Swarthmore College
 Department of Mathematics and Statistics
 Honors Examination: Algebra
 Spring 2023

Instructions: This exam contains nine problems. Try to solve six problems as completely as possible. Do not be concerned if some portions of the exam are unfamiliar; you have a number of choices so that you do not need to answer every question. Once you are satisfied with your responses to six problems, make a second pass through the exam and complete as many parts of the remaining problems as possible. I am interested in your thoughts on a problem even if you do not completely solve it. In particular, submit your solution even if you cannot do all the parts of a problem. When there are multiple parts, you are permitted to address a later part without solving all the earlier ones.

1. Let G be a finite group and let p be a prime dividing the order of G.
(a) Prove that G contains an element of order p.
(b) Show that the number of elements in G of order p is not congruent to 1 modulo p. Is there an easy way to fix this statement?
2. Consider $\alpha=\sqrt{2}+\sqrt{3}$.
(a) Determine the minimal polynomial of α over \mathbb{Q}.
(b) Is the extension $\mathbb{Q}(\alpha) / \mathbb{Q}$ Galois?
(c) Determine the Galois group $\operatorname{Gal}(\mathbb{Q}(\alpha) / \mathbb{Q})$.
3. For each of the following rings, determine whether the ring is a UFD, PID, Euclidean domain, or a field. That is, for each part below, you are making four determinations.
(a) $\mathbb{Z}[\sqrt{-5}]$
(b) $\mathbb{Z}[i]$
(c) $\mathbb{Z}[\sqrt{2}]$
(d) $\mathbb{Q}[\sqrt{2}]$
4. In this exercise, we will consider groups of order 24.
(a) Classify all abelian groups of order 24.
(b) Compute the center of the dihedral group

$$
D_{24}=\left\langle x, y \mid x^{12}=y^{2}=x y x y=1\right\rangle .
$$

(c) Show that there are no simple groups of order 24 .
5. Let F be a finite field of order p^{n} for some prime p and positive integer n.
(a) We say that a field F is algebraically closed if every non-constant polynomial over F has a root in F. Prove that F cannot be algebraically closed.
(b) Construct the smallest possible field extension of $\mathrm{GF}(2)$ that contains both $\mathrm{GF}\left(2^{4}\right)$ and $\mathrm{GF}\left(2^{6}\right)$ as subfields.
6. Let R, S be commutative rings with identity, and let $f: R \rightarrow S$ be a ring homomorphism.
(a) Prove that if S is a domain and f is injective, then $\operatorname{ker}(f)$ is a prime ideal of R.
(b) Find an example of rings R and S, a ring homomorphism $f: R \rightarrow S$, and a prime ideal P of R such that $f(P)$ is a nonzero ideal of S that is not prime. (Hint: Try $R=\mathbb{Z}$.)
(c) Find an example of a ring R, a field S, and a ring homomorphism $f: R \rightarrow S$ such that $\operatorname{ker}(f)$ is not a maximal ideal of f. (Hint: Try $R=\mathbb{Z}[x]$.)
(d) Find an example of rings R and S, a ring homomorphism $f: R \rightarrow S$, and a prime ideal P of R such that P is a prime ideal of R and $f(P)$ is a maximal ideal of S, but P is not a maximal ideal of R. (Hint: Try $R=\mathbb{Z}[x]$.)
7. Consider the dihedral group of order 8 given by

$$
D_{8}=\left\langle x, y \mid x^{4}=y^{2}=x y x y=1\right\rangle
$$

(a) What are the conjugacy classes of D_{8} ?
(b) Find a two-dimensional irreducible real representation of D_{8}. Prove that your representation is irreducible.
(c) Prove that all the other irreducible real representations of D_{8} are one-dimensional.
(d) Considering complex representations, construct the character table for D_{8}.
8. Let R be a commutative ring with identity, and let $I_{1}, I_{2}, \ldots, I_{n}$ be ideals of R.
(a) Prove that the product of these ideals is contained in their intersection; that is,

$$
I_{1} I_{2} \cdots I_{n} \subseteq I_{1} \cap I_{2} \cap \cdots \cap I_{n}
$$

(b) Is it true that the quotient ring $R /\left(I_{1} \cap I_{2} \cap \ldots \cap I_{n}\right)$ is an integral domain if and only if each of the quotient rings R / I_{i} is an integral domain?
9. Determine whether each of the groups below is finite or infinite. In case it is finite, produce the order itself and a description of the group (e.g., it is cyclic of order 10, dihedral of order 8 , etc.).
(a) $G=\left\langle x, y \mid x^{2}=y^{2}, x y=y x\right\rangle$
(b) $G=\left\langle x, y \mid x^{2}=y^{2}=[x, y]^{2}=1\right\rangle$, where $[x, y]=x y x^{-1} y^{-1}$
(c) $G=\left\langle x, y \mid x^{4}=y^{3}=1, x y=y^{2} x\right\rangle$.
(d) $G=\left\langle x, y \mid x^{2}=y^{2}, x^{3}=y^{3}\right\rangle$

