

Solar-Powered Wireless
Sensor Network

E90: Senior Design Project
FINAL REPORT

Department of Engineering
Swarthmore College

May 4, 2006

Authors:
Brian Park

Simeon Realov

Advisor:
Prof. Erik Cheever

TABLE OF CONTENTS:

INTRODUCTION …………………………………………………………………… 1
GENERAL SYSTEM DESCRIPTION ……………………………………………… 1
HARDWARE ………………………………………………………………………… 2
 Microcontroller ………………………………………………………………. 3
 Serial Communication ……………………………………………….. 3
 Analog-to-Digital Converter …………………………………………. 4
 Measuring Battery Voltage …………………………………………... 5
 Real-Time Clock ……………………………………………………... 6
 RF Communication …………………………………………………………... 7
 XBee vs. XBeePRO …………………………………………………. 8
 Antennas ……………………………………………………………… 8
 UART ………………………………………………………………… 9
 Modes of Operation ………………………………………………… 9
 External Memory …………………………………………………………….. 10
 EEPROM vs. SRAM ………………………………………………… 10
 EEPROM Selection ………………………………………………….. 10
 Memory Organization ………………………………………………... 11
 Sensors ……………………………………………………………………….. 11
 Power ………………………………………………………………………… 11
 Solar Panels …………………………………………………………... 11
 Batteries ……………………………………………………………… 12
 Voltage Regulation ………………………………………………….. 13
 Linear Regulator ……………………………………………... 13
 Buck Switching Regulator …………………………………… 14
 Final Design Decisions ………………………………………. 15
 Circuit Design ………………………………………………………………... 15
 Computer Host ………………………………………………………. 15
 Sensor Node …………………………………………………………. 19
SOFTWARE ………………………………………………………………………… 24
 Hardware Drivers and Interface ……………………………………………… 24
 EEPROM Driver……………………………………………………… 24
 XBee Driver ………………………………………………………….. 25
 Network ………………………………………………………………………. 27
 Network Topology …………………………………………………… 27
 RTS (Receive-Transmit-Sleep) Network Protocol ………………….. 28
 Data Packets …………………………………………………. 30
 Adding Nodes to the Network ……………………………….. 30
 Initialization Transmit Cycle ………………………… 31
 Initialization Receive Cycle ………………………….. 32
 Data Transmission ……………………………………………. 33
 Calculating an 8-bit CRC Checksum ………………… 34
 Receive Cycle ………………………………………... 34
 Transmit Cycle ………………………………………. 34
 Sleep Cycle …………………………………………... 35

 Network Throughput ………………………………………… 37
 Failure Modes ………………………………………………... 37
 Computer Host Program ……………………………………………………... 38
RESULTS AND TESTING …………………………………………………………. 40
 XBeePRO Test ………………………………………………………………. 40
 Temperature Data Test ………………………………………………………. 42
 Power Efficiency …………………………………………………………….. 45
 Range ………………………………………………………………………... 45
 Failure Mode …………………………………………………………………. 46
APPLICATION NOTES …………………………………………………………….. 46
 Programming the Sensor Nodes ……………………………………………… 46
 Using the PC Host Application ………………………………………………. 48
 Gathering Data Using Analog and Digital Sensors ………………………….. 49
 System Specifications ………………………………………………………... 50
SUGGESTED IMPROVEMENTS ………………………………………………….. 50
 Host Program ………………………………………………………………… 50
 Measuring Battery Voltage …………………………………………………... 51
 Encasing ……………………………………………………………………… 51
 Testing ………………………………………………………………………... 51
ACKNOWLEDGEMENTS ..………………………………………………………… 51
APPEDICIES ………………………………………………………………………… 52
 APPENDIX A: Data Sheets ………………………………………………….. 52
 APPENDIX B: PIC files ……………………………………………………... 53
 APPENDIX C: PC Host Files ………………………………………………... 53

INTRODUCTION

The goal of this project was to build an autonomous wireless data acquisition
system that offers a seamless and cost-effective solution to the problem of gathering
remote sensory data. A good example of where such a system would be particularly
useful is environmental monitoring, but this system can extend to any non-time-critical
application. The network system is autonomous and requires minimal human interaction.
Since all of the data is transferred wirelessly and the power is harvested from the sun, all
one needs to do in order to install our remote sensory system is ensure access to solar
energy. Beyond that, installation consists merely of setting up the nodes, attaching the
sensor outputs to the module, and collecting the data on the other end. As a result,
engineers using our system require very little knowledge of how the system operates in
order to install it. The network topology and data acquisition algorithms are pre-
programmed onto a microcontroller. The user is also allowed the flexibility to modify
the system parameters to better suit his or her specific needs by reprogramming the
microcontroller. Overall, our system is reasonably priced, versatile, and easy to use.

Throughout this paper we describe the design and performance of our solar-
powered wireless sensor network. We begin by outlining the hardware design of a single
Sensor Node along with a Computer Host, then we proceed to describe the network
topology and networking protocol, and finally we demonstrate the proper functioning of
our network and discuss suggested improvements. One of the main attributes of this
project is to make all of the hardware and software designed over the course of this
semester available in an accessible form to anyone who wishes to implement our network
for a particular sensory data gathering application. Specific instructions on how to
implement our network are included as part of this report.

GENRAL SYSTEM DESCRIPTION

Two different circuit designs are implemented in our network: a Sensor Node
circuit and a Computer Host circuit (Figure 1). The Sensor Node gathers data from
sensors and forwards the data to a Computer Host. The Computer Host interfaces with a
PC and receives data from all of the Sensor Nodes. The circuits were designed to be
small in size in order to be relatively inconspicuous. Since power is a critical issue for
our project, all of the chips and devices used in our system have low power
consumptions.

 1

Figure 1. Circuits used in our network: Sensor Node (top) and Computer Host (bottom).

 A tree topology was used to structure our network, an example of which is given
in Figure 2 below. The tree topology was implemented as part of the low-power RTS
(Receive-Transmit-Sleep) protocol we designed for this project. In our network
implementation, data from all Sensor Nodes is propagated up to the main parent node,
which is represented by the Computer Host.

Figure 2. Example of a tree network topology with a host H0 as the root.

HARDWARE

 The hardware portion of this project involved designing and constructing the
Sensor Node and Computer Host circuits. The Sensor Node mainly consists of a
microcontroller, an external EEPROM memory chip, and a wireless RF module. The
nodes are powered by rechargeable batteries and a solar panel. Since all of our circuits
run on 3.3V, a voltage regulation stage was necessary to regulate down the battery

 2

voltage. The Computer Host also includes a wireless RF module, but does not need a
microcontroller. The host communicates with a PC through the serial port. These
devices, along with others, will be described in more detail in the following paragraphs.

Microcontroller

The microcontroller used to operate our circuits is Microchip’s PIC16LF876A.
The CMOS flash-based 8-bit microcontroller is a high-performance Reduced Instruction
Set Computer (RISC) consisting of only 35 single word instructions. The microcontroller
supports both digital and analog inputs, allowing easy interfacing with digital and analog
sensors. The programming language used to program the PIC is very similar to standard
(ANSI) C. This made developing the software an easier task since we have taken prior
coursework involving the C programming language. A summary of features given by the
manufacturer include: 256 bytes of EEPROM data memory, self programming, an In-
Circuit Debugger (ICD), 2 Comparators, 5 channels of a 10-bit Analog-to-Digital (A/D)
converter, 2 capture/compare/PWM functions, a synchronous serial port that can be
configured as either 3-wire Serial Peripheral Interface (SPI) or the 2-wire Inter-Integrated
Circuit (I²C) bus, and a Universal Asynchronous Receiver Transmitter (USART).1

Serial Communication

The PIC16F87XA microcontrollers have a variety of built-in features that were

very useful for our particular project. The Universal Asynchronous Receiver Transmitter
(USART) feature is used to establish RS-232 serial communications with our wireless RF
modules. The PIC communicates with the wireless modules asynchronously through pins
TX and RX (Figure 3). The Master Synchronous Serial Port (MSSP) feature supports
Serial Peripheral Interface (SPI) and Inter-Integrated Circuit (I2C) communication,
providing seamless integration for digital devices and sensors.

Serial Peripheral Interface (SPI) is a simple four-wire serial interface standard
defined by Motorola. The four lines required for operation are a clock, data in, data out,
and chip select. Eight bits of data can be synchronously transmitted and received
simultaneously. The chip select line allows multiple devices to be connected to the SPI
bus in parallel. Pins SCK, SDI, and SDO are allocated for SPI (Figure 3). An external
EEPROM chip is interfaced to the PIC through the SPI bus and will be described in more
detail later. The additional memory greatly increases the amount of data that can be
measured and stored.

Inter-Integrated Circuit is a two-wire serial interface standard defined by Philips.
Only two bidirectional lines are required: clock and data. I2C uses a 7-bit addressing
scheme to establish serial communication with multiple devices. Pins SCL and SDA on
the PIC are allocated for I2C (Figure 3). Setting the MSSP for SPI or I2C communication
is done in software. For example, the setup_spi() function is used to setup SPI using
pins SCK, SDI, and SDO. spi_read() and spi_write() are used to receive and send
data over the SPI interface, respectively. #USE I2C is used to setup I2C using pins SCL
and SDA. I2C_read() and I2C_write() are used to receive and send a single byte over

1http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1335&dDocName=en010240

 3

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1335&dDocName=en010240

the I2C interface, respectively. See the PIC C Compiler Reference Manual for more
information.

http://ww1.microchip.com/downloads/en/DeviceDoc/39582b.pdf

Figure 3. Pin diagram of 28-pin PDIP.

Analog-to-Digital Converter

Analog sensors can also be easily interfaced with the PIC. The microcontrollers
are equipped with up to 5 channels of a 10-bit analog-to-digital (A/D) converter. A/D
converters convert continuous signals to discrete digital values. Port A is allocated for
analog input or digital input/output. The measurement range of the A/D converter is, by
default, VDD (supply voltage) to VSS (ground). However, since the PIC is powered by
batteries, the supply voltage is not a reliable reference for accurate analog-to-digital
conversion. Therefore an external 2.5V shunt voltage reference (LM4040) is used to set
the higher end of the measurement range: 2.5V to VSS (ground). The external reference is
connected to pin VREF+ of the PIC (Figure 4). The code below sets up the A/D
converter to use an external reference and use all other pins on Port A for analog inputs.
The last line sets up pin AN0 to be the analog pin that the PIC reads when read_adc() is
called.

