

Development

of a
Wireless Sensor Network

Swarthmore College
Department of Engineering

Senior Engineering Design Project

May 4, 2006

Masabumi Chano

Advisor: Dr. Lynne A. Molter

Abstract

A wireless sensor network, comprising of infrared and pressure sensors, was developed to
monitor activity in a room and carry out particular tasks related to the activity monitored.
One application was the monitoring of an entrance way to a room, in which lights were
turned on or off according to the movement of people. The project was undertaken to
explore sensor networks as a means to provide convenience to the user and aid in energy
conservation. Various communication techniques were investigated using a
communications trainer called the Telecommunications Instructional Modeling System
for the transmission of information from the sensors to a control station. The control
station, programmed in VHDL, interpreted the signals from the sensors properly and
activated or deactivated corresponding tasks or appliances.

Table of Contents
ABSTRACT .. 2
1. INTRODUCTION AND BACKGROUND .. 4
2. THEORY... 6

DIGITAL BANDPASS TRANSMISSION ... 6
Amplitude Shift Keying ... 6
Phase Shift Keying .. 7
Frequency Shift Keying... 8

SPREAD SPECTRUM .. 10
Direct Sequence Spread Spectrum / Code Division Multiple Access.. 11

Resistance to Noise ... 12
Frequency Hop Spread Spectrum ... 12

Resistance to Noise and Interference .. 13
3. PROJECT OVERVIEW.. 14

SENSOR CIRCUITS... 15
Infrared ... 15
Pressure .. 16

WIRELESS TRANSMISSION .. 17
Telecommunications Instructional Modeling System.. 17

CONTROL STATION... 18
Altera UP1 Programming Board.. 18
Control Programs ... 19

Application: ControlV5.vhd.. 19
MainMonitor.. 20
LocalMonitor ... 22
OutputMonitor ... 23

RELAY BOX.. 23
4. RESULTS.. 26

SENSOR CIRCUIT .. 26
WIRELESS TRANSMISSION .. 26

Amplitude Shift Keying ... 26
Phase Shift Keying .. 27
Frequency Shift Keying... 28
Direct Sequence Spread Spectrum / Code Division Multiple Access.. 31
Frequency Hop Spread Spectrum ... 34

SIMULATION OF PROGRAM FILES ... 39
MainMonitor Operation.. 40
LocalMonitor Operation... 41

5. SUMMARY AND CONCLUSIONS... 44
6. FUTURE WORK.. 45
7. ACKNOWLEDGEMENTS ... 47
8. REFERENCES ... 48
9. APPENDIX ... 49

VHDL FILES .. 49
controlV5.vhd.. 49
clockdivider.vhd.. 53
testLight.vhd.. 53

1. Introduction and Background

 This project follows in the footsteps of a previous work done by Anteneh

Tesfaye, ’03, and David A. Whitehead, ’03, titled “Function-Specific Sensor Fusion”. In

their project, David and Anteneh built a wired sensor network system that performed

particular actions depending on the action detected by various sensors. The aim of this

project is to test and investigate wireless communication techniques that could be

implemented to develop a wireless sensor network. Heavy emphasis will be placed on

testing different methods of wireless communication and see if clean transmission is

observed. Since there are many ways in which a signal can be encoded and modulated,

this project will explore different modes of communication to find ones that work well

for sensor network applications.

The encoding, modulating, and transmission of the signals will be performed

through a communications modeling system called the Telecommunications Instructional

Modeling System (TIMS) from the Emona Instruments Pty. Limited. In effect, a wireless

channel will be simulated using the TIMS.

 Some of the motivations that inspired the project are convenience and energy

consumption consciousness. For example, if a person were to walk into a dark room with

his or her hands full, it would be convenient if the light automatically turned on upon

detection of the person. Similarly, as humans, we are all likely to forget turning off

appliances. If a sensor network was capable of monitoring rooms then, it could

automatically turn off lights or other appliances when nobody is present in a room, and

thus conserving energy. Although not discussed in this project, enhanced security

features could be implemented to work in conjunction with a sensor network to turn on or

off lights to make a room appear active.

2. Theory

 Many different wireless communication techniques were examined in this project.

Some of the techniques examined are: Amplitude Shift Keying, Frequency Shift Keying,

Binary Phase Shift Keying, Quaternary Phase Shift Keying, Pulse Code Modulation,

Code Division Multiple Access, and Frequency Hop Spread Spectrum.

 The first group of communication technique is called digital bandpass

transmission. Here, digital signals can be used to modulate the amplitude, frequency, or

phase of a carrier wave. If the digital signal is composed of rectangular pulses, then the

resulting signal will be switched from one discrete value to another (Carlson, Crilly, &

Rutledge, 2002). The second group of methods involves spread spectrum techniques such

as frequency hop spread spectrum and code division multiple access.

Digital Bandpass Transmission

 Modulated bandpass signals take the form,

() () () ()() cos sinc c i c q cx t A x t t x t tω θ ω⎡ ⎤= + −⎣ ⎦θ+

The carrier frequency, amplitude, and phase in the above equation are all kept

constant. However, the time-varying i (in-phase) and q (quadrature) components contain

the message of the signal being transmitted.

Amplitude Shift Keying

 Amplitude shift keying (ASK) is a form of amplitude modulation, in which digital

data is expressed by variation in amplitude. The components of the equation xc(t) for

describing ASK signal have the following characteristics:

() ()

0,1,...., 1

i k D
k

k

x t a p t k

a M

= −

= −

∑ D

The quadrature component of xc(t) is equal to zero since ASK signals do not

undergo phase reversal. xi(t) is a unipolar non-return to zero (NRZ) signal. NRZ means a

logic 1 bit is sent as a high value and a logic zero is sent as a low value. M-1 defines the

number of discrete amplitude variations in the ASK signal excluding an amplitude of 0.

pD(t-kD) simply defines the starting point of the unipolar rectangular pulses.

In this project, binary ASK was examined, where a binary one was represented by

the presence of a carrier wave and a binary zero was represented by the absence of a

carrier. A simple way of producing such a signal could be done by turning off or on the

carrier, a process known as on-off keying. For example, if the input is zero, the carrier

will be turned off, producing a flat signal at 0V. In the case the input is one, the carrier

will be on, and the signal will have a carrier frequency.

 Another simple way of producing this signal can be done by multiplying the input

signal with a carrier if the signals are binary. Thus, a zero will produce amplitude zero,

while a one would give amplitude Ac, where Ac is the amplitude of the carrier.

Phase Shift Keying

Phase shift keying involves phase shifts to convey information regarding the input

signal. For example, binary PSK waveforms contain phase shifts of ± π radians.

Quarterary PSK would contain phase shift increments of π/2 radian. An easy way to

observe this is to look at the constellation diagrams in Figure 2.

Figure 1. Constellation Diagrams. (a) BPSK, (b) QPSK

BPSK can be used to code 1 bit by differentiating the 0 and 1 by phase shifts of ± π

radians. QPSK, on the other hand, can encode 2 bits by using phase shifts of multiples of

± π/2 radians.

