treated as being both zero and non-zero at different points in the
calculation. At the point where the gradient of the tangent is calculated
[steps (1) and (2)], dx appears as a divisor and must therefore be non-zero.
Subsequently [step (3) to step (4)] a dx term appears and is neglected by
being put equal to zero.

Eighteenth-century mathematicians who used the calculus knew that
there was something arbitrary and unrigorous about their treatment of
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infinitesimals.50 But the method worked, and they had no alternative
method available. This (unstable) situation persisted until the early 19th
Century, when Cauchy and then Weierstrass developed a version of the
calculus based on the concept of limit. They showed how infinitesimals
could be eliminated in favor of definitions involving the limits of ordinary
finite magnitude.51 Quine argues that this latter theory is superior because
it is simpler from a global perspective;

When we paraphrase . . . in the Weierstrassian spirit . . . , we are merely switching from a
theory that is conveniently simple in a short view and complex in a long view to a theory
of the opposite character. Since the latter, if either, is the one to count as true, the former
gets the inferior rating of convenient myth . . . .52

The delta-epsilon notation of Weierstrass’s theory is cumbersome and
considerably less intuitive than the infinitesimal approach. Its advantage
is that it provides a rigorous and logically perspicuous foundation for
the calculus, and this allows the theory to be embedded in other more
comprehensive theories.

Quine draws from this historical summary two conclusions concerning
the epistemological status of infinitesimals. Firstly, before Cauchy and
Weierstrass, infinitesimals were (deductively) indispensable for science
since the best theories of mechanics and physics required the postula-
tion of infinitesimals. Hence it was rational – according to Quine – for
18th-century mathematicians to believe in the existence of infinitesimals.
Secondly, the development of a theory of limits makes infinitesimals
(deductively) dispensable, since everything that was provable using infin-
itesimals can now be proved using limits. Hence there is no reason for us
today to believe in the existence of infinitesimals.

I shall argue that both of Quine’s central claims are problematic. The
root of the problem is his narrow focus on mathematics as a deductive tool,
and his equating indispensability for science with deductive indispensabil-
ity. These problems are compounded by the somewhat selective and partial
nature of Quine’s historical narrative.

Quine’s first problematic claim is that infinitesimals were deductively
indispensable prior to the development of the Cauchy-Weierstrass theory
of limits. In claiming this, Quine seems unaware that most (if not all) of
the results obtainable using infinitesimals could also be obtained by an
alternative method, the so-called Method of Exhaustion. This is a method
of proving results about the areas of curved geometrical figures by en-
closing the figure in an infinite succession of regular polygons.53 The area
to be calculated is ‘trapped’ between an inscribed and a circumscribed
polygon, each of whose areas can be directly calculated. As the number
of sides of the enclosing polygons increases the area is more and more
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closely approximated. In this way the difference between the curved area
and the area of the polygon is ‘exhausted’. The Method of Exhaustion was
known to ancient Greek mathematicians; Euclid’s Elements contain several
proofs by exhaustion of propositions concerning the areas of circles, and
Archimedes made extensive use of the method in his treatises on conics
and parabolas. The diagrams below illustrate part of a proof by exhaustion
of the hypothesis that the ratio of the area of two circles is equal to the ratio
of the squares of their diameter.54

Let the areas of the circles be a and A, and let their diameters be d and
D. If it is not the case that a : A = d2 : D2, then there is some other circle of
area a′ such that a′ : A = d2 : D2. If a′ is smaller than a, then it is possible
to find a polygon of area p such that a′ < p < a. We can then inscribe a
similar polygon of area P inside the circle of area A. We know that p : P
= d2 : D2 = a′ : A. But since p > a′, then P > A, which contradicts the
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assumption that P is inscribed in the circle. If a′ is larger than a, then an
analogous reductio can be demonstrated using a circumscribed polygon.
Hence a : A = d2 : D2, by double reductio ad absurdam.

As already mentioned, the roots of the Method of Exhaustion lie in
ancient Greek geometry, and it was a method that was familiar to 17th-
and 18th-century mathematicians. Moreover, given Quine’s emphasis on
deductive strength and logical rigor, the Method of Exhaustion was super-
ior to infinitesimal methods. As we shall see, the Method of Exhaustion
was considered to be at least as strong deductively as infinitesimal meth-
ods and considerably more rigorous. If this is correct, then the presence
of the alternative Method of Exhaustion shows that infinitesimals were not
deductively indispensable prior to Cauchy-Weierstrass, contrary to Quine’s
initial assertion.

