
Modeling Stained Glass

Jiwon Shin

May 5, 2005

Abstract

We present an algorithm that models stained glass in a physically-
realistic manner. Stained glass is made by melting glass material with
metal oxides that determine the color. Metal oxides are scattered in the
glass, and we model it by distributing metal oxides in the volume defined
by the glass. We render our stained glass model using a modified photon
mapping. Our model is capable of modeling stained glass and render a
scene with stained glass realistically.

1 Introduction

The computer graphics community has developed nonphotorealistic rendering
algorithms for various types of art such as sumi-e painting[15], oil painting[10],
technical illustration[5], and escherization[9]. However, relatively little works
has been done on stained glass windows.

Stained glass window is a popular art form of the medieval period. A stained
glass window consists of pieces of colored glass held together by lead. As each
piece of glass can be only so small, stained glass windows could only show a
limited amount of detail. To overcome this problem, many stained glass window
artists of the medieval period added a thin layer of black or brown paint on the
glass window, detailing faces, hands, drapery, etc.[12].

The basic methods for making stained glass have not changed much since
the twelfth century. Stained glass is made by melting sand, potash, and lime
together in clay pots, and adding metal oxides to the mixture to color the glass.
Metal oxides used for staining include copper for red, iron for green, cobalt for
blue. This method produces acceptable stained glass sheets for many colors.
However, for certain color such as red, this technique produces glass pieces that
are too dark to transmit much light. For these, another method is used to make
stained glass. They are produced by dipping a lump of pure glass (without metal
oxides) on a blowpipe into a pot of red glass and blowing the fused material.
This creates sheets of glass with a thin layer of colored surface, preserving the
color while letting much more light to transmit [12].

In this paper, we propose an algorithm for accurately modeling and rendering
stained glass. Section 2 discusses previous work on stained glass and other
relavent topics. The theory behind the work is presented in section 3, and the

1

algorithm is presented in section 4. The results of the work are presented in
section 5, and section 5 presents conclusions about the work. Future work is
mentiond in section 7.

2 Previous Work

Literature on stained glass windows has focused on segmentation aspect of
stained glass techniques. The PhotoShop stained glass filter [13] employs a
technique based on Voronoi regions [14]. The algorithm is simple, but it places
no regard for the input content, resulting in glass tiles that do not reflect the
underlying image. It produces an image that fails to resemble stained glass win-
dows. Mould [11] proposed a stained glass image filter algorithm that generates
glass tiles based on the input image. It uses a simple segmentation algorithm to
segment the input, then postprocesses segmented regions to smooth out bound-
aries, merge small regions together, and split large regions into smaller ones.
Glass is modeled using a displacement map, which introduces irregularities to
the glass surface. This method does not model structure and optical properties
of stained glass, and fails to create realistic stained glass images.

Our approach is based on physical realism. Although, to our knowledge,
there has not been any work specifically on realistic modeling of stained glass,
work on topics such as particle simulations [4, 6] is closely related to our method.
Dobashi et al. [4] simulate cloud by dividing world into voxels, where each
voxel stores information on physical properties of cloud at the location. Jensen,
Legakis, and Dorsey [6] model wet surfaces by dividing water into two regions -
thin layers for the water surface and a subsurface region and treating subsurface
scattering of materials as participating media. Participating media refer to
particles that are introduced to otherwise homogeneous medium, or materials
that are inhomogeneous by nature. Examples of participating media include
dusty air, clouds, and silty water, as well as translucent materials such as marble,
skin, and plants [7].

Displaying photorealistic images requires a rendering algorithm that is based
on physical reality. Dobashi et al. [4] use a two-pass volume rendering technique
to render clouds. They first compute the light intensity reaching the center of
each voxel, and then renders the scene using a spherical shell. Jensen, Legakis,
and Dorsey [6] uses the photon mapping algorithm [8] to render wet materials
such as wet sand and cognac spilled on wood table.

Our rendering algorithm is based on the photon mapping algorithm pre-
sented in [7].

