
Swarthmore College
Department of Mathematics and Statistics

Honors Examination in Topology 2007

Instructions: Do 6 of the following 10 problems as thoroughly as you can. Include at
least one problem from each of the four parts of the exam. You may use without proof the
basic theorems that you have learned, but be sure to state them carefully. You may also
use a result from one problem in solving another, even if you didn’t solve the first problem.
If you have lots of time left over, feel free to solve other problems.

Notation

The following conventions for notation have been followed:
Z = the set (group, ring) of rational integers.
Q = the set (group, field) of rational numbers.
R = the set (group, filed) of real numbers.
C = the set (group, filed) of complex numbers.
Sn−1 = the unit sphere in Rn.

Point Set Topology

1. Suppose f, g:X → Y are two continuous functions from X to Y . Define the coinci-
dence set of f and g to be the subset of X

C(f, g) = {x ∈ X | f(x) = g(x)}.

a) Show that if Y is Hausdorff, then C(f, g) is a closed set in X.
b) Suppose A ⊂ X is a dense subset of X and A ⊂ C(f, g). Deduce that f = g.
c) Suppose X = Y and g = idX , the identity mapping on X. Show that C(f, idX)

is the fixed set of f , Fix(f) = {x ∈ X | f(x) = x}, and deduce that if X is
Hausdorff, then Fix(f) is closed.

2. Let S ⊂ R2 denote the spiral given in polar coordinates by

S = {(r, θ) | 1 ≤ θ < ∞ and r = (θ − 1)/θ}.

Let A = cls S, the closure of S in R2. Show in detail that A is connected, but not
path-connected.

3. If X is a topological space, then π0(X) denotes the set of equivalence classes of X
under the relation x ∼ y if there is a continuous path λ: [0, 1] → X with λ(0) = x and
λ(1) = y.
a) Suppose G is a topological group, that is, there is a binary operation on G,

denoted µ:G×G → G, which is continuous, makes G a group, and for which the
mapping g 7→ g−1 is also continuous. Show that π0(G) is also a group.

b) Let Gln(R) denote the multiplicative group of invertible n×n matrices with real
entries. Show that the group π0(Gln(R)) is isomorphic to Z/2Z. (Hint: Think
about elementary matrices that carry out row operations and paths in Gln(R)
between them. Or maybe think about the Gram-Schmidt Process.)
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Fundamental Groups and Covering Spaces

4. The suspension ΣX of a topological space X is the quotient space of X × [0, 1] under
the equivalence relation given by the equality on points (x, t) for 0 < t < 1 and for all
x, x′ ∈ X, we have (x, 0) ∼ (x′, 0) and (x, 1) ∼ (x′, 1).
a) Suppose that X is connected and path-connected. Show that the sets U =

{[(x, t)] | t > 1/3} and V = {[(x, t)] | t < 2/3} are open in ΣX and that U
and V are homotopy equivalent to a point.

b) Show that U ∩ V is path-connected.
c) Let x0 ∈ X. Use a) and b) to show that π1(ΣX, [(x0, 1/2)]) is the trivial group.

5. If p: X̃ → X is a covering space, then the lifting of loops in X to paths in X̃ leads to
an action of the fundamental group π1(X, x0) on the set p−1({x0}).
a) Describe the construction of this action in detail.
b) The action of any group G on a set F leads to a homomorphism φ:G → Sym(F ),

where Sym(F ) denotes the group of permutations of the set F . This homomor-
phism is defined by g 7→ (x 7→ g · x). Show that φ is injective.

c) It follows that we have an injective homomorphism φ:π1(X, x0) → Sym(p−1({x0}).
Suppose X̃ is simply-connected, and the cardinality of p−1({x0}) is 2. Deduce
that π1(X, x0) ∼= Z/2Z. What can you say if the cardinality of p−1({x0}) is 3?

Surfaces

6. The classification theorem for surfaces shows that a (closed, compact, connected)
surface may be represented as a quotient space of a polygon. This representation
allows one to triangulate the surface, compute its fundamental group, etc. A surface
is nonorientable if and only if it has a embedded Möbius band. Use the classification
theorem to show that the connected sum of a projective plane with an orientable
surface has an embedded Möbius band. And show that the canonical presentation of
edge identifications for nonorientable surfaces contains an embedded Möbius band.

7. If you pluck a single point from S2, then you get a space homeomorphic (via stereo-
graphic projection) to R2. Since R2 is convex, it is a contractible space and we can
write S2−{x0} ' ∗, the one-point space. In this problem, let’s consider what happens
when you remove a point from F , a compact, closed, connected surface. Show that,
in general, F − {x0} ' S1 ∨ S1 ∨ · · · ∨ S1 for some number of circles (possibly none).
Relate the number of circles in the bouquet to the genus of the surface when it is
orientable, and generally to the Euler characteristic of F .

Algebraic Topology

8. Suppose that G is a topological group and e ∈ G is the identity element. Then, in
problem 3, we asserted that π0(G), the set of path components of G, is a group. We
next show that π1(G, e) is a (left) π0(G)-set, that is, there is an action of π0(G) on
π1(G, e). Consider the mapping

µ:π0(G)× π1(G, e) → π1(G, e), µ([g], [λ]) = [g · λ · g−1],

where g · λ · g−1(t) = gλ(t)g−1 ∈ G.

2



a) Show that µ is well-defined, and that it satisfies the properties of a group action,
that is, for all [g], [h] ∈ π0(G) and [λ] ∈ π1(G, e),

(1) [g] · ([h] · [λ]) = ([g][h]) · [λ]
(2) [e] · [λ] = [λ].

b) The topological group O(2) consists 2×2-matrices with real entries and orthonor-
mal columns. Show that π0(O(2)) is isomorphic to Z/2Z and that the path
component of the identity matrix Id is homeomorphic to S1. It follows that
π1(O(2), Id) ∼= Z. Thus the action in a) is algebraically an action of Z/2Z on Z.

9. Consider the following 2-dimensional complex, denoted by K, given by taking a pair of
tetrahedra, ABCD and A′B′C ′D′ with A′B′C ′D′ smaller and inside ABCD together
with the edges AA′, BB′, CC ′, and DD′, as well as the faces ABB′A′, ACC ′A′,
ADD′A′, BCC ′B′, BDD′B′, and CDD′C ′. The complex is pictured below.
a) What is the Euler characteristic of this complex?
b) Give a plausibility argument that this complex is simply-connected.
c) Deduce from b) that H1(K) = {0} and from a) deduce the rank of H2(K).
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10. Suppose K and L are finite simplicial complexes. Let |K| and |L| denote the real-
izations of K and L as topological spaces. Finally, let [|K|, |L|] denote the set of
homotopy classes of continuous functions from |K| to |L|. Use the Simplicial Ap-
proximation Theorem to show that this set is countable. Show how this implies that
π1(|K|) is a countable group if K is a finite complex.
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