Consider first the issue of deductive strength. Judging by contemporary
accounts, 17th- and 18th-century mathematicians believed that the Method
of Exhaustion was deductively just as strong as infinitesimal methods. Res-
ults that had been discovered using infinitesimals were often recast in the
double-reductio form of a proof by exhaustion, and most mathematicians
of the time believed that such a reformulation could always in principle
be carried out. Indeed it was Leibniz’s belief in the possibility of refor-
mulating infinitesimal proofs as proofs by exhaustion that underpinned his
treatment of infinitesimal magnitudes as useful fictions. Leibniz writes:

There is no need to take the infinite in a rigorous way, but only the way in which one says in
optics that the rays of the sun come from an infinitely distant point and are therefore taken
to be parallel. . . . For, in place of the infinite or infinitely small, one can take quantities as
great or as small as one needs so that the error be less than the given error. So that one does
not differ from Archimedes’ style but for the expressions which in our method are more
direct and more in accordance with the art of discovery.55

Leibniz never backed up this claim with any formal demonstration that
such a prooftransformation is always possible.56 However, this aspect of
Leibniz’s position (unlike his fictionalist attitude to infinitesimals) did ap-
pear to be widely shared by his contemporaries.57 The most extended early
attempt to derive all the results of the calculus by the Method of Exhaustion
is to be found in McLaurin’s 1742 Treatise of Fluxions. The thesis that any
infinitesimal result can be established using an indirect proof by exhaustion
implies that infinitesimals are dispensable from a deductive point of view.

Not only was the Method of Exhaustion considered to be deductively
adequate, but also – unlike 17th-century infinitesimals – it fully satisfied
contemporary standards of rigor. Indeed, Euclid – the very paradigm of
rigor – had seen fit to include several proofs by exhaustion in his Elements.
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This issue of rigor was the main reason why infinitesimal proofs were so
often recast in the form of proofs by exhaustion.58 ,59

From a global point of view, then, the Method of Exhaustion was
regarded as superior to the infinitesimal approach. The Method was de-
ductively at least as strong as infinitesimal methods, and possessed the sort
of rigor which infinitesimals conspicuously lacked. Use of the Method of
Exhaustion allowed a watertight deductive proof to be given while avoid-
ing the contradictions seemingly inherent in the 18th-century concept of
infinitesimal. In Quinean terms, then, infinitesimals were already deduct-
ively dispensable before the innovations of Cauchy and Weierstrass, for
there was a globally better theory available – the Method of Exhaustion –
which did not postulate infinitesimal.60

This leads me on to my second main point, which concerns the
difference between indispensability and deductive indispensability. Con-
temporary debates over indispensability proceed as if there is little or no
difference between these two concepts. If this presumption is right, how-
ever, and if infinitesimals were already considered deductively dispensable
prior to Cauchy-Weierstrass, then why were infinitesimals not dispensed
with by 18th-century mathematicians? Wouldn’t this have solved the
‘crisis’ in the foundations of the calculus at one fell swoop?

The answer is no, and the reason why infinitesimals could not be dis-
carded was because – although they were not deductively indispensable –
they were indispensable for the discovery of new results. The great problem
with the Method of Exhaustion is that it is impractical to apply unless
the result to be proved is known in advance. This is because a proof by
exhaustion proceeds by means of a (two-part) reductio, thereby making it
an indirect method of proof The logical structure of a proof by exhaustion
involves a version of tertium non datur; it is shown that if the given area
is greater than A then this leads to contradiction, and if it is less than A
it leads to contradiction, hence the area must be equal to A. Unless the
value of A is known (or somehow guessable) in advance, the Method of
Exhaustion cannot be applied.61 This is in contrast to infinitesimal proofs,
which proceed in direct algebraic fashion from premise to conclusion. This
difference is what Leibniz is pointing to when he writes, in the passage
quoted previously, that infinitesimal methods are “more direct and more in
accordance with the art of discovery” than the Method of Exhaustion. In-
deed a large part of the motivation for the development of the infinitesimal
calculus stemmed from mathematicians’ dissatisfaction with the fact that
the Method of Exhaustion failed to reflect the way in which results were
actually discovered.62
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Quine is therefore right that infinitesimals were indispensable to 18th-
century mathematics, but wrong that they were deductively indispensable.
The reason that infinitesimals were needed was for the purpose of dis-
covery, not justification.63 Quine’s narrow view of indispensability cannot
adequately capture this extra dimension, and this leads him to misrepres-
ent the actual historical situation. The case of infinitesimals is instructive
because it provides a particularly clear-cut illustration of the distinction
between context of discovery and context of justification. Between the
late 17th and early 19th Centuries, mathematicians had a fruitful but non-
rigorous theory (infinitesimals), and a rigorous but unfruitful theory (the
Method of Exhaustion), but they had no theory which was both rigorous
and fruitful. The importance of the Cauchy-Weierstrass theory was that
it led to methods that possessed both of these virtues. Any analysis of
indispensability which does not recognize the interaction between these
non-deductive aspects of mathematical theories – as Quine’s analysis does
not – is bound to end up with a distorted picture of the interactions between
mathematics and science.