 //Setup adc port to read from channel 0 (pin AN0)
 setup_port_a(ALL_ANALOG);
 setup_adc(ADC_CLOCK_INTERNAL);
 setup_adc_ports(ANALOG_RA3_Ref);
 set_adc_channel(0);

http://www.national.com/ds/LM/LM4040.pdf

Figure 4. Setup for external voltage reference.

 4

http://ww1.microchip.com/downloads/en/DeviceDoc/39582b.pdf
http://www.national.com/ds/LM/LM4040.pdf

Measuring Battery Voltage

The battery voltage is monitored to keep track of the operating capacity of our

circuits. The battery voltage is measured using the PIC A/D converter. A voltage divider
is used to decrease the voltage down to the measurable range of the A/D converter.
Large resistor values in the MΩs were chosen to limit the amount of current sunk by the
voltage divider. Since the A/D converter uses a 120pF sample and hold capacitor, the
maximum recommended impedance for analog sources given by the manufacturer is
2.5kΩ (Figure 5). This is to ensure that the time constant for charging the sample and
hold capacitor is small enough for accurate operation.

http://ww1.microchip.com/downloads/en/DeviceDoc/39582b.pdf

Figure 5. Analog input model for PIC A/D converter.

In order to overcome the large impedance from the output of the voltage divider, a

simple 10μF charge-sharing capacitor was used (Figure 6). The charge-sharing capacitor
stores charge from the voltage divider and provides the A/D converter with sufficient
current for accurate operation. When the analog channel is sampled, charge from the
10μF capacitor transports to the 120pF capacitor. Since the battery voltage does not
change at a very fast rate, the large time constant, τ = RC = (3.0MΩ||2.2MΩ)*10μF =
12.7s, involved with charging the 10μF capacitor can be neglected.

 5

http://ww1.microchip.com/downloads/en/DeviceDoc/39582b.pdf

To A/D
Converter

Figure 6. Battery voltage divider.

Real-Time Clock

The PIC Timer1 module is used to implement a real-time clock. Timer1 is a 16-

bit timer/counter with a prescaler. A timer interrupt flag is enabled to trigger the
execution of an interrupt service routine when the timer overflows. Overflow occurs
when the timer reaches 216. An external 32.768 kHz crystal oscillator is used to operate
the timer. The oscillator is connected to pins T1OSO and T1OSI (Figure 7). Two 33 pF
stabilizing capacitors are included on both sides of the oscillator. The external oscillator
is passed through an 8-bit prescaler which is set to divide the frequency by 4, causing the
timer to increment 8192 times per second. In order to make the timer overflow in 1
second, the timer is initialized to 57344. Inside of the interrupt service routine, global
variables are incremented to keep track of real time. The code below initializes Timer1
to increment 8192 times per second.

setup_timer_1(T1_EXTERNAL|T1_EXTERNAL_SYNC|T1_DIV_BY_4|T1_CLK_OUT);

Code for enabling the Timer1 interrupt flag along with a simple interrupt service routine
is shown below.

#INT_TIMER1 // interrupt triggered when timer overflows
void timer1_isr() {
 //increment a global counter variable once every second
 seconds++;

 // 2^16-32768/4 = 57344; overflow once every 32768/4 = 8192 counts
 set_timer1(57344);
}

 6

http://ww1.microchip.com/downloads/en/DeviceDoc/33023A.pdf

Figure 7. Setup for Timer1 external oscillator.

The PIC16LF876A was chosen, in particular, because of its low power

consumption, small size, and memory size. This microcontroller has a wide operating
voltage range of 2.0V to 5.5V. The LF model typically draws a supply current of only
1.6mA. Also, the available 28-pin PDIP package allowed the overall circuit design to be
small and compact. Initial work was done with the PIC16LF873A, which was used
extensively in Electronic Circuit Applications (ENGR 72). However, due to memory
constraints, the 873A was replaced with the 876A model to provide additional memory to
accompany our software and algorithms. The 876A has twice the memory capacity of
the 873A, as can be seen in Table 1. More information about the PIC can be found in
Appendix A1.

Table 1. Memory Capabilities of PIC16F873A/876A

Model Program Flash Data Memory Data EEPROM

16LF873A 4K words 192 bytes 128 bytes

16LF876A 8K words 368 bytes 256 bytes
http://ww1.microchip.com/downloads/en/DeviceDoc/39582b.pdf

RF Communication

The selection of the RF communication modules used for the wireless data
transmission portion of our design was based on a number of different criteria such as
range of communication, power consumption, ease of integration, and cost. The wireless
transceivers that we chose for our design are the XBee and XBeePRO, which conform to
the IEEE 802.15.4 standard and are offered by MaxStream, Inc. The IEEE 802.15.4
wireless standard, more commonly known as ZigBee, is ideally suited for our project.
Similar to the more popular and established IEEE 802.11b and Bluetooth standards, it
operates in the commercial 2.4GHz (ISM) radio band. The specification allows for up to
255 network nodes and maximum transfer rates of 250Kbps at a range of 30 meters.
ZigBee technology is slower than 802.11b (11Mbps) and Bluetooth (1Mbps) but
consumes significantly less power. This makes the IEEE 802.15.4 standard particularly
suitable for our project, since it was specifically designed for data gathering applications
with relatively low transfer rates and limited power resources.

 7

http://ww1.microchip.com/downloads/en/DeviceDoc/33023A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/39582b.pdf

XBee vs. XBeePRO

Maxstream’s ZigBee-based RF module comes in two varieties: the XBee and the
XBeePRO. Apart from the price, the main difference between the two modules is the
range of communication and the power consumption during transmission (refer to data
sheet, Appendix A6). The XBeePRO is the more powerful of the two, consuming
approximately 891mW of power during transmission and covering a line-of-sight range
of up to 1.6km. The XBee, on the other hand, has more modest power consumption
during transmission of approximately 149mW, but it also has a much more restricted
range of communication of only 100m line-of-sight. Both modules have similar power
consumption during reception (165mW for the XBee and 182mW for the XBeePRO). In
terms of pricing, the XBeePRO costs $32.00, while the XBee costs only $19.00. Clearly,
the two flavors offer a choice between power consumption and range of communication.
Since the two modules have identical footprints, however, they are completely
interchangeable, which meant that we could use either one in our finished design without
making any modifications whatsoever. As a result, we decided to order and use both the
XBee and XBeePRO for our project, and assess directly the capabilities of each one.

Antennas

http://www.maxstream.net/products/xbee/xbee-oem-rf-module-zigbee.php

Figure 8. Antenna options for XBee modules.

The RF modules come with three different antenna options: a whip antenna, a U.
FL RF connector, or a chip antenna. The three different antenna options are demonstrated
in Figure 8 above. The whip and chip antennas come integrated onto the actual modules,
whereas the U. FL. RF connector can be used for connecting an off-chip dipole or other
external antenna. Table 2 below gives a comparison between the performance of the
whip antenna and the chip antenna in different settings. Connecting a dipole to the U. FL
RF connector gives similar performance to the whip antenna option.

 8

http://www.maxstream.net/products/xbee/xbee-oem-rf-module-zigbee.php

Table 2. Performance of Antennas

http://www.maxstream.net/support/knowledgebase/files/XST-AN019a_XBeeAntennas.pdf?PHPSESSID=2e9f6eb44b2dbe8a2089473c02c0b141

Even though the whip antenna gives better performance than the chip antenna, we
suspected that it might be harder to work with. Due to problems with antenna selection
in previous wireless communication projects we have worked on, we decided to go with
the option that seemed the least problematic. Consequently, we chose to order the
modules with integrated on-chip antennas.

UART

One of the main advantages of the XBee module is its UART (Universal
Asynchronous Receive Transmit) serial interface. This interface makes it ideal for
communication with a PC, as well as a PIC microcontroller. Essentially, when operating
in its normal receive/transmit mode, the XBee serves as a wireless serial communications
extension, and in simple applications it can be used as a serial cable replacement,
handling baud rates as high as 115,200. This feature made the XBee modules particularly
appealing due to our familiarity with asynchronous serial communications.

Modes of Operation

http://www.maxstream.net/products/xbee/product-manual_XBee_OEM_RF-Modules.pdf

Figure 9. XBee modes of operation.

The XBee has five modes of operation as seen in Figure 9 above: idle mode,
receive mode, transmit mode, command mode, and sleep mode. When powered up, the
XBee automatically goes into idle mode. If RF data comes in through the wireless port,

 9

http://www.maxstream.net/support/knowledgebase/files/XST-AN019a_XBeeAntennas.pdf?PHPSESSID=2e9f6eb44b2dbe8a2089473c02c0b141
http://www.maxstream.net/products/xbee/product-manual_XBee_OEM_RF-Modules.pdf

the modules goes into receive mode, buffering in the data and then forwarding it to the
host via the serial port. When data is sent to the XBee from the host through the serial
port, the XBee automatically switches to transmit mode and transmits the data wirelessly.
The third mode the XBee can enter is a command mode, which allows it to receive
simple AT commands from the host through the serial port. These commands are similar
to the commands used in old internet modems and can be used to change configurations
such as destination address, baud rate, packet size, transmission channel, to name a few
(for a full list of available commands, please refer to Appendix A6). The command mode
makes the XBee module very easy to configure. Finally, the XBee has a sleep mode,
which comes in a number of different variations. The sleep mode we chose to use is
Sleep Mode 1, which is pin-controlled and allows us to reduce the XBee’s power
consumption to less than 33µW.

External Memory

EEPROM vs. SRAM

We decided to use EEPROM external memory for our design, which would serve
the purpose of providing temporary storage for the sensory data collected at each node.
We chose EEPROM over SRAM because EEPROM memory is non-volatile. Thus, in
the unlikely event of complete power shutdown, the data already gathered would not be
compromised. Also, EEPROM chips need to be powered only during a read or write
cycle, and can spend most of the time in a very low-power stand-by mode, consuming
much less power than SRAM chips, which need to be powered at all times. Of course,
using EEPROM comes at the price of slower read/write cycles. However, due to the
relatively small network throughput we require for our suggested applications, this would
not be a problem. In essence, our choice ensures higher reliability and lower power
consumption at the price of slower data access speed.

EEPROM Selection

The EEPROM chip we decided to use is Microchip’s 25AA160A 16Kbit SPI Bus
Serial EEPROM. This chip consumes about 10mW during read/write cycles, and about
3.3μW in low-power stand-by mode. It has a lifetime of 1,000,000 erase/write cycles,
which translates to about 2 years of operation under the conditions specified by our
networking protocol.

