
 1

Unmanned Aerial Vehicle

Figure 1: 4-Channel Electric UAV RQ-1 Predator 63" Radio Remote Controlled RC Spy

Plane ARF
12

Paul Agyiri & Tristan Lawson

E90 Final Report, 8 April 2008

Advisors: Professor Erik Cheever & Professor E. Carr Everbach

 2

Table of Contents

Abstract……………………………….……………..………………………3
 System Overview…………………………………………………………………4

Introduction………………………………………………………………….5

UAV Design…………………………………………………………………7
 Model Aircraft……………………………………………………………………7

 Aircraft Components Overview and Assembly…………………..…….9

 Structural Considerations In Aircraft Construction…………………10

 Choosing A Propulsion System – Airframe and Environment………11

 Electrical System Overview……………………………………………12

 Specifications: Electrical System and Kit……………………..………12

System Design……….……………………………………………..………15
 Choosing a means of autonomous control………………………….…………15

 Final Solution – Ground-Based Flight Computer……………………...…….15

 Avionics…………………………………………………………….…………....17

 Main Avionics Components……………………………………………17

 Avionics Sensor Options………………………………………………..18

 Choosing Sensors based on their bus protocol………………..………20

 Inter-Device Communications – The I
2
C Bus Protocol ……………...21

 Avionics Computer……………………………………………………..21

 PCB Design for Avionics…………………………………………….…23

 Choosing a radio system………………………………………………..25

 Choosing a wireless communication system…………………………..26

 Ground Station………………………………………………………………….26

 General Overview………………………………………………………26

 Digital to Analog Converters (DACs) ………………………………...26

 Final Solution – Ground-Based Computer Design…………………...28

 Inside the Transmitter……………………………………………….…29

Proportional Controller…………………………...………………………...32

Performance……………………….………………………………………..35

 Testing and Results…………….……………………………………………….35

 Coding – some lessons learned……...………………………………………….39

Future Work…………………………………………..………………………………..41

Acknowledgements…………………………………………………………………..41

References…………………………………….……………………………….……….42

 3

Appendices……………………………………………………….………...43

 4

Abstract

This report summarizes the work accomplished by Paul Agyiri and Tristan Lawson on an

Autonomous Unmanned-Aerial Vehicle. The motivation behind this project stemmed

from Tristan Lawson’s experience with flying gliders while studying abroad in Australia.

Also, Paul Agyiri’s background in Control Theory, Electronic Circuit Applications,

Fundamentals of Digital Systems and other engineering courses provided a sufficient

knowledge base to design and develop an Autonomous Unmanned-Aerial-Vehicle. The

main idea was to design and construct an autonomous flight control system for a scaled

model unmanned aerial vehicle. This new system replaced the conventional R/C

transmitter and receiver used in flying model airplanes. The system was essentially an

autopilot that flew the airplane on a preset course.

The project established a sturdy radio frequency data downlink between a ground station

and the avionics onboard the aircraft.

The microcontroller on the ground station powered the potentiometers on the transmitter

via digital to analog converters which in turn controlled the control surfaces of the

airplane.

This system was used alongside the typical R/C manual control system. A switch was

designed and built to disengage the aircraft from manual control to autonomous and vice

versa when deemed necessary.

 5

System Overview

Figure 2: Overview of Communications System

 6

Introduction

Unmanned aerial vehicles are becoming highly utilized by search and rescue teams, the

military and other branches of law enforcement. This is a result of relatively low human

and collateral costs, long mission endurance and increased terrain accessibility.

Autonomous aircraft technology is still a highly researched field, and while relatively

simple systems already exist such as in commercial aircraft autopilots, the capability of

the system to adjust to certain changes such as in dynamic path planning remains quite

difficult to build.

The inspiration for the design of our Autonomous Unmanned-Aerial-Vehicle is the open

source Paparrazi UAV system. The system is quite complex, using powerful computers

and advanced Kalman filters to obtain ideal flight control. The UAV system comprises

two main components: a ground station component which provides telemetry feedback

for the operator and allows for control of the aircraft, and a flight system component

onboard the vehicle.

Due to time constraints, limited financial resources, and the unnecessary complexity of

systems such as that of the Paparrazi, it was decided to restrict the focus of our project to

designing a simple autonomous control system for a scaled model RC airplane by

transmitter hacking. To enable easy switching between the computer and manual control

of the airplane, the system implemented literally worked alongside the standard manual

control transmitter which came as a standard accessory with the model airplane kit.

The following report discusses the assembly of the aircraft, the setup of the telemetry

downlink as well as the ground station, the design of the control system and test flights of

our aircraft. Finally, a conclusion and suggestions for possible future work that can be

done to improve the performance and design of the current model are presented at the end

of the paper.

 7

Figure 3: Illustration of Parts of the Aircraft
11

 8

UAV Design

Model Aircraft

The first thought that came to mind was to find a scaled model UAV RC aircraft since a

project on UAVs was being pursued. In deciding which model aircraft to base our project

on, various designs, cost, sizes, fuselage material and main power/propulsion source were

taken into consideration. Options included having airplanes built out of Styrofoam or

Balsa, or having electric motors versus gas motors. Only later in the project were we

informed that an aircraft such as the Ready-Built Senior Telemaster, shown in the figure

below, would have been ideal for our intentions because of its high payload capacity.

Figure 4: Ready-Built Senior Master

However, the decision to work with the 4-Channel Electric UAV RQ-1 Predator 63”

Radio Remote Controlled RC Spy Plane, a picture of which is shown on first page, had

already been made. This aircraft was chosen mainly because of limited financial

resources. In addition, it was capable of handing the payload designed for our project.

 9

The specifications that came with the aircraft as well as the specification that needed to

be met are listed below:

• Wing Span – 63in/1600mm

• Wing Area – 372 sq in/24 sq dm

• Flying Weight – 1.75 lb / 800g

• Fuselage Length – 36 in/920 mm

• CG – 50 to 55mm from rear of leading edge of aircraft

• Radio Required – 4 channels, 4 servos

• Out runner Brushless Motor 150 ~ 200W

 10

Aircraft Components Overview and Assembly

The airplane kit arrived with the parts shown in the figure below:

Figure 5: Parts of the Aircraft that came with the Kit
13

 11

Structural considerations in aircraft construction

The model aircraft used as our flight platform had a body which was entirely composed

of balsa wood and heat shrink film. Consequently the aircraft was structurally fragile

while maintaining a light weight which was important for efficient flight.

In selecting the airplane kit, it was noticed that a few hobbyists experienced wing failure

with their models. This phenomenon occurred mainly due to high wing loading which

resulted in the entire wing breaking off from the fuselage. To increase structural strength

of the wing-fuselage connection, a 1 foot long hollow carbon fiber rod was run through 4

inches of one wing, continuing through the fuselage and ending inside the next wing.

Noting the failures that some pilots experienced, it was decided to add an extra measure

of structural integrity by inserting a single 1 foot long, 1/8 inch thick metal push rod

inside the hollow carbon fiber rod. This metal pushrod had less tensile strength than the

carbon fiber rod but nonetheless served to bolster the strength provided by the carbon

rod. Since the diameter of the carbon rod was 3 times as great as that of the metal rod,

epoxy glue was poured into the carbon rod to fill the spacing and secure the metal rod

inside the carbon. This setup performed as expected several times until the last flight of

the aircraft.

Epoxy glue was used significantly in assembling the airplane. Besides the assembly of

the ailerons and rudder-vator control surfaces, epoxy glue was used wherever secure, firm

connections had to be made. Again, in the interest of having as strong an airplane as

possible, the epoxy was applied to the various interfaces very liberally, most times

extending its application up to two centimeters away from the interface of two surfaces.

One important point to note in using the epoxy is that when seeking a firm bond, it is

essential to ensure that the two surfaces are completely bare. In other words, only bare

wood should be exposed. Any residual film or thick paint may weaken the desired bond.

It was also noted that despite the large amount of epoxy on the airplane, there was no

significant increase in weight. Other components such as the lithium polymer battery

 12

contributed greatly to the overall flying weight, making the weight of the epoxy relatively

negligible.

Nose landing gear replacement

Before our final, fatal flight of the airplane, the nose landing gear had been replaced with

a customized skid since the plane was being landed in 2-3 inch high grass. The skid was

made by bending 2 leftover push rods in a C shape and connecting it to the lower

fuselage with the convex edge pointing forwards. Epoxy was used to attach the skid to

the fuselage with a 1x1 inch section of thin breadboard along with a similarly sized strip

of paper. The paper separated the fuselage from the breadboard/skid component and was

designed with the objective of the skid making a clean separation from the fuselage in a

hard landing. With the common wheel/metal strut setup, the plane landed very abruptly

as the wheels caught in the grass. This hard landing induced large forces on the airframe

via the landing struts which could potentially crack and weaken the fuselage especially

because of the way that the wheel struts were connected to the fuselage.

The Center of Gravity (CG) was one of the most important specifications of the aircraft

that had to be met. As such, after the aircraft was assembled, a test was carried out to

ensure that it had been met. This was done by balancing the aircraft on the tip of its

wings. If the fuselage tilted forward within a range of approximately 0 to 30 degrees

(nose heavy), the CG requirement had been met. However, if the fuselage tilted

backwards to any degree (tail heavy), the position of the aircraft’s payload had to be

adjusted accordingly until the aircraft was no longer tail-heavy.

Choosing A Propulsion System – Airframe and Environment

To a large extent, the choice of the airframe affected our choice of motor. The only

means of powering the Predator UAV model was by electric motors. In retrospect, an

electric powered aircraft would have been sought for this project in any case. Though

leaving a very tiny footprint, the emissions from a gas powered motor would have

directly contributed to air pollution. Also, balsa, the material from which the airframe

was made comes from a renewable resource unlike Styrofoam which is a hydrocarbon

byproduct.

 13

Electrical System Overview

The aircraft had 2 separate electrical systems; One for the sensors together with the

wireless module downlink and the other for the airplane’s manual control and propulsion

systems.

Specifications: Electrical System and Kit Components

The table below lists the additional components that were bought for the airplane’s

manual control and propulsion systems:

Quantity Item

Function

4

5G TowerPro SG50 Micro

RC Servo

Directly controls push rods

to manipulate control

surfaces.

1 45A Electronic Brushless

Speed Controller [ESC]

Converts throttle signal

from radio system to a form

that can power the motor.

1 11.1V 3200mAh 15C

"Exceed RC Fusion Power

Series" High Performance

Lithium Polymer Battery

Powers the motor, receiver

and servos

1 2-3cell charger Switching

 Adapter [DK-C1000-S]

Powers the charger for the

LIPO battery

1 2-3cell charger Balance

charger [DK-C1000]

Balance charges the cells in

the LIPO battery

1 20 A maximum draw

Brushless Outrunner Motor
[E8-S-10, (480 size)]

Powers the propeller

1 8x6 APC-E Electric

Airplane Propeller

Provides thrust to aircraft

Table 1: Additional Components Bought For Construction Model Aircraft

 14

The aircraft’s main power/propulsion system consisted of the following:

One 11.1 V 3200 maH LiPO battery (Nitroplanes)

One 1000kv 20A brushless outrunner motor (Common Sense RC)

One 45A Electronic Brushless Speed Controller (Common Sense RC)

In choosing components for an RC airplane, and it is assumed any airplane in general,

careful attention has to be paid to the flying weight of the aircraft, typical flying speeds

required, size/ power consumption of the motor, propeller size, speed controller ratings

and battery voltage ranges.

Most often, the weight of the aircraft along with the desired speed and propeller size,

determine the choices for the remaining components. The usual trend is that the heavier

and quite possibly the bigger the airplane, the larger the propeller needed. Also, the faster

and longer one wishes to fly, the larger the voltage and the milliamp hour rating the

battery needs to have respectively

Our component search began by considering the size of the airplane and the size of the

propeller. A 9 inch long propeller was chosen in order to get maximum propulsion while

avoiding propeller strikes on landing and takeoff. Speed was not a big issue but in the

event that heavy avionics were used, more speed would be needed to stay in level flight.

This additional speed could be provided by an electronic speed controller and motor with

higher current ratings. Because of the aircraft’s light weight and large wingspan, this

particular RC model also functions as a glider. That is to say that it can be flown without

the use of the engine for extended periods of time as long as it has sufficient altitude and

can ride any waves of hot, rising air. With all of this information, an electric motor which

draws a continuous current of 24 Amps in normal operation was purchased.

The next step was choosing an electronic speed controller (ESC). The ESC converts the

throttle signals to voltage outputs which drive the motor. ESCs have a continuous current

rating for normal operation as well as a slightly higher maximum burst current. This burst

current may be used in a climb where more power is needed. While it is theoretically

 15

okay to use an ESC with a current rating of that of the motor, it is usually safer to choose

an ESC with a current rating which is higher than that of the motor. One can never tell

when there may be an unexpected extended surge in motion by the propeller which could

cause the motor to draw more power.

Usually in such a case, the motor will burn up, sometimes closely followed by the ESC.

If the ratings of the two devices are very close to each other, the very high currents

passing through the ESC may cause it to overheat and malfunction, sometimes

permanently. These chains of events will render almost the entire power system useless

and it unfortunately took place in our case. After destroying 1 motor and 2 ESCs, a

working propulsion system was developed. A 45 Amp ESC (with 55 Amp burst current

capacity) was chosen. It gave us a 20 Amp margin of safety with respect to our motor. To

ensure that none of the electrical components burnt out from overheating, the cowling of

the aircraft was removed and the ESC was tied externally to the tail of the aircraft to

enable continuous circulation of air around the ESC, thereby allowing it to self-cool. The

ESC was not programmed. Hence, it kept its default settings since they were suitable for

our needs.

Finally, the battery was chosen. It was an 11.1V lithium polymer based battery which

was good for its high capacity and longevity. The ESC would have worked with a

specific range of battery voltages depending on the battery type. The more important

consideration made in choosing the battery was the milliamp-hour rating. The higher this

value, the longer the battery would have lasted before dying. However, a tradeoff had to

be made since the physical size and weight of the battery increases as the milliamp-hour

rating increases. A higher than normal rating for the battery was chosen at 3200 maH but

its weight and size turned out to work perfectly in terms of fitting the battery in the nose

compartment and regulating the balance of the aircraft about its center of gravity.