3 Theory

3.1 Stained Glass

Stained glass is made by melting silicon dioxides with metal oxides. When metal
oxides are introduced to molten glass and mixed, they are randomly distributed

2

Figure 1: Light wave interaction with stained glass

throughout the glass. However, as the glass cools down, metal oxides attract
other metal oxides and separate themselves from it. As the distance a metal
oxide can travel is limited, the degree of clumping of metal oxides is determined
by the speed at which stained glass is cooled.

The chemical composition of stained glass creates stained glass’ complex
optical properties. For homogeneous materials, a light wave’s interaction can be
easily determined by the material properties at the hit point. Stained glass, on
the other hand, is an inhomogeneous dielectric. Metal oxides in the glass are not
evenly distributed and they are much smaller than light waves. Therefore, when
a light ray reaches stained glass, it acts according to the average property of the
metal oxides in the area determined by the ray (Figure 1). The transmission
of the ray is determined by the density of the metal oxides collected. A region
with high density of metal oxides is opaque where one with low density of metal
oxides are translucent.

3.2 Photon Mapping

Photon mapping [7] is a global illumination algorithm that generates, stores, and
uses illumination as points named photons. Each photon contains information
on its position, power, and incoming direction. These photons are stored in a
data structure called photon map. A photon map is the backbone data structure
for a photon mapping algorithm.

The photon mapping algorithm is a two-step algorithm - photon tracing and

3

Figure 2: Photons that interact with diffuse surfaces are stored in a photon map

rendering by ray tracing. Photon tracing is the process of building a photon
map by tracing photons from the light sources into the scene. These photons
stored in the photon map are then used to render the scene efficiently.

3.2.1 Photon Tracing

Photon tracing is the process of emitting photons from the light sources and
tracing them through the objects, recording their interactions along the way.

The first step of the process is the photon emission. Photons are emitted
into the scene from the light sources. A light source can be of any type, from a
simple point light source to physically-based sources with an arbitrary geometry.
As in nature, each light source emits a large number of photons. The power of
a light source is divided among all the photons it emits; hence, each photon has
a fraction of the power of the source.

Each emitted photon is traced through the scene using photon tracing (Fig-
ure 2). Photon tracing works the same as ray tracing with only one difference: a
photon used in photon tracing propagates flux whereas a ray in ray tracing gath-
ers radiance. This means that the radiance depends on the index of reflection
of the material while flux does not.

When a photon hits an object, it can be reflected, transmitted, or absorbed.
Whether a photon is reflected, transmitted, or absorbed depends on the object’s
material properties. If a photon hits a mirror surface, it is reflected in the mirror
direction. The reflected direction, ~ω is:

~ω = 2(~n · ~ω′)~n− ~ω′ (1)

4

given a normal, ~n and an incoming direction, ~ω′. The incoming direction is
assumed to be pointing away from the intersection point. The power of the
outgoing photon is scaled by the specular reflectivity of the surface unless an
important sampling technique such as Russian roulette sampling is used, as
explained later in this section.

When a photon interacts with a diffuse surface, it is stored in the photon
map. The direction of the outgoing photon is determined by picking a random
direction in the hemisphere above the intersection point, where the probability of
picking one direction is proportional to the cosine of the angle with the normal.
Just as in specular reflection, the power of the outgoing photon is scaled by the
diffuse reflectivity of the surface.

Photon scattering is a computationally expensive process. To speed up the
process, a stochastic sampling technique called Russian roulette sampling is
used. The basic idea behind Russian roulette sampling is that we can eliminate
photons that are not important, hence save computation time, but still produce
the correct result.

Given a material with reflectivity, d with a range of [0, 1], and an incoming
photon with flux ΦP , we decide whether a photon is absorbed or reflected using
Russian roulette. We generate a uniformly distributed random number, ζ, in
[0, 1]. If ζ is less than the probability of reflection, then the photon is reflected
with the power ΦP . Otherwise, the photon is absorbed. If the surface has both
specular and diffuse reflection, then the decision is made the following way:

ζ ∈ [0, ρd] −→ diffuse reflection
ζ ∈ (ρd, ρs] −→ specular reflection

ζ ∈ (ρs, 1] −→ absorption

where the sum of the diffuse reflectance,ρd, and the specular reflectance, ρs, is
less than or equal to 1. If the photon is reflected, the photon leaves the surface
in the reflected direction with the same power as that of the incoming photon.
Photons interact differently with stained glass, as explained in the later section.