The main reason we chose the 25AA160A EEPROM was the fact that we could
interface it using the SPI (Serial Peripheral Interface) bus of our microcontroller, which is
completely separate from its UART module. Thus, we were able to simultaneously
communicate with both the external EEPROM memory and the XBee module. As can be
seen in the later section describing our communications protocol, this functionality is
crucial for our network’s proper operation. Finally, it should be noted that even though
the EEPROM uses the SPI interface, this interface could also easily be used to
communicate with other peripherals as well, such as digital sensors for example, by using
a simple addressing scheme which enables and disables devices connected to the same
SPI bus.

 10

Memory Organization

Microchip’s 25AA160A 16Kbit SPI Bus Serial EEPROM is organized into 128
16-byte pages. Only one page can be written per write cycle, each of which takes
approximately 5ms, but the entire memory can be read sequentially. Since there weren’t
any available drivers to use with this particular chip, we had to write our own driver code
(see later section on Hardware Drivers). Fortunately, apart from some minor difficulties
associated with the low-to-high data triggering for the PIC’s SPI port, this was not a
problem. Finally, using this chip had the advantage of allowing us to expand the memory
of our sensory network nodes without modifying the hardware (including the driver
code), since there are identical chips in its family that go up to 256Kbits (the maximum
addressable memory using a 16-bit addressing scheme).

Sensors

 In order to test the performance of our system, simple integrated circuit (IC)
temperature sensors were used. The LM19 by National Semiconductor is a precision
analog integrated circuit (IC) Centigrade temperature sensor. The sensor has an
operating range of -55°C to +130°C. The input voltage range is from 2.4V to 5.5V. The
sensor also has a maximum drain current of only 10μA. In addition, the sensor does not
require any other external components. The output of the sensor is ideal for use with the
PIC’s A/D converter with a 2.5V reference. The output voltage varies inversely with
increasing temperature, ranging from 2.5 V to 0 V. The maximum error in the output is
±3.8°C. The temperature can be calculated by:

.
http://www.national.com/ds/LM/LM19.pdf

Power

As with any other solar-powered system, power management was one of the most
significant hardware design problems we had to face. The basic idea behind our design is
to use a solar panel to trickle charge four 1.2V AA rechargeable batteries connected in
series, which would in turn power the rest of our circuit. Since the four AA batteries in
series have a nominal voltage of 4.8V, we would also require a voltage regulation stage
that would bring down the supply voltage to the desired 3.3V. Also, we decided to
provide the option of skipping the solar power stage completely and power the module
using ground power through a simple wall transformer. Thus, wherever regular ground
power is available, it could be used in place of solar power as a more reliable source.

Solar Panels

The solar panels we used in our design were 4.5”x3.0” and 4.5”x6.0” 6V
weatherproof flexible solar panels from Silicon Solar Inc. The 4.5”x3.0” solar panel
provides a maximum current of 50mA at 6V, and the 4.5”x6.0” provides a maximum

 11

http://www.national.com/ds/LM/LM19.pdf

current of 100mA at the same voltage. We decided to use solar panels of different sizes
and capacities since the nodes using the XBeePRO would have a higher demand for
power than nodes using the XBee module. It should be noted that even though the
XBeePRO requires more than five times more power for transmission than the XBee, the
RF modules spend most of their “on” time in idle or receive modes, in which they both
consume relatively the same amount of power (see section on XBee modules above).
Consequently, a 2:1 ratio in the power provided by the two different solar panels would
be more than sufficient to offset the difference in the power consumption of nodes using
the two different RF modules.

Batteries

The main power source/storage unit for our system consists of four 1.2V AA
NiMH Energizer batteries rated at 2500mAh connected in series. Thus, the nominal
voltage of the power source is 4.8V and it can provide as much as 2.5A of current for 1
hour, or equivalently, 250mA for 10 hours (see discharge characteristic in Appendix A5).
We decided to use NiMH rechargeable batteries as opposed to any other variety of
rechargeable batteries because NiMH batteries are widely available and have relatively
high capacities as compared to other types of rechargeable batteries. Also, NiMH
batteries can be trickle-charged continuously at rates of up to 1/10 of their capacity
without damaging the battery. Thus, we could charge our 2500mAh batteries with
currents of up to 250mA without any problems. This greatly simplified our charging
circuit, since we could simply connect the solar panels across the batteries, confident that
the current they provide would not exceed 250mA even when using the large solar
panels. The only problem with this configuration we had to be conscious of was that
when the solar panel is not getting enough light, the batteries could discharge through it,
since the voltage across the solar panel would be lower than the voltage across the
batteries. To prevent this from happening, we simply added a diode that would let
current flow only in the direction from the solar charger to the batteries (see Figure 10
below).

Figure 10. Solar battery charging circuit.

 12

Voltage Regulation

After some research, we were able to establish that there are two generally
accepted ways of stepping down voltage in battery powered applications, where
efficiency is a primary concern. The first one is using a low-dropout linear voltage
regulator, and the second one is using a buck switching regulator.

Linear Regulator

http://www.national.com/appinfo/power/files/f4.pdf

Figure 11. A simplified schematic of a LDO linear voltage regulator.

The linear regulator is by far the simpler of the two options. As can be seen from
the simplified schematic above (Figure 11), the linear voltage regulator senses the voltage
at its output and compares it to a set reference voltage. If there is a difference between
the two voltages, the differential amplifier adjusts the current through the pass transistor
as to compensate for the difference. Essentially, the excess voltage from the source is
dissipated in the pass transistor, bringing the supply voltage down to the desired value,
while maintaining the required load current. Thus, the efficiency of the linear regulator is
equal to the output voltage over the input voltage, as seen in the equation below:

out out

in in

P VEfficiency
P V

= =

Substituting in our values of Vin = 4.8 V and Vout = 3.3 V, we get an efficiency of less
than 70%. Obviously, in an application where power is scavenged from the sun in very
limited amounts, 70% efficiency is not optimal.

It should be noted here that a low-dropout (LDO) linear regulator does have the
potential of reaching higher efficiencies if the difference between the input voltage and
the output voltage is not as great. For example, if we were to use 3 batteries instead of 4,
then Vin = 3.6V and Vout = 3.3V, and the overall efficiency would be higher than 90%.
However, in this case we would be losing a fourth of our power storage capacity. Of
course, such high efficiency levels can only be achieved using a low-dropout (LDO)
voltage regulator. The dropout voltage is defined as the smallest difference between the
input voltage and the output voltage that ensures proper operation of the linear voltage
regulator.

 13

http://www.national.com/appinfo/power/files/f4.pdf

Finally, one of the great advantages of the linear regulator as compared to the
switching regulator is that it can maintain a very steady power supply. As it turns out,
while digital circuitry is not very sensitive to noise in the power supply, analog circuitry
certainly is. Although our XBee modems are digitally interfaced, they depend on analog
circuitry for RF communication. Thus, a steady power supply would be preferable for
their proper operation.

Buck Switching Regulator

The second option for step-down voltage regulation involves using a buck
switching regulator. A simplified topology of such a regulator is presented in Figure 12
below.

http://www.maxim-ic.com/appnotes.cfm/appnote_number/2031

Figure 12. Simplified schematic of a step-down buck switching regulator.

The controller for the buck switching regulator essentially sets the duty cycle of the
switch that connects the input power supply to the inductor. A higher duty cycle
corresponds to a higher current, and a lower duty cycle corresponds to a lower current.
The inductor in the circuit maintains a relatively constant current through the regulator,
while the capacitor maintains a relatively constant voltage at the output. In order to
support a changing load, the controller senses the voltage at the output of the switching
regulator and adjusts the duty cycle as to maintain the output voltage constant with
respect to a reference voltage (3.3V in out case). Thus, if the load requires a higher
current, it would essentially begin to bring down the output voltage of the regulator,
which in turn would cause the controller to adjust the duty cycle, so that the output
voltage would return back to its proper level. As a result, using a buck switching
regulator to regulate supply voltages introduces noise in the power supply that results
from the changing power demands of the load. In our particular application this would
turn out to be somewhat problematic when using a switching regulator to power the
XBeePRO, since it changes its power consumption almost five-fold when switching
between transmit and receive modes.

In terms of efficiency, however, the switching regulator is by far the more
efficient one of the two options. In fact, if working with ideal components, a buck
switching regulator would theoretically have a 100% efficiency rating, since voltage is
converted by storing energy in the inductor and capacitor, rather than by simply burning
it out, as is the case with the linear regulator. Of course, no real circuit is ever composed
of ideal components, so some losses should be expected in a real application of the
switching regulator. Still, if the regulator is limited to operating at the low power levels
we require, there are circuit techniques that allow a designer to overcome some of the

 14

http://www.maxim-ic.com/appnotes.cfm/appnote_number/2031

imperfections inherent in the design. As a result, a switching regulator used for our
application could achieve efficiencies between 90% and 95%, which are practically
independent of the ratio between the input and output voltages.

Final Design Decisions (for Voltage Regulation)

For our final design, we decided to include both a linear and a buck switching
voltage regulator in our system. The linear voltage regulator we chose was the 3.3V
LDO linear voltage regulator from STMicroelectronics’s L4931 series. It has a relatively
low typical dropout voltage of 0.4 V, and can operate with input voltages as high as 20V
with output currents of up to 300mA (see datasheet in Appendix A8). We added the
linear regulator so that it can be used to regulate the supply voltage when the sensor
nodes are plugged into ground power via the wall transformer and efficiency is not a
concern. In the case when the sensor nodes are powered through solar power, however,
efficiency is a major issue. In this case, it is best to use a switching regulator instead.
The one we used in our design is based on Texas Instruments’ TPS6220x family of step-
down, DC-DC converter controllers. In the range of input voltages and output currents
our circuit requires, this step-down converter gives us efficiencies between 90% and 95%
(see datasheet in Appendix A10).

Circuit Design

Computer Host

The block diagram below (Figure 13) shows a high level view of the Computer
Host, which gathers and logs all of the sensory data collected by the network.

Figure 13. High-level block diagram of Computer Host.