Note: Extra components had to be bought such as thick wire to carry large currents from

the battery to the ESC, servo y-connectors for the ailerons, and heat shrink tubing to

enclose live wires. This list is not exhaustive.

 16

System Design

Choosing a means of autonomous control

Our initial plans for autonomous control were based on current UAV technologies in use

by organizations such as NASA and other high end open source UAV groups. The core

of the flight system was to be located on the airplane itself while the ground station

received telemetry and updated flights paths via a wireless uplink. This idea was

eventually discarded since a system where one could switch between manual and

computer control when deemed necessary was desired. The main technological gist of

these commercial systems was that the ‘manual’ and autonomous capabilities were built

into a single entity and placed on board the aircraft.

Final Solution – Ground-Based Flight Computer

Having a ground based flight control system was the best option for our project. With this

system, one could easily switch between autonomous and manual control at the literal flip

of a switch and have no need to worry about restarting any one of the communications

systems. There was always an uninterrupted flow of data between the ground station and

airplane thus guaranteeing ‘full’ control at all times.

It was ultimately was decided to execute autonomous flight by using sensors to wirelessly

obtain data about the orientation and position of the aircraft whilst in the air. In addition,

the RC transmitter would be hacked so that data could be collected about the positions of

the control sticks on the transmitter that corresponded to the motions of the aircraft.

These sets of data would then be used to design a controller for autonomous flight of the

aircraft which would be loaded onto a computer to enable the aircraft fly on its own. A

switch which would also enable one to take manual control of the aircraft via the RC

transmitter would be incorporated.

The computer chosen for the UAV system was the 16F873 PIC microcontroller. The PIC,

in the form of a 28-pin dual inline package, was chosen for its relative simplicity in both

its programming and physical handling. The PIC was also readily available in the labs in

Hicks and had the additional advantage of being very cheap. The PIC was responsible for

 17

things ranging from collecting and processing data to actively controlling external

devices. Both the aircraft’s avionics system and the ground station had a PIC as their

core, the roles of which will be explained in more detail later.

Avionics

Main Avionics Components

Sensors

The avionics sensors included:

1) A 3 axis accelerometer for measuring tilt.

2) A pressure sensor to measure altitude.

3) A digital compass for heading information.

Communications

The airborne hardware included the following communications devices:

1) Zigbee wireless module for flight data downlink.

2) Traditional RC Receiver for manual control.

Figure 6: Outline of Path From RF Link to Control Surfaces Onboard Aircraft

servo

servo

servo

servo

motor

Aileron L

Aileron R

Rudder L

Rudder R

Propeller

accelerometer

Pressure sensor

compass

Standard RC

receiver

zigbee module

 18

Avionics Sensor Options

The sensors that were acquired were chosen with the intent of replicating the sense of

sight that humans possess and require in order to fly aircraft safely. In order to detect the

position and spatial orientation of the airplane, the following sensors were obtained:

Honeywell HMC6352: 2-Axis Digital Compass

This device provided us with a good estimate of heading. An initial issue with this device

stemmed from the fact that it was 2 axes in nature and hence would have potentially

given erroneous values if it were tilted off the horizontal to some extent.

VTI Technologies SCP1000 Pressure Sensor

This absolute barometric pressure sensor gave a rough value for the altitude of the

airplane. It was not perfect since although in ideal conditions it can only resolve a vertical

difference of 10cm of air. When in flight, the sensor would have been exposed to incident

wind if not properly enclosed thus affecting the static air pressure value for a certain

altitude. It was decided not to convert the raw pressures to an altitude since atmospheric

pressure varies with ones location on the earth. For purposes of autonomous flight in this

project, we would have used a short range of pressures to simulate a desired altitude.

VTI Technologies SCA3000 3 - Axis Accelerometer

The accelerometer measured acceleration with respect to the direction of acceleration due

to gravity. An algorithm was written to convert the raw accelerator output values to

mimic those seen on an artificial horizon instrument of any aircraft. The accuracy was

within one degree. The following table summarizes the usable outputs of the

accelerometer.

 19

Pitch value Roll value

Pitch up 0 to -90 Roll to starboard 0 to +90

Level flight 0 Level flight 0

Pitch down 0 to +90 Roll to port 0 to -90

Table 2: Pitch and roll values for the airplane computed from customized algorithm

Note: These values are based on the orientation of the avionics board relative to the

airplane. In our project, the avionics board was placed along the length of the fuselage

with the Zigbee module end placed towards the nose of the aircraft while the PIC end

was to the rear.

While the accelerometer performed as expected when it was in a static position, there was

a potential problem when the device was in motion. In a banking turn, there is the

possibility of a large centripetal force being exerted on the aircraft and in turn the

accelerometer. This can override the typical gravitational acceleration exerted by the

Earth and affect the acceleration measurements by superposition of unwanted centripetal

accelerations. Further inspection of the data sheet showed that our accelerometer in fact

had a potential use in inertial navigation systems since it had a +/- 2g range of

measurement. If the range were 1g or less then the device would not have been able to

compensate for centripetal accelerations in banking turns. Hence the greater the range of

the accelerometer in g’s, the more complex accelerations could be exerted on it without a

decrease in accuracy for uses such as inclination measurements. So far, there have not

been any problems with this phenomenon.

 20

Figure 7: Graph showing usable range for accelerometer. Note our accelerometer had a

range of +/- 2g. Illustration was taken from SCA3000 data sheet.

Choosing Sensors based on their Bus Protocol

During the early stages of the project, the sensors for the avionics were chosen mainly

based on price, and availability of a digital output. The reason for the choice of digital

sensors was that extra analog to digital conversions were not necessary in the PIC. In

terms of digital sensors, there were two available formats: those meant to work with the

Serial Peripheral Interface bus (SPI) and those which used the Inter-Integrated Circuit

(I
2
C) bus. The SPI is full duplex unlike I

2
C and is conceptually simpler. However, a

problem arose in setting up the SPI in the preprocessor statements in the C code. SPI has

various modes of operation depending on the peripheral, and strict adherence to any other

specifications for the slave device must take place. Consequently, the setup of the SPI is

somewhat tricky despite the fact that the executable code was significantly simpler and

required less statements than that found in I
2
C. Furthermore, since most of the initially

acquired sensors were I
2
C devices and proper functioning of these devices was attained, it

I
2
C was the common format chosen for all the devices and code used in this project. That

marked the end of any use of SPI devices.

 21

The I
2
C Bus Protocol

I
2
C or Inter-Integrated Circuit is a multi-master serial bus which was developed by

Philips in the 1980s. It governs the means by which data is transferred between the

microcontroller and the various sensors or peripherals. Physically the bus consists of two

bidirectional data lines; one being for serial data (SDA) and the other a serial clock line

(SCL). These lines are open drain and are pulled up to Vdd by resistors.

In software, the data transfer process starts when the PIC issues a start condition. The PIC

then sends an address down the SDA line corresponding to only one device or slave on

the bus. This address also indicates whether the operation is going to be a read or write.

When the particular slave receives the address it responds by sending an acknowledge bit

back to the PIC. In our code, the portions for checking for and sending acknowledge bits

were eliminated as it was deemed relatively inconsequential. In most cases, acknowledge

processing statements were substituted with short delay commands on the order of 1-10

ms. After this took place, the PIC sent whatever data was necessary to the slave device.

Each data transfer was 8 bits long, most significant bit first. Usually, when one needed to

read data from a slave, a restart condition was issued followed by an address transmission

which also embedded data indicating a read was about to take place. A read statement

would then be issued by the PIC and it would read the data which the slave was sending.

At the end of the process, the PIC sends a stop condition and the bus becomes free again

for use by some other slave if present.

Avionics Computer

The PIC onboard the aircraft was solely responsible for collecting data from the

accelerometer, pressure sensor and digital compass, combining and packaging that data,

and porting it to the Zigbee Pro® module for transmission to the ground station.

 22

Figure 8: Outline of Data Transfer in Avionics

Communication between each sensor and the PIC was performed using the I
2
C protocol.

In the code, there was at least one function which pertained to each sensor whose purpose

was to get data from the said sensors. In the main function, all the measured data were

concatenated using tabs and ‘printed’, thereby sending the data automatically out of the

RS-232 transmit pin of the PIC. The data was combined in such a way that when it

arrived at the ground station it was already filtered into columns, paving the way for easy

manipulation in programs such as Matlab®.

 23

Figure 9: Prototype Avionics Board Showing The PIC in the Upper Left Hand Side

PCB Design for Avionics

A PCB was designed in Simulink to hold the avionics circuitry. This idea was introduced

so as to reduce the overall weight of the payload on the aircraft; The breadboard on which

the avionics circuitry was initially built was much heavier than the PCB. Below is a

schematic of the circuitry in Simulink. The digital compass, pressure sensor and

accelerometer did not exist in any of the libraries in Simulink. As such, they were

designed in Ultiboard. After the schematic was completed in Simulink, it was exported to

Ultiboard where the components and wiring were arranged optimally. An image of the

optimum wiring of the schematic is shown in Figure 10. Despite checking the

components on the PCB schematic several times and confirming the accuracy of the

design, when the devices were soldered onto it, some of the sensors got destroyed. Again,

after careful inspection of the PCB and verification that the connections were right, it was

decided to go back to using the breadboard for the avionics circuitry.

 24

Figure 10: Multisim Layout of Avionics

Figure 11: Ultiboard Layout of Avionics

 25

Choosing a radio system

The radio system chosen was the Futaba 2.4Ghz 6EX. The first consideration was that of

the operating frequency. Since the thought of controlling the airplane by modifying

signals in software had initially crossed our minds, it was agreed upon that this platform

would work well alongside the 2.4Ghz Zigbee data downlink (and possibly uplink). The

initial plan was to have the main flight computer on board the airplane and as such a

sturdy data uplink for updating waypoints and so forth would have been required.

In that case, the manual transmitter would have been off while the flight computer was

flying the airplane thus preventing any interference that could have occurred between the

Zigbee and the Futaba systems. This was a mistake. Ideally one would range test a radio

system before use to ensure that the transmitter can control the airplane. However, with

the airplane hundreds of feet away in the air, one would have needed a means of

switching between manual and autonomous control where the switch was on board the

airplane. Furthermore, assuming that such a switch could have been devised, there was no

perfect means of ensuring that manual control of the airplane could have been regained

after switching away from the flight computer.

In the end, with our grounded flight computer setup, the Zigbee and Futaba

communications systems were both operating at the same time. After some thorough

tests, it was noticed that there was no radio interference between the two devices so

everything worked well in that regard.

Other minor considerations included the number of channels in the Futaba system. Our

airplane required 4 channels corresponding to all the control surfaces and the motor. A 6

channel system was purchased such that in the event that an extra feature such as a

movable landing gear was needed, then it could be quickly added to the aircraft.

 26

Choosing a wireless communication system

The wireless communication system used for transmitting data from the avionics onboard

the aircraft to the ground computer was Zigbee via the XBee Pro Module, a picture of

which is shown below:

Figure 12: Xbee Pro Module by Maxstream
10

The connection of the module to the computer on the ground was via rs232.

This Pro module was chosen as opposed to the regular XBee module because it had a

longer operation range (1 mile) whereas the regular XBee had an operation range of

100m. As such, the aircraft was able to cover much greater distances than it would have

had the regular XBee module been chosen instead.

Ground Station

General Overview

The main roles of the ground computer are to collect the serial stream of data coming

from the airplane, forward the respective portions to various control loops and output the

results to a digital to analog converter (DAC). Like the sensors on the airplane, the DAC

was also an I
2
C device.

Digital to Analog Converters (DACs) Used

Four 8-bit Maxim MAX517 I
2
C digital to analog converters (DACs) were used to convert

PI controller outputs with 8 bits of resolution to analog voltages. 8 bits were adequate for

 27

our purpose since the range of voltages across the potentiometers in the transmitter

ranged from approximately +1V to +4 V. The 8 bit resolution grants 256 unique possible

analog voltages and this is more than what was needed for the 3V range. I
2
C was chosen

as the data transmission protocol primarily because of our competence with its operation.

Data transfer speeds were not much an issue since in normal (low speed) mode, the baud

rate is 100 kbps. Furthermore, transfer of data from the input registers to the output

registers of the DACs occurred in approximately 5µs. This is essentially the speed at

which the desired voltage would be output after an update. The DACs can be configured

for one of the two output voltage ranges, from 0V to +2V or from 0V to +5V. These

configurations depend on a voltage reference which could be either external or internal.

The internal reference voltage is +4V. The maximum output voltage for the DACs was

+5V. The output voltage is given by

VOUT = (N x VREF) / 256

where VREF in our case is an external voltage reference equal to +5V, N is the input code

calculated by the PI or P controller algorithm, and VOUT is the analog output voltage

supplied to the transmitter. For control of the aircraft’s control surfaces and throttle, an

output voltage range from 0 to +5V was used but later limited that range to +1 to +4V to

mimic the range of voltages in the transmitter potentiometers in normal operation. One

could only use a maximum of 4 of the MAX517 DACs on a single I2C Bus due to the

limited number of address bits per DAC. Each DAC has an address comprising 2 bits and

this gives a total of 2x2 = 4 possible addresses. The address of each DAC was chosen by

connecting the AD0 and AD1 pins to either ground or Vdd depending on the address one

desired to assign. In the I
2
C code, each DAC address had a component which

corresponded to the pin connections one previously made. Vdd represents a binary one

while ground represents a zero. Despite the limited addressing, the setup fit our needs

perfectly since we ideally wanted control of 3 control surfaces and the throttle giving a

total of four devices.

 28

Final Solution – Ground-Based Computer Design

Figure 13: Layout of Ground Station

Figure 14: Ground Station Hardware

 29

The diagram above shows a picture of the ground station. The autopilot program was

loaded onto the PIC. Depending on the spatial orientation of the aircraft, the autopilot

program sent appropriate signals to the transmitter via digital to analog converters and a

master switch. The internal transmitter connections were modified so that voltages

coming from the digital to analog converter could have simulated inputs that would have

normally come from the potentiometers inside the transmitter (which perform the actual

control of the aircraft).