I mentioned earlier that I had objections also to Quine’s second basic
claim, that infinitesimals are no longer indispensable for science. The story
of infinitesimals has been given a final twist with Abraham Robinson’s
development of nonstandard analysis in the 1960’s, which showed how the
infinitesimal calculus can be placed on a rigorous logical foundation using
techniques from model theory.64 Nonstandard analysis combines the rigor
of the Method of Exhaustion with the perspicuity of infinitesimal methods
to produce a mathematical system of considerable power and flexibility.65

The pedagogical advantages of nonstandard analysis have been borne out
by studies which show that students who are taught using nonstandard
analysis learn calculus significantly more quickly than those taught using
traditional delta-epsilon methods.66 The main barrier to more widespread
use of nonstandard analysis in mathematics teaching and research seems to
be institutional inertia combined with a general lack of familiarity with the
new techniques. Maybe, then, the best theory of the calculus does involve
the postulation of infinitesimals, in which case infinitesimals would turn
out to be indispensable for science after all. Here I am once again speaking
of indispensability in a broader sense than just deductive indispensability.
Even post-Robinson, there is no question that infinitesimals are deduct-
ively dispensable, indeed one of the key results of nonstandard analysis
is a proof that nonstandard methods [i.e., methods involving the popu-
lation of infinitesimals] constitute a conservative extension of classical
mathematics.67
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I want to conclude my discussion of infinitesimals by drawing atten-
tion to an interesting difference between their recent rehabilitation and
the resurgence of interest in quaternions that was discussed earlier. Let us
focus in each case on the stimulus for the reintroduction into science of the
discarded theory. In the case of infinitesimals the stimulus came from the
mathematical end; it was only once mathematics had evolved to the point
where infinitesimals could be put on a rigorous logical footing that interest
in their use was rekindled. In the case of quaternions the stimulus came
from the scientific end; it was only with development of new scientific
theories – in particular special relativity and quantum mechanics – that
fresh attempts were made to use quaternions in physics.

5. CONCLUSIONS

Debates between nominalists and realists over the effectiveness of the
Indispensability Argument have focused mainly on the Indispensability
Thesis – the claim that mathematics is indispensable for science. This
is not the only vulnerable point in the Argument, but it is an obvious
point of attack for nominalists who endorse scientific naturalism (of at
least the strength encapsulated in the first premise of the Indispensability
Argument). My aim in this chapter has been to show that the availability
of a reasonably attractive nominalistic theory which captures the physical
consequences of our current scientific theories is not by itself sufficient to
undermine the Indispensability Thesis. The reason why not is that there is
more to the role of mathematics in science than raw deductive power. We
have good grounds for believing in mathematical objects if mathematics is
indispensable for doing science. This concept of indispensability is richer
than mere indispensability for proving results about the physical world,
because doing science involves the use of theories for tasks other than
simple proof. I have concentrated on two other such tasks – discovery
of new results, and development of new theories – and argued that they
often require more mathematical resources than proving known results.
These tasks depend on features of mathematics that are often ignored in
debates over indispensability, features that tend to be pragmatic rather than
theoretical, local rather than global, and dynamic rather than static. Insofar
as these features are crucial to the practice and development of science,
any adequate mathematics-free alternative formulation of science must
preserve them. The multi-faceted role that mathematics plays in doing
science makes the claim that mathematics is indispensable more plausible,
and this in turn makes the Indispensability Argument more difficult for the
nominalist to undermine.
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NOTES

