Real Analysis 1

(1) Show that if $f:[0,1] \rightarrow[0,1]$ is continuous, then there is a point $x_{0} \in[0,1]$ such that $f\left(x_{0}\right)=x_{0}$.
(2) Assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $\delta>0$. Show that $F(x)=\frac{1}{2 \delta} \int_{x-\delta}^{x+\delta} f(t) d t$ is differentiable and find its derivative.
(3) Show that the set $\bigcup_{n \in \mathbb{N}}\left[n+\frac{1}{n}, n+1-\frac{1}{n}\right]$ is closed. Is it compact?
(4) Let V_{0} be the space of continuous functions on $[0,1]$ that are differentiable on $(0,1)$ with continuous and bounded derivative and that satisfy $f(0)=0$. Show that

$$
d(f, g)=\int_{0}^{1}\left|f^{\prime}(x)-g^{\prime}(x)\right| d x
$$

defines a metric on V_{0}.
(5) Show that if $f, g:[a, b] \rightarrow \mathbb{R}$ are Riemann integrable so is the product $f g$.

Real Analysis 2

(1) Assume that f is Lebesgue measurable on \mathbb{R}. Show that if $\int_{E} f \geq 0$ for all measurable E, then $f(x) \geq 0$ for almost all x.
(2) Show that if f is measurable then $|f|$ is measurable. Does the reverse also hold? Explain.
(3) Assume that A is a bounded measurable subset of \mathbb{R} of measure 0 . Show that $A^{2}=\left\{x^{2}: x \in A\right\}$ is also of measure 0 . Is it necessary to have A bounded?
(4) Let H be the parallelogram in \mathbb{R}^{2} whose vertices are $(1,1)$, $(3,2),(4,6),(2,5)$. Find the affine map T which sends $(0,0)$ to $(1,1),(1,0)$ to $(3,2),(1,1)$ to $(4,6),(0,1)$ to $(2,5)$. Show that $J_{T}=7$. Use T to convert the integral

$$
\beta=\int_{H} e^{x-y}
$$

to an integral over $[0,1] \times[0,1]$ and thus compute β.
(5) Let $k>1$. Let M be a compact, oriented k-manifold in \mathbb{R}^{n}. State conditions under which the formula

$$
\int_{M} f d \omega=\int_{\partial M} f \omega-\int_{M}(d f) \wedge \omega
$$

is valid.