 PSK signals can be expressed in general by the equations,

() () ()

() ()

() ()

()
()

cos

cos

sin

c c c k D
k

i k D
k

q k D
k

k k

k k

x t A t p t kD

x t I p t kD

x t Q p t kD

I

Q

ω θ φ

φ

φ

= + +

= −

= −

=

=

∑

∑

∑

−

 In order for there to be the largest possible phase modulation for a given value of

M, the relationship between φk and ak can be defined as follows:

()2 /k ka N Mφ π= +

 A PSK signal with M = 2 is BPSK and M = 4 is QPSK.

Frequency Shift Keying

Frequency shift keying is a form of frequency modulation, in which digital data is

modulated at different frequencies. One can imagine a switch selecting the modulating

signal different frequency generators. Conventional frequency shift keying can be

thought of as the input signal controlling a switch that selects the modulated frequency

from a bank of M oscillators. This process can be seen in block diagram form in Figure 2.

However, this leads to discontinuities in the signal every time there is a switch in

frequency. This will cause the resultant signal to have very large sidelobes which simply

add bandwidth without carrying additional information (Carlson et al., 2002).

Figure 2. FSK generation using a switch

To avoid unnecessary sidelobes and discontinuities, one can implement a

continuous phase FSK (CPFSK). Instead of the input signal selecting the modulating

signal, it can be used to modulate the frequency of a single oscillator as shown in Figure

3. A sample oscilloscope output of a CPFSK signal can also be found below.

Figure 3. CPFSK generation

Figure 4. Original message and CPFSK modulated message

When the signal coming in is a binary zero, then the resulting signal has a carrier

frequency of 9.8 kHz. When the signal is a binary one, then the resulting signal has a

carrier of 4.7 kHz.

Spread Spectrum

Spread spectrum techniques involve the use of bandwidths far greater than the

information bandwidth. The reason for this is to combat noise, interference, and

unauthorized interception of message signals. Conventional transmission typically

involved the use of known frequencies that could be easily detected or jammed. By using

a spread spectrum technique, the signal would hop or change from one frequency to

another in a pseudo-random fashion that is only known to the sender and receiver. The

effect is enhanced security as well as resistance to noise and interference. Although

spread spectrum techniques utilize a wider bandwidth than the information bandwidth,

they are used effectively by allowing multiple users to share a wide frequency band.

Before explaining spread spectrum techniques, it is necessary to go over an

important element in the generation of such signals. Pseudo-random sequences are sets of

values that are statistically random but have a definite starting point and are repeated over

and over again. Equipment that generates such sequences will be labeled PN generators

in this report. These PN sequences are used as spreading functions in the case of direct

sequence spread spectrum techniques or as frequency determiners for frequency

synthesizers in frequency hop spread spectrum.

Direct Sequence Spread Spectrum / Code Division Multiple Access

 In direct-sequence spread spectrum (DSS), the message is multiplied by a

wideband PN waveform before it is modulated. Multiplying the message by this PN

waveform essentially masks the signal and spreads the spectrum of the signal (Carlson,

Crilly, & Rutledge, 2002). It is similar to frequency modulation schemes but instead of

the message causing the spectrum spreading, a PN sequence does the spreading.

 Once the signal has been spread, it can be modulated. One way to accomplish

this is to multiply the spread signal with a carrier. The general block diagram below

shows how DSS is accomplished.

Figure 5. Simplified Block Diagram Showing DSS Operation

 Code division multiple access (CDMA) is an extension of DSS in that, each

channel is encoded using a unique PN sequence. In order to recover the message from a

particular channel, the PN sequence corresponding to the channel must be known.

Resistance to Noise

During transmission, noise is picked up. If we let z(t) stand for additive noise

introduced, xd(t) for the transmitted DSS signal, then the sum of the two signals make y(t)

= xd(t)+ z(t). At the receiver, the signal y(t) is multiplied by a PN sequence, c(t). The

resulting signal will be called y’(t).

() () () ()' dy t x t z t c t= +⎡ ⎤⎣ ⎦

Since xd(t) is the transmitted DSS signal, multiplying it by c(t) will result in,

() () ()
() () () () ()

()
() () () ()

1

'

d

d

x t x t c t

x t c t x t c t c t

x t

y t x t z t c t

= ×

× = × ×

= ×

= + ×

 So, y’(t) becomes,

() () () ()'y t x t z t c t= +

 During the multiplication process, z(t)c(t) effectively spreads the signal z(t),

which is the noise signal, but de-spreads xd(t) to recover x(t), the original message signal.

If lowpass filtering is performed, the out of band component of z(t)c(t) is removed, which

further reduces the effect of noise.

Frequency Hop Spread Spectrum

 Frequency hop spread spectrum works in the following manner. Unlike DSS or

CDMA, the message is FSK modulated before frequency hopping or spreading is applied.

The FSK signal is then multiplied by the output of a frequency synthesizer that hops in

frequency. The frequency synthesizer can hop to one of Y = 2k values, where k is equal to

the number of bits coming in from the PN sequence generator at once.

 There are two types of FHSS systems: slow hop and fast hop. In slow hop spread

spectrum, one or more message symbols are transmitted per hop. However, in fast hop

spread spectrum, several hops in frequency occur per message symbol. Because modules

needed for fast hop was not purchased, only slow hop spread spectrum was investigated.

 A benefit of using slow hop spread spectrum is that in order to recover the

message, the same procedures used to recover the message from FSK signals can be

utilized. A general block diagram implementation of FHSS is shown below.

Figure 6. Simplified Slow Hop FHSS Block Diagram

Resistance to Noise and Interference

 Similar to the way it was observed in CDMA, FHSS is highly resistant to noise

and interference. In the process of recollecting spread signals, noise and interference is

spread. This was also observed in CDMA.

In particular, FHSS systems elude interference well. Even if there are jammers

that attempt to block a particular frequency or frequency range, the FHSS system can hop

around it and recover the message from hops that are not blocked.

3. Project Overview

Figure 7. Project Overview and Implementation

 The project can be divided in to several components as seen in Figure 7. At the

front most end of the setup are the sensor circuits. The sensors, after detecting variables

such as motion, force, or pressure, will send the information to the TIMS. Here, the

signals will be modulated using various communication techniques and appropriate

demodulation is performed. These signals are then sent to a Control Station where the

signals are interpreted. An Altera Board will be used to act as the Control Station. Based

on the program loaded on to the Altera Board, it will determine the appropriate outputs to

send to the Relay Box. The Relay Box, which houses three solid state relays, will then

switch on and off appliances.

Sensor Circuits

 In this project, two types of sensors are used. One is an Infrared sensor used to

detect motion and the other is a pressure sensor used to detect pressure or force on a

surface.