Only those photons that hit diffuse surfaces are stored in the photon map.
Storing photons that hit specular surfaces is not necessary since this information
can be gathered by ray tracing, as described in the next section.

3.2.2 Rendering by Ray Tracing

Ray tracing [16] is a rendering algorithm that sihmulates the specular interaction
among objects in a scene. It is based on the idea that the photons that the light
sources emit can be traced back to the observer. A portion of the rays reaches the
observer, but most of the rays do not. Hence, tracing all the rays from the light
sources is a computationally expensive process. Instead, we used a backward
ray tracer for this project, a technique of tracing rays from the observer back
to the light sources [1].

A ray tracer takes the position of the observer, an image plane, and the
information about the scene such as the location, geometry, and material prop-
erties of the objects and the light sources. For each pixel in the image plane,

5

Figure 3: A backward ray tracer with shadow rays from the hit point to the
light sources

a ray is shot out into the scene. When the ray hits an object, it sends out a
reflection and transmission ray. These rays, in turn, interact with objects in the
scene (Figure 3).

At every hit point, we calculate the contribution of each light source to the
illumination of the point, known as local illumination. To do this correctly, a
shadow ray is set to each light source from the hit point. If the shadow ray
reaches the light source, then the hit point is fully visible by the light source,
and its illumination is calculated appropriately. If not, then it is assumed that
the light source makes no contribution in the illumination of the hit point.

The illumination of a hit point is determined by summing up the local illumi-
nation and global illumination gathered by the reflection and refraction rays. In
addition, if the surface is diffuse, photons are gathered at the point, the average
flux is calculated, and the result is added to the total illumination.

4 Algorithm

4.1 Modeling

Each sheet of glass is defined by its location in the scene, geometrical structure,
and metal oxides that are used to color the glass. A metal oxide is a data
structure that stores the position, power, and index of refraction of a metal
oxide. In the modeling phase, metal oxides are randomly generated to be inside
the glass, and they are stored in a k -d tree (explained below). Once all the
metal oxides are generated, they are clumped together to simulate the clumping

6

of metal oxides. The degree of clumping varies depending on the cooling speed
of the molten glass. The parameter is defined by the user.

A key in modeling stained glass is picking out a data structure that is capable
of storing a large amount of three-dimensional data compactly and has a short
access time for locating a set of data points. We decided to use a k -d tree as
our data structure as it fulfills both requirements.

k -d tree[3] is a k -dimensional binary tree. Each node divides the space
into two halves, where all the nodes left of the node are below the node in
the bisecting dimension and all the nodes right of the node are above. The
advantage of k -d tree is that when it is balanced, the worst case search time
for a single node in the tree takes O(log n) as supposed to a regular binary
tree, which takes O(n). Using a k -d tree is especially advantageous for locating
nearest neighbors. k -d tree can find m nearest neighbors in O(m + log n) [2],
much faster than other algorithm.

We use a mapping techique to model stained glass. When the user adds a
piece of stained glass to the scene, the algorithm generates a corresponding sheet
of glass in the model coordinates, and determines the mapping matrix between
the glass map in the model coordinates and its position in the world coordinates.
The glass map is always defined as a rectangular sheet whose x and y are twice
as long as that of the desired piece. We used the mapping technique for two
reasons: first, a piece of stained glass in a stained glass window is a section of
a large sheet of stained glass, and mapping techinque allows us to mimic the
process. Second, if metal oxides are only distributed in the area defined by the
piece of glass, then it can cause aliasing around the edges of the piece. With a
sheet that is four times the size of the desired piece, we can avoid the aliasing
problem.

