Real Analysis 1

- (1) Show that if $f:[0,1] \to [0,1]$ is continuous, then there is a point $x_0 \in [0, 1]$ such that $f(x_0) = x_0$.
- (2) Assume that $f : \mathbb{R} \to \mathbb{R}$ is continuous and $\delta > 0$. Show that $F(x) = \frac{1}{2\delta} \int_{x-\delta}^{x+\delta} f(t) dt$ is differentiable and find its derivative.
- (3) Show that the set $\bigcup_{n \in \mathbb{N}} \left[n + \frac{1}{n}, n + 1 \frac{1}{n} \right]$ is closed. Is it com-

pact?

(4) Let V_0 be the space of continuous functions on [0, 1] that are differentiable on (0, 1) with continuous and bounded derivative and that satisfy f(0) = 0. Show that

$$d(f,g) = \int_0^1 |f'(x) - g'(x)| \, dx$$

defines a metric on V_0 .

(5) Show that if $f, g: [a, b] \to \mathbb{R}$ are Riemann integrable so is the product fg.

Real Analysis 2

- (1) Assume that f is Lebesgue measurable on \mathbb{R} . Show that if $\int_{E} f \ge 0$ for all measurable E, then $f(x) \ge 0$ for almost all x.
- (2) Show that if f is measurable then |f| is measurable. Does the reverse also hold? Explain.
- (3) Assume that A is a bounded measurable subset of \mathbb{R} of measure 0. Show that $A^2 = \{x^2 : x \in A\}$ is also of measure 0. Is it necessary to have A bounded?
- (4) Let H be the parallelogram in \mathbb{R}^2 whose vertices are (1,1), (3,2), (4,6), (2,5). Find the affine map T which sends (0,0) to (1,1), (1,0) to (3,2), (1,1) to (4,6), (0,1) to (2,5). Show that $J_T = 7$. Use T to convert the integral

$$\beta = \int_{H} e^{x-y}$$

to an integral over $[0,1] \times [0,1]$ and thus compute β .

(5) Let k > 1. Let M be a compact, oriented k-manifold in \mathbb{R}^n . State conditions under which the formula

$$\int_{M} f \, d\omega = \int_{\partial M} f \omega - \int_{M} (df) \wedge \omega$$

is valid.