A switch was devised so that one could easily change between manual control of the

airplane via the control sticks and computer control via the ground station.

Inside the Transmitter

In order to hack the transmitter potentiometers, the wire leading from the potentiometer

into the system board was cut. This wire was extended out of the transmitter to a switch.

There were 4 switches in total: three for the three control surfaces on the airplane plus

one for the throttle. Each switch had two inputs and one output. The two inputs

comprised the wire coming from the potentiometer and the wire coming from the digital

to analog converter. The output consisted of the wire leading into the transmitter’s system

board. It was found to be absolutely essential to have a common electrical ground in the

ground station system and so an additional wire was added to link the ground on the

system board of the transmitter to the ground station breadboard ground rail. The two

electrical grounds initially were a result of different power systems for the transmitter and

the breadboard

Note: The jumpers on the transmitter system board to which the wires are attached are

labeled ST1 through ST4. These labels correspond to the 4 joystick inputs. When coding

the controller in the flight computer, care has to be taken so as not to cause the DACs to

exceed the average maximum and minimum voltage outputs from the potentiometers.

 30

Device Vlow / V Vmid/V Vhigh/V Notes

Elevator 0.94 2.41 3.91 Vlow = full down stick

Aileron 0.94 2.57 4.11 Vlow = full right stick

Rudder 0.88 2.51 4.16 Vlow = full right stick

Throttle 0.92 n/a 3.98 Vlow = full throttle*

Table 3: Experimentally found Voltage Ranges in Transmitter Potentiometers

Figure 15: Illustration of the Electrical Connections Involving a Single Potentiometer

 31

Figure 16: Illustration of The Electrical Connections Involving a Single Hacked

Potentiometer

Figure 17: Hacked Transmitter

 32

Proportional Controller

A proportional controller was chosen in project for reasons of simplicity especially with

respect to coding. It was also capable of carrying out the function desired. Because of

limited time we decided to implement only one proportional controller to control the

elevators and hence the altitude of the aircraft. The aircraft crashed during a data

acquisition flight session. The crash created enough damage to the plane such that it was

impossible to rebuild; a new aircraft had to be bought and assembled but time constraints

did not permit us to do so. As such, the data needed to design the controller could not be

obtained.

Assuming the crash had not occurred, the data from both the transmitter voltage readings

and the avionics would have been used to develop the controller. The data from the

transmitter would come from the hacked system. For example, in designing a controller

for the elevators and thus the altitude of the aircraft, the voltage readings from the

potentiometer controlling the elevator as well as the corresponding data collected from

the pressure sensor (a measure of altitude) onboard the aircraft would be used to design a

controller. This procedure is described below using this data collected from another

source.

Soren (our pilot), created a file from a flight simulator/training software package called

ClearView R/C. There are several types of aircraft that can be flown with this software.

The trainer with aileron control that had similar characteristics as our UAV was chosen.

The durations and aircraft responses were used to create a file that was similar to data

collected by our UAV. The file contained a 90 second full clockwise pattern i.e. a

rectangular path. The data collected is shown in Appendix D.

The negative feedback system used to model the proportional controller is shown below:

 33

The basic operation of the controller was as follows: Assume that the aircraft initially had

an altitude of zero while the desired altitude was relatively high. The actual altitude

would have been measured by the pressure sensor while the desired altitude would have

been fixed in the autopilot code. As a result of the negative feedback, the input to the

controller, the difference between the desired altitude and the actual altitude, would have

been large. The proportional controller thus would have input a proportionally large value

(voltage) into the system (elevators) resulting in an increase in the actual altitude of the

aircraft. This would have caused the difference between the desired altitude and actual

altitude to decrease. Thus, the proportional controller would have input a relatively

smaller value (voltage) into the system (elevators). This process would have continued

until the difference between the desired and actual altitude was zero. At that point, the

aircraft would have reached the desired altitude.

Note: The throttle would have had to be monitored during such a climb in order to

prevent the aircraft from stalling.

 34

In order to determine the order of the system, a graph of elevator and altitude versus time

was plotted. The graph is shown below:

The shape of the altitude graph resembled that of a second order under-damped response.

Thus, the transfer function, H, used for the system was of the form:

H =
K

s2 + 2ζω
n
s + ω

n

2
.

The lsim(system, input(s), time vector) function in MATLAB was used to help us

determine the values of the constants: ζ and ωn ; K was set to 1. lsim(system, input(s),

time vector) simulates a linear system. The code used in determining the values these

values is shown in Appendix D. lsim(system, input(s)) works by taking three kinds of

-10

0

10

20

30

40

50

60

70

80

90

0

2
.7

5
.4

8
.1

1
0

.8

1
3

.5

1
6

.2

1
8

.9

2
1

.6

2
4

.3 2
7

2
9

.7

3
2

.4

3
5

.1

3
7

.8

4
0

.5

4
3

.2

4
5

.9

4
8

.6

5
1

.3 5
4

5
6

.7

5
9

.4

6
2

.1

6
4

.8

6
7

.5

7
0

.2

7
2

.9

7
5

.6

7
8

.3 8
1

8
3

.7

8
6

.4

8
9

.1

Elevator

Altitude

Time (s)

Figure 18: Plot of Altitude and Elevator vs Time

 35

arguments, the system, input(s) and time vector. One can change the values of the

input(s) and MATLAB will produce the time response of the system.

The algorithm designed varied ζ and ωn over a range of N = 1001 values each. Since

the system being modeled was that of a second order, this meant that the lsim(system,

input(s)) calculations would take O(N
2
) time; Each lsim(system, input(s)) calculation

took approximately 1 to 2 seconds. This meant that in our situation, the program would

have taken approximately 1,002,001 to 2,004,002 seconds to complete.

The simulation took a very long time to run and did not produce any values after 3 hours

of running. As such, no values for the constants, ζ and ωn were obtained.

Performance

Testing and Results

Ground testing

Avionics board

The avionics board supplied data successfully which was intercepted by the receiving

zigbee module. The sensors were programmed to output a count value, the roll and pitch

values of the airplane, the aircraft’s heading, the external barometric pressure, and the

temperature in that order per data string.

Ground station

The PIC could successfully control the control surfaces on the airplane as well as the

throttle by linking the PIC to the transmitter via DACs. A looping test program is

included in the appendix. A PI controller was already written in C and required the

inclusion of the proportional and integral constants to work. These constants would have

been derived from analysis of actual flight data

Note: Due to time constraints, the serial flight data collection and parsing code was not

successfully tested but a prototype involving interrupts is included in the appendix. This

 36

would have been the final component necessary to result in closed loop for autonomous

flight control.

Flight testing

In order to fly any experimental aircraft, one should have sufficient flight experience

especially with aircraft similar to the one being tested. Furthermore, attention should be

made to FAA rules pertaining to UAVs. Examples of restrictions include flying only at

sanctioned airfields and not having the airplane fly above 400ft above ground level

(A.G.L.). Consequently a membership with the Academy for Model Aeronautics had to

be obtained and a pilot at a RC airplane club had to be found to fly our airplane. It took

some time to find a good club nearby but eventually contact was made with the Delaware

County Radio Control R/C Model Airplane club. Mr Soren Spring, a member of the club,

flew our airplane.

Launching

The aircraft could not take off from the ground because there was no suitable runway

available. The runways that were in close proximity of the college were either not smooth

enough or were lawns. Since the aircraft had very tiny wheels, it required a smoothed

paved surface from which to take-off and none could be found. As such, the plane was

hand-launched by our pilot Soren Spring. Hand launching was very dangerous for an

aircraft such as ours since its propeller was situated at the rear of the aircraft. Another

difficult maneuver involved having Soren hold the transmitter and hand launch

simultaneously. He nonetheless executed perfect launches because of years of experience.

The picture below shows him hand-launching the aircraft.

 37

Figure 19: Pilot Hand Launching Aircraft

Test Flight Phases

Phase 1) Airworthiness test – No payload

This test involved flying the aircraft without any payload. It was carried out to ensure that

all the parts of the aircraft had been securely fastened and aligned. Another goal of this

flight was to ensure that the electrical components purchased for this aircraft would keep

it in the air with no problems. During an ascent of the aircraft in the third flight of this

phase, its motor burnt out. This was not due to the ratings of the speed controller and the

motor used on the plane; the continuous current rating of the speed controller was greater

than that of the motor so the speed control was able to handle the power requirement of

the motor. A possible reason for this burnout is that the cowling of the plane did not

provide a circular/continuous flow of air over the speed controller, which is a device that

heats up very quickly to high temperatures. The speed controller also had a high

temperature cutoff so that if it overheated it would have shutdown in an attempt to protect

itself from damage. Part of the motor was also covered by the cowling. The build-up of

heat in the cowling caused the coils to overheat and burn. Another possibility for this

 38

failure is the speed controller and motor initially selected were cheap quality. To solve

this problem, the cowling was removed, and a better quality speed controller and motor

were bought. The new speed controller had a continuous rating of 40A and the motor had

a 25A rating. These specifications ensured the electronic speed controller could meet the

power requirements of the motor.

Phase 2) Payload check flight test

This test involved using a dummy payload, a metal bar in this case, which had a weight

approximately equal to that of the actual avionics breadboard. This test flight was

successful.

Phase 3) Initial data collection flight

The purpose of this flight was to collect voltage readings from the RC transmitter as well

as sensor readings from the avionics circuitry whilst the plane was in flight. During the

test flight, the wire coming out of the RC transmitter and connecting to the common

ground on the ground station became disconnected. This wire removal was confirmed by

the transmitter data which was collected and indicated unusual zeroes in at least 2 control

surfaces. The pilot ultimately lost control of the aircraft within 10-15 seconds. Due to

erratic, uncontrolled behavior of the aircraft and the relatively heavy avionics, the

starboard wing snapped due to high wing loading and the airplane quickly nosedived and

crashed into the ground. Approximately 30 seconds of data were collected from launch

until crash but due to the untimed and unexpected nature of the aircraft maneuvers, this

data was not used in the controller design.

 39

Figure 20: Wing Broken From Crash Showing Shattered Black Carbon Fiber Rod

Surrounding the Bent Metal Pushrod (Wing Loading In-Flight Structural Failure).

Phase 4) Autonomous flight check

This flight phase was not carried out because of loss of the aircraft during phase three.

Coding – some lessons learned

As previously implied, substantial time was dedicated to the SPI bus protocol as a means

of communicating with sensors. After learning of the impracticality of the varying setups

for SPI it was decided to go with I
2
C. In the end, it all comes down to a question of taste

and comfort with a particular standard. For some, SPI may be easy while for others it

may not. A few of the smaller, yet important findings over the coding of the systems

included having the right amount of delays in the I
2
C procedures. Pushing some

procedures too quickly may return incorrect data from a device, if any data returns at all,

while large delays in the I
2
C process may cause the PIC to hang due to inactivity. One

interesting circumstance which arose was the newer 10 bit addressing needed for the

accelerometer. Typically slave devices have 7 bit address onto which another final

read/write bit was added before transmission. However, the many devices on the market

along with the limited number of slave address catered by 7 bits warranted a larger

address. In this case, the device address was sent in two transmissions of one byte (eight

 40

bits) each. With the 10 bit system, the device address, which is given by the

manufacturer, is spliced into another (mostly default) binary number for a total of 16 bits.

The 10 bit system seemed confusing at first but was eventually very easy to understand

after careful observation of how it generically works.

The PIC-C compiler from Custom Computer Services (CCS) was used throughout in

order to program the PIC. During the debugging process, extensive use of the ‘monitor’

window was used. A specially modified ‘USE RS-232 with DEBUGGER’ directive

statement was used to route any printed data from what would have been the normal

serial port to the ‘monitor’ window within the PIC-C program instead. This precluded the

problem of seeing the data via the normal serial port via the typical wired interface since

there was no wired PC serial connector on our PIC board/prototyping board. In sum the

‘monitor’ made it easy to see any data whenever a print statement was called.

We should note, that at the end of the project, we had written off two accelerometers, one

pressure sensor, and a stack of DACs mainly because of programming issues. The first

set of DACs as well as the pressure sensor was SPI controlled and so they did not work.

The accelerometer data from the first two accelerometers was very erratic and the devices

themselves required substantial ‘setup code’ before calling normal I
2
C functions to read

data. This setup code was responsible for settings such as enabling high data update rates

but this tweaking involved a lot of tampering with control registers. If one was not

careful, permanent damage may have resulted rendering the accelerometer useless.

Other small problems involving coding were simple as formatting print statements

correctly or defining number types appropriately. At one stage of testing, it was noticed

that some numbers were being truncated. It was simply an issue of changing the variable

in question from an ‘int’ to an ‘int32’, the latter of which can represent a much larger

range of numbers. Any other minor problems or hints are including in comments in the

code in the appendix. Those comments, together with this report, should make it easy for

anyone wishing to make significant use of I
2
C devices in a project at a later date.

 41

Future Work

A more robust control system (both physically and in software) would have to be built.

On two of the three flight phases, manual control failure was potentially a result of

broken connections between the transmitter and the ground station. Longer, stronger and

more flexible wires for this purpose, especially if the airplane is being hand launched by

the pilot, are recommended.

Furthermore, experimentation with other aircraft which may yield more stable flight

platforms is encouraged. More work would also have to be done on building a more

robust software based autonomous control system. Use of more complex controllers such

as the PID may result in a better autonomous platform.

During this project we also considered including an imaging system on board the

airplane. This imaging system may be created as a major component of a future e90

project or be simply bought from a commercial manufacturer for quick installation on the

airplane. Another idea included construction of a parachute recovery system for

emergencies such as loss of transmitter signal.

Acknowledgements

We would like to thank our advisers Professor Erik Cheever and Professor E.Carr

Everbach for their advice and support throughout the course of this project. Our gratitude

also extends to Mr. Edmond Jaoudi for his help and resourcefulness when it came down

to finding suitable hardware solutions for our circuits. A big thank you also goes to Mr.