4.2 Rendering

We used a slightly modified version of photon mapping algorithm to render a
scene with stained glass. In photon mapping described previous, the flux of a
photon does not depend the objects it interacts with in the scene. However,
when light passes through a transparent object such as stained glass window,
its properties are slightly modified. In particular, glass acts as a filter, blocking
certain wavelengths of light. For a regular glass object, photon mapping algo-
rithm as suggested by [7] is good enough as glass only blocks certain invisible
light waves. For a stained glass windows, however, this is not the case. In addi-
tion to blocking invisible lights, it also blocks certain visible lights based on the
metal oxides. Hence, rendering a scene with stained glass requires the photons
that are transmitted trough stained glass to be modified.

When a photon is transmitted through a piece of stained glass, the material
properties of the stained glass are determined by gathering metal oxides along
the path of the photon. The flux of the photon is then multiplied by the average
power of the metal oxides, and sent out into the scene. This modification makes
the simulation of color bleeding possible.

In addition to modifying photon tracing, we modified ray tracing to render

7

Figure 4: A graphical representation of ray marching inside stained glass

stained glass more realistically. In regular ray tracing, when a light ray is
transmitted, its radiance is not gathered until it intersects the other side of the
object. This is, however, not sufficient to correctly render stained glass.

As mentioned earlier, stained glass is inhomogeneous. This means that a
light ray that hits stained glass at point A is not transmitted the same way a ray
that intersects with the glass at point B. In addition, the properties constantly
change as the ray passes through the glass. To take this ever changing local
properties into account in determining illumination, we employ a ray mayrching
algorithm [7] to march through the glass.

Ray marching works like the following (Figure 5): when a light ray enters
stained glass, it marches through the glass until it reaches the other end of the
glass. From the hit point to the intersection point on the other side of the
glass, the ray moves forward by a uniform step with some perturbation to avoid
aliasing. At the end of each step, the ray gathers m nearest metal oxides, and
determines the material properties of the location by averaging the properties of
the metal oxides gathered. The material properties then determine the contri-
bution of upcoming illumination to the overall illumination. If metal oxides are
densely populated, then only a small amount of light is tranmitted through the
layer, adding little to the overall illumination of the glass. On the other hand,
if metal oxides are distributed sparsely, most of the light is transmitted, and
the illumination gathered by the transmitted ray plays a significant role in the
overall illumination. Ray marching allows us to correctly render stained glass
even when metal oxides are distributed sparsely near the surface but densely

8

(a) (b)

Figure 5: Images with a point light source at two different locations: (a) directly
behind (b) away from the glass

(a) (b)

Figure 6: Images of stained glass (a) without photon mapping (b) with photon
mapping

populated everywhere else.

5 Results

Here, we present some images generated using the algorithm to show how our
algorithm works.

Figure 6 shows two images of the same setup, with a point light source
behind the stained glass. The image on the left has the light source directly
behind the stained glass. The light source on the right is also behind the glass
but farther away. We can notice that the stained glass on the right is more
evenly lit up than the one on the left.

Figure 7 shows the result of our algorithm. Both images contain four pieces

9

of stained glass with a light souce at the center, behind the glass, and a diffuse
surface perpendicular to the image plane. The image on the left is rendered by
ray tracing while the one on the right is rendered using the modified photon
mapping. The diffuse surface on the left is not lit up, hence invisible, because the
stained glass blocks the only light source in the scene. The same surface is visible
in the image on the right because photons that pass through the stained glass
are collected on the surface. Notice how stained glass filters photon power. All
the photons that are transmitted through the glass only carry the components
that are not filtered out by the stained glass.

6 Conclusions

We have presented an algorithm for modeling and rendering stained glass in a
physically realistic manner. Our model is based on the chemical and optical
properties of stained glass. We have shown that our model generates sheets
of stained glass that are convincing even when photon mapping is not used.
We used a photon mapping algorithm to correctly simulate the interaction of
photons in a scene with stained glass. The original photon mapping algorithm
by Jensen[7] could not to correctly render stained glass’ interaction with other
objects, but our modified rendering algorithm successfully filtered the photons
that pass through stained glass and produced color bleeding effect accurately.