Infrared

The components used to build the infrared sensor circuit were Lite-On Electronics

LTE-4206 infrared emitters and Lite-On Electronics LTR-4206E infrared receivers. The

emitter and receiver, along with other readily available components, were setup in the

following manner.

Figure 8. Infrared Emitter Circuit

The NE555P timer is used to drive current to the IR emitter. The timer, which is

run in astable operation, is clocked at approximately 32 kHz and achieves a duty cycle of

44%. Having a high duty cycle allows the IR emitter to be driven with a current higher

than it is rated for without damaging it.

Figure 9. Infrared Receiver Circuit

The comparator in the receiver circuit essentially looks at the voltage appearing

on pin 2 and compares it to the reference voltage coming in at pin 3. The input voltage

will be low when line of sight is established between the emitter and the receiver. The

more IR light hits the receiver, the greater the current flow through the receiver. On the

other hand, if no light hits the receiver, then there is no current flow and the voltage at pin

2 appears to be 5 volts. If the input voltage is higher than the reference voltage, the

output at pin 7 will be 5 volts. If the input voltage is lower than the reference voltage, the

output is low or 0 volts. These outputs are then sent to the TIMS for transmission. The

reference voltage was set at approximately 4 volts.

Pressure

 The pressure sensor used in this project was the Thin-film FlexiForce A101

sensor. The sensor when connected to a circuit, acts as a resistor. With no load, the

sensor is approximately 20Mohms. With maximal load, the resistance decreases to

approximately 20kohms. The sensor circuit built was based on the recommended circuit

usage diagram from FlexiForce placed in the Appendix.

By changing the value of the feedback resistor RF, it is possible to adjust the

output voltage of the first stage, V1. The output V1 is in fact defined by the equation:

()1 /D F SV V R R= −

Where RF is the feedback resistance and RS is the sensor resistance.

Then, connecting V1 to a comparator and setting the proper reference voltage, we

can obtain a binary output from the pressure sensor. The reference voltage can also be

used to calibrate the sensitivity of the circuit. Once everything is properly calibrated, the

data is sent to the TIMS system for transmission.

Wireless Transmission

Telecommunications Instructional Modeling System

 As previously mentioned, wireless transmission was simulated using the

Telecommunications Instructional Modeling System (TIMS) from Emona Instruments

Pty. Limited. It is a communications trainer that allows the modeling of various

communication methods. Modeling is done on the level of block diagrams and specific

modules can be inserted in to the TIMS to build the desired system.

 The TIMS is a very useful machine since all communication techniques can be

examined on the block diagram level. This allows for quick and easy implementation of

these techniques, while allowing the user to focus on the theoretical aspects of

communication theory.

Control Station

Altera UP1 Programming Board

 An Altera UP1 Programming Board was selected to act as the Control Station for

this project. Altera Boards can be quickly and easily loaded with different programs to

suit different situations. For this project, the Altera Max EPM7128SLC84-7 Chip was

used over the Flex10K chip due to the non-volatile nature of the memory used in the

EPM7128SLC84-7.

Figure 10. An Altera Board was chosen to act as the Control Station

Furthermore, the standard power supply and the onboard regulator were bypassed.

Instead, power was drawn from a bread board to match ground and +5V with the rest of

the setup. This was necessary for proper interfacing with other components of the project,

primarily the TIMS and the relay box.

Control Programs

Several control programs were written for this project to meet different

applications in which the sensor network can be used. The programs were programmed

in a language called VHDL, which stands for VHSIC Hardware Description Language.

The VHSIC stands for Very High Speed Integrated Circuit. VHDL is a language that

describes the behavior of digital systems. Since the outputs arriving from the sensors are

digital signals, the control program determines the course of action the control station is

to take and outputs the respective signals to a relay box that controls the activation of

particular devices.

Application: ControlV5.vhd

Two infra-red sensors monitor the entrance of the room. Upon entry, the room
lights and fan are turned on and a local monitor is activated. The local monitor
checks a pressure sensor to see if anybody has sat down at the desk. If it detects a
presence, then a local appliance is activated.

Structurally, the program was coded in the following manner. There are three

state-machines operating simultaneously. The first state-machine, called the

MainMonitor, monitors activity of the sensors at the entrance of the room and keeps track

of movement in to and out of the room. A population counter is maintained and when no

one is present in the room, all appliances are turned off.

A second state-machine, called the LocalMonitor, monitors local sensors within

the room. In this program, a pressure sensor was placed at a chair and detected whether or

not someone was sitting on the chair. However, the LocalMonitor will not go active

unless the MainMonitor has detected entry and presence in the room.

Finally, the third state machine controls the outputs to the Relay Box and external

displays based on flags triggered by the Main and LocalMonitors.

The entrance monitoring scheme discussed for the MainMonitor was inspired by

the Head Counter (Virtual Door) setup used by Antenah Tesfaye and David Whitehead

(2003). Modifications were made but the general idea remains the same. To implement

the MainMonitor, a pair of infra-red sensors was used to detect movement in to and out

of the room. Using a pair of sensors allowed for the detection of direction based on the

order of sensor triggering. If the sensor located outside the room was triggered first,

followed by the inner sensor, the direction of motion is in to the room. If the sensors

were triggered the other way around, inner first then outer, the direction of motion is out

of the room. This allows for the accurate tracking of entry and exit from the room, as

well as the ability to keep track of the number of people present in the room.

When there is no one present in the room, as deemed by the MainMonitor, the

LocalMonitor and OutputMonitor remain in the inactive state. If two way

communications could be established in this project, this could allow for the turning off

of power supplies or batteries to local sensor circuits, with the effect of conserving

energy and cost. Due to the limit in the number of modules useable at once in the TIMS,

this option could not be explored. However, the control program is highly customizable

and updateable in the event that future projects would like to pursue this path.

All vhd files for this application have been placed in the Appendix.

MainMonitor

In order to completely capture activity at the entrance of the room, the

MainMonitor was broken down in to 5 different states: Snoop, EntryDetect, Entry Count,

ExitDetect, and ExitCount. The state diagram representing the MainMonitor can be seen

in Figure 11 below.

Figure 11. State Diagram for the MainMonitor

In the Snoop state, the MainMonitor examines the input lines coming in from the

two entrance infra-red sensors. If neither is high, the MainMonitor remains in the Snoop

state. When the outer sensor line is high, the MainMonitor goes to the EntryDetect state,

where it waits for the inner sensor line to trigger. When this triggers, the MainMonitor

then goes to the EntryCount state, where it waits for the inner sensor line to go low and

then increments the population counter. Upon completion of this, the MainMonitor is

returned to the Snoop state.

A similar process takes place when the inner sensor is triggered first. In this case,

however, the MainMonitor moves from the Snoop state to the ExitDetect state, where it

waits for the outer sensor to trigger. When triggered, this will send the MainMonitor to

the ExitCount state and wait for the outer sensor line to go low. Once this occurs, the

population counter is decremented and the MainMonitor is returned to the Snoop state.