 15

The Computer Host interfaces with a PC through the serial port. Since the
Computer Host must be physically connected to a PC, there is no need to power the
circuit using batteries. As a result, the circuit is powered by a DC adaptor (wall
transformer). Also, the Computer Host is operated by the PC, and does not require a
microcontroller. Power from the DC adaptor is regulated by a linear voltage regulator.
The ST3232E chip is a RS-232 receiver and transmitter. The device boosts the signals
from the XBee to levels that can be interpreted by a PC. This is performed by a dual
charge pump using four 0.1µF capacitors. An inventory list of the parts used to construct
the Computer Host is shown in Table 3. The total price is an underestimation since some
of the parts were already available to us by the college. The list also does not account for
sockets, headers, jumpers, or the cost of the PCB. Figure 14 shows a picture of the
Computer Host circuit with important features highlighted. Figure 15 is a circuit
schematic of the Computer Host.

Table 3. Parts List for Computer Host

Quantity Part # Description Price
($)

1 182-009-212-
531

CONN DB9 FEM .318" RA MET SHELL
1.68

1 B3F-1000 SWITCH TACT 6MM MOM 100GF 0.20
5 Capacitor 100 nF
1 Capacitor 10 μF
1 DPD030040-

P7P-TK
TRANSFORMER 3VDC 400MA P7 PLUG

5.43
1 L4931ABV33 ST Low Drop Voltage Regulators/Drivers TO-220AB 3.3V

0.25A Positive 0.70
1 LED
1 PJ-007 CONN PWR JACK RT ANG 1.3MM I.D. 0.45
1 Resistor 200 Ω
1 Resistor 10 kΩ
1 XBP24-ACI-

001
XBee24 PRO-2.4GHz-CHIP - 1mw -I

32.00
 TOTAL 40.46

 16

Figure 14. Picture of Computer Host circuit board.

 17

Figure 15. Circuit schematic for Computer Host.

 18

Sensor Node

 The Sensor Node gathers data from sensors and forwards the data to the host. The
block diagram (Figure 16) below shows a high-level view of a single network node with
two alternative power stages.

Figure 16. High-level block diagram of Sensor Node with alternative power stages.

The Sensor Node is operated by a PIC16LF876A microcontroller. The

microcontroller runs off of a 4MHz external resonator. The PIC can be programmed
through the ICD interface. Sensors can be conveniently attached to available pins on the
PIC, which are located on a header at the bottom of the board (Figure 17). Up to 10
digital pins and a maximum of 4 analog pins are available as inputs (Table 4). The circuit
can either be powered by batteries and solar panel or a DC adaptor (wall transformer).
The power can be chosen to be regulated by either the linear regulator or switching
regulator through settings of jumpers. For increased performance, the switching
regulator should be used when the circuit is battery powered since the switching regulator
has a higher efficiency compared to the linear regulator. The linear regulator should be
used when the circuit is powered by a DC adaptor since the input voltage range of the
linear regulator is higher than the switching regulator. Setting the jumpers for linear
regulation also enables a power LED indicator. An inventory list of the parts used to
construct the Sensor Node is shown in Table 5. The total price is an underestimation
since some of the parts were already available to us by the college. The list also does not

 19

account for sockets, headers, jumpers, or the cost of the PCB. Figure 17 shows a picture
of the Sensor Node circuit with important features highlighted. Figure 18 is a circuit
schematic of the Sensor Node.

Table 4. Available Pins on the PIC

Pin Name Description
RA1/
AN1

Digital I/O.
Analog input 1.

RA2/
AN2/
VREF-/
CVREF

Digital I/O.
Analog input 2.
A/D reference voltage (Low) input.
Comparator VREF output.

RA4/
T0CKI/
C1OUT

Digital I/O – Open-drain when configured as output.
Timer0 external clock input.
Comparator 1 output.

RA5/
AN4/
SS/
C2OUT

Digital I/O.
Analog input 4.
SPI slave select input.
Comparator 2 output.

RB1 Digital I/O.
RB5 Digital I/O.
RC2/
CCP1

Digital I/O.
Capture1 input, Compare1 output, PWM1 output.

RC3/
SCK/
SCL

Digital I/O.
Synchronous serial clock input/output for SPI mode.
Synchronous serial clock input/output for I2C mode.

RC4/
SDI/
SDA

Digital I/O.
SPI data in.
I2C data I/O.

RC5/
SDO

Digital I/O.
SPI data out.

 20

Table 5. Parts List for Sensor Node

Quantity Part # Description Price

($)
1 05-1291 Flexible Solar Panels (6v Modules) 100mA 5.0”x6.0” 26.65
1 1N4001 DIODE GEN PURPOSE 50V 1A DO41
1 25AA160A-I/P IC SEEPROM 16K 1.8V 8DIP 0.99
1 B3F-1000 SWITCH TACT 6MM MOM 100GF 0.20
2 Capacitor 10 μF
1 Capacitor 100 nF
2 Capacitor 33 pF
1 CDRH5D18-

100NC
INDUCTOR 10UH SHIELDED SMD

0.92
1 Connector RJ-12
2 JMK316BJ106KL-

T
CAP CER 10UF 6.3V X5R 1206

0.44
1 L4931CZ33 ST Low Drop Voltage Regulators/Drivers TO-92 3.3V

0.25A Positive 0.56
1 LED
1 LM4040CIZ-2.5 IC VOLT REF PREC MICROPWR TO-92 1.15
4 NH15-2500 AA Rechargeable NiMH -1.2 Volts - 2500 mAh 9.99
1 PIC16LF876A-

I/SP
Microchip PICmicro - PIC16LFxxx SPDIP-28 14KB 368
RAM 22 I/O 4.75

1 PJ-007 CONN PWR JACK RT ANG 1.3MM I.D. 0.45
4 Resistor 1 MΩ
1 Resistor 15 kΩ
1 Resistor 2.2 MΩ
1 Resistor 200 Ω
1 Resistor 3.0 MΩ
1 Resonator 4.00 MHz
1 SBH-341AS HOLDER BATT W/COVR 4AA ON/OFF SW 1.08
1 SE3201-ND C-001R 32.7680K-A 0.27
1 TPS62203DBVT IC DC-DC CONV STEPDOWN SOT-23-5 2.00
1 XB24-ACI-001 XBee24 -2.4GHz-CHIP – 1mw -I 19.00

 TOTAL 68.45

 21

Figure 17. Picture of Sensor Node circuit board.

 22

Figure 18. Circuit Schematic for Sensor Node.

 23

SOFTWARE

The software portion of this project consisted of writing driver codes to interface
all the peripheral devices with the microcontroller and the PC, designing and
implementing a low-power networking protocol, and designing a computer host program
that would gather all of the data forwarded to the PC host and save it to a web server in
an easily accessible format. Each of these steps is described in the sections below.

Hardware Drivers and Interface

EEPROM Driver

The driver we wrote for interfacing the external EEPROM with the PIC
microcontrollers through the SPI serial bus is contained in the file named
“EEPROM_SPI.c” (see Appendix B4). We wrote this driver based on the functional
description of the EEPROM chip’s operation featured in its datasheet (see Appendix A7).
We used a driver file for a different family of EEPROM chips that comes with the PIC C
compiler as a template for writing our own driver code. Although we did not end up
using much of the actual code, we preserved the general structure of the driver, which
was still helpful.

The following functions were implemented:

• void init_ext_eeprom(): This function is used to initialize the EEPROM chip
and configure the PIC’s SPI port for proper communication with the chip. It
needs to be called before the external EEPROM memory is accessed for the first
time and every time after the SPI gets reconfigured for communication with a
different peripheral device, such as a digitally interfaced sensor, for example.

• void write_ext_eeprom(EEPROM_ADDRESS address, BYTE data): This

function is used to write a single byte of data to a specified location in memory.

• void write_page_ext_eeprom(EEPROM_ADDRESS address, int8* data):

This function is used to write a whole page (16 bytes) of data starting at a
specified location in memory. It should be noted here that data needs to be an
array of exactly 16 bytes, and address needs to be an address at the beginning of
a page on the EEPROM chip. Valid page addresses are all multiples of the page
size (in this case 16 bytes), such as 0, 16, 32, …, 2032. If the page address passed
to this function is not a multiple of 16, the whole page will not be written to
memory.

• BYTE read_ext_eeprom(EEPROM_ADDRESS address): This function is used to

read a single byte of memory stored at the specified address. The data read is
returned by the function.

 24

• void read_page_ext_eeprom(EEPROM_ADDRESS address, int8* data):
This function is used to read an entire page from external EEPROM memory.
The page read begins at the location specified by address and is stored in data, a
16-byte array, which needs to be passed by reference to this function. Unlike the
write_page_ext_eeprom function, in this case address does not necessarily
need to be a multiple of the page size. However, in our implementation it always
is.

• void erase_ext_EEPROM(): This function erases the external EEPROM

memory by overwriting all previous data with 0’s.

All functions above leave the EEPROM in its standby mode, thus making sure
that the external EEPROM chip operates in its low-power state when idle. Also, if a chip
of different size is to be used, all that needs to be altered are the constants
EEPROM_PAGE_SIZE and EEPROM_NUM_PAGES, which hold the page size and the number of
pages, respectively. For more information on how the functions described above were
implemented, please refer to the commented code in Appendix B4.

XBee Driver

We wrote a driver to interface with the XBee modules as well. It is contained in
the file named “xbee.h” (see Appendix B3). This driver utilizes only a limited portion of
the RF modem’s functionality, to the extent that is required by our particular application.
Each of these functions puts the XBee module in Command Mode before sending the
appropriate commands, and exits Command Mode upon completion. Before exiting
Command Mode, each of these functions sends a WR instruction to the XBee, which
ensures that all of the changes in configuration are permanently stored to non-volatile
memory. For more information on entering Command Mode, refer to the XBee Product
Manual (Appendix A6).

The following functions were implemented:
• void set_MY_add(int16 add): This function is used to set the MY address for

the node. The MY address is the 16-bit address used to address data to the node.

• void set_dest_add(int16 add): This function is used to set the 16-bit

destination address for the node.

• void set_channel(int8 channel): This function is used to set the channel, on
which this node is going to communicate. It is important that the source node and
the destination node are configured to communicate on the same channel;
otherwise, communication would be unsuccessful, even if all addresses are set
properly. The allowable channels for communication differ slightly for the XBee
and the XBeePRO modules, and can be found in the XBee product manual in
Appendix A6.

 25

• void set_dest_add_and_ch(int16 add, int8 channel): This function is
used to set the destination address and the transmission channel of a node
simultaneously. The advantage of using this function in place of using
set_dest_add and set_channel consecutively is that it is faster since
Command Mode is entered only once.