Soren Spring for the many hours he spent helping us set up and fly the plane. We would

also like to show our appreciation to Mr. Brian Pasternack, chair of the Delaware County

RC airplane club for his initial help in finding Mr. Spring and for his tips on our aircraft

systems. Finally, we would like to thank Kofi Anguah and Scott Taylor for their

assistance in designing the control system for the aircraft.

 42

References

[1] B.Park, S. Realov, Solar Powered Wireless Sensor Network, E90 Final Project,

Swarthmore College. May 4, 2006.

http://engin/academics/courses/e90/2005_6/E90Reports/BP_SR_Final.pdf

[2] NXP Semiconductor, I
2
C Bus Specification, January, 2000.

The I
2
C- Bus Specification Version, 2.1. NXP Semiconductor. January, 2000.

www.nxp.com/acrobat_download/literature/9398/39340011.pdf

[3] T. Mukherji, Aircraft Autopilot Design, ME 125 System Dynamics, Duke University.

December, 2004

www.duke.edu/~tkm8/Aircraft%20Autopilot%20Design.doc

[4] Simple Aerodynamics Of The V-Tail

http://www.embedded.com/columns/technicalinsights/175801127

[5] The basics of control system design: Part 2 - Tuning a Proportional Controller

http://www.embedded.com/design/207402278

[6] C. Hernandez-Rosales, R. Femat-Flores; G. Quiroz-Compean, Make a PI controller

on an 8-bit micro

http://www.embedded.com/columns/technicalinsights/175801127

[7] Using the I2C Bus

http://www.robot-electronics.co.uk/htm/using_the_i2c_bus.htm

[8] Electric RC Airplanes Advisor

http://www.rc-airplane-advisor.com/electric-rc-airplanes.html

[9] Aircraft configurations

http://selair.selkirk.bc.ca/ProfessionalPilot/aerodynamics/controls/configurations.htm

[10] Zigbee Pro Module

http://www.digi.com/products/wireless/point-multipoint/xbee-pro-series1-module.jsp

[11] US Navy Predator UAV Illustration

https://wrc.navair-rdte.navy.mil/warfighter_enc/aircraft/UAVs/images/pred2.jpg

[12] Picture of RC Predator model airplane

http://www.nitroplanes.com/4eluavrqprra.html

[13] Parts of the Aircraft

https://s.hostingprod.com/@www.toysonics.com/ssl/catalog/product_info.php?products_i

d=897&osCsid=2ef01ae73930d2465c3a6e05ac4c4a

 43

APPENDIX A: Data Sheets

PIC Microcontroller

http://ww1.microchip.com/downloads/en/DeviceDoc/30292c.pdf

XBee-PRO™ ZigBee OEM Module

http://www.maxstream.net/products/xbee/xbee-pro-oem-rf-module-zigbee.php

Honeywell HMC6352 2 - Axis Digital Compass

http://www.sparkfun.com/datasheets/Components/HMC6352.pdf

VTI Technologies SCP1000 Pressure Sensor

http://www.vti.fi/en/products-solutions/products/pressure-sensors/scp1000-pressure-

sensor/

VTI Technologies SCA3000 3 - Axis Accelerometer

http://www.vti.fi/en/products-solutions/products/accelerometers/sca3000-accelerometers/

2-Wire Serial 8-Bit DACs with Rail-to-Rail Outputs

http://datasheets.maxim-ic.com/en/ds/MAX517-MAX519.pdf

APPENDIX B: Kits

RC Predator Model Kit

http://www.nitroplanes.com/4eluavrqprra.html

 44

APPENDIX C: PIC Code – avionics, ground station –voltage reader, PI controller,

flight plan code

/*tristan lawson, paul agyiri. e90 2008, avionics computer */

//data every 0.5 seconds'

// counter is for usability in recognizing when a manoeuvre takes place

// 04/11/2008

#include <16F873A.H>

#device ICD=TRUE

#fuses XT, NOWDT, NOPROTECT, NOLVP

#use delay(clock=4000000)

#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7, parity=N, bits=8)

//#use rs232(DEBUGGER)

#use i2c(Master, sda=PIN_C4, scl=PIN_C3, FORCE_HW)

// define registers/actions for registers on various sensors

#define accelslaveregread 0xF3

#define accelslaveregwrite1 0xF2

#define accelslaveregwrite2 0xF1

#define accelreadselect 0x17

#define xlowreg 0x04

#define xhighreg 0x05

#define ylowreg 0x06

#define yhighreg 0x07

#define zlowreg 0x08

#define zhighreg 0x09

#define nack 0x00

#define spcslaveregread 0x23

#define spcslaveregwrite 0x22

#define pressurerega 0x7F

#define pressureregb 0x80

#define temperaturereg 0x81

#define init 0x07

#define highres 0x0A

#define operation 0x03

#define ack 0x01

#define compassslavewrite 0x42

#define compassslaveread 0x43

#define compassdatareg 0x41

signed int32 xaxis, yaxis;

int32 heading, pressure, temperature, counter;

int32 number = 0;

 45

int32 read_count(void)

 {

 number = number + 1;

 return number;

 }

 //------READ ALL THE VALUES FROM ACCELEROMETER RING BUFFER---------

 signed int32 read_accelerometer1(void)

 {

 signed int32 x_low, x_high ;

 i2c_start();

 i2c_write(accelslaveregwrite1);

 delay_ms(10);

 i2c_write(accelslaveregwrite2);

 delay_ms(10);

 i2c_write(accelreadselect);

 delay_ms(10);

 i2c_write(xhighreg);

 delay_ms(10);

 i2c_start();

 i2c_write(accelslaveregread);

 delay_ms(10);

 x_high = i2c_read(1);

 delay_ms(10);

 x_low = i2c_read(0);

 delay_ms(10);

 i2c_stop();

//--------------------------------------format x axis = roll angles------------------------------------

// changes accelerometer output to number from -90 to 90 to indicate roll

 x_high = x_high % 255;

 if(x_high > 224)

 {

 x_high = x_high - 255;

 }

 x_high = x_high*3;

//--end--

 46

 return(x_high);

}

//--

 signed int32 read_accelerometer2(void)

 {

 signed int32 y_low, y_high;

 i2c_start();

 i2c_write(accelslaveregwrite1);

 delay_ms(10);

 i2c_write(accelslaveregwrite2);

 delay_ms(10);

 i2c_write(accelreadselect);

 delay_ms(10);

 i2c_write(yhighreg);

 delay_ms(10);

 i2c_start();

 i2c_write(accelslaveregread);

 delay_ms(10);

 y_high = i2c_read(1);

 delay_ms(10);

 y_low = i2c_read(0);

 delay_ms(10);

 i2c_stop();

//----------------------------------format y axis = pitch angles--------------------------------------

// changes accelerometer output to number from -90 to 90 to indicate pitch

 y_high = y_high % 255;

 if(y_high > 224)

 {

 y_high = y_high - 255;

 }

 y_high = y_high*3;

//---end--

 return(y_high);

}

 47

 //--compass---

 // Read the compass heading.

int32 read_heading(void)

 {

 int32 compasslsb,compassmsb;

 //start sequence and send slave adress byte

 i2c_start();

 i2c_write(compassslavewrite); // send slave address with write data

 i2c_write(compassdatareg); // data register

 i2c_stop();

 delay_ms(10); // actual delay is 6

 //inititate sensor read

 i2c_start();

 i2c_write(compassslaveread); // slave address with read data

 compassmsb = i2c_read();

 compasslsb = i2c_read(nack);

 i2c_stop();

 return((int32)compasslsb | ((int32)compassmsb << 8))/10;

 }

//--end compass---

//--pressure sensor--

initialize_pressure_sensor(void)

{

 i2c_start();

 i2c_write(spcslaveregwrite);

 delay_ms(25);

 i2c_write(operation);

 delay_ms(50);

 i2c_write(highres);

 delay_ms(25);

 i2c_stop();

 delay_ms(50);

}

int32 read_temperature(void)

{

 48

 int32 tempbits1, tempbits2;

 output_low(pin_C0); // connects to digital gnd or vdd on device

 output_high(pin_C1); // connects to digital gnd or vdd on device

 //GET temp DATA

 //start sequence and send slave adress byte

 i2c_start();

 i2c_write(spcslaveregwrite); // send slave address with write command

 delay_ms(25); // fake receiving the 'ACK' aka check for a '0' on SDA

 i2c_write(temperaturereg); // send data register address

 delay_ms(25); // fake receiving the 'ACK' aka check for a '0' on SDA

 //inititate sensor read

 i2c_start();

 i2c_write(spcslaveregread); // slave address with read command

 tempbits1 = i2c_read(); // read msb2

 // one clock cycle fake 'ACK' goes here, aka check for a '0' on SDA

 tempbits2 = i2c_read(nack); // read lsb with 'NACK' condition

 i2c_stop();

return ((int32)tempbits2 | ((int32)tempbits1 << 8)) /20;

}

// Read the pressure sensor (19 bits total).

int32 read_pressure(void)

 {

 int32 pressurelsb,pressuremsb,pressuremsb2;

 output_low(pin_C0);

 output_high(pin_C1);

 //GET MSB DATA

 //start sequence and send slave adress byte

 i2c_start();

 i2c_write(spcslaveregwrite); // send slave address with write command

 delay_ms(25); // fake receiving the 'ACK' aka check for a '0' on SDA

 i2c_write(pressurerega); // send data register address

 delay_ms(25); // fake receiving the 'ACK' aka check for a '0' on SDA

 //inititate sensor read

 i2c_start();

 i2c_write(spcslaveregread); // slave address with read command

 pressuremsb2 = i2c_read(nack); // read msb2

 i2c_stop();

 49

 // GET LSB DATA

 //start sequence and send slave adress byte

 i2c_start();

 i2c_write(spcslaveregwrite); // send slave address with write command

 delay_ms(25); // fake receiving the 'ACK' aka check for a '0' on SDA

 i2c_write(pressureregb); // send data register address

 delay_ms(25); // fake receiving the 'ACK' aka check for a '0' on SDA

 //inititate sensor read

 i2c_start();

 i2c_write(spcslaveregread); // slave address with read command

 pressuremsb = i2c_read(); // read msb

 pressurelsb = i2c_read(nack); // read lsb with 'NACK' condition

 i2c_stop();

 return((int32)pressurelsb | ((int32)pressuremsb << 8) | ((int32)pressuremsb2 << 16))

/4;

 }

//--------------------------------end pressure/temperature sensor-----------------------------------

//--------------------------------------MAIN FUNCTION--

void main()

{

 while(1)

 {

 output_low(pin_C0);

 output_high(pin_C1);

 //init functions to read sensors

 counter = read_count();

 xaxis = read_accelerometer1();

 yaxis = read_accelerometer2();

 heading = read_heading();

 initialize_pressure_sensor();

 temperature = read_temperature();

 pressure = read_pressure();

 //print all data to serial in 'column' format - easy for collection in matlab

 printf("%lu\t%ld\t%ld\t%lu\t%lu\t%lu\n\r",counter , xaxis, yaxis, heading, pressure,

temperature);

 delay_ms(25);

 50

 }

}

//---------------------------------------END OF PROGRAM---

 51

/*tristan lawson, paul agyiri. e90 2008, straight and level flight */

// fuses defs--> high speed oscillator, no watchdog timer, no code protect, no low voltage

programming

// use delay must precede use rs232 directive

// flight controller

// 04/14/2008

#include <16F873A.H>

#device ICD=TRUE

#fuses XT, NOWDT, NOPROTECT, NOLVP, DEBUG

#use delay(clock=4000000)

#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7, parity=N, bits=8)

#use rs232(DEBUGGER)

#use i2c(Master, sda=PIN_C4, scl=PIN_C3, FORCE_HW)

#define dacconfig 0x00 // 00000000 this also represents the default settings

#define dacaddress 0x58 // 01011xx0 where xx = 00 since we will tie AD0 and Ad1 to

ground

signed int32 altitude, direction, aileron_pi, elevator_pi, pi_aileron_out, pi_elevator_out;

signed int32 pi_altitude_decision, pi_direction_decision

,altitude1,direction1,aileron_voltage, elevator_voltage;

float Kp_aileron; // insert values after system id

float Ki_aileron; // insert values after system id

float Kp_elevator; // insert values after system id

float Ki_elevator; // insert values after system id

float altitude_setpoint; // insert value we want

float direction_setpoint; // insert value we want

float Tp_aileron, Ti_aileron, Tp_elevator, Ti_elevator, temp_aileron_float,

temp_elevator_float; //proportional and integral term

float elevator_error_sum = 0, aileron_error_sum = 0, altitude_error, direction_error; //

sum of errors, for integral term

/*

read_altitude()

 {

 signed int sensor_altitude;

 return(sensor_altitude);

 }

read_heading()

 {

 52

 signed int sensor_heading;

 return(sensor_heading);

 }

*/

//-------------------------------PITCH/ALTITUDE CONTROLLER------------------------------

pi_controller_pitch(signed int32 altitude1)

 {

 altitude = altitude1;

 // calculate the raw error

 altitude_error = altitude_setpoint - altitude;

 // calculate the proportional term

 Tp_elevator = -Kp_elevator * altitude_error;

 // calculate the integral term

 elevator_error_sum = elevator_error_sum + altitude_error;

 temp_elevator_float = elevator_error_sum;

 Ti_elevator = Ki_elevator * temp_elevator_float;

 // calculate the desired power

 elevator_voltage = Tp_elevator + Ti_elevator;

 // set the correct power

 if (elevator_voltage < 0)

 elevator_voltage = 0;

 else if (elevator_voltage > 255)

 elevator_voltage = 255;

 else

 pi_elevator_out = elevator_voltage;

 return(pi_elevator_out); // this could be pwm duty, etc

}

elevator_dac(signed int32 elevator_value)

{

 elevator_value = elevator_value;

 i2c_start();

 i2c_write(dacaddress); // send dac/slave address with write command

 delay_us(1); // fake receiving the 'ACK'