LocalMonitor

 The LocalMonitor is structurally very different from the MainMonitor. In this

scenario, the LocalMonitor monitors the activity of one pressure sensor. The

LocalMonitor is made up of 4 states: Idle, Active, SetOut, and SetDelay.

Figure 12. State Diagram for the LocalMonitor

The LocalMonitor remains in the Idle state as long as the population counter set

by the MainMonitor remains zero. However, the moment the population is greater than

zero, the LocalMonitor goes in to the Active state, where it will snoop the input line

coming from the pressure sensor circuit. If the line is high (i.e. if someone is sitting on

the chair), the LocalMonitor enters the SetOut state. In this state, a flag will be flipped,

indicating that the local appliance should be turned on.

The LocalMonitor then returns to the Active state and continues to monitor the

input line. When the monitor detects that the line has gone low, it will enter the SetDelay

state. In this state, a delay timer flag will be flipped, indicating that a delay timer should

be activated. This delay timer is simply a short timer that delays the turning off of the

appliance. For instance, if a person sitting at a desk reaches up for a book and leaves the

chair on which the pressure sensor is mounted for a few seconds, instead of having the

appliance turn off and then on once the person returns, a delay timer will prevent the

system from performing unnecessary switching. This delay timer will reset once the

person returns and will not turn activate until the person leaves the chair again. The actual

countdown process of this timer is performed in the OutputMonitor.

OutputMonitor

The OutputMonitor is a state machine that controls the actual output signals being

sent to the Relay Box based on the flags set by the Main and LocalMonitor. It is also

responsible for displaying the number of people present in the room based on the

population counter and handling timer requests from the LocalMonitor. Furthermore, the

OutputMonitor will remain in the Idle state as long as the population is zero, as was the

case with the LocalMonitor. In the Idle state, all outputs to the Relay Box are low and,

hence, all appliances will be off.

Relay Box

A relay box, housing three solid state relays, was used to control appliances used

in the project. Standard solid state relays from Teledyne, Kodak, and Potter and

Brumfield were used. A solid state relay has four connection points as shown below.

Figure 13. Teledyne Solid State Relay

Points 1 and 2 are used to complete the connection to a wall outlet. Points 3 and 4

make the control line. When a high signal is sent across the control line, a connection

between points 1 and 2 is established. When the control signal is low, there is no

connection between points 1 and 2.

Appliances and the Altera board outputs were connected to the relays in the

following manner.

Figure 14. Simplified Connection Diagram for the Relay Box

4. Results

Sensor Circuit

The infrared sensors were able to attain a range of approximately 3 feet.

Furthermore, since the sensors need to line up almost perfectly straight, interference from

a second set of sensors was not observed despite being only a few inches apart. However,

the sensors were found to be sensitive to external light sources if pointed at them.

Perhaps as an improvement, low pass filters could be added to remove environmental

noise from registering at the receiver.

Pressure sensors registered worked well with the given circuit. Varying the

reference voltage allowed for the adjustment in the sensitivity of the sensor. The same

could be performed by changing the feedback resistors. For testing purposes, instead of

mounting the sensors on chairs, they were mounted on wooden blocks to be pressed

down on with one’s finger. After calibration, a firm press on the sensors would register

correctly.

Wireless Transmission

Amplitude Shift Keying

 Amplitude shift keying was performed on the TIMS by using the following

modules: Dual Analog Switch and Audio Oscillator. The Audio Oscillator was

connected to an 8 kHz TTL signal which simply produces a sinusoidal of 8 kHz. This

was connected to one of the inputs on the Dual Analog Switch. The other input on the

switch was connected to a set of infrared sensors. When the signal was from the sensor

was high, the output was an 8 kHz sinusoidal. When the signal was a low, the output was

flat.

Another method to generate ASK signals is to simply multiply the input data and

the carrier. If the input is at 0V, then the resulting ASK signal is 0V. If the input is 5V,

the resulting signal will have a carrier frequency.

 However, using ASK results in a rather wide bandwidth. This arises from the

sharp discontinuities in the signal. Bandlimiting can be performed by passing the signal

through a band pass filter after ASK has been performed or by passing the sensor output

through a low pass filter before ASK has been performed.

 To demodulate the signal, envelop detection can be performed. The transmitted

ASK signal can be passed through a rectifier and then through a low pass filter. This

smoothes out the higher frequency components and leaves the envelope of the transmitted

ASK signal. Passing this signal through a comparator gives a sharper output.

Phase Shift Keying

BPSK can be performed by multiplying the carrier with a bipolar signal. Since

the output of the sensor circuits are 0V or 5V, a DC voltage of -2.5V was added to the

sensor outputs, yielding a signal of -2.5V or 2.5V. This signal was then multiplied with

the carrier signal to produce a BPSK signal. Once again, discontinuities produce

unnecessarily wide bandwidth and needs to be bandlimited. As was the case with ASK,

there are two areas where bandlimiting can be introduced. It could be done by applying a

lowpass filter before the sensor output is modulated or a bandpass filter could be applied

after carrier modulation.

Demodulation of BPSK was performed by multiplying the BPSK signal with the

carrier that was used to modulate it. The carrier was passed through a phase shifter so

adjustment in phase could be made to obtain the strongest recovered signal. After the

multiplication process, the signal was passed through a low pass filter. Since the

resulting signal is slightly noisy due to the bandlimiting and demodulation process, a

comparator can be used to obtain a sharp output, as was the case with ASK.

QPSK can be obtained by performing the same process as BPSK except using two

carriers that are 90° off in phase. For example, one sensor output can be modulated using

a sinusoidal carrier at 100 kHz and another sensor output can be modulated using a

cosine carrier at 100 kHz. These signals are then added to produce a QPSK signal.

Once this signal is transmitted, recovery can be performed. Once again, the

recovery process is almost identical to the BPSK case. The only difference is that the

transmitted signal is multiplied by the respective carrier used to modulate the message to

recovery the message. The multiplied output is passed through a low pass filter and then

through a comparator to get clean outputs.

Frequency Shift Keying

In order to implement FSK on the TIMS, the following block diagram was

followed.

Figure 15. Implementation of FSK

First, the data input from the sensors were sampled and held. This was necessary

in order for the integrate and hold operation in the recovery process to work. Then, using

a voltage controlled oscillator, the input data was modulated on to a signal with two

carriers. A 5V input was associated with 4.7 kHz and a 0V input was associated with a

9.8 kHz carrier. This can be seen in signal 2 of the oscilloscope output shown in Figure

16a, along with the original input data, signal 1. Here, however, the input data was taken

from a PN generator for demonstration purposes.

Figure 16. (a) Oscilloscope Output of the Input Data, Modulated Signal, and Low Pass Filtered
Signal. (b) Oscilloscope Output Showing Low Pass Filtered Signal and Rectified Signal

Signal 2 from Figure 16a is transmitted and at the receiving end, it is low pass

filtered. A cutoff frequency of approximately 5.2 kHz is used. This value was obtained

empirically by looking for a cutoff frequency that attenuated the 9.8 kHz component and

maintained the 4.7 kHz component. After lowpass filtering is performed, the signal is

rectified as shown in Figure 16b.