• void xbee_sleep(): This function is used to put the XBee in a low-power Sleep

Mode.

• void xbee_wake_up(): This function is used to wake-up the XBee when in
Sleep Mode.

• void xbee_init(): This function is used to initialize the XBee by setting a

number of parameters (see actual code for mode details). It should be called
before the XBee is used for the first time. Also, the XBee needs to be out of
Sleep Mode when this function is called, which implies that a call to xbee_init
needs to be preceded by a call to xbee_wake_up. This is also true for the rest of
the functions mentioned above. If the XBee is in Sleep Mode, then it does not
respond to any commands.

The PIC interfaces with the XBee module through its UART serial port. The

baud rate used for communication varies depending on the position of the node in the
network as described in a later section of this report. The allowable baud rates for the
nodes are 9600, 4800, 2400, and 1200. All four of these baud rates are supported by both
the PIC and the XBee modules.

The XBee’s baud rate needs to be set to the appropriate value prior to using any of
the functions above. This can be done by placing the XBee module on the Computer
Host and using Maxstream’s proprietary software X-CTU to set the baud rate (see Figure
19). X-CTU can be downloaded from Maxsteam’s website (www.maxstream.net).

 26

http://www.maxstream.net/

Figure 19. Setting the XBee’s baud rate using X-CTU program by Maxstream.

For more information regarding the XBee driver, please refer to the commented code
attached in Appendix B3. For more information on using X-CTU to configure the XBee
modules, please refer to the XBee product manual attached in Appendix A6.

Network

For the networking part of our project we first had to choose a network topology,
and then implement it as part of a specifically designed network protocol. The network
topology needed to be suited for the particular needs of this project (i.e. collecting data at
a centralized node) and the network protocol needed to be designed as to take advantage
of the low-power Sleep Mode of the XBee modules.

Network Topology

After careful examination of existing wireless network topologies, we decided
that a tree network topology would be ideally suited for the purposes of a sensory data-
gathering wireless network. In a tree topology, all of the data gets propagated up to one
main root node, which in our case represents the Computer Host. The Computer Host
gathers all of the data and logs it into files stored on a web server to be analyzed at a later

 27

time. The actual network consists of parent and child nodes. A child node is connected
to a parent node and sends all of its data to its parent. A parent node is connected to a
number of children, as well as its own parent node. Its purpose is to propagate its own
data up the network, as well as forward all of the data gathered by its children. The
Computer Host serves as the top level parent, gathering the data from all nodes. An
example network configuration is shown in the Figure 20 below.

Figure 20. Example of a tree network topology.

It should be noted here that while a tree topology lends itself naturally to a

network whose aim is to propagate data to a central node, it suffers from one main
disadvantage. If a parent loses power and is unable to sustain wireless transmission, all
of its children lose their connection to the PC host. As a result, when designing our
wireless protocol, and in particular, when determining the ratio of wireless transmission
to sleep time, we had to be extremely conservative as to make such a scenario as unlikely
as possible. In turn, this reduced the throughput of our network. Naturally, we still
allowed for the possibility of a parent node losing power and devised ways to handle such
a scenario with minimal loss of information. For more details, please refer to the
following section describing the RTS wireless networking protocol.

RTS (Receive-Transmit-Sleep) Network Protocol

The RTS protocol was developed especially for the purposes of this project. It
allows for synchronized communication between wireless network nodes with reduced
average power consumption. Each node goes through three cycles: a Receive Cycle (R),
during which the node receives data from one of its children, a Transmit Cycle (T),
during which the node transmits either its own data or that of one of its children to its
parent, and a Sleep Cycle (S), during which the node turns off its RF module and logs

 28

data from the sensors. The development of this protocol was necessary due to the fact
that even though the XBee wireless modems require relatively small amounts of power
for transmission and reception, their continuous operation in receive/transmit mode
cannot possibly be sustained by the power supplied by our batteries and solar panels.

Figure 21. Propagation of data in the network.

In order to maintain reliable network operation, the Receive and Transmit Cycles

of each node have to be synchronized in such a way as to allow data to propagate up the
network (see Figure 21). Essentially, this means that we had to make sure the receive
cycle of a parent node coincides perfectly with the transmit cycle of any one of its
children nodes. Fortunately, this was easily accomplishable with the help of the real-time
clock we implemented on our PIC microcontrollers. It allows us to set precise windows
for reception and transmission of data, as well as define pre-calculated set periods of
sleep for each node.

 29

Data Packets

Figure 22. External EEPROM data structure.

As shown in Figure 22 above, external memory is divided into two segments of

equal size (1024 bytes each in the case of a 16Kbit EEPROM). Each segment contains a
header, called a stamp, which is 16 bytes long (1 page) and starts at the beginning of the
segment. Bytes 0-1 represent the index of the last valid data entry. This index is
necessary, since all 1024 bytes of data are transmitted each time, and very often not all
1024 bytes of data contain useful information. Bytes 2-3 represent the network address
of the node which gathered the data contained in the segment. Byte 5 holds an 8-bit
value, which represents the battery voltage at the time the data was gathered. Bytes 6-8
contain the time when the node started gathering data in the format hh:mm:ss. Finally,
bytes 9-12 contain the date when data was gathered in the format mm:dd:yyyy. The
remaining four bytes of data in the first page of a segment are left blank and can be used
to store any other pertinent information regarding the node. For more information on the
stamp, please refer to the comments related to the function stamp_EEPROM. 2

The first of the two segments contains all of the data gathered by the node. The
second segment is used for temporary storage of data coming from a child node; this data
will be forwarded up the network until it reaches the PC host. A whole segment of length
1024 bytes is sent during each RTS cycle regardless of whether enough data was actually
gathered to fill up the entire segment.

Adding Nodes to the Network

Before a node can be added to the network, the following constants contained in
the main node file, “node.c” (Appendix B1), need to be set accordingly:

2 All functions referred to in the RTS Network Protocol Section can be found in the file “rts.h” attached in
Appendix B2

 30

• MY_ADDRESS: This constant contains the address of the node. It is essential that
this address is unique to this node, so track of all addresses currently in use in the
network needs to be kept.

• NUM_CHILDREN: This constant contains the number of children this node will be
able to accommodate. These are the parent slots. Each parent can have up to 12
slots (0-11). The limitation in the number of slots comes from the limited number
of initialization channels that can be used by both the XBee and the XBeePRO.
The initialization channels are the channels on which new children request to be
added to the network. These channels (0x0D – 0x18) need to be different from
the regular transmission channel (0x0C), so that attempts to add oneself to the
network do not disturb regular network operation.

• PARENT_ADDRESS: This constant contains the address of the parent node that the

node is trying to attach itself to. As a result, careful track needs to be kept of all
parents in the network and the slots they have available.

• PARENT_SLOT: This constant contains the slot of the parent the node is trying to

use for communication. The parent slot should be unoccupied at the time the
node attempts to join the network. Slots are counted from 0 up, so the first slot is
slot 0, the second one is slot 1 and so on.

• BAUD_RATE: This constant contains the baud rate which the node is going to use

to communicate with the XBee module. The baud rate of a child has to be set to
half the baud rate of the parent node. This is done in order to avoid data loss in
transmission between parent and child.

Once all of the constants have been set properly, the node can proceed to add itself to the
network. As soon as a new node gets turned on, it goes into an initialization transmit
cycle.

Initialization Transmit Cycle

int8 init_handshake_req()
void T_cycle_init()

During an Initialization Transmit Cycle (T_init Cycle), the node continuously
calls the init_handshake_req function, in which it requests a handshake using its
network address as a token. Enough delay is introduced between the handshake requests
as to allow the parent, once it picks up the handshake request, to change its destination
address accordingly and respond to the new child. The parent responds to the new child
by giving it a sleep time, which ensures that the child will transmit data only when the
parent is expecting to receive it. The parent also sends the child the time and date, so that
the child can set its real-time clock appropriately. Finally, the child waits until the parent
signals the end of a time slice, at which point both parent and child go into their Sleep
Cycles with synchronized timers.

 31

Initialization Receive Cycle

int8 init_handshake_resp(int16 sleep_time, int16 i)
int8 R_cycle_init(int16 i)

A parent goes into an Initialization Receive Cycle for each one of its free slots.
The number of the free slot determines the initialization channel the parent will listen on.
The parent continuously calls the init_handshake_resp function, which will respond to
an initialization handshake request by a new child. If this happens, the parent sends the
appropriate handshake information to the child as described above and then waits for the
time slice to end. The sleep time for each child is determined by the following formula:

(1)*(SleepTime NumberOfChildren ThisNodeSleepTime= + 2) 2+ −

By setting the child’s sleep time according to this formula, the parent guarantees that the
child will sleep for the appropriate amount of time and will be ready to transmit data
exactly when the parent is ready to receive it. Once the time slice ends, the parent signals
the child that the time slice has ended and goes into a Sleep Cycle. The node
initialization procedure is illustrated in Figure 23 below.

Figure 23. Initialization Transmit/Receive Cycle.

 32

Data Transmission

int8 handshake_req()
int8 transmit_page(int16 address)
int8 handshake_resp(int16 i)
int8 receive_page(int16 address)

Figure 24. Data transmission between child and parent.

Figure 24 above shows how data is transferred between a parent node and a child

node. The child begins the process by sending a handshake request to the parent
(handshake_req function). The request is repeated at set intervals until the parent
responds (handshake_resp function) or the data transmission window runs out. The
data transmission window is determined by the TIME_SLICE, which in our case was set to
12 seconds. Once the parent responds to the handshake, the child begins data
transmission by sending the first 16 bytes (1 page) of its data segment, followed by an 8-
bit CRC (Cyclic Redundancy Check) checksum (transmit_page function). If the CRC
byte the parent receives corresponds to the CRC byte calculated based on the 16 bytes of
data it received, then the parent sends a positive acknowledge signal, which prompts the
child to send the next page of data (receive_page function). If the received and
calculated CRC bytes do not correspond, however, this implies an error occurred during
transmission, so the parent sends a negative acknowledge signal to the child asking it to
resend the data. Once all 64 pages of the child’s data segment have been successfully
transmitted, the child waits for the parent to signal the end of the time slice. This is done
in order to resynchronize the child and parent clocks and avoid misalignment caused by
slight discrepancies between the clock rates of the two nodes.