 53

 i2c_write(dacconfig); // send dac config data

 delay_us(1); // fake receiving the 'ACK'

 i2c_write(elevator_value); // send value to dac for d/a conversion

 i2c_stop();

}

//------------------------------END PITCH/ALTITUDE CONTROLLER------------------------

//---------------------------------ROLL/DIRECTION CONTROLLER---------------------------

signed int32 pi_controller_roll(direction1)

 {

 // calculate the raw error

 direction_error = direction_setpoint - direction;

 // calculate the proportional term

 Tp_aileron = -Kp_aileron * direction_error;

 // calculate the integral term

 aileron_error_sum = aileron_error_sum + direction_error;

 temp_aileron_float = aileron_error_sum;

 Ti_aileron = Ki_aileron * temp_aileron_float;

 // calculate the desired power

 aileron_voltage = Tp_aileron + Ti_aileron;

 // set the correct power

 if (aileron_voltage < 0)

 aileron_voltage = 0;

 else if (aileron_voltage > 255)

 aileron_voltage = 255;

 else

 pi_aileron_out = aileron_voltage;

 return(pi_aileron_out); // this is for DAC

}

aileron_dac(signed int32 aileron_value)

{

 aileron_value = aileron_value;

 i2c_start();

 i2c_write(dacaddress); // send dac/slave address with write command

 54

 delay_us(1); // fake receiving the 'ACK'

 i2c_write(dacconfig); // send dac config data

 delay_us(1); // fake receiving the 'ACK' A

 i2c_write(aileron_value); // send value to dac for d/a conversion

 i2c_stop();

}

//---------------------------END ROLL/DIRECTION CONTROLLER---------------------------

//--------------------------------------MAIN PROGRAM--

void main()

{

 while(1)

 {

 //altitude = read_altitude();

 // direction = read_heading();

 pi_altitude_decision = pi_controller_pitch(altitude);

 elevator_dac(elevator_pi);

 pi_direction_decision = pi_controller_roll(direction);

 aileron_dac(aileron_pi);

 delay_ms(100);

 }

}

//--END OF PROGRAM---------------------------------------

 55

/*tristan lawson, paul agyiri. e90 2008, ground code */

// detects the changes in voltage coming from transmitter potentiometers corresponding to

// changes in control stick position. Required to develop controller.

// Adapted from Erik Cheever's E72 class assignments

// 04/18/2008

#include <16F873A.H>

#device ICD=TRUE

#device ADC=8 // 8 bit resolution is what we want

#fuses XT, NOWDT, NOPROTECT, NOLVP

#use delay(clock=4000000)

//#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7, parity=N, bits=8)

#use rs232(DEBUGGER)

signed int32 read_elevator_tx, read_aileron_tx, elevator_tx_value, aileron_tx_value,

number = 0, counter;

signed int32 read_rudder_tx, read_throttle_tx, rudder_tx_value, throttle_tx_value;

signed int32 read_count(void)

 {

 number = number + 1;

 return number;

 }

signed int32 read_elevator_function(void)

 {

 //Set up adc port to read from channel 2 (pin A2)

 set_adc_channel(2);

 delay_ms(1);

 read_elevator_tx = read_adc();

 return (read_elevator_tx);

 }

signed int32 read_aileron_function(void)

 {

 //Set up adc port to read from channel 1 (pin A1)

 set_adc_channel(1);

 delay_ms(1);

 read_aileron_tx = read_adc();

 return (read_aileron_tx);

 }

 56

signed int32 read_rudder_function(void)

 {

 //Set up adc port to read from channel 0 (pin A0)

 set_adc_channel(0);

 delay_ms(1);

 read_rudder_tx = read_adc();

 return (read_rudder_tx);

 }

 signed int32 read_throttle_function(void)

 {

 //Set up adc port to read from channel 4 (pin A5)

 set_adc_channel(4);

 delay_ms(1);

 read_throttle_tx = read_adc();

 return (read_throttle_tx);

 }

void main()

 {

 setup_adc(ADC_CLOCK_INTERNAL);

 setup_adc_ports(ALL_ANALOG);

 setup_spi(FALSE);

 setup_counters(RTCC_INTERNAL,RTCC_DIV_2);

 setup_timer_1(T1_DISABLED);

 setup_timer_2(T2_DISABLED,0,1);

 //Main loop

 while (1)

 {

 counter = read_count();

 elevator_tx_value = read_elevator_function();

 aileron_tx_value = read_aileron_function();

 rudder_tx_value = read_rudder_function();

 throttle_tx_value = read_throttle_function();

 printf("%ld\t%ld\t%ld\t%ld\t%ld\n\r",counter, elevator_tx_value, aileron_tx_value,

rudder_tx_value, throttle_tx_value);

 }

}

 57

/*tristan lawson, paul agyiri. e90 2008, ground code */

// code to read incoming serial data from airplane and parse

// NOTE: this code is untested and incomplete

// 05/02/2008

#include <16F873A.H>

#device ICD=TRUE

#include <stdlib.h>

#fuses XT, NOWDT, NOPROTECT, NOLVP, DEBUG

#use delay(clock=4000000)

#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7, parity=N, bits=8,

stream=FLIGHT_DATA, ERRORS)

#define FALSE = 0

#define TRUE = !FALSE

// array 50 and i = 49

int full_line,i;

char value;

char Serial_Array[60];

#INT_RDA

void serial_isr()

 {

 i =0;

 #use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7, parity=N, bits=8,

stream=FLIGHT_DATA, ERRORS)

 Serial_Array[i] = getc(FLIGHT_DATA);

 i++;

 if (Serial_Array[i-1] == '\r')

 {

 full_line = TRUE;

 i = 0;

 }

 delay_ms(1);

 #use rs232(DEBUGGER, stream=FLIGHT_DATA1)

 printf("%s\n\r",Serial_Array);

 }

 58

void main()

{

 clear_interrupt(INT_RDA);

 enable_interrupts(int_rda);

 enable_interrupts(GLOBAL);

 while(1)

 {

 serial_isr();

 // parsing function goes here

 }

}

 59

/*tristan lawson, paul agyiri. e90 2008, avionics computer */

//MAX517 DAC CODE

// min 500 ms delay between update required - insert this delay into dac function

//in ground computer code

// to have multiple dacs, change dacaddress and corresponding voltage inputs into them

// we switched the adressing with the rudder and throttle DACs due to confusion.

// 04/27/2008

#include <16F873A.H>

#device ICD=TRUE

#fuses XT, NOWDT, NOPROTECT, NOLVP

#use delay(clock=4000000)

//#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7, parity=N, bits=8)

#use rs232(DEBUGGER)

#use i2c(Master, sda=PIN_C4, scl=PIN_C3, FORCE_HW)

#define dacconfig 0x00 // 00000000

#define elevatordacaddress 0x58 // 01011xx0 where xx = 00, we will tie AD0 and AD1

to Vss

#define ailerondacaddress 0x5E // 01011xx0 where xx = 11, we will tie AD0 and AD1

to Vdd

#define rudderdacaddress 0x5C // 01011010 where xx = 01, we will tie AD0 to Vss and

AD1 to Vss

#define throttledacaddress 0x5A // 01011100 where xx = 10, we will tie AD0 and AD1

to Vdd

//---elevator DAC--

int32 elevator_dac(int32 elevator_value)

{

 elevator_value = elevator_value;

 i2c_start();

 i2c_write(elevatordacaddress); // send dac/slave address with write command

 delay_ms(1); // fake receiving the 'ACK'

 i2c_write(dacconfig); // send dac config data

 delay_ms(1); // fake receiving the 'ACK' A

 i2c_write(elevator_value); // send value to dac for d/a conversion

 i2c_stop();

 delay_ms(100);

}

//---end elevator DAC---------------------------------------

-

 60

//--aileron DAC---

int32 aileron_dac(int32 aileron_value)

{

 aileron_value = aileron_value;

 i2c_start();

 i2c_write(ailerondacaddress); // send dac/slave address with write command

 delay_ms(1); // fake receiving the 'ACK'

 i2c_write(dacconfig); // send dac config data

 delay_ms(1); // fake receiving the 'ACK' A

 i2c_write(aileron_value); // send value to dac for d/a conversion

 i2c_stop();

 delay_ms(100);

}

//--end aileron DAC---

//--rudder DAC---

int32 rudder_dac(int32 rudder_value)

{

 rudder_value = rudder_value;

 i2c_start();

 i2c_write(rudderdacaddress); // send dac/slave address with write command

 delay_ms(1); // fake receiving the 'ACK'

 i2c_write(dacconfig); // send dac config data

 delay_ms(1); // fake receiving the 'ACK' A

 i2c_write(rudder_value); // send value to dac for d/a conversion

 i2c_stop();

 delay_ms(100);

}

//---end rudder DAC--------------------------------------

//--throttle DAC--

int32 throttle_dac(int32 throttle_value)

{

 throttle_value = throttle_value;

 61

 i2c_start();

 i2c_write(throttledacaddress); // send dac/slave address with write command

 delay_ms(1); // fake receiving the 'ACK'

 i2c_write(dacconfig); // send dac config data

 delay_ms(1); // fake receiving the 'ACK' A

 i2c_write(throttle_value); // send value to dac for d/a conversion

 i2c_stop();

 delay_ms(100);

}

//---end throttle DAC ---

//---MAIN FUNCTION---

void main()

 while(1)

 {

 elevator_dac(70);

 delay_ms(1000);

 elevator_dac(215);

 delay_ms(1000);

 elevator_dac(70);

 delay_ms(1000);

 elevator_dac(210);

 delay_ms(1000);

 elevator_dac(140);

 delay_ms(1000);

 aileron_dac(70);

 delay_ms(1000);

 aileron_dac(215);

 delay_ms(1000);

 aileron_dac(70);

 delay_ms(1000);

 aileron_dac(210);

 delay_ms(1000);

 aileron_dac(140);

 delay_ms(1000);

 62

 // be careful, the throttle servo may be backwards

 throttle_dac(100);

 delay_ms(500);

 throttle_dac(120);

 delay_ms(500);

 throttle_dac(160);

 delay_ms(500);

 throttle_dac(200);

 delay_ms(500);

 throttle_dac(150);

 delay_ms(500);

 throttle_dac(100);

 delay_ms(500);

 throttle_dac(100);

 delay_ms(500);

 throttle_dac(80);

 delay_ms(500);

 throttle_dac(80);

 delay_ms(500);

 throttle_dac(100);

 delay_ms(500);

 throttle_dac(130);

 delay_ms(500);

 //---

 rudder_dac(70);

 delay_ms(1000);

 rudder_dac(215);

 delay_ms(1000);

 rudder_dac(70);

 delay_ms(1000);

 rudder_dac(210);

 delay_ms(1000);

 rudder_dac(140);

 delay_ms(1000);

 }

}

//--END OF PROGRAM--

 63

Appendix D: Data Used in Designing Control System, Code used in Determining System

Transfer Function

Event Time Throttle Elevator Aileron Rudder Altitude Attitude Roll Heading

 Nose
Relative

RT Wing
Relative

0-360

 (Sec) 0 = 0% -10 =
Stick
Forward
(Dive)

-10 =
Stick
Left

-10 = Stick Left Horizon Horizon

 10 =
100%

10 =
Stick
Back
(Climb)

10 =
Stick
Right

10 =
Stick
Right

(ft) (deg) (deg) (Deg)