Figure 17. (a) Oscilloscope Outputs of Rectified Signal, Data Clock, Integrate and Dump Operation,
Integrate and Hold Operation. (b) Oscilloscope Output of Integrate and Hold Operation, Reference

Voltage for the Comparator, Recovered Data, Original Input Data.

 The rectified signal is then integrated and held using the Sample and Hold module.

A clock is needed for this operation in order to specify when the next integrate and hold

should be performed. The clock used to sample and hold the data input signal was used

and is shown in Figure 17a. The resulting intgrate and hold operation performed on the

rectified signal is also shown on Figure 17a as signal 4.

 Once the integrate and hold is performed, it is possible to see that by setting a

reference voltage and passing the signal through a comparator, we can obtain a binary

output. This process is shown in Figure 17b. When compared against the original input

data, it matches except with a slight delay due to transmission and primarily because of

the integrate operation.

 While the oscilloscope outputs are based on random PN sequences generated, the

procedure was tested with actual sensor outputs and communication between the sensors

and control station was established.

Direct Sequence Spread Spectrum / Code Division Multiple Access

 The following block diagram was used to implement CDMA. Both single

channel DSS and dual channel CDMA was performed. Here, 2-channel CDMA will be

examined since it encompasses single channel CDMA or DSS. Data for the two channels

were obtained from slowly clocked, approximately 500 Hz, PN generators for this

demonstration. However, for testing of the project, data from the sensors were used.

Figure 18. Block diagram of 2 channel CDMA

Figure 19. (a) Data 1 spread using PN sequence 1, data 2 spread using PN sequence 2, addition of
channel 1 and channel 2. (b) Transmitted signal, PN sequence 1, multiplied result of transmitted

signal and PN sequence 1

First, data from channel 1 and 2 obtained from the slow clocked PN generators

are spread using two different PN sequence clocked at a much higher rate of 50 kHz. The

two signals are added and transmitted, as shown in signal 3 of Figure 19a. Signal 1 in

Figure 19b shows the same signal except the x-axis has been compressed.

To recover the data from channel 1, the transmitted signal is multiplied by the

highly clocked spreading function, PN sequence 1, shown as signal 2 on Figure 19b. The

resulting signal is shown as signal 3 on Figure 19b. The resulting signal remains because

of the mathematical properties, 1 x 1 = 1 and -1 x -1 = 1. The PN sequence essentially

cancels itself out of the signal. Thus, the remaining components of the signal are now the

original message of channel 1 clocked at 500 Hz and the spread frequency component of

channel 2. An intuitive step would be to low pass filter the signal to remove as much of

the channel 2 component that is spread in frequency.

Figure 20. (a) Multiplied result of transmitted signal and PN sequence 1, low pass filter of multiplied
result. (b) Low pass filtered signal, low pass filtered signal passed through a comparator, original

message in channel 1

Performing a low pass filter yields signal 2 shown in Figure 20a. It is possible to

observe the outline of a bipolar signal. Passing this signal through a comparator, we

obtain signal 2 in Figure 20b. This matches very closely with signal 3 of Figure 20b,

which is the original data sequence of channel 1.

While the signal was properly obtained, it brings to light an inherent problem with

CDMA systems. When more channels are added, there is a greater chance of error due to

the fact that all channels are simply being spread in frequency. When information from a

single channel is wanted, small components of other channels are also being obtained. If

enough channels are being used, it could corrupt data transmission by adding too much

noise or excess signals. It is important, therefore, to minimize the cross-correlation

between spreading codes for minimal interference between CDMA channels.

Figure 21. (a) 22dB noise added during transmission, PN sequence 1, multiplied result of transmitted
signal and PN sequence 1. (b) multiplied result of transmitted signal with noise and PN sequence 1,
low pass filter of multiplied result (with noise), multiplied result of transmitted signal with no noise
and PN sequence 1, low pass filter of multiplied result (no noise)

 The effect of noise on CDMA signal transmission is considered next. Figure 21a,

shows 22dB noise added to the CDMA signal during transmission. When multiplied by

its respective PN sequence, the waveform of signal 3 in Figure 21a is attained. Figure

21b shows the described waveform at signal 1, except on a different time scale. When

low pass filtered, the resulting waveform of signal 2 is obtained. Here a comparison can

be made with the waveform that would result had there not been any noise during

transmission, which is shown as signals 3 and 4 in Figure 21b.

 It can be observed that noise does not affect the CDMA signal. The resulting

demodulated signal is almost identical to the case had there not been any noise. Passing

the signal through a comparator will recover the proper signal. This can be attributed to

the fact that CDMA spreads noise over its entire frequency band. Thus, the contribution

of noise becomes smaller.

Frequency Hop Spread Spectrum

 To implement FHSS, the following block diagram was assembled using the TIMS.

Figure 22. Implementation of FHSS on the TIMS

 An FSK signal was generated, as discussed in the FSK section, and then

multiplied by a varying modulating carrier. This signal was transmitted and then

recovered by multiplying the received signal with another frequency synthesizer output

that was controlled by the same PN sequence used to control the frequency synthesizer at

the transmitting end. The clock for the PN generators in the transmitting and receiving

ends were matched by stealing the clock. However, in practice, it is not a trivial process

and simply stealing of the clock is not possible. It must be detected from the transmitted

signal using feedback loops. The process is beyond the scope of this project and was not

explored further.

To perform 2-channel FHSS, each frequency synthesizer was operated by

different PN generators using different PN sequences. Since only 2 frequency

synthesizers were available for use, each frequency synthesizer was used in both the

generation and recovery process. In this section, only one channel is discussed but in

testing, 2-channel FHSS was performed.

Figure 23. (a) FSK signal, carrier frequency at 100 kHz, Multiplication of FSK and 100 kHz carrier.
(b) Frequency synthesizer output at transmitting side, transmitted signal, frequency synthesizer
output on receiving side, multiplied result of transmitted signal and frequency synthesizer output on
receiving side when synthesizers matching.

Figure 24. (a) Frequency synthsizer output at transmitting side, transmitted signal, frequency
synthesizer output on receiving side, multiplied result of transmitted signal and frequency synthsizer
output on receiving side when not synthesizers not matching.

 Figure 23a shows the generation of a FHSS at a particular hop frequency, in this

case 100 kHz. Typically, the carrier will hop once per bit. However, for demonstration

purposes, the hop carrier was manually controlled. When testing with sensors, the

frequency synthesizers were driven by random PN sequences and slow hop spread

spectrum was performed.