 33

Calculating an 8-bit CRC Checksum

int8 CRC_calc(int8* page)

For our 8-bit CRC checksum calculation we used a table of 256 pre-calculated CRC
entries (stored in the PIC’s read-only memory) based on the polynomial x8+x5+x4. This
polynomial has been proven effective in determining a wide range of errors in
transmission. The algorithm for calculating CRC checksums based on the entries in this
table is the following:

1. Set the checksum equal to zero
2. Do a bitwise exclusive OR (XOR) operation between the first byte and the

checksum
3. Use the result to index into the table
4. Set the checksum equal to the value returned from the table
5. Repeat steps 2 – 4 for each byte in the 16-byte sequence
6. The value of the checksum after the 16th byte is the CRC byte

The CRC data table as well as the algorithm for calculating the CRC are described in
much more detail in Appendix A12, which contains the reference material we used as a
guide to implementing our CRC calculation.

Receive Cycle

int8 R_cycle(int16 i)

During a receive cycle the node waits for one of its children to initiate a
handshake on the regular transmission channel. If the handshake terminates successfully,
the node receives data from its child and writes it to the bottom half of its external
EEPROM. When the cycle is over, the R_cycle function returns 0 to indicate success.
The data is received in the manner specified by our data transmission algorithm described
above. If the handshake doesn’t terminate successfully, or if not all of the data is
received successfully, the R_cycle function returns 1 to indicate failure. In this case, the
parent does not attempt to forward any data up the network, since no valid data was
received.

Transmit Cycle

int8 T_cycle(int16 D_address)

During a transmit cycle the node attempts to initiate a handshake with its parent.
If the handshake is successful, the node either transmits its own data up to the parent or it
forwards the data just received from one of its children. Again, transmission is done
according to the data transmission algorithm described above. T_cycle returns 0 if the
transmission is successful and it returns 1 if the handshake is unsuccessful or not all 64
pages are transmitted successfully. If T_cycle fails, the child node realizes that it has
lost connection to its parent. In this case, it sleeps until it reaches the exact same part of

 34

 35

its full cycle where it realized it had lost the connection to the parent. At this point it
wakes up and tries to retransmit the data it was unable to transmit previously. This can
be either its own data, or a data that needs to be forwarded from a child. For more
information on when this scenario might occur, please refer to section on failure mode
below.

Sleep Cycle

void S_cycle(int16 sleep_time)
void delay_RTS(int32 count, int16 time_out)

During the sleep cycle, the node puts the XBee module to sleep and goes into
low-power mode operation. Then it begins gathering data from the sensors in set time
intervals. The delay in-between gathering data points is set by defining the LOOP_DELAY
constant. The LOOP_DELAY constant holds the delay between data points in hundreds of
microseconds and can go up to 232, which corresponds to about 119 hours. It is essential
that no additional delays are added to the get_data function, since they might offset the
precise timing of the RTS cycles. The LOOP_DELAY constant is used with the function
delay_RTS, which delays for the set period of time determined by LOOP_DELAY, but also
times out when the Sleep Cycle is over.

An example timing diagram of a functioning RTS network is shown on the next
page (Figure 25). Each square represents a time slice of 12 seconds. The color coding is
used to help trace the data packets. The arrows are used to show how data propagates up
the network. The color of an arrow indicates the node that sent the data packet. Note that
instead of having sleep cycles the PC host, H0, has idle cycles, since it is connected to an
unlimited power supply and it does not need to put the XBee to sleep.

36

Figure 25. Example time diagraming of the RTS protocol.

Network Throughput

One of the biggest inherent tradeoffs of the RTS protocol is that the data
throughput for each node is dependent on its position in the network. The throughput of
each node is a function of its parent’s sleep time, the number of the parent’s children, and
the number of the node’s children. It is given by the following formula:

1024

(1)*(2)*
DataRate

NumberOfChildren SleepTime TimeSlice
=

+ +

The origins of this formula can clearly be seen in the timing diagram on the previous
page (Figure 25). The longer the sleep time of the parent, the longer a node has to wait
before the parent enters a receive cycle and accepts data transmission from the child.
Also, the more children a node has, the longer it has to wait before it can transmit its own
data. Finally, the more siblings a node has, the longer it has to wait for its turn to
communicate with the parent. As a result, only the nodes at Level 1 can operate at
maximum capacity, and all other nodes have to operate at a lower capacity. For a time
slice of 12 seconds and a data packet size of 1024 bytes, the throughput for a Level 1
parent with two children is approximately 3.5 bytes/sec.

In the actual implementation of our network the ratio of sleep time to
receive/transmit time for Level 1 is 3:1 (R:T:S = 1:1:6), which is as low as it can be if
proper operation of the nodes is to be guaranteed with a reasonable certainty. With this
ratio an XBee node on Level 1 consumes approximately 60mW on average and an
XBeePRO node on Level 1 consumes approximately 80mW on average in one day.
Assuming that about 5 hours of sunlight shines on a regular day, the small solar panel
supplies about 62.5mW on average and the large solar panel supplies about 125mW on
average in one day. Thus, according to these calculations, an XBee node powered by a
small solar panel and an XBeePRO node powered by a large solar panel should be able to
sustain infinite operation. Of course, this is only valid if the assumption of 5 hours of
sunshine a day is valid. Still, since the nodes can operate up to almost 7 days without any
solar power, the 5 hours of sunshine a day needs to average over one week. A lower
sleep time to receive/transmit time ratio would not be able to sustain operation for
prolonged periods of time under these assumptions, since the nodes would not be able to
scavenge enough solar power to maintain operation.

Since the nodes on Level 2 have no children in the example above, their
throughput is essentially the same as that of their parents. If a node on Level 2 had 2
children, however, then its average throughput would be 3 times as low, or approximately
1.2 bytes/sec, because in addition to transmitting its own data, it also has to forward the
data coming from both of its children.

Failure Modes

void failure_mode()

 If the battery voltage of a node goes below a certain critical value set by the
constant FAIL_LOW, then it goes into a low-power mode, where it essentially cuts off

 37

communication with all other nodes, and replaces all of its cycles with low-power Sleep
Cycles. This means that the node continues logging data from the sensors, but does not
send any data up the network. The node maintains this mode of operation until the
battery voltage goes above a second threshold value, FAIL_HIGH, when it goes back to its
normal mode of operation. FAIL_LOW and FAIL_HIGH are set so there is a difference
between them which assures us that once the node goes back into normal mode of
operation, it will remain in normal mode of operation for some time, rather than go back
immediately into low-power mode as soon as it transmits once. It should be noted that
while in low-power mode, the node continues to keep track of its RTS schedule, so that
once it is ready to exit low-power mode, it can get back to its normal schedule for
communicating with its children.

If a parent node goes into low-power mode of operation, its children will be
unable to forward data up the network. Consequently, they need to be able to handle
T_cycle failure gracefully. If a call to T_cycle results in a non-zero return value, a node
instantly goes to sleep for a period of time given by:

(1)*(SleepTime NumberOfChildren ThisNodeSleepTime= + 2) 1+ −

This sleep time is 1 time slice bigger than the sleep time the node gives to each of its
children. It is set in such a way that the node essentially skips through an entire rotation,
and wakes up exactly in time to try to retransmit the data it was trying to transmit during
the last cycle. This sequence is repeated until the node’s parent finally comes back up
and is ready to accept the data.

Notice that when a node loses the connection with its parent, it automatically
stops accepting any connection requests from its children. As a result, the children lose
communication with their parent as well. Thus, every node below the parent that went
down goes into failure mode, where it continues gathering data and periodically checks to
see if the connection with the parent is back up again. This scenario ensures that no data
will be lost due to a parent node going into a low-power mode. Instead, the data gathered
by nodes below a parent that goes temporarily down will only be delayed until the parent
is ready to come back. Of course, this is only valid until the nodes that are in failure
mode have enough free memory to keep logging their data. If a parent is down for
prolonged periods of time, it is possible that its children will run out of room for logging
data and data will be lost.

All of the functionality of the node as a part of the RTS network is contained in
the main function of the file “node.c” attached in Appendix B1. Please refer to the
commented code in this file to get a better understanding of how the different parts of the
RTS protocol come together.

Computer Host Program

The Computer Host program communicates with a XBee module using the
computer’s serial port. Since most computers run on Microsoft Windows, the program
was intended to be compatible with Windows machines. The host program was
programmed using Microsoft Visual Basic. Visual Basic offers an easy GUI
development environment for software applications. The serial port communications is

 38

performed using the MSComm Control component. The MSComm communicates with
the XBee module on COM1 port with the settings of 19200 baud, 8 data bits, No parity,
and 1 stop bit. The program reads data from the XBee’s buffer one byte at a time. The
code below shows how the serial port can be opened using the settings mentioned above.

 ' use COM1 port
 MSComm1.CommPort = 1
 ' 19200 baud, no parity, 8 data, and 1 stop bit
 MSComm1.Settings = "19200,N,8,1"
 ' the control reads one character at a
 ' time from the hardware buffer
 MSComm1.InputLen = 1
 ' open the serial port
 MSComm1.PortOpen = True

The main purpose of the host program is to collect data from the network and save the
data to a file. When data from a node is successfully collected, the data is appended to a
text file. Data from a node is written on one line in a comma delimited format. This text
file can be written to a web accessible location to make the data visible using a web
browser. To do this, the entire filename and path must be inputted. If only a filename is
specified, then the data will be saved to a file that is located in the same directory as the
executable file.
 When the program starts, it enters into Command Mode. Commands to the XBee
can be sent in this mode. The program will start looking for children and logging data
when a filename is entered and the “Save” button is pressed. At this stage, the program
enters Saving Mode. Currently the program is setup to support only three children under
the Host. The program can be recompiled to support any number of children under the
host by setting NUM_CHILDREN appropriately in “global_variables.bas.” When the “Stop”
button is pressed, the program stops appending data to the file and enters Debugging
Mode. At this point, the program keeps running as usual but no longer saves data; only
commands can be sent to the XBee.
 The host program conforms to the RTS network protocol described earlier. Much
of the functions in the host program are the same as for the nodes (R_cycle_init,
R_cycle). However, since the host is at the top of the network and is plugged into a
power outlet, it does not need transmit or sleep cycles. Instead, the host simply alternates
between receive and idle cycles. Consequently, the sleep times for children under the
host are calculated differently compared to sleep times for children under nodes. The
sleep time is calculated by:
 ()sleep time number of children 2 2= × −
The multiplication by two accounts for the receive and idle cycles for the host. The
subtraction of two accounts for a receive cycle and transmit cycle for the child. For
example, having 6 children under the host will result with a child having a sleep time of
10 cycles:

HOST R I R I R I R I R I R I R
NODE R T S S S S S S S S S S R T

See detailed comments included in the files in Appendix C for more information about
the host program.