 Time Throttle Elevator Aileron Rudder Altitude Attitude Roll Heading

Take-Off 0 0 0 0 0 6 0 0 0

 0.1 0 0 0 0 6 0 0 0

 0.2 5 0 0 0 6 0 0 0

 0.3 10 0 0 0 6 0 0 0

 0.4 10 0 0 0 6 0 0 0

 0.5 10 0 0 0 6 0 0 0

 0.6 10 0 0 0 6 0 0 0

 0.7 10 0 0 0 7 0 0 0

 0.8 10 0 0 0 7 0 0 0

 0.9 10 0 0 0 8 0 0 0

 1 10 0 0 0 8 0 0 0

 1.1 10 0 0 0 9 0 0 0

 1.2 10 0 0 0 9 5 0 0

 1.3 10 1 0 0 10 5 0 0

 1.4 10 1 0 0 10 5 0 0

 1.5 10 1 0 0 10 5 0 0

 1.6 10 1 0 0 11 5 0 0

 1.7 10 1 0 0 11 5 0 0

 1.8 10 2 0 0 12 5 0 0

 1.9 10 2 0 0 12 5 0 0

 2 10 2 0 0 13 5 0 0

 2.1 10 2 0 0 13 5 0 0

 2.2 10 2 0 0 14 5 0 0

 2.3 10 3 0 0 14 10 0 0

 2.4 10 3 0 0 15 10 0 0

 2.5 10 3 0 0 15 10 0 0

 2.6 10 3 0 0 15 10 0 0

 2.7 10 3 0 0 16 10 0 0

 2.8 10 3 0 0 16 10 0 0

 2.9 10 3 0 0 17 10 0 0

 3 10 3 0 0 17 10 0 0

 3.1 10 3 0 0 18 10 0 0

 3.2 10 3 0 0 18 10 0 0

 64

 3.3 10 3 0 0 19 10 0 0

 3.4 10 3 0 0 19 10 0 0

 3.5 10 3 0 0 20 10 0 0

 3.6 10 3 0 0 20 10 0 0

 3.7 10 3 0 0 20 10 0 0

 3.8 10 3 0 0 21 10 0 0

 3.9 10 3 0 0 21 10 0 0

 4 10 3 0 0 22 10 0 0

 4.1 10 3 0 0 22 10 0 0

 4.2 10 3 0 0 23 10 0 0

 4.3 10 3 0 0 23 10 0 0

 4.4 10 3 0 0 24 10 0 0

 4.5 10 3 0 0 24 10 0 0

 4.6 10 3 0 0 25 10 0 0

 4.7 10 3 0 0 25 10 0 0

 4.8 10 3 0 0 26 10 0 0

 4.9 10 3 0 0 26 10 0 0

 5 10 3 0 0 26 10 0 0

 5.1 10 2 0 0 27 10 0 0

 5.2 10 2 0 0 27 10 0 0

 5.3 10 2 0 0 28 10 0 0

 5.4 10 2 0 0 28 10 0 0

 5.5 10 2 0 0 29 10 0 0

 5.6 10 2 0 0 29 10 0 0

 5.7 10 2 0 0 30 15 0 0

 5.8 10 2 0 0 30 15 0 0

 5.9 10 2 0 0 31 15 0 0

 6 10 2 0 0 31 15 0 0

 6.1 10 2 0 0 31 15 0 0

 6.2 10 2 0 0 32 20 0 0

 6.3 10 2 0 0 32 20 0 0

 6.4 10 2 0 0 33 20 5 0

 6.5 10 2 0 0 33 20 5 0

 6.6 10 2 0 0 34 20 5 0

 6.7 10 2 0 0 34 20 5 0

 6.8 10 2 0 0 35 20 5 0

 6.9 10 2 0 0 35 20 5 0

 7 10 2 0 0 36 20 5 0

 7.1 10 3 0 0 36 20 10 0

 7.2 10 3 0 0 36 20 10 0

 7.3 10 3 0 0 37 20 10 0

 7.4 10 3 0 0 37 20 10 0

 7.5 10 3 0 0 38 20 10 0

 7.6 10 3 0 0 38 20 10 0

 7.7 10 3 0 0 39 20 10 0

 7.8 10 3 0 0 39 30 10 0

 7.9 10 3 0 0 40 30 20 0

 8 10 3 2 0 40 30 20 0

 8.1 10 2 2 0 41 30 15 0

 8.2 10 2 2 0 41 30 10 0

 8.3 10 2 2 0 42 30 10 0

 65

 8.4 10 2 -4 0 42 30 -5 0

 8.5 10 2 -4 0 42 30 -5 0

 8.6 10 2 -4 0 43 30 -5 0

 8.7 10 2 -2 0 43 30 -5 0

 8.8 10 2 -2 0 44 30 0 0

 8.9 10 2 0 0 44 30 0 0

 9 10 2 0 0 45 30 0 0

 9.1 10 2 0 0 45 30 0 0

 9.2 10 2 0 0 46 30 0 0

 9.3 10 2 0 0 46 30 0 0

 9.4 10 2 0 0 47 30 0 0

 9.5 10 2 0 0 47 30 0 0

 9.6 10 2 0 0 47 30 0 0

 9.7 10 2 0 0 48 30 0 0

 9.8 10 2 0 0 48 30 0 0

 9.9 10 2 0 0 49 30 0 0

 10 10 2 0 0 49 30 0 0

 10.1 10 2 0 0 50 30 0 0

 10.2 10 2 0 0 50 30 0 0

 10.3 10 2 0 0 51 30 0 0

 10.4 10 2 0 0 51 30 0 0

 10.5 10 2 0 0 52 30 0 0

 10.6 10 2 0 0 52 30 0 0

 10.7 10 2 0 0 52 30 0 0

 10.8 10 2 0 0 53 30 0 0

 10.9 10 2 0 0 53 30 0 0

 11 10 2 0 0 54 30 0 0

 11.1 10 2 0 0 54 30 0 0

 11.2 10 2 0 0 55 30 0 0

 11.3 10 2 0 0 55 30 0 0

 11.4 10 2 0 0 56 30 0 0

 11.5 10 2 0 0 56 30 0 0

 11.6 10 2 0 0 57 30 0 0

 11.7 10 2 0 0 57 30 0 0

 11.8 10 2 0 0 58 30 0 0

 11.9 10 2 0 0 58 30 0 0

 12 10 2 0 0 58 30 0 0

 12.1 10 2 0 0 59 30 0 0

 12.2 10 2 0 0 59 30 0 0

 12.3 10 2 0 0 60 30 0 0

 12.4 10 2 0 0 60 30 0 0

 12.5 10 2 0 0 61 30 0 0

 12.6 10 2 0 0 61 30 0 0

 12.7 10 2 0 0 62 30 0 0

 12.8 10 2 0 0 62 30 0 0

 12.9 10 2 0 0 63 30 0 0

 13 10 2 0 0 63 30 0 0

 13.1 10 2 0 0 63 30 0 0

 13.2 10 2 0 0 64 30 0 0

 13.3 10 2 0 0 64 30 0 0

 13.4 10 2 0 0 65 30 0 0

 66

 13.5 10 2 0 0 65 30 0 0

 13.6 10 2 0 0 66 30 0 0

 13.7 10 2 0 0 66 30 0 0

 13.8 10 2 0 0 67 30 0 0

 13.9 10 2 0 0 67 30 0 0

 14 10 2 0 0 68 30 0 0

 14.1 10 2 0 0 68 30 0 0

 14.2 10 2 0 0 68 30 0 0

 14.3 10 2 0 0 69 30 0 0

 14.4 10 2 0 0 69 30 0 0

 14.5 10 2 0 0 70 30 0 0

 14.6 10 2 0 0 70 30 0 0

 14.7 10 2 0 0 71 30 0 0

 14.8 10 2 0 0 71 30 0 0

 14.9 10 2 0 0 72 30 0 0

 15 10 2 0 0 72 30 0 0

Return to
Level

15.1 10 1 0 72 20 0 0

flight 15.2 10 1 0 72 20 0 0

 15.3 10 1 0 73 20 0 0

 15.4 10 1 0 73 20 0 0

 15.5 10 1 0 73 20 5 0

 15.6 10 1 0 73 20 5 0

 15.7 10 1 0 73 20 5 0

 15.8 10 1 0 74 20 5 0

 15.9 10 1 0 74 10 5 0

 16 10 1 0 74 10 10 0

 16.1 10 0 0 74 10 10 0

 16.2 10 0 0 74 10 10 0

 16.3 10 0 0 74 10 20 0

 16.4 10 0 0 74 10 20 0

 16.5 10 0 0 74 10 20 0

 16.6 10 0 0 74 10 20 0

 16.7 10 0 2 74 10 20 0

 16.8 10 0 2 74 5 15 0

 16.9 10 0 2 74 5 10 0

 17 10 0 2 74 5 10 0

 17.1 10 -1 -4 74 5 -5 0

 17.2 10 -1 -4 75 5 -5 0

 17.3 10 -1 -4 75 5 -5 0

 17.4 10 -1 -2 75 5 -5 0

 17.5 10 -1 -2 75 5 0 0

 17.6 10 -1 0 75 5 0 0

 17.7 10 -2 0 75 5 0 0

 17.8 10 -2 0 75 0 0 0

 17.9 10 -2 0 75 0 0 0

 18 10 -2 0 75 0 0 0

 18.1 10 -2 0 75 0 0 0

 18.2 10 -2 0 75 0 0 0

 18.3 10 -2 0 75 0 0 0

 18.4 10 -2 0 75 0 0 0

 67

 18.5 10 -1 0 75 0 0 0

 18.6 10 -1 0 75 0 0 0

 18.7 10 -1 0 75 0 0 0

 18.8 10 -1 0 75 0 0 0

 18.9 10 -1 0 75 0 0 0

 19 10 -1 0 75 0 0 0

 19.1 10 -1 0 75 0 0 0

 19.2 10 -1 0 75 0 0 0

 19.3 10 0 0 75 0 0 0

 19.4 10 0 0 75 0 0 0

 19.5 10 0 0 75 0 0 0

 19.6 10 0 0 75 0 0 0

 19.7 7 0 0 75 0 0 0

 19.8 7 0 0 75 0 0 0

 19.9 7 0 0 75 0 0 0

 20 7 0 0 75 0 0 0

90 degree 20.1 7 0 2 74 0 30 0

 Right
Turn

20.2 7 0 3 72 0 40 0

 20.3 7 0 4 71 0 60 0

 20.4 7 0 5 71 0 70 0

 20.5 7 0 5 71 0 80 0

 20.6 7 0 4 71 0 80 0

 20.7 7 0 3 71 0 80 0

 20.8 7 0 3 71 0 80 0

 20.9 7 0 2 71 0 80 10

 21 7 1 0 71 0 80 20

 21.1 7 1 0 71 0 80 22

 21.2 7 2 0 71 0 80 24

 21.3 7 2 0 71 0 80 26

 21.4 7 2 0 71 0 80 28

 21.5 7 2 0 71 0 80 30

 21.6 7 2 0 71 0 80 32

 21.7 7 2 0 71 0 80 34

 21.8 7 2 0 71 0 80 36

 21.9 7 2 0 71 0 80 38

 22 7 2 0 71 0 80 40

 22.1 7 2 0 71 0 80 42

 22.2 7 2 0 71 0 80 44

 22.3 7 2 0 71 0 80 46

 22.4 7 2 0 71 0 80 48

 22.5 7 2 0 71 0 80 50

 22.6 7 2 0 71 0 80 52

 22.7 7 2 0 71 0 80 54

 22.8 7 2 0 71 0 80 56

 22.9 7 2 0 71 0 80 58

 23 7 2 0 71 0 80 60

 23.1 7 2 0 71 0 80 62

 23.2 7 2 0 71 0 80 64

 23.3 7 2 0 71 0 80 66

 23.4 7 2 0 71 0 80 68

 68

 23.5 7 2 0 71 0 80 70

 23.6 7 2 0 71 0 80 72

 23.7 7 2 0 71 0 80 74

 23.8 7 2 0 71 0 80 76

 23.9 7 2 -2 71 0 80 78

 24 7 1 -4 71 0 40 80

 24.1 7 1 -6 71 0 30 82

 24.2 7 0 -1 71 0 20 84

 24.3 7 0 0 71 0 10 86

 24.4 7 0 0 71 0 5 88

 24.5 7 1 0 71 5 0 90

 24.6 7 1 0 74 5 0 90

 24.7 7 1 0 75 5 0 90

 24.8 7 1 0 75 5 0 90

 24.9 7 1 0 75 0 0 90

 25 7 1 0 75 0 0 90

Return to
Level

25.1 7 0 0 75 0 0 90

flight 25.2 7 0 0 75 0 0 90

 25.3 7 0 0 75 0 0 90

 25.4 7 0 0 75 0 0 90

 25.5 7 0 0 75 5 0 90

 25.6 7 0 0 75 5 0 90

 25.7 7 0 0 80 5 0 90

 25.8 7 0 0 80 5 0 90

 25.9 7 0 0 80 0 0 90

 26 7 -2 0 80 0 0 90

 26.1 7 -2 0 80 0 0 90

 26.2 7 -2 0 80 0 0 90

 26.3 7 -2 0 80 -5 0 90

 26.4 7 -2 0 80 -5 0 90

 26.5 7 -2 0 80 -5 0 90

 26.6 7 -3 0 85 -5 0 90

 26.7 7 -3 0 85 -5 0 90

 26.8 7 -3 0 85 -5 0 90

 26.9 7 -3 0 85 -5 0 90

 27 7 -3 0 85 -5 0 90

 27.1 7 -3 0 85 -5 0 90

 27.2 7 -1 0 85 -5 0 90

 27.3 7 -1 0 85 -10 0 90

 27.4 7 -1 0 85 -10 0 90

 27.5 7 -1 0 85 -10 0 90

 27.6 7 -1 0 75 -10 0 90

 27.7 7 -1 0 75 0 0 90

 27.8 7 0 0 75 0 0 90

 27.9 7 0 0 75 0 0 90

 28 7 0 0 75 0 0 90

 28.1 7 0 0 75 0 0 90

 28.2 7 0 0 75 0 0 90

 28.3 7 0 0 75 0 0 90

 28.4 7 0 0 75 0 0 90

 69

 28.5 7 0 0 75 0 0 90

 28.6 7 0 0 75 0 0 90

 28.7 7 0 0 75 0 0 90

 28.8 7 0 0 70 0 0 90

 28.9 7 0 0 70 0 0 90

 29 7 0 0 70 0 0 90

 29.1 7 0 0 70 0 0 90

 29.2 7 0 0 70 0 0 90

 29.3 7 0 0 70 0 0 90

 29.4 7 0 0 70 0 0 90

 29.5 7 0 0 70 0 0 90

 29.6 7 0 0 70 0 0 90

 29.7 7 0 0 70 0 0 90

 29.8 7 0 0 70 0 0 90

 29.9 7 0 0 70 0 0 90

90 degree 30 7 0 0 70 0 0 90

 Right
Turn

30.1 7 0 2 74 0 30 90

 30.2 7 0 3 72 0 40 90

 30.3 7 0 4 71 0 60 90

 30.4 7 0 5 71 0 70 90

 30.5 7 0 5 71 0 80 90

 30.6 7 0 4 71 0 80 90

 30.7 7 0 3 71 0 80 90

 30.8 7 0 3 71 0 80 90

 30.9 7 0 2 71 0 80 100

 31 7 1 0 71 0 80 120

 31.1 7 1 0 71 0 80 122

 31.2 7 2 0 71 0 80 124