 To recover the message, the transmitted signal is first multiplied by a signal with

the same hop frequency in which the message was modulated using. The result is shown

in signal 4 of Figure 23b. It can be observed that the resulting signal resembles the

modulated data sequence shown as signal 2 of Figure 23b. The resulting signal is

essentially a FSK signal. The same procedure used to obtain the message in the case of

the FSK can be applied here. This process is shown in Figure 24b. The signal is low pass

filtered, rectified, integrate and held, and passed through a comparator. As shown in

Figure 24b, the recovered data, signal 3, matches the input data, signal 4.

 In the case that the frequency synthesizers do not output a signal of the same

frequency, as shown in Figure 24a, the resulting signal, signal 4, is not decipherable. It

holds no resemblance to the modulated FSK or signal 2 in Figure 24a. When the rest of

the recovery process is attempted, the data does not match the input data. This brings up

the secure nature of FHSS systems. If the frequency generators are not matched,

recovery of the signal is not possible. In order for the frequency generators to be matched,

they have to be driven by the same PN code. Therefore, both the transmitting and

receiving party must know the code in order to establish communication. As mentioned

earlier, the PN codes also have to be aligned since they have a distinct start and end point.

This process is not simple and hard to achieve in practice.

 To observe the case in which the phase of the PN sequences are slightly

mismatched, the frequency synthesizer on the receiver side was delayed. With minimal

delay, the resulting integrate and hold operation produces results shown in Figure 25a.

With moderate delay, the resulting operation is shown in Figure 25b. When there is

greater mismatch in the phase of the PN sequence, the recovered amplitude signal level

decreases. If more delay is added, it will eventually reach a point where the signal will

not be able to be recovered.

Figure 25. (a) Rectified signal, sample and held signal (minimal delay). (b) Rectified signal, sampled
and held signal (moderate delay)

However, this information can also be used to align the mismatch in phase at the

receiving end. Since recovered signal amplitude is greater with less phase delay, a

feedback loop could be implemented to take advantage of this fact. A phase modifier

could be implemented in the frequency synthesizer at the receiving end to carefully adjust

the phase until the greatest signal amplitude is obtained and hence, signify a match in

phase of the two synthesizers. Since this is beyond the scope of this project, it will be left

as a potential path for future students to pursue.

Next, the effect of noise in FHSS systems will be explored. In the transmission

stage, a 22dB random noise signal was added. The resulting transmitted signal can be

observed in signal 1 of Figure 26a. Although the signal looks completely random, FHSS

signals are capable of recovering the message. It is important to mention here that, this is

not a complete analysis of the effect on noise on FHSS systems since the hop carrier was

manually adjusted. Since noise typically occupies a wide frequency range, and as long as

the frequency synthesizer hops in the same range as the noise, simulating one frequency

should provide similar results when hopping is performed.

Figure 26. (a) Transmitted signal with noise, 100 kHz carrier, multiplied result of signal 1 and signal
2, lowpass filtered result of signal 3. (b) rectified signal, integrate and held, recovered message by
passing through a comparator, original message.

After performing the recovery process, signal 3 on Figure 26b is obtained. This

matches well with the original message, shown as signal 4 on the same figure. However,

looking at the integrate and hold operation, signal 2, it is clear that noise does make the

signal less clear. The reference level for the comparator has to be more finely adjusted in

order to obtain the proper output. Therefore, it seems FHSS is not as noise resistant as

CDMA. However, it should be noted that FHSS handles noise better than the digital

baseband transmission techniques. This was the fullest extent to which noise analysis

was performed due to time constraints.

Although the effects of jamming were not simulated, some conclusions can be

made from the experiments performed for FHSS. Since jamming typically occupies one

frequency or a thin range of frequencies, it should have reduced effect on FHSS than on

more conventional digital bandpass transmission systems. Still, slow hop spread

spectrum will be more susceptible to jamming than fast hop spread spectrum. This is

because slow hopping transmits one or more symbols per frequency hop. This means, if

the frequency matches the jamming frequency, then the symbols will have to be

retransmitted. However, in fast hopping, the synthesizer hops more than once per

measure of information it wants to transmit. Therefore, the effects of jamming can be

smoothed out since other frequencies will not be contaminated.

Simulation of Program Files

Now that various methods of data transmission have been attempted, the Control

Station was tested to ensure it operated properly. Below are simulation results for

ControlV5.vhd, which use two infrared sensors and one pressure sensor, as discussed in

Section 3.

MainMonitor Operation

Figure 27. Simulation of MainMonitor Entry Detection

 As can be seen, when the outer sensor is triggered first, MainMonitor goes to the

state, EntryDetect. When the inner sensor is triggered, MainMonitor goes to EntryCount

and remains there until both sensors have been passed. Once both sensors are passed,

MainMonitor returns to the Snoop state and the population counter is incremented. At

this time, the output signal for the main lights goes high. Furthermore, LocalMonitor

remains idle and turns on when the population is incremented from 0 to 1.

Figure 28. Simulation of MainMonitor Exit Detection

 The above simulation represents the case when the last person in a room leaves.

First, exit is detected when the inner IR sensor is triggered. This sends MainMonitor in to

the ExitDetect state. Once the outer sensor is triggered, MainMonitor goes to ExitCount

and remains in ExitCount until both sensors have been completely passed. When this

occurs, MainMonitor goes to the Snoop state the population counter is decremented.

Since the population is now zero, all appliances are turned off and the LocalMonitor is

returned to the Idle state.

LocalMonitor Operation

 Next, operation of the LocalMonitor will be examined.

Figure 29. Simulation of LocalMonitor Pressure Sensor Detection

At point 1, activity at the pressure sensor has been detected. This flips a flag

controlling the local light to relayon, as can be seen in point 2. Then, at point 3, the

OutputMonitor sets the output for the relay to high.

Figure 30. Simulation of Timer Feature

 Here, the pressure sensor is observed to go low. When this happens, the flag for

the local lights go in to the countdown mode. The timer is then started and begins

counting up. During this time, the output for the local light remains high and the lights

stay on.

Figure 31. Simulation of Timer Termination

 Once the timer hits “1111”, the flag for the local light is sent to the relayoff state.

This is properly interpreted by the OutputMonitor and the output for the local light goes

low. The simulations show proper operation of both the MainMonitor and LocalMonitor.

Since all outputs are properly set, the OutputMonitor also works as expected.

5. Summary and Conclusions

 In this project, the sensor circuits used in Tesfaye and Whitehead (2003) were

modified and implemented to operate in a wireless sensor network.

 Using the TIMS, various modes of communication were investigated. For

purposes of sensor networks where noise and interference is a concern, spread spectrum

techniques are preferable means of transmitting information from the sensors to the

control station over more conventional digital bandpass techniques. Now that

communication techniques have been investigated, antennas can be attached to perform

actual wireless transmission.

 The control station was successfully programmed and interfaced with the TIMS

as well as the relay box. Application specific program was written and a delayed off

feature was implemented for the local lights. The control station was capable of

interpreting information coming from sensors and act accordingly by sending proper

signals to the relay box. Solid state relays worked without a problem and successfully

switched on and off appliances.

