Honors Examination in Differential Geometry and Differential Topology

Swarthmore College Department of Mathematics and Statistics Tuesday May 14, 1996

Directions: The exam consists of 10 questions in three parts. Please do **2** problems from Part I, **3** problems from Part II, and **1** problem from Part III. Attempt more problems if time permits.

Part I: Choose 2 from Problems 1-3.

1. The set of 2×2 matrices, M(2), is a manifold diffeomorphic to \mathbb{R}^4 . Consider

$$SL(2) = \left\{ M = \left(egin{array}{cc} a & b \\ c & d \end{array}
ight) \in M(2) \ \middle| \ \det(M) = ad - bc = 1
ight\}.$$

- a. Prove that SL(2) is a submanifold of M(2).
- **b.** Verify that the tangent space to SL(2) at the identity matrix consists of all matrices with trace (i.e., sum of the diagonal entries) equal to 0.

- 2. Which of the following linear spaces intersect transversally?
 - The (x, y) plane and the z-axis in \mathbb{R}^3 ;
 - $\mathbb{R}^2 \times \{0\}$ and the diagonal in $\mathbb{R}^2 \times \mathbb{R}^2$;
 - $\mathbf{R}^2 \times \{0\}$ and the graph $\{(x, f(x))\}$ of $f: \mathbf{R}^2 \to \mathbf{R}^2$, $f(x_1, x_2) = (x_1^2, x_1 x_2)$ in $\mathbf{R}^2 \times \mathbf{R}^2$;
 - The symmetric 2×2 matrices $(A^t = A)$ and the skew symmetric 2×2 matrices $(A^t = -A)$ in M(2) (as defined in problem 1 above).

- 3. If X, Z are two compact, oriented submanifolds of the oriented manifold Y, let I(X, Z) denote the oriented intersection number of the inclusion map of X with Z.
 - a. Show that $I(X,Z) = (-1)^{(\dim X)(\dim Z)}I(Z,X)$.
 - b. Show that the Euler characteristic of an odd-dimensional, compact, oriented manifold is zero.

Part II: Choose 3 from Problems 4-7.

$$\alpha(t) = \left(2e^{-t}\cos t, 2e^{-t}\sin t\right), \qquad t \in \mathbf{R}.$$

- **a.** Show that α is a regular differentiable curve.
- **b.** Sketch the trace of α .
- c. Show that the arclength of α for $t \in [t_0, \infty)$ is finite for any fixed t_0 .

- 5. Consider the paraboloid $\mathcal{P} \subset \mathbf{R}^3$ given by the equation $z = x^2 + y^2$.
 - a. Find a local parametrization of \mathcal{P} .
 - **b.** Calculate the first fundamental form of \mathcal{P} .
 - c. Describe the region of the unit sphere covered by the image of the Gauss map.
 - **d.** Calculate the Gaussian curvature, K, and the mean curvature, H, of \mathcal{P} at the origin.
 - e. Show that no neighborhood of the origin in \mathcal{P} may be isometrically mapped into a plane.

- **6.** Use the Gauss-Bonnet theorem to prove:
 - a. a compact surface of positive curvature is homeomorphic to a sphere;
 - **b.** if there exist two simple closed geodesics Γ_1 , Γ_2 on a compact, connected surface S of positive curvature, then Γ_1 and Γ_2 intersect.

7. Construct an isometry of the cylinder so that the fixed point set contains precisely two points.

Part III: Choose 1 from Problems 8-10.

8. Let $C = C(t) = (x(t), y(t), z(t)) \subset \mathbf{R}^3$ be a smooth oriented simple closed curve parametrized by arclength with non-vanishing curvature (i.e., $\kappa(t) = |C''(t)| \neq 0$). Then if N(t) denotes the unit principal normal vector,

$$N(t) = C''(t)/|C''(t)|,$$

a slight displacement, $C_{\epsilon}(t)$, of C(t) is defined by $C_{\epsilon}(t) = C(t) + \epsilon N(t)$. For sufficiently small ϵ , the curve C_{ϵ} will be simple and disjoint from C. For such an ϵ , the self-linking number of C is defined to be the oriented intersection number of C_{ϵ} and D, where D is a compact manifold with boundary, $\partial D = C$.

- a. Explain why this self-linking number does not depend on ϵ for ϵ sufficiently small.
- **b.** Calculate the self-linking number of $C(t) = (\cos(t), \sin(t), 0), t \in [0, 2\pi]$.
- c. Calculate the mod 2 self-linking number of the curve sketched below.

9. a. Let X and Z be transversal submanifolds of Y. Prove that if $y \in X \cap Z$ then

$$T_y(X \cap Z) = T_y(X) \cap T_y(Z).$$

b. Prove that if two regular surfaces $S_1, S_2 \subset \mathbf{R}^3$ intersect transversally then $S_1 \cap S_2$ is a regular curve.

10. Given a function $f: \mathbb{R}^2 \to \mathbb{R}$, the gradient vector field of f, grad f, is defined as

$$\operatorname{grad} f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right).$$

A zero, p, of grad f is non-degenerate if $d(\operatorname{grad} f)_p: T_p \mathbf{R}^2 \to T_0 \mathbf{R}^2$ is bijective.

- a. Prove that non-degenerate zeros of $\operatorname{grad} f$ are isolated.
- **b.** Prove that p is a non-degenerate zero of grad f if and only if p is a non-degenerate critical point of f.
- c. Calculate the indices of all zeros of the gradient vector field of $f(x,y) = x^2 xy$.