 31.3 7 2 0 71 0 80 126

 31.4 7 2 0 71 0 80 128

 31.5 7 2 0 71 0 80 130

 31.6 7 2 0 71 0 80 132

 31.7 7 2 0 71 0 80 134

 31.8 7 2 0 71 0 80 136

 31.9 7 2 0 71 0 80 138

 32 7 2 0 71 0 80 140

 32.1 7 2 0 71 0 80 142

 32.2 7 2 0 71 0 80 144

 32.3 7 2 0 71 0 80 146

 32.4 7 2 0 71 0 80 148

 32.5 7 2 0 71 0 80 150

 32.6 7 2 0 71 0 80 152

 32.7 7 2 0 71 0 80 154

 32.8 7 2 0 71 0 80 156

 32.9 7 2 0 71 0 80 158

 33 7 2 0 71 0 80 160

 33.1 7 2 0 71 0 80 162

 33.2 7 2 0 71 0 80 164

 33.3 7 2 0 71 0 80 166

 33.4 7 2 0 71 0 80 168

 70

 33.5 7 2 0 71 0 80 170

 33.6 7 2 0 71 0 80 172

 33.7 7 2 0 71 0 80 174

 33.8 7 2 0 71 0 80 176

 33.9 7 2 -2 71 0 80 178

 34 7 1 -4 71 0 40 180

 34.1 7 1 -6 71 0 30 180

 34.2 7 0 -1 71 0 20 180

 34.3 7 0 0 71 0 10 180

 34.4 7 0 0 71 0 5 180

 34.5 7 1 0 71 5 0 180

 34.6 7 1 0 74 5 0 180

 34.7 7 1 0 75 5 0 180

 34.8 7 1 0 75 5 0 180

 34.9 7 1 0 75 0 0 180

 35 7 1 0 75 0 0 180

Return to
Level

35.1 7 0 0 75 0 0 180

flight 35.2 7 0 0 75 0 0 180

Downwind
leg

35.3 7 0 0 75 0 0 180

 35.4 7 0 0 75 0 0 180

 35.5 7 -2 0 75 5 0 180

 35.6 7 -2 0 75 5 0 180

 35.7 7 -2 0 80 5 0 180

 35.8 7 -2 0 80 5 0 180

 35.9 7 -2 0 80 0 0 180

 36 7 -2 0 80 0 0 180

 36.1 7 -2 0 80 0 0 180

 36.2 7 -2 0 80 0 0 180

 36.3 7 -2 0 80 -5 0 180

 36.4 7 -2 0 80 -5 0 180

 36.5 7 -2 0 80 -5 0 180

 36.6 7 -3 0 85 -5 0 180

 36.7 7 -3 0 85 -5 0 180

 36.8 7 -3 0 85 -5 0 180

 36.9 7 -3 0 85 -5 0 180

 37 7 -3 0 85 -5 0 180

 37.1 7 -3 0 85 -5 0 180

 37.2 7 -1 0 85 -5 0 180

 37.3 7 -1 0 85 -10 0 180

 37.4 7 -1 0 85 -10 0 180

 37.5 7 -1 0 85 -10 0 180

 37.6 7 -1 0 75 -10 0 180

 37.7 7 -1 0 75 -10 0 180

 37.8 7 -1 0 75 -10 0 180

 37.9 7 -1 0 75 -10 0 180

 38 7 -1 0 75 -10 0 180

 38.1 7 -1 0 75 -5 0 180

 38.2 7 -1 0 75 -5 0 180

 38.3 7 -1 0 75 -5 0 180

 71

 38.4 7 -1 0 75 -5 0 180

 38.5 7 -1 0 75 -5 0 180

 38.6 7 -1 0 75 -5 0 180

 38.7 7 -1 0 75 -5 0 180

 38.8 7 -1 0 75 -5 0 180

 38.9 7 -1 0 75 0 0 180

 39 7 -1 0 75 0 0 180

 39.1 7 -1 0 70 0 0 180

 39.2 7 1 0 70 0 0 180

 39.3 7 1 0 70 5 0 180

 39.4 7 1 0 70 5 0 180

 39.5 7 1 0 70 5 0 180

 39.6 7 3 0 70 5 0 180

 39.7 7 3 0 70 5 0 180

 39.8 7 3 0 70 10 0 180

 39.9 7 3 0 70 10 0 180

 40 7 3 0 75 10 0 180

 40.1 7 3 0 75 10 0 180

 40.2 7 3 0 75 10 0 180

 40.3 7 3 0 75 10 0 180

 40.4 7 3 0 75 10 0 180

 40.5 7 3 0 75 10 0 180

 40.6 7 3 0 75 10 0 180

 40.7 7 3 0 75 10 0 180

 40.8 7 3 0 75 10 0 180

 40.9 7 3 0 75 10 0 180

 41 7 0 0 75 10 0 180

 41.1 7 0 0 75 10 0 180

 41.2 7 0 0 75 0 0 180

 41.3 7 0 0 75 0 0 180

 41.4 7 0 0 70 0 0 180

 41.5 7 0 0 70 0 0 180

 41.6 7 0 0 70 0 0 180

 41.7 7 0 0 70 0 0 180

 41.8 7 0 0 70 0 0 180

 41.9 7 0 0 70 0 0 180

 42 7 0 0 70 0 0 180

 42.1 7 0 0 70 0 0 180

 42.2 7 0 0 70 0 0 180

 42.3 7 0 0 70 0 0 180

 42.4 7 0 0 70 0 0 180

 42.5 7 0 0 70 0 0 180

 42.6 7 0 0 70 0 0 180

 42.7 7 0 0 70 0 0 180

 42.8 7 0 0 70 0 0 180

 42.9 7 0 0 70 0 0 180

 43 7 0 0 70 0 0 180

 43.1 7 0 0 70 0 0 180

 43.2 7 0 0 70 0 0 180

 43.3 7 0 0 70 0 0 180

 43.4 7 0 0 70 0 0 180

 72

 43.5 7 0 0 70 0 0 180

 43.6 7 0 0 70 0 0 180

 43.7 7 0 0 70 0 0 180

 43.8 7 0 0 70 0 0 180

 43.9 7 0 0 70 0 0 180

 44 7 0 0 70 0 0 180

 44.1 7 0 0 70 0 0 180

 44.2 7 0 0 70 0 0 180

 44.3 7 0 0 70 0 0 180

 44.4 7 0 0 70 0 0 180

 44.5 7 0 0 70 0 0 180

 44.6 7 0 0 70 0 0 180

 44.7 7 0 0 70 0 0 180

 44.8 7 0 0 70 0 0 180

 44.9 7 0 0 70 0 0 180

 45 7 0 0 70 0 0 180

 45.1 7 0 0 70 0 0 180

 45.2 7 0 0 70 0 0 180

 45.3 7 0 0 70 0 0 180

 45.4 7 0 0 70 0 0 180

 45.5 7 0 0 70 0 0 180

 45.6 7 0 0 70 0 0 180

 45.7 7 0 0 70 0 0 180

 45.8 7 0 0 70 0 0 180

 45.9 7 0 0 70 0 0 180

 46 7 0 0 70 0 0 180

 46.1 7 0 0 70 0 0 180

 46.2 7 0 0 70 0 0 180

 46.3 7 0 0 70 0 0 180

 46.4 7 0 0 70 0 0 180

 46.5 7 0 0 70 0 0 180

 46.6 7 0 0 70 0 0 180

 46.7 7 0 0 70 0 0 180

 46.8 7 0 0 70 0 0 180

 46.9 7 0 0 70 0 0 180

 47 7 0 0 70 0 0 180

 47.1 7 0 0 70 0 0 180

 47.2 7 0 0 70 0 0 180

 47.3 7 0 0 70 0 0 180

 47.4 7 0 0 70 0 0 180

 47.5 7 0 0 70 0 0 180

 47.6 7 0 0 70 0 0 180

 47.7 7 0 0 70 0 0 180

 47.8 7 0 0 70 0 0 180

 47.9 7 0 0 70 0 0 180

 48 7 0 0 70 0 0 180

 48.1 7 0 0 70 0 0 180

 48.2 7 0 0 70 0 0 180

 48.3 7 0 0 70 0 0 180

 48.4 7 0 0 70 0 0 180

 48.5 7 0 0 70 0 0 180

 73

 48.6 7 0 0 70 0 0 180

 48.7 7 0 0 70 0 0 180

 48.8 7 0 0 70 0 0 180

 48.9 7 0 0 70 0 0 180

 49 7 0 0 70 0 0 180

 49.1 7 0 0 70 0 0 180

 49.2 7 0 0 70 0 0 180

 49.3 7 0 0 70 0 0 180

 49.4 7 0 0 70 0 0 180

 49.5 7 0 0 70 0 0 180

 49.6 7 0 0 70 0 0 180

 49.7 7 0 0 70 0 0 180

 49.8 7 0 0 70 0 0 180

 49.9 7 0 0 70 0 0 180

 50 7 0 0 70 0 0 180

90 degree 50.1 7 0 2 74 0 30 180

 Right
Turn

50.2 7 0 3 72 0 40 180

 50.3 7 0 4 71 0 60 180

 50.4 7 0 5 71 0 70 180

 50.5 7 0 5 71 0 80 180

 50.6 7 0 4 71 0 80 180

 50.7 7 0 3 71 0 80 180

 50.8 7 0 3 71 0 80 180

 50.9 7 0 2 71 0 80 190

 51 7 1 0 71 0 80 200

 51.1 7 1 0 71 0 80 202

 51.2 7 2 0 71 0 80 204

 51.3 7 2 0 71 0 80 206

 51.4 7 2 0 71 0 80 208

 51.5 7 2 0 71 0 80 210

 51.6 7 2 0 71 0 80 212

 51.7 7 2 0 71 0 80 214

 51.8 7 2 0 71 0 80 216

 51.9 7 2 0 71 0 80 218

 52 7 2 0 71 0 80 220

 52.1 7 2 0 71 0 80 222

 52.2 7 2 0 71 0 80 224

 52.3 7 2 0 71 0 80 226

 52.4 7 2 0 71 0 80 228

 52.5 7 2 0 71 0 80 230

 52.6 7 2 0 71 0 80 232

 52.7 7 2 0 71 0 80 234

 52.8 7 2 0 71 0 80 236

 52.9 7 2 0 71 0 80 238

 53 7 2 0 71 0 80 240

 53.1 7 2 0 71 0 80 242

 53.2 7 2 0 71 0 80 244

 53.3 7 2 0 71 0 80 246

 53.4 7 2 0 71 0 80 248

 53.5 7 2 0 71 0 80 250

 74

 53.6 7 2 0 71 0 80 252

 53.7 7 2 0 71 0 80 254

 53.8 7 2 0 71 0 80 256

 53.9 7 2 -2 71 0 80 258

 54 7 1 -4 71 0 40 260

 54.1 7 1 -6 71 0 30 262

 54.2 7 0 -1 71 0 20 264

 54.3 7 0 0 71 0 10 266

 54.4 7 0 0 71 0 5 268

 54.5 7 1 0 71 5 0 270

 54.6 7 1 0 74 5 0 270

 54.7 7 1 0 75 5 0 270

 54.8 7 1 0 75 5 0 270

 54.9 7 1 0 75 0 0 270

 55 7 1 0 75 0 0 270

Return to
Level

55.1 7 1 0 75 0 0 270

flight 55.2 7 0 0 75 0 0 270

 55.3 7 0 0 75 0 0 270

 55.4 7 0 0 75 0 0 270

 55.5 7 0 0 75 0 0 270

 55.6 7 -2 0 75 5 0 270

 55.7 7 -2 0 75 5 0 270

 55.8 7 -2 0 80 5 0 270

 55.9 7 -2 0 80 5 0 270

 56 7 -2 0 80 0 0 270

 56.1 7 -2 0 80 0 0 270

 56.2 7 -2 0 80 0 0 270

 56.3 7 -2 0 80 0 0 270

 56.4 7 -2 0 80 -5 0 270

 56.5 7 -2 0 80 -5 0 270

 56.6 7 -2 0 80 -5 0 270

 56.7 7 -3 0 85 -5 0 270

 56.8 7 -3 0 85 -5 0 270

 56.9 7 -3 0 85 -5 0 270

 57 7 -3 0 85 -5 0 270

 57.1 7 -3 0 85 -5 0 270

 57.2 7 -3 0 85 -5 0 270

 57.3 7 -1 0 85 -5 0 270

 57.4 7 -1 0 85 -10 0 270

 57.5 7 -1 0 85 -10 0 270

 57.6 7 -1 0 85 -10 0 270

 57.7 7 -1 0 75 -10 0 270

 57.8 7 -1 0 75 -10 0 270

 57.9 7 -1 0 75 -10 0 270

 58 7 -1 0 75 -10 0 270

 58.1 7 -1 0 75 -10 0 270

 58.2 7 -1 0 75 -5 0 270

 58.3 7 -1 0 75 -5 0 270

 58.4 7 -1 0 75 -5 0 270

 58.5 7 -1 0 75 -5 0 270

 75

 58.6 7 -1 0 75 -5 0 270

 58.7 7 -1 0 75 -5 0 270

 58.8 7 -1 0 75 -5 0 270

 58.9 7 -1 0 75 -5 0 270

 59 7 -1 0 75 0 0 270

 59.1 7 -1 0 75 0 0 270

 59.2 7 -1 0 70 0 0 270

 59.3 7 1 0 70 0 0 270

 59.4 7 1 0 70 5 0 270

 59.5 7 1 0 70 5 0 270

 59.6 7 1 0 70 5 0 270

 59.7 7 3 0 70 5 0 270

 59.8 7 3 0 70 5 0 270

 59.9 7 3 0 70 10 0 270

 60 7 3 0 70 10 0 270

 60.1 7 3 0 75 10 0 270

 60.2 7 3 0 75 10 0 270

 60.3 7 3 0 75 10 0 270

 60.4 7 3 0 75 10 0 270

 60.5 7 3 0 75 10 0 270

 60.6 7 3 0 75 10 0 270

 60.7 7 3 0 75 10 0 270

 60.8 7 3 0 75 10 0 270

 60.9 7 3 0 75 10 0 270

 61 7 3 0 75 10 0 270

 61.1 7 0 0 75 10 0 270

 61.2 7 0 0 75 10 0 270

 61.3 7 0 0 75 0 0 270

 61.4 7 0 0 75 0 0 270

 61.5 7 0 0 70 0 0 270

 61.6 7 0 0 70 0 0 270

 61.7 7 0 0 70 0 0 270

 61.8 7 0 0 70 0 0 270

 61.9 7 0 0 70 0 0 270

 62 7 0 0 70 0 0 270

 62.1 7 0 0 70 0 0 270

 62.2 7 0 0 70 0 0 270

 62.3 7 0 0 70 0 0 270

 62.4 7 0 0 70 0 0 270

 62.5 7 0 0 70 0 0 270