 However, on certain occasions, external noise becomes a factor for the infrared

sensors. Furthermore, the control system will interpret the passing of arms and the body

of a person as separate people. Currently, it is only capable of recognizing one person

passing through at a time. There were no issues with the pressure sensors.

6. Future Work

Below is a listing of potential future projects that can be done to expand on this project.

1. Implement override function

 Currently the setup does not have an over ride function in case the user wants

to shut down the system. Only a reset switch has been supplied. Furthermore,

if a user wants to shut off lights or appliances despite being in the room, there

currently is no way to do that.

2. Allow bi-directional communication

 Enhance the system to allow bi-directional communication between the sensor

circuits and the control station. For example, if the MainMonitor detects that

nobody is in the room, then a sleep feature for local sensors could be

implemented. The sensors will wake up once someone enters the room.

3. Use antennas

 This project dealt with the simulation of wireless channels using the TIMS.

However, true wireless could be performed by using antennas with the TIMS

system. There are antenna modules from Emona that can be purchased to use

with the system. A comparison between simulation and actual wireless

transmission could be performed.

4. Use real wireless modules

 Using the TIMS as a guide, use wireless modules that use protocols such as

Bluetooth or ZigBee to develop a wireless sensor network. This would

increase flexibility and address the practical side of sensor networks more so

than working solely with the TIMS.

5. Putting circuitry on printed circuit boards

This would greatly improve manageability and aesthetics of the system

product. The system would be more robust as well. Less loose wire is a good

thing.

6. Multiple control stations or multi-room setup

 Implement the system with multiple control stations or in a multi-room

configuration. Basically expand the system, its reach, and capabilities. Use

something more powerful and flexible than the Altera Board.

7. Implement security features

 Detection of suspicious entry or activity. Proper reporting of such activity.

Could interface with a computer to automatically file reports. Logs could also

be kept.

7. Acknowledgements

I would like to thank Dr. Lynne A. Molter, my advisor, for her guidance and

support throughout the course of this project. She was also very generous in allowing me

to use a large section of her Optics and Photonics Laboratory as a workplace.

I would also like to thank Edmond Joudi for his advice, technical knowledge, and

endless supply of electronic components and equipment.

Furthermore, I would like to take this opportunity to thank the Engineering

Department Faculty and Staff for their guidance throughout my four years at Swarthmore

College.

Finally, but not least, I would like to thank my family and friends for always

being there for me.

8. References

Carlson, A. B., Crilly P. B., & Rutledge J. C. (2002). Communication Systems: An
Introduction to Signals and Noise in Electrical Communication. New York, NY:
Mc Graw Hill.

Hamblen, J. O., & Furman, M. D. (2001). Rapid Prototyping of Digital Systems: A

Tutorial Approach. Norwell, MA: Kluwer Academic Publishers.

Tesfaye, A. & Whitehead, D. (2003). Engineering Design Project Reports: Function-

Specific Sensor Fusion. Swarthmore, PA: Swarthmore College Engineering
Department.

9. Appendix

VHDL Files

controlV5.vhd

-- Control Program for the Altera Board
-- 2 IR Sensors, 1 Pressure Sensors
-- Version 5
-- Code Written by Masabumi Chano
-- Last Updated: April 6, 2006

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_arith.ALL;
USE IEEE.std_logic_signed.ALL;

ENTITY ControlV5 IS
 PORT(Reset : IN std_logic;
 GClock : IN std_logic;
 InIRInner : IN std_logic; -- Input from Inner IR Sensor
 InIROuter : IN std_logic; -- Input from Outer IR Sensor
 InPressure1 : IN std_logic; -- Input from Pressure Sensor
 ExtDisp1 : OUT std_logic_vector(6 DOWNTO 0);
 ExtDisp2 : OUT std_logic_vector(6 DOWNTO 0);
 OutMainLight : OUT std_logic; -- Controls Main Light
 OutLocalLight1 : OUT std_logic); -- Controls Local Light

END ControlV5;

--

ARCHITECTURE Behavioral OF ControlV5 IS

-- Declare Components
 COMPONENT ClockDivider IS
 PORT(reset : in std_logic;
 clk : in std_logic;
 clockbits : out std_logic_vector(7 downto 0));
 END COMPONENT;
-- End Component Declaration

-- Declare Types and Signals
 TYPE MainStateType is (Snoop, EntryDetect, ExitDetect, EntryCount,
ExitCount);
 TYPE LocalStateType is (Idle, Active, SetOut, SetDelay);
 TYPE ControlType is (RelayOn, RelayOff, Countdown);
 TYPE TestType is (Idle, Active, Detect1, Detect2, Detect3, Detect4,
Test1);

 SIGNAL MainMonitor : MainStateType;
 SIGNAL LocalMonitor : LocalStateType;
 SIGNAL OutputMonitor : LocalStateType;
 SIGNAL FlagP1 : ControlType;
 SIGNAL Test : TestType;

 SIGNAL SlowClock : std_logic;

 SIGNAL ResetButton : std_logic;

 SIGNAL RelayML : std_logic;
 SIGNAL RelayLL1 : std_logic;

 SIGNAL DisplaySequence : std_logic_vector(6 DOWNTO 0);
 SIGNAL ExtraDigit : std_logic_vector(6 DOWNTO 0);

 SIGNAL Population : std_logic_vector(2 DOWNTO 0); -- Counts pop.
 SIGNAL Timer1 : std_logic_vector(3 DOWNTO 0); -- Delay Timer
-- End Declarations

BEGIN
 PROCESS (ResetButton, GClock) BEGIN
 IF ResetButton = '1' THEN
 MainMonitor <= Snoop;
 LocalMonitor <= Idle;
 Population <= "000";
 FlagP1 <= RelayOff;
 RelayML <= '0';
 RelayLL1 <= '0';
 Timer1 <= "0000";
 DisplaySequence <= "1111110";
 ExtraDigit <= "1111110";
 Test <= Idle;

 ELSIF (GClock = '1' AND GClock'EVENT) THEN
 CASE MainMonitor IS
 WHEN Snoop =>
 IF InIROuter = '1' THEN
 MainMonitor <= EntryDetect;
 ELSIF InIRInner = '1' THEN
 MainMonitor <= ExitDetect;
 END IF;
 WHEN EntryDetect =>
 IF InIRInner = '1' THEN
 MainMonitor <= EntryCount;
 END IF;
 WHEN ExitDetect =>
 IF InIROuter = '1' THEN
 MainMonitor <= ExitCount;
 END IF;
 WHEN EntryCount =>
 IF InIRInner = '0' THEN
 Population <= Population + 1;
 MainMonitor <= Snoop;
 END IF;
 WHEN ExitCount =>
 IF InIROuter = '0' THEN
 Population <= Population - 1;
 MainMonitor <= Snoop;
 END IF;
 END CASE;

