Swarthmore College Department of Mathematics and Statistics Honors Exam in Geometry 2023

Complete as many of the questions as you can; there is no expectation that you complete all problems. Feel free to concentrate your efforts on 3 of the 4 main topics.

1 The Sphere

1. Consider the round 2 -sphere embedded in \mathbb{R}^{3}. A chart (or coordinate system) on the sphere is given by

$$
(\theta, \phi):(0, \pi) \times(0,2 \pi) \rightarrow S^{2}
$$

where θ measures the angle down from the z-axis and ϕ is the polar angle in the $x y$-plane.
(a) Which points on the sphere are not in the image of this chart?
(b) Why can't this chart be onto the sphere? (hint: consider the topology (or homeomorphism class) of the domain and range)
2. The standard (round) Riemannian metric with respect to these coordinates is

$$
g=\left[\begin{array}{cc}
1 & 0 \\
0 & \sin ^{2} \theta
\end{array}\right]
$$

which can also be written in the form $d s^{2}=d \theta^{2}+\sin ^{2} \theta d \phi^{2}$.
Consider the following calculation of the volume of the sphere (when we say volume of a 2-manifold we mean surface area)

$$
V=\int \sqrt{|\operatorname{det}(g)|} d \theta \wedge d \phi=\int_{0}^{2 \pi} \int_{0}^{\pi} \sin \theta d \theta d \phi=4 \pi
$$

Consider the following rectangles which have equal volume in parameter space

$$
(0, \pi / 4) \times(a, b) \quad \text { and } \quad(\pi / 4, \pi / 2) \times(a, b)
$$

Do these rectangles have equal volume on the sphere? Explain why or why not.
3. Now you will use the limit comparison definition of Gaussian curvature

$$
k=\lim _{r \rightarrow 0^{+}} 12 \frac{\pi r^{2}-A(r)}{\pi r^{4}}
$$

to calculate the curvature of the round unit 2-sphere at the north pole.
(a) Let $A(r)$ denote the intrinsic area of a geodesic ball on the manifold (in this case the round unit 2-sphere with the coordinate chart and metric as above). Calculate the intrinsic area $A(r)$ of a geodesic ball centered at the point $(0,0)$, i.e. the intrinsic area of the parameter domain $(0, r) \times(0,2 \pi)$.
(b) Evaluate the limit expression for Gaussian curvature using your value of $A(r)$. (hint: you may find L'Hopital's rule or a Taylor expansion of $A(r)$ helpful)

2 The Sphere Theorem

Consider a compact simply connected Riemannian manifold M^{n} whose sectional curvature K satisfies

$$
0<h K_{\max }<K \leq K_{\max }
$$

The Sphere Theorem says: If $h=1 / 4$ then M^{n} is homeomorphic to a sphere.
4. Prove the Sphere Theorem for dimension $n=2$.
5. We define complex projective space $\mathbb{C} P^{n}$ to be the space consisting of all complex lines in \mathbb{C}^{n+1}, i.e. the quotient of $\mathbb{C}^{n+1} \backslash\{0\}$ by the equivalence relation relating all complex multiples of each point together. The standard metric on $\mathbb{C} P^{n}$ is the Fubini-Study metric where sectional curvature is given by

$$
K(\sigma)=1+3\langle J X, Y\rangle^{2}
$$

where $\{X, Y\} \in T_{p} \mathbb{C} P^{n}$ is an orthonormal basis of the 2-plane σ and $J: T_{p} \mathbb{C} P^{n} \rightarrow T_{p} \mathbb{C} P^{n}$ is the complex structure on $\mathbb{C} P^{n}$ (similar to multiplication by i).
(a) What is the range of sectional curvatures for $\mathbb{C} P^{n}$ with this Fubini-Study metric?
(b) Which 2-planes σ achieve the max sectional curvature and which achive the min sectional curvature?
(c) What does this example say about the Sphere Theorem?
(d) $\mathbb{C} P^{1}$ is a closed 2-dimensional real manifold, i.e. a closed surface. What can you say about the topology (or homeomorphism class) of $\mathbb{C} P^{1}$.

3 Surface Curvature

Given a surface M^{2} we can find a unit normal vector $N(p)$ that this perpendicular to M^{2} at p. The Gauss map $N: M^{2} \rightarrow S^{2}$ is defined locally by recording the direction of the normal. One can define curvature of surfaces by measuring the rate at which $N(p)$ changes.

The derivative of a map between manifolds is a linear map between their tangent spaces. The derivative

$$
d N_{p}: T_{p} M^{2} \rightarrow T_{N(p)} S^{2}
$$

admits representation as a symmetric 2×2 matrix, called the shape operator.
6. Preliminaries
(a) What is an example of a surface for which the Gauss map can NOT be defined globally?
(b) Why does $d N_{p}$ admit a representation as a 2×2 matrix?
(c) Why does the matrix $d N_{p}$ admit a diagonalization?
(d) What is the interpretation of the eigenvalues and eigenvectors of $d N_{p}$?
7. The Gaussian curvature of M^{2} at p is given by $k(p)=\operatorname{det}\left(d N_{p}\right)$ and the mean curvature is given by $H(p)=\frac{1}{2} \operatorname{tr}\left(d N_{p}\right)$. The total Gauss curvature is given by $\int_{M} k d A$ and the total mean curvature by $\int_{M} H d A$. The Wilmore energy W of a surface M^{2} is defined as $W(M)=\int_{M} H^{2} d A$. Recall for a 2-sphere of radius R that the shape operator can be expressed (in an eigenbasis) as

$$
d N_{p}=\left[\begin{array}{cc}
1 / R & 0 \\
0 & 1 / R
\end{array}\right]
$$

Compute the total Gauss curvature, the total mean curvature, and the Wilmore energy for a round 2-sphere of radius R.
8. The Wilmore Conjecture (which has been proved) states: If M^{2} is a closed surface in \mathbb{R}^{3} with genus greater than zero, then $W(M) \geq 2 \pi^{2}$. Prove or provide a counterexample to the following statement: If S is a closed surface in \mathbb{R}^{3} with $W(S) \geq 2 \pi^{2}$ then the genus of S is positive.

4 Hyperbolic Space

9. Consider the Poincaré half-plane model of hyperbolic geometry, i.e. the manifold

$$
\mathbb{H}=\{(x, y): y>0 ; x, y \in \mathbb{R}\}
$$

together with the metric

$$
g=\left[\begin{array}{cc}
1 / y^{2} & 0 \\
0 & 1 / y^{2}
\end{array}\right]
$$

(a) Find an atlas for this manifold. (hint: this should be trivial)
(b) What does this atlas imply about the topology (or homeomporphism class) of the manifold?

Recall that the length of a curve is given by the following formula:

$$
L(c)=\int_{a}^{b}|\dot{c}(t)| d t=\int_{a}^{b} \sqrt{g_{c(t)}(\dot{c}(t), \dot{c}(t))} d t
$$

(c) Find the length of the curve $c(t)=\langle t, 0.1\rangle$ for $1 \leq t \leq 3$
(d) Find the length of the curve

$$
s(t)= \begin{cases}\langle 1, t\rangle & 0.1 \leq t \leq 1 \\ \langle t, 1\rangle & 1 \leq t \leq 3 \\ \langle 3,4-t\rangle & 3 \leq t \leq 3.9\end{cases}
$$

(e) Sketch both these curves. Which has shorter intrinsic length? Explain.
(f) Does there exist a shorter curve between this pair of endpoints?
(g) (bonus) What is the shortest curve (or geodesic) between the endpoints?