 62.6 7 0 0 70 0 0 270

 62.7 7 0 0 70 0 0 270

 62.8 7 0 0 70 0 0 270

 62.9 7 0 0 70 0 0 270

 63 7 0 0 70 0 0 270

 63.1 7 0 0 70 0 0 270

 63.2 7 0 0 70 0 0 270

 63.3 7 0 0 70 0 0 270

 63.4 7 0 0 70 0 0 270

 63.5 7 0 0 70 0 0 270

 63.6 7 0 0 70 0 0 270

 76

 63.7 7 0 0 70 0 0 270

 63.8 7 0 0 70 0 0 270

 63.9 7 0 0 70 0 0 270

 64 7 0 0 70 0 0 270

 64.1 7 0 0 70 0 0 270

 64.2 7 0 0 70 0 0 270

 64.3 7 0 0 70 0 0 270

 64.4 7 0 0 70 0 0 270

 64.5 7 0 0 70 0 0 270

 64.6 7 0 0 70 0 0 270

 64.7 7 0 0 70 0 0 270

 64.8 7 0 0 70 0 0 270

 64.9 7 0 0 70 0 0 270

 65 7 0 0 70 0 0 270

 65.1 7 0 0 70 0 0 270

 65.2 7 0 0 70 0 0 270

 65.3 7 0 0 70 0 0 270

 65.4 7 0 0 70 0 0 270

 65.5 7 0 0 70 0 0 270

 65.6 7 0 0 70 0 0 270

 65.7 7 0 0 70 0 0 270

 65.8 7 0 0 70 0 0 270

 65.9 7 0 0 70 0 0 270

 66 7 0 0 70 0 0 270

 66.1 7 0 0 70 0 0 270

 66.2 7 0 0 70 0 0 270

 66.3 7 0 0 70 0 0 270

 66.4 7 0 0 70 0 0 270

 66.5 7 0 0 70 0 0 270

 66.6 7 0 0 70 0 0 270

 66.7 7 0 0 70 0 0 270

 66.8 7 0 0 70 0 0 270

 66.9 7 0 0 70 0 0 270

 67 7 0 0 70 0 0 270

 67.1 7 0 0 70 0 0 270

 67.2 7 0 0 70 0 0 270

 67.3 7 0 0 70 0 0 270

 67.4 7 0 0 70 0 0 270

 67.5 7 0 0 70 0 0 270

 67.6 7 0 0 70 0 0 270

 67.7 7 0 0 70 0 0 270

 67.8 7 0 0 70 0 0 270

 67.9 7 0 0 70 0 0 270

 68 7 0 0 70 0 0 270

 68.1 7 0 0 70 0 0 270

 68.2 7 0 0 70 0 0 270

 68.3 7 0 0 70 0 0 270

 68.4 7 0 0 70 0 0 270

 68.5 7 0 0 70 0 0 270

 68.6 7 0 0 70 0 0 270

 68.7 7 0 0 70 0 0 270

 77

 68.8 7 0 0 70 0 0 270

 68.9 7 0 0 70 0 0 270

 69 7 0 0 70 0 0 270

 69.1 7 0 0 70 0 0 270

 69.2 7 0 0 70 0 0 270

 69.3 7 0 0 70 0 0 270

 69.4 7 0 0 70 0 0 270

 69.5 7 0 0 70 0 0 270

 69.6 7 0 0 70 0 0 270

 69.7 7 0 0 70 0 0 270

 69.8 7 0 0 70 0 0 270

 69.9 7 0 0 70 0 0 270

 70 7 0 0 70 0 0 270

 70.1 7 0 0 70 0 0 270

90 degree 70.2 7 0 2 74 0 30 270

 Right
Turn

70.3 7 0 3 72 0 40 270

 70.4 7 0 4 71 0 60 270

 70.5 7 0 5 71 0 70 270

 70.6 7 0 5 71 0 80 270

 70.7 7 0 4 71 0 80 270

 70.8 7 0 3 71 0 80 270

 70.9 7 0 3 71 0 80 270

 71 7 0 2 71 0 80 280

 71.1 7 1 0 71 0 80 300

 71.2 7 1 0 71 0 80 302

 71.3 7 2 0 71 0 80 304

 71.4 7 2 0 71 0 80 306

 71.5 7 2 0 71 0 80 308

 71.6 7 2 0 71 0 80 310

 71.7 7 2 0 71 0 80 312

 71.8 7 2 0 71 0 80 314

 71.9 7 2 0 71 0 80 316

 72 7 2 0 71 0 80 318

 72.1 7 2 0 71 0 80 320

 72.2 7 2 0 71 0 80 322

 72.3 7 2 0 71 0 80 324

 72.4 7 2 0 71 0 80 326

 72.5 7 2 0 71 0 80 328

 72.6 7 2 0 71 0 80 330

 72.7 7 2 0 71 0 80 332

 72.8 7 2 0 71 0 80 334

 72.9 7 2 0 71 0 80 336

 73 7 2 0 71 0 80 338

 73.1 7 2 0 71 0 80 340

 73.2 7 2 0 71 0 80 342

 73.3 7 2 0 71 0 80 344

 73.4 7 2 0 71 0 80 346

 73.5 7 2 0 71 0 80 348

 73.6 7 2 0 71 0 80 350

 73.7 7 2 0 71 0 80 352

 78

 73.8 7 2 0 71 0 80 354

 73.9 7 2 0 71 0 80 356

 74 7 2 -2 71 0 80 358

 74.1 7 1 -4 71 0 40 360

 74.2 7 1 -6 71 0 30 360

 74.3 7 0 -1 71 0 20 360

 74.4 7 0 0 71 0 10 360

 74.5 7 0 0 71 0 5 360

 74.6 7 1 0 71 5 0 360

 74.7 7 1 0 74 5 0 360

 74.8 7 1 0 75 5 0 360

 74.9 7 1 0 75 5 0 360

 75 7 1 0 75 0 0 360

 75.1 7 1 0 75 0 0 360

Return to
Level

75.2 7 1 0 75 0 0 360

flight 75.3 7 0 0 75 0 0 360

Upwind
leg

75.4 7 0 0 75 0 0 360

 75.5 7 0 0 75 0 0 360

 75.6 7 0 0 75 0 0 360

 75.7 7 -2 0 75 0 0 360

 75.8 7 -2 0 75 0 0 360

 75.9 7 -2 0 80 5 0 360

 76 7 -2 0 80 5 0 360

 76.1 7 -2 0 80 0 0 360

 76.2 7 -2 0 80 0 0 360

 76.3 7 -2 0 80 -5 0 360

 76.4 7 -2 0 80 -5 0 360

 76.5 7 -2 0 80 -5 0 360

 76.6 7 -2 0 80 -5 0 360

 76.7 7 -2 0 80 -5 0 360

 76.8 7 -3 0 85 -5 0 360

 76.9 7 -3 0 85 -5 0 360

 77 7 -3 0 85 -5 0 360

 77.1 7 -3 0 85 -5 0 360

 77.2 7 -3 0 85 -10 0 360

 77.3 7 -3 0 85 -10 0 360

 77.4 7 -1 0 85 -10 0 360

 77.5 7 -1 0 85 -10 0 360

 77.6 7 -1 0 85 -10 0 360

 77.7 7 -1 0 85 -10 0 360

 77.8 7 -1 0 75 -10 0 360

 77.9 7 -1 0 75 -10 0 360

 78 7 -1 0 75 -10 0 360

 78.1 7 -1 0 75 -10 0 360

 78.2 7 -1 0 75 -10 0 360

 78.3 7 -1 0 75 -10 0 360

 78.4 7 -1 0 75 -10 0 360

 78.5 7 -1 0 75 -10 0 360

 78.6 7 -1 0 75 -5 0 360

 79

 78.7 7 -1 0 75 -5 0 360

 78.8 7 -1 0 75 -5 0 360

 78.9 7 -1 0 75 -5 0 360

 79 7 -1 0 75 -5 0 360

 79.1 7 -1 0 75 0 0 360

 79.2 7 -1 0 75 0 0 360

 79.3 7 -1 0 70 0 0 360

 79.4 7 1 0 70 0 0 360

 79.5 7 1 0 70 5 0 360

 79.6 7 1 0 70 5 0 360

 79.7 7 1 0 70 5 0 360

 79.8 7 3 0 70 5 0 360

 79.9 7 3 0 70 5 0 360

 80 7 3 0 70 10 0 360

 80.1 7 3 0 70 10 0 360

 80.2 7 3 0 75 10 0 360

 80.3 7 3 0 75 10 0 360

 80.4 7 3 0 75 10 0 360

 80.5 7 3 0 75 10 0 360

 80.6 7 3 0 75 10 0 360

 80.7 7 3 0 75 10 0 360

 80.8 7 3 0 75 10 0 360

 80.9 7 3 0 75 10 0 360

 81 7 3 0 75 0 0 360

 81.1 7 3 0 75 0 0 360

 81.2 7 0 0 75 0 0 360

 81.3 7 0 0 75 0 0 360

 81.4 7 0 0 75 0 0 360

 81.5 7 0 0 75 0 0 360

 81.6 7 0 0 70 0 0 360

 81.7 7 0 0 70 0 0 360

 81.8 7 0 0 70 0 0 360

 81.9 7 0 0 70 0 0 360

 82 7 0 0 70 0 0 360

 82.1 7 0 0 70 0 0 360

 82.2 7 0 0 70 0 0 360

 82.3 7 0 0 70 0 0 360

 82.4 7 0 0 70 0 0 360

 82.5 7 0 0 70 0 0 360

 82.6 7 0 0 70 0 0 360

 82.7 7 0 0 70 0 0 360

 82.8 7 0 0 70 0 0 360

 82.9 7 0 0 70 0 0 360

 83 7 0 0 70 0 0 360

 83.1 7 0 0 70 0 0 360

 83.2 7 0 0 70 0 0 360

 83.3 7 0 0 70 0 0 360

 83.4 7 0 0 70 0 0 360

 83.5 7 0 0 70 0 0 360

 83.6 7 0 0 70 0 0 360

 83.7 7 0 0 70 0 0 360

 80

 83.8 7 0 0 70 0 0 360

 83.9 7 0 0 70 0 0 360

 84 7 0 0 70 0 0 360

 84.1 7 0 0 70 0 0 360

 84.2 7 0 0 70 0 0 360

 84.3 7 0 0 70 0 0 360

 84.4 7 0 0 70 0 0 360

 84.5 7 0 0 70 0 0 360

 84.6 7 0 0 70 0 0 360

 84.7 7 0 0 70 0 0 360

 84.8 7 0 0 70 0 0 360

 84.9 7 0 0 70 0 0 360

 85 7 0 0 70 0 0 360

 85.1 7 0 0 70 0 0 360

 85.2 7 0 0 70 0 0 360

 85.3 7 0 0 70 0 0 360

 85.4 7 0 0 70 0 0 360

 85.5 7 0 0 70 0 0 360

 85.6 7 0 0 70 0 0 360

 85.7 7 0 0 70 0 0 360

 85.8 7 0 0 70 0 0 360

 85.9 7 0 0 70 0 0 360

 86 7 0 0 70 0 0 360

 86.1 7 0 0 70 0 0 360

 86.2 7 0 0 70 0 0 360

 86.3 7 0 0 70 0 0 360

 86.4 7 0 0 70 0 0 360

 86.5 7 0 0 70 0 0 360

 86.6 7 0 0 70 0 0 360

 86.7 7 0 0 70 0 0 360

 86.8 7 0 0 70 0 0 360

 86.9 7 0 0 70 0 0 360

 87 7 0 0 70 0 0 360

 87.1 7 0 0 70 0 0 360

 87.2 7 0 0 70 0 0 360

 87.3 7 0 0 70 0 0 360

 87.4 7 0 0 70 0 0 360

 87.5 7 0 0 70 0 0 360

 87.6 7 0 0 70 0 0 360

 87.7 7 0 0 70 0 0 360

 87.8 7 0 0 70 0 0 360

 87.9 7 0 0 70 0 0 360

 88 7 0 0 70 0 0 360

 88.1 7 0 0 70 0 0 360

 88.2 7 0 0 70 0 0 360

 88.3 7 0 0 70 0 0 360

 88.4 7 0 0 70 0 0 360

 88.5 7 0 0 70 0 0 360

 88.6 7 0 0 70 0 0 360

 88.7 7 0 0 70 0 0 360

 88.8 7 0 0 70 0 0 360

 81

 88.9 7 0 0 70 0 0 360

 89 7 0 0 70 0 0 360

 89.1 7 0 0 70 0 0 360

 89.2 7 0 0 70 0 0 360

 89.3 7 0 0 70 0 0 360

 89.4 7 0 0 70 0 0 360

 89.5 7 0 0 70 0 0 360

 89.6 7 0 0 70 0 0 360

 89.7 7 0 0 70 0 0 360

 89.8 7 0 0 70 0 0 360

 89.9 7 0 0 70 0 0 360

 90 7 0 0 70 0 0 360

 90.1 7 0 0 70 0 0 360

 90.2 7 0 0 70 0 0 360

% Code for Determining System Transfer Function

% wn = 0.5;

% z =0.1;

% step (gs)

data = xlsread (' data.xls');

t = data (:,1);

x= data (:,2);

y= data (:,3);

error = zeros (1001,1001);

% Hs = tf (1,[1 2*wn*z wn^2]);

% O = lsim (Hs, x,t);

% subplot (211);

% plot (x,y);

% title (' Original');

%

% subplot (212);

% plot (x,O);

% title (' Simulated');

% i = 1;

% ii = 1;

for wn = 0:1:100

 for z = 0:1:100

 82

 Hs = tf (1,[1 2*wn*z wn^2]);

 O = lsim (Hs, x,t);

 error (i,ii) = sum ((y - O).^2);

 ii = ii+1;

 end

 i= 1+1;

end

save ' Results.mat' error;

Appendix E: Cost of Materials

Item Quantity Cost

Model airplane kit 1 90.00

Lipo battery 1 30.00

Futaba radio system 1 180.00

Electronic speed controller 3 200.00

Brushless motor 3 200.00

Lipo battery charger 1 30.00

Extra wiring + servo

extensions + push rods

- 58.00

Pressure sensor 3 150.00

Accelerometer 3 150.00

Compass module 2 100.00

1.5V AA batteries 4 10.00

Miscellaneous 32.00

Total 1230.00