 CASE LocalMonitor IS
 WHEN Idle =>
 CASE Population IS
 WHEN "000" =>
 DisplaySequence <= "0000001"; -- No Lights
 LocalMonitor <= Idle; -- Nobody in rooom
 WHEN "001" =>
 DisplaySequence <= "1001111";
 LocalMonitor <= Active;

 WHEN "010" =>
 DisplaySequence <= "0010010";
 LocalMonitor <= Active;
 WHEN "011" =>
 DisplaySequence <= "0000110";
 LocalMonitor <= Active;
 WHEN "100" =>
 DisplaySequence <= "1001100";
 LocalMonitor <= Active;
 WHEN "101" =>
 DisplaySequence <= "0100100";
 LocalMonitor <= Active;
 WHEN "110" =>
 DisplaySequence <= "0100000";
 LocalMonitor <= Active;
 WHEN OTHERS =>
 DisplaySequence <= "0001111";
 LocalMonitor <= Active;
 END CASE;
 WHEN Active =>
 IF InPressure1 = '1' THEN
 LocalMonitor <= SetOut;
 ELSIF InPressure1 = '0' THEN
 CASE FlagP1 IS
 WHEN RelayOn =>
 LocalMonitor <= SetDelay;
 WHEN Countdown =>
 -- Timer1 <= Timer1 + 1;
 LocalMonitor <= Idle;
 WHEN OTHERS =>
 LocalMonitor <= Idle;
-- LocalMonitor <= SetTimer;
 END CASE;
 END IF;
 WHEN SetOut =>
 FlagP1 <= RelayOn;
 LocalMonitor <= Active;
 WHEN SetDelay =>
 FlagP1 <= Countdown;
 LocalMonitor <= Idle;
 END CASE;

 -- OUTPUTS AND TIMER CONTROLS --

 ExtraDigit <= "0000001";
 CASE OutputMonitor IS
 WHEN Idle =>
 CASE Population IS
 WHEN "000" =>
 OutputMonitor <= Idle; -- Nobody is in the rooom
 RelayML <= '0'; -- Relays are OFF
 RelayLL1 <= '0';
 Timer1 <= "0000";
 FlagP1 <= RelayOff;
 WHEN OTHERS =>
 OutputMonitor <= Active;
 END CASE;
 WHEN Active =>
 RelayML <= '1';
 CASE FlagP1 IS
 WHEN RelayOn =>
 Timer1 <= "0000";

 RelayLL1 <= '1'; -- RelayLL1 IS ON
 WHEN Countdown =>
 CASE Timer1 IS
 WHEN "1111" =>
 FlagP1 <= RelayOff;
 WHEN OTHERS =>
 Timer1 <= Timer1 + 1;
 END CASE;
 WHEN RelayOff =>
 RelayLL1 <= '0'; -- RelayLL1 IS OFF
 Timer1 <= "0000";
 END CASE;
 OutputMonitor <= Idle;
 WHEN OTHERS =>
 OutputMonitor <= Idle;
 END CASE;
 END IF;
 END PROCESS;

 ClockIt : ClockDivider PORT MAP (ResetButton, GClock, SlowClockBits);--
 ResetButton <= NOT Reset;
 MainClock <= SlowClockBits(7);

 ExtDisp1 <= ExtraDigit;
 ExtDisp2 <= DisplaySequence;

 OutMainLight <= RelayML;
 OutLocalLight1 <= RelayLL1;

END Behavioral;

clockdivider.vhd

-- Clock Divider
-- Adapted from Prof. Maxwell’s clockdivider.vhd

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY ClockDivider IS
 PORT(Reset : IN std_logic;
 CLK : IN std_logic;
 ClockBits : OUT std_logic_vector(7 DOWNTO 0));
END ClockDivider;

ARCHITECTURE Behavioral OF ClockDivider IS
 SIGNAL Counter : unsigned(22 DOWNTO 0); -- big counter
BEGIN
 PROCESS (CLK) BEGIN
 IF Reset = '1' THEN
 Counter <= "00000000000000000000000"; -- reset the clock
 ELSIF (CLK = '1' AND CLK'EVENT) THEN
 Counter <= Counter + 1;
 END IF;
 END PROCESS;
 ClockBits <= std_logic_vector(Counter(22 DOWNTO 15));
END Behavioral;

testLight.vhd

-- On/Off Program
-- Testing the IR Sensors
-- Code Written by Masabumi Chano
-- Last Updated: Feb 9, 2006

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_arith.ALL;
USE IEEE.std_logic_signed.ALL;

ENTITY testLight IS
 PORT(CLK : IN std_logic;
 Reset : IN std_logic;
 GClock : IN std_logic;
 SensorIn : IN std_logic;
 ToLight : OUT std_logic;
 ShowReset : OUT std_logic;
 ToRelay : OUT std_logic);
END testLight;

--

ARCHITECTURE Behavioral OF testLight IS

-- Declare Components
 COMPONENT ClockDivider IS
 PORT(reset : in std_logic;

 clk : in std_logic;
 clockbits : out std_logic_vector(7 downto 0));
 END COMPONENT;
-- End Component Declaration

-- Declare Types
 TYPE stateType is (ReadIn, SetOut);
 TYPE relayType is (RelayOn, RelayOff);
 SIGNAL State : stateType;
 SIGNAL RelayState : relayType;
-- End Type Declaration

-- Declare Signals
 SIGNAL SensorState : std_logic;
 SIGNAL SlowClock : std_logic;
 SIGNAL SlowClockBits : std_logic_vector(7 DOWNTO 0);
 SIGNAL ResetButton : std_logic;
 SIGNAL MainClock : std_logic;
 SIGNAL Flag : std_logic;
-- End Signal Declaration

BEGIN
 PROCESS (ResetButton, MainClock) BEGIN
 IF ResetButton = '1' THEN
 ShowReset <= '1';
 State <= ReadIn;
 Flag <= '0';
 RelayState <= RelayOff;
 ToLight <= '0';
 ToRelay <= '1';
 ELSIF (MainClock = '1' AND MainClock'EVENT) THEN
 CASE State IS
 WHEN ReadIn =>
 ShowReset <= '0';
 IF SensorIn = '1' AND Flag = '0' THEN
 State <= SetOut;
 Flag <= '1';
 ELSIF SensorIn = '0' THEN
 State <= ReadIn;
 Flag <= '0';
 END IF;
 WHEN SetOut =>
 State <=ReadIn;
 IF RelayState = RelayOn THEN
 ToRelay <= '1';
 ToLight <= '1';
 RelayState <= RelayOff;
 ELSIF RelayState = RelayOff THEN
 RelayState <= RelayOn;
 ToLight <= '0';
 ToRelay <= '0';
 END IF;
 END CASE;
 END IF;
 END PROCESS;

 ClockIt : ClockDivider PORT MAP (ResetButton, GClock, SlowClockBits);
 ResetButton <= NOT Reset;
 MainClock <= SlowClockBits(7);

END Behavioral;