 39

RESULTS AND TESTING

XBeePRO Test

After completing our final design, we noticed an alarmingly high transmission
error rate when using sensor nodes with the XBeePRO powered through the switching
regulator. Since we had anticipated the noise in the supply voltage might cause such
problems, we set off to determine whether this was indeed the case. We powered an
XBeePRO node from an independent, steady 3.3 V power supply and noticed that in this
case there were no errors in the transmission. As a result, we could be sure that the
problem was coming from our voltage regulation power stage. Since the XBee nodes did
not exhibit similar behavior, we concluded that the five-fold increase in power
consumption of the XBeePRO’s during transmission caused the DC-DC converter to
output significantly more noise in the supply voltage, and in turn affect the performance
of the analog circuitry in the RF modules.

In order to overcome this problem, we decided to cascade the switching regulator
with a 3.0 V LDO linear regulator. In this way, we could reduce the noise in the
regulated supply voltage while maintaining a relatively high efficiency of about 86% (a
95% efficiency for the switching regulator followed by a 91% efficiency for the LDO
linear regulator). Scaling down the supply voltage to 3.0 V was not a problem, since this
supply voltage was within the operating range of all of our circuitry. The only difficulty
we had was finding a 3.0 V linear voltage regulator with a low enough drop-out voltage
that would allow it to operate with a supply voltage of 3.3 V. Fortunately, we were able
to find such a regulator. The Si9181 Micropower 350-mA CMOS LDO Regulator from
Vishay Siliconix has a typical drop-out voltage of 150 mV (see data sheet in Appendix
A11).

We placed the new 3.0 V LDO voltage regulator in place of the old 3.3 V voltage
regulator, and we used the jumpers to connect the batteries to the input of the switching
regulator, the output of the switching regulator to the input of the 3.0 V LDO linear
regulator, and the output of the 3.0 V LDO linear regulator to the supply voltage for our
circuit (see Figure 26 below).

 40

Figure 26. Cascading the 3.3 V switching regulator with a 3.0 V LDO linear regulator to

reduce noise in the supply voltage while maintaining a high efficiency.

This successfully reduced the noise in the supply voltage, and in turn dramatically

decreased the error rate of the XBeePRO nodes, as can be see in Figure 27 below. The
error rate was decreased to the very acceptable level of approximately 1/10000. Since
errors in transmission are detected and eliminated in our data transmission algorithm
through the use of an 8-bit CRC checksum and re-transmission of invalid data, the
XBeePRO nodes with this improved power stage could now reliably be used as part of
our wireless network.

 41

Figure 27. Top: Noisy supply voltage outputted by switching regulator results in numerous
 transmission errors. Bottom: Reduced noise in supply voltage by adding a 3.0 LDO

 linear regulator significantly reduces error rate.

Temperature Data Test

 The network was tested using the LM19 temperature sensors. The temperature
and battery voltages were analyzed over time. The network layout of the test is shown in
Figure 28 along with placement of the nodes in Figure 29. The test was performed in
Hicks Hall at Swarthmore College. The nodes were placed in Tupperware containers for
protection from dust and debris.

 42

Figure 28. Temperature test network layout.

Figure 29. Temperature test node locations.

 Graph 1 shows the variations of the temperature at each node over time. The high
temperatures recorded between 3 and 6 PM for Node 2, 3, 4, 5 are due to the fact that the
sensors were concealed in Tupperware containers and positioned in direct sunlight. The
Tupperware essentially acts as an insulating layer, trapping heat inside of the container.
The trend of Node 1 is different from the other nodes because it was placed outside of a

 43

room window and was not exposed to direct sunlight. As the day turned into night, the
temperatures of all of the nodes decreased as was expected.

2 3 4 5 6 7 8 9 10 11
50

60

70

80

90

100

110

120

Time PM (hrs)

Te
m

pe
ra

tu
re

 (F
)

Temperature Test 04/30/06

Node1
Node2
Node3
Node4
Node5

Graph 1. Temperature vs. Time

The battery voltage trends also agree with our expectations, as shown in Graph 2.

As a note, only changes, not absolute values, of the battery voltages can be discussed due
to the lack of precision in the resistors used for the battery voltage divider. The voltage
of Node 1 remains relatively constant since it was plugged into a power outlet. Both
Node 4 and Node 5 were equipped with XBeePRO modules and placed on Level 1 with
no children (Figure 28). Both of these nodes consume the same amount of power
transmitting data. As can be seen in the graph, the battery voltage of Node 4 increases
more than Node 5. This can be explained by the fact that Node 4 was equipped with a
large solar panel (4.5”x6.0”) and Node 5 was equipped with a small solar panel
(4.5”x3.0”).

The battery voltage of Node 2 increased the most, from 5.3V to 5.7V. Node 2
was equipped with a large solar panel and was placed on Level 2 of the tree network
(Figure 28). Nodes on Level 2 spend less time transmitting data and consume less power
compared to nodes on Level 1. As a result, Node 2 was able to store more of the energy
it harvested from the Sun. Part of this explanation can also be attributable to the fact that
Node 2 used an XBee module, whereas Node 4 and Node 5 used XBeePRO modules
which consume more power. This same reasoning can be used to explain the battery
voltage increase of Node 3.

 44

2 3 4 5 6 7 8 9 10 11
5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6

Time PM (hrs)

B
at

te
ry

 V
ol

at
ge

 (V
)

Battery Voltage Test 04/30/06

Node1
Node2
Node3
Node4
Node5

Graph 2. Battery Voltage vs. Time

Power Efficiency

 Some preliminary testing of the power stage indicated that the observed
efficiencies were very close to the efficiencies stated by the manufactures. In particular,
the efficiency of the switching regulator was shown to be close to 95%, and the efficiency
of the linear regulators was shown to conform to the formula:

out out

in in

P VEfficiency
P V

= = .

The efficiency of the switching regulator cascaded with the 3.0 V LDO linear regulator
was also close to the predicted value of 86%. However, all of the efficiency tests were
preliminary and were based on a very limited data set. For more conclusive efficiency
results, more data needs to be gathered.

Range

The preliminary tests of the range of the sensor nodes indicated that the ranges
conformed to the specifications provided by the XBee manufacturer for the on-chip
antenna modules. These ranges can be obtained from Table 2 in the section on RF
communications. Again, for a more conclusive range test, more data needs to be
gathered.

 45

Failure Mode

Failure Mode has not been thoroughly tested due to time limitations of the project.
The response of the sensor nodes to unsuccessful transmission cycles was observed to be
according to our specifications. However, we were unable to test the full failure mode
functionality, and in particular setting the constants FAIL_LOW and FAIL_HIGH to values
that would ensure the desired failure mode behavior. Therefore, if failure mode is to be
used, the contents of the fail_mode function contained in the file “rts.h” need to be
uncommented and the constants associated with it have to be tested and refined by the
user.

APPLICATION NOTES

Programming the Sensor Nodes

In order to program a sensor node, all the user needs to do is set the five constants
defined at the beginning of the file “node.c” as described in the section on adding new
nodes above. The only reserved address in a newly created network is the address 0,
which is used by the computer host. It should also be kept in mind that the computer host
has only 3 slots (0–2), so it can accommodate only up to 3 children on Level 1. For
example, a node with an address of 1 that is set to use slot 0 of the host and have 2
children is defined in the following way:

//All pertinent node information that can be stored as constants
#define MY_ADDRESS 1 //this node's address
#define NUM_CHILDREN 2 //number of children for this node
#define PARENT_ADDRESS 0 //parent address
#define PARENT_SLOT 0 //the parent slot
#define BAUD_RATE 9600 //the baud rate for Level 1

Before a child can be added to Node 1, we must wait for Node 1 to get accepted
by its parent (Computer Host 0). It is essential that no children nodes are trying to join
Node 1 before it has become a part of the network, because their attempts to join will
interfere with Node 1 joining the network. Essentially, this means that all nodes on Level
1 need to be added to the network successfully before nodes on Level 2 are turned on.
The same goes for all other levels as well. The only sure way to know that a node has
been successfully added to the network and is ready to accept children is the PC host
receiving the first data packet from that node.

Consequently, if a child node is to be added to Node 1 from the example above,
we first have to wait for the first data packet from Node 1 to arrive. Once this happens,
we can program a second node with the following parameters:

//All pertinent node information that can be stored as constants
#define MY_ADDRESS 2 //this node's address
#define NUM_CHILDREN 1 //number of children for this node
#define PARENT_ADDRESS 1 //parent address
#define PARENT_SLOT 0 //the parent slot
#define BAUD_RATE 4800 //the baud rate for Level 2

 46

Since Node 1 has two slots, we can also program a second child with the
following parameters:

//All pertinent node information that can be stored as constants
#define MY_ADDRESS 3 //this node's address
#define NUM_CHILDREN 1 //number of children for this node
#define PARENT_ADDRESS 1 //parent address
#define PARENT_SLOT 1 //the parent slot
#define BAUD_RATE 4800 //the baud rate for Level 2

Notice that Node 2 and Node 3 are trying to add themselves to Node 1 using two
different slots (Slot 0 for Node 2 and Slot 1 for Node 3). If they we both trying to add
themselves using Slot 0, then only one would get added and the other one would remain
in its Initialization Transmit Cycle forever. Thus, when setting up a network, it is crucial
to make sure that each node is trying to add itself to a parent using an open slot. Also,
notice that the baud rate for Level 2 goes down to 4800, since it needs to be half of that
on the Level 1 above, which is 9600.

Once Node 2 and Node 3 have been programmed properly, they can both be
turned on at the same time. One will not interfere with the other, since they are trying to
communicate with Node 1 on different initialization channels.

As soon as data is received from Node 2, we can add a child to it as well. Here
are the parameters for such a child:

//All pertinent node information that can be stored as constants
#define MY_ADDRESS 4 //this node's address
#define NUM_CHILDREN 0 //number of children for this node
#define PARENT_ADDRESS 2 //parent address
#define PARENT_SLOT 0 //the parent slot
#define BAUD_RATE 2400 //the baud rate for Level 3

 Again, the baud rate for this node goes down to 2400, which is the appropriate
baud rate for Level 3. This child adds itself using Slot 0, since this is the only available
slot on Node 2 (Node 2 has only 1 slot). Also, this new child is set up to have 0 number
of children, which means that no children can be added to it (it has no open slots).