7 Future Work

This project has focused on modeling and rendering stained glass. A stained
glass window, however, consists of pieces of stained glass glued together by
lead. To generate a stained glass window from an input image, we need to add
a segmentation algorithm that can cartoon the input in a stylistic manner. In
addition, a realistic model of lead needs to be added.

We can also add a paint layer to our glass modeling algorithm to simulate
painting of glass windows.

Once above goals are accomplished, it would be nice to be able to animate
a scene with stained glass windows. To do this, it is necessary to optimize our
algorithm. While the current implementation is capable of generating a single
image in a reasonable amount of time, it is too slow to be used to generate an
animation. The algorithm can achieve a speedup by using an efficient algorithm
for ray tracing.

Acknowledgements

I would like to thank my advisor, Dr. Bruce A. Maxwell for his guidance and
patience throughout the project. I also would like to thank Dr. Carl Grossman
for his help with optics. Yavor Georgiev ’06 helped me greatly with the figures

10

used in this paper, and I thank him for that. Lastly, I would like to thank all
my professors and friends for making my college experience memorable.

References

[1] James Arvo. Backward Ray Tracing. SIGGRAPH 86, Dallas, TX, August
1986.

[2] Jon L. Bentley. Multidimensional binary search trees in database applica-
tions. In IEEE Trans. on Software Engineering, volume 5(4), pages 333–
340, July 1979.

[3] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509–517, 1975.

[4] Yoshinori Dobashi et al. A simple, efficient method for realistic animation
of clouds. In SIGGRAPH ’00: Proceedings of the 27th annual conference
on Computer graphics and interactive techniques, pages 19–28, New York,
NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co.

[5] Amy Gooch, Bruce Gooch, Peter Shirley, and Elaine Cohen. A non-
photorealistic lighting model for automatic technical illustration. In SIG-
GRAPH ’98: Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, pages 447–452, New York, NY, USA,
1998. ACM Press.

[6] Justin Legakis Henrik Wann Jensen and Julie Dorsey. Rendering of wet
materials.

[7] Henrik Wann Jensen. Realistic Image Synthesis Using Photon Mapping.
AK Peters, Ltd, Natick, MA, USA, 2001.

[8] Henrik Wann Jensen and Per H. Christensen. Efficient simulation of light
transport in scences with participating media using photon maps. In
SIGGRAPH ’98: Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, pages 311–320, New York, NY, USA,
1998. ACM Press.

[9] Craig S. Kaplan and David H. Salesin. Escherization. In SIGGRAPH
’00: Proceedings of the 27th annual conference on Computer graphics and
interactive techniques, pages 499–510, New York, NY, USA, 2000. ACM
Press/Addison-Wesley Publishing Co.

[10] Barbara J. Meier. Painterly rendering for animation. In SIGGRAPH ’96:
Proceedings of the 23rd annual conference on Computer graphics and inter-
active techniques, pages 477–484, New York, NY, USA, 1996. ACM Press.

11

[11] David Mould. A stained glass image filter. In EGRW ’03: Proceedings of
the 14th Eurographics workshop on Rendering, pages 20–25, Aire-la-Ville,
Switzerland, Switzerland, 2003. Eurographics Association.

[12] The Stained Glass Museum. Stained glass - a brief history, 2005 (retrieved
on May 5, 2005).

[13] Donnie O’Quinn. Photoshop 6 shop manual, 2001.

[14] Joseph O’Rourke. Computational geometry in C. Cambridge University
Press, New York, NY, USA, 1994.

[15] Steve Strassmann. Hairy brushes. In SIGGRAPH ’86: Proceedings of the
13th annual conference on Computer graphics and interactive techniques,
pages 225–232, New York, NY, USA, 1986. ACM Press.

[16] Turner Whitted. An improved illumination model for shaded display. Com-
mun. ACM, 23(6):343–349, 1980.

12