1 Burgess and Rosen (1997) provide a useful overview of the post-Fieldian indispensab-
ility debate.
2 See van Fraassen (1980).
3 See, e.g., Maddy (1992).
4 This is not to say that such technical programs are pointless. Establishing that math-
ematics is dispensable from science, even if only in a narrow, deductive sense, would be
important and interesting in its own right.
5 Or at least those contemporary nominalists who take the Indispensability Argument
seriously.
6 This formulation implicitly equates the concrete part of reality with that part which can
be described in purely nominalistic terms. In the context of the debate over the existence
of abstract mathematical objects this loose way of talking is unproblematic, but eventually
more would need to be said about borderline cases such as properties and relations of
concrete objects.
7 See Field (1980, p. 8).
8 See Lakatos (1976, pp. 142–144) for an interesting discussion of the ‘deductivist style’
in mathematics and in science.
9 Field (1980, p. 5).
10 See Burgess (1990), Rosen (1992), and Burgess and Rosen (1997) for elaborations of
this line of attack on contemporary nominalist strategies.
11 Another example is the derivation of the Special Theory of Relativity from the General
Theory (in the special case where the inertial frame is not accelerating).
12 The boundary between these two notions is somewhat vague. For example, a case where
the mathematics is used to pick out the right answer from a limited range of known altern-
atives (maybe even just two alternatives) contains elements of both proof-discovery and
proof-justification.
13 For a more sophisticated account of the mathematical aspects of cryptoanalysis see
Becker and Piper (1982).
14 Compare, for example, the relative difficulty of the following two questions:

(i) What are the prime factors of 66887?
(ii) What is the product of 211 and 317?

15 In rare cases the tables may be turned and empirical resources may be indispensable
for mathematical discovery. Some theorems about minimum surface areas for irregular
shapes were discovered in the 19th Century using wire models and soap bubbles. Another
(less clear-cut) case is the use of computers to carry out long and combinatorially complex
proofs.
16 The development of Fourier analysis in the 19th Century was inspired to a significant
extent by models of heat transfer along a cylindrical iron bar. Fourier modeled heat flow
by calculating the effect of slicing a segment dm, off the end of the bar and adding it to
the heat sink. By repeatedly carrying out this procedure he came up with an equation for
heat flow expressed as an infinite series. For further details see Grattan-Guinness (1972)
and (1990).
17 For more on the application of group theory to physics, see Cornwell (1984), and Banik
(1983). A useful discussion of some philosophical aspects of the application of group
theory to physics can be found in French (1999).
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18 A more contentious (and less widely known) example is Dirac’s 1931 prediction of the
existence of magnetic monopoles based on symmetry considerations in the mathematical
formalism of quantum mechanics. I will return to examine this example in more detail
when discussing the scientific status of Occam’s Razor in Chapter 4.
19 Burgess (1982, p. 99).
20 Quine (1966, p. 234).
21 Gödel (1983, p. 485).
22 The generality of a theory will also be a factor, since a very general mathematical theory
has a good chance of finding future application in science even if it is not currently being
applied. The prime candidates for discarding are mathematical theories which are both
specific and unapplied since such theories will tend to be regarded as both mathematically
and scientifically trivial (the theory of chess is one such example).
23 For example, notational debates in the early development of the calculus over the relative
merits of ‘dx’ notation versus ‘x dot’ notation.
24 British algebraists in the early 19th Century subscribed to the so-called ‘Principle of
the Permanence of Forms’ which restricted algebraic systems to those which preserved
the basic properties of N, Q, etc. See Crowe (1985, pp. 15–16) for information on early
developments concerning commutativity and other properties of algebraic systems.
25 For further details concerning division algebras, see Dixon (1994).
26 I am restricting attention here to real-normed division algebras.
27 Vectors and quaternions are both examples of a broader class of mathematical structures
known as ‘Clifford algebras’.
28 The day after his discovery of quaternions, Hamilton wrote that without this property of
moduli he would have “considered the whole speculation a failure”.
29 This point is made in an interesting article by O’Neill (1986).
30 In algebraic terms what Hamilton did was mistakenly identity quaternions with the
rotation group in which a rotation of a vector V is expressed as qV, rather than with the
spin group, in which a rotation is expressed as qVq−1.
31 Cf. Anderson and Joshi (1993, p. 312).
32 The number of equations can be further reduced, to two using tensors or forms, and to a
single equation using Clifford algebras.
33 Crowe (1985, pp. 219–220).
34 The first quaternionic formulations of special relativity were by Conway in 1911, and
by Silberstein in 1912.
35 Consider, for example, (1 + iI )(1 − iI ) = 1 + I2 = 1 − 1 = 0 where i is the complex
coefficient, and I is the first quaternion vector component.
36 Rastall (1964), quoted in Anderson and Joshi (1993, p. 316).
37 See Anderson and Joshi (1993, p. 314), and Finkelstein et al. (1962, pp. 307–8).
38 There is also a close link between division algebras and Lie groups, which play a central
role in modern physics. The four categories of semi-simple Lie groups – orthogonal, unit-
ary, symplectic, and exceptional – are associated with the reals, complexes, quaternions.
and octonions respectively. See Anderson and Joshi (1993, p. 313) and Dc Leo (1996b. p.
1827).
39 Finkelstein (1962, p. 208).
40 For quantum mechanics to be a special case of classical dynamics, it must be ‘sym-
plectic’. One important consequence of this is that degrees of freedom pair up (in technical
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terms, a symplectic manifold must have an even number of dimensions). Using the real
numbers as a basis does not give this property, hence such a basis is inadequate.
41 This account of tensor products and complementarity relies heavily on the discussion
given in Finkelstein (1962, p. 211).
42 See Adler (1995), and De Leo (1996b).
43 De Leo (1996b, p. 1821).
44 See, e.g., Bold and Wayne (1972), section 6.13 for details.
45 Michael Crowe points to a tension between pragmatic and theoretical considerations in
the debate over quaternions versus vectors:

Many 19th-century physicists I took what may be described as a pragmatic approach to the
question of which system was to be preferred. Many of their arguments were on grounds
of expressiveness congruity with physical relationships, and ease of understanding. The
quaternionists, on the other hand. put somewhat greater stress on mathematical elegance
and algebraic simplicity. (Crowe (1985, p. 217))

46 They also tend to be more precise, and therefore easier to specific exactly.
47 Reichenbach (1938, p. 7).
48 See van Fraassen (1980).
49 See Quine (1960, pp. 248–250).
50 This is not to say that the 18th-century infinitesimal calculus was demonstrably
inconsistent. There are two basic senses in which a theory can be unrigorous. On the
one hand it may be formally inconsistent, as for example was the case with Frege’s
naive set theory. On the other hand it may be an informal theory for which no consist-
ent formalization has been found. This latter situation better describes that of the early
calculus.
51 Thus, for example, a function f(x) is continuous for a value x = t iff given any d > 0
there is an e >0 such that [f(x +/− e) − f(x)] < d.
52 Quine (1960, p. 250).
53 See, e.g., Eves (1955, pp. 316–7) for an example and a statement of the basic
Archimedean principle on which the method is based.
54 This example is taken from Euclid XII, 2. My presentation of the proof follows the one
given in Boyer (1949, p. 341).
55 Leibniz (1701, pp. 270–1). By “Archimedes’ style” Leibniz means indirect proofs by
exhaustion.
56 Indeed it is difficult to see how any formal demonstration could have been given at that
time, since it was precisely the lack of a formal, rigorous basis for the new ‘science of
infinitesimals’ which was the source of much of the controversy.
57 Mancosu (1996, p. 171) writes: “The claim of being able to recast any proof involving
infinitesimals into a proof in the style of Archimedes – a proof using the method of ex-
haustion – was extremely suggestive, but it was never developed in print in a completely
convincing way”.
58 Newton’s Principia is often cited as an example of this phenomenon, although there
has been some controversy recently over whether Newton originally discovered his results
using infinitesimals (what he called ‘fluxions’) or not.
59 The debate over the rigor of infinitesimals finds interesting parallels in the develop-
ment of methods of proof involving so-called “indivisibles” earlier in the 17th century.
One example was the Italian mathematician Evangelista Torricelli who, though himself
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a supporter of indivisible methods, recast many of his theorems in order to satisty his
(presumably more skeptical) readers. Alter proving one such theorem, Torricelli writes

I consider the previous theorem sufficiently clear in itself. . . . However, in order to satisfy
the reader who is scarcely a friend of indivisibles, I shall repeat its demonstration at the end
of the work with the usual demonstrative method of ancient Geometers which, although
longer, in my opinion is not for that more certain. (Torricelli (1644, vol. I, p.194)).

60 A further point against the Quinean reconstruction of the Cauchy-Weiertrass episode is
that Cauchy’s new methods are themselves not entirely free of infinitisimals.
61 See Mancosu (1996, p. 36).
62 See Mancosu (1996, p. 37ff.) for more on earlier 16th- and 17th-century attempts to
avoid the Method of Exhaustion by using indivisibles or infinitesimals.
63 Boyer (1949) writes of the Method of Exhaustion that it “was not a tool well adapted
to the discovery of new results” (p. 48) and that it “directed attention toward the synthetic
form of exposition rather than toward an analytic instrument of discovery” (p. 36).
64 See Robinson (1974).
65 A valuable discussion of the use of nonstandard analysis in physics can be found in
Salauskis & Sinaceur (1992, section 4).
66 See Dauben (1988, pp. 190–3).
67 Not all developments of nonstandard analysis have this property. Bell (1998) discusses
certain new systems of infinitesimals that have arisen out of work in synthetic differential
geometry. These systems contain first-order differentials, dx, such that dx = 0 but (dx.dx)
= 0, and thus are not conservative over classical analysis.
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