The network that we end up with in this example is illustrated in Figure 30 below:

 47

Figure 30. Network configuration resulting from example above.

Using the Computer Host Application

Figure 31. Screenshot of Computer Host program.

 48

1. Open the program (host.exe)
2. If serial port settings are correct, the program starts in Command Mode. The

COM1 port must be available and the XBee/XBeePRO module must be set at
19200 baud.

3. Commands can be sent to the XBee by entering a command and clicking
“Send.” This can be used to make sure the program works properly.

4. Turn on all Level 1 Nodes.
5. Enter a filename and click “Save” to start the RTS protocol and enter Saving

Mode. The file will be saved in the same directory that host.exe is located in.
To save the data to another file or into a web accessible location, the entire file
path must be entered. For example, saving the file to
\\Celeborn\home\galadriel\class06\bpark2\public_html\e90\example.txt will
make the file available online at
http://www.engin.swarthmore.edu/~bpark2/e90/example.txt

6. Data will be saved to the file in a comma delimited format. Refer to the Data
Packets section under the RTS Network Protocol topic in this report for more
information on how the data is organized. New 1024 bytes of data will be
written to the file in one long string of numbers. Each byte is separated by a
comma.

7. Add a Level 2, 3, or 4 child to the network only after the display has printed
that it has saved data from the child’s parent.

8. If a Level 1 node goes down or consistently fails to send data, reset the host
slot by entering the slot number and clicking Reset. Troubleshoot the node
and add it back to the network for re-initialization. This feature allows you to
fix a Level 1 node without stopping the data gathering process altogether.

9. Click Stop to stop saving data and enter Debugging Mode. In Debugging
Mode, only commands can be sent to the XBee and the program no longer lets
you save data. The program cannot go back into Saving Mode.

10. Exit the program.

Gathering Data Using Analog and Digital Sensors

In order to gather desired sensory data using our system, all the user needs to do is
rewrite the void get_data() function in the “rts.h” file to interface with any sensors
that are going to be connected to the sensor nodes. The current implementation of this
function is shown below:

//get_data function used to gather data
void get_data(){
 int8 i = 0;

 write_ext_eeprom(node.next_data, temp_sense());
 //write_ext_eeprom(node.next_data, 'A');
 node.next_data++;

}

This implementation calls the temp_sense function from the file “LM19.h” (see

Appendix B5), which simply reads the value of analog pin AN1, which is connected to

 49

http://www.engin.swarthmore.edu/%7Ebpark2/e90/appendix/c/host.exe
http://www.engin.swarthmore.edu/%7Ebpark2/e90/example.txt

the analog output of the LM19 temperature sensor we used for our temperature test.
However, the get_data function can be rewritten so that it reads analog values from any
one of the available analog pins, or digital values from any one of the available digital
pins. In addition to this, the get_data function can also be written so that it reads data
from digitally interfaced analog sensors through the SPI or the I2C bus.

Also, the delay between data points needs to be defined by the LOOP_DELAY
constant as mentioned earlier. The LOOP_DELAY constant sets the delay between data
points in hundreds of microseconds and it is defined in “rts.h” (see Appendix B2). For
example, consider:

#define LOOP_DELAY 100000

This definition results in a delay of 100000x100μs = 10s.

System Specifications

Table 6. System Specifications

Operating Time
Without Sunlight approx. 160 hrs for Level 1, R:T:S=1:1:6
With Sunlight Infinite?

Data Throughput 1024
(1)*(2)*

DataRate
NumberOfChildren SleepTime TimeSlice

=
+ +

Range Specified by XBee/XBeePRO modules
Maximum Number of Nodes on Level 1 3
Maximum Number of Levels 4
Maximum Number of Children 12
Maximum Number of Nodes 3x12x12x12 = 5184

SUGGESTED IMPROVEMENTS

Host Program

 Visual Basic provides very little control over background processes and actual
hardware communications with the serial port. Although the program gets the job done,
it is very inefficient and takes up all of the CPU’s processing power during data
collection. Using the computer while the program is collecting data can cause the
program to hang or cause the network to become out of synch. A more efficient program
would allow the user to multitask and work with other applications on the computer while
collecting data from the network.

 50

Measuring Battery Voltage

 The resistors used in the battery voltage divider were 5% resistors. These errors
can provide misleading measurements of the batteries. Therefore, 1% resistor values
should be used to obtain a more accurate measurement.

Encasing

 Tupperware containers are not very robust and are susceptible to leaks. The
development of a weatherproof encasing that is permeable to 2.4Ghz frequencies is
needed to test the network in all types of weather conditions.

Testing

 The entire system needs to be tested further in field conditions. In particular, the
efficiency of the power stage, the range of communication, and the proper functioning of
nodes in failure mode need to be examined in more detail.

ACKNOWLEDGEMENTS

 We would like to thank our adviser Professor Erik Cheever for his advice and
support throughout the development of this project. Our gratitude also extends to
Edmond Jaoudi for his help and resourcefulness when it came down to finding suitable
hardware solutions for our circuits, and to Professor Carr Everbach for helping us come
up with and develop the idea for this project.

 51

APPENDIX A: Data Sheets

A1. PIC16F87XA Data Sheet
http://ww1.microchip.com/downloads/en/DeviceDoc/39582b.pdf

A2. LM4040 Precision Micropower Shunt Voltage Reference
http://www.national.com/ds/LM/LM4040.pdf

A3. PICmicro™ Mid-Range MCU Family Reference Manual
http://ww1.microchip.com/downloads/en/DeviceDoc/33023A.pdf

A4. LM19 2.4V, 10μA, TO-92 Temperature Sensor
http://www.national.com/ds/LM/LM19.pdf

A5. ENERGIZER NH15-2500
http://data.energizer.com/PDFs/nh15-2500.pdf

A6. XBee™/XBee-PRO™ OEM RF Modules
http://www.maxstream.net/products/xbee/product-manual_XBee_OEM_RF-Modules.pdf

A7. 25AA160A 16K SPI™ Bus Serial EEPROM
http://ww1.microchip.com/downloads/en/DeviceDoc/21807b.pdf

A8. L4931 VERY LOW DROP VOLTAGE REGULATORS WITH INHIBIT
http://www.ortodoxism.ro/datasheets/stmicroelectronics/4340.pdf

A9. ST3232E ±15KV ESD-PROTECTED, 3 TO 5.5V, LOW POWER, UP TO
250KBPS, RS-232 DRIVERS AND RECEIVERS
http://www.ortodoxism.ro/datasheets/SGSThomsonMicroelectronics/mXytwqz.pdf

A10. TPS62203 HIGH-EFFICIENCY, SOT23 STEP-DOWN, DC-DC CONVERTER
http://www.ortodoxism.ro/datasheets/texasinstruments/tps62203.pdf

A11. Si9181 Micropower 350-mA CMOS LDO Regulator With Error Flag/Power-On-
Reset
http://www.ortodoxism.ro/datasheets/vishay/71119.pdf

A12. CRC Calculation Humidity Sensors (Revision 1.03)
http://www.sensirion.com/images/getFile?id=80

 52

http://ww1.microchip.com/downloads/en/DeviceDoc/39582b.pdf
http://www.national.com/ds/LM/LM4040.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/33023A.pdf
http://www.national.com/ds/LM/LM19.pdf
http://data.energizer.com/PDFs/nh15-2500.pdf
http://www.maxstream.net/products/xbee/product-manual_XBee_OEM_RF-Modules.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/21807b.pdf
http://www.ortodoxism.ro/datasheets/stmicroelectronics/4340.pdf
http://www.ortodoxism.ro/datasheets/SGSThomsonMicroelectronics/mXytwqz.pdf
http://www.ortodoxism.ro/datasheets/texasinstruments/tps62203.pdf
http://www.ortodoxism.ro/datasheets/vishay/71119.pdf
http://www.sensirion.com/images/getFile?id=80

APPENDIX B: PIC C Files

B1. node.c
http://www.engin.swarthmore.edu/~bpark2/e90/appendix/b/node.c

B2. rts.h
http://www.engin.swarthmore.edu/~bpark2/e90/appendix/b/rts.h

B3. xbee.h
http://www.engin.swarthmore.edu/~bpark2/e90/appendix/b/xbee.h

B4. EEPROM_SPI.c
http://www.engin.swarthmore.edu/~bpark2/e90/appendix/b/EEPROM_SPI.c

B5. LM19.h
http://www.engin.swarthmore.edu/~bpark2/e90/appendix/b/LM19.h

B6. tick.h
http://www.engin.swarthmore.edu/~bpark2/e90/appendix/b/tick.h

APPENDIX C: Computer Host Visual Basic Files

C1. host.vbp - Project
http://www.engin.swarthmore.edu/~bpark2/e90/appendix/c/host.vbp

C2. host.frm - Form
http://www.engin.swarthmore.edu/~bpark2/e90/appendix/c/host.frm

C3. rts.bas - Code Module
http://www.engin.swarthmore.edu/~bpark2/e90/appendix/c/rts.bas

C4. global_variables.bas - Code Module
http://www.engin.swarthmore.edu/~bpark2/e90/appendix/c/global_variables.bas

C5. host.exe - Compiled Version
http://www.engin.swarthmore.edu/~bpark2/e90/appendix/c/host.exe

 53

http://www.engin.swarthmore.edu/%7Ebpark2/e90/appendix/b/node.c
http://www.engin.swarthmore.edu/%7Ebpark2/e90/appendix/b/rts.h
http://www.engin.swarthmore.edu/%7Ebpark2/e90/appendix/b/xbee.h
http://www.engin.swarthmore.edu/%7Ebpark2/e90/appendix/b/EEPROM_SPI.c
http://www.engin.swarthmore.edu/%7Ebpark2/e90/appendix/b/LM19.h
http://www.engin.swarthmore.edu/%7Ebpark2/e90/appendix/b/tick.h
http://www.engin.swarthmore.edu/%7Ebpark2/e90/appendix/c/host.vbp
http://www.engin.swarthmore.edu/%7Ebpark2/e90/appendix/c/host.frm
http://www.engin.swarthmore.edu/%7Ebpark2/e90/appendix/c/rts.bas
http://www.engin.swarthmore.edu/%7Ebpark2/e90/appendix/c/global_variables.bas
http://www.engin.swarthmore.edu/%7Ebpark2/e90/appendix/c/host.exe

	title page and contents.pdf
	E90 Final Report.pdf

