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1. INTRODUCTION

In [PR], K. K. Park and E. A. Robinson construct a class of Z2 actions
and study the joinings within this class. These actions are the natural
2-dimensional analogs to the Chacon transformation and are called
Chacon Z? Actions. They are produced by a 2-dimensional rank 1 cutting
and stacking construction which is reviewed in Subsection 2.1. Some of the
results in [PR] follow from the general theory of joinings but others
depend on the specific algebraic and geometric properties of the group Z2.
In particular, the group Z? has Z for a nontrivial subgroup and the
purpose of this paper is to study this particular subgroup action. Let the
Chacon Z? action be denoted by {T°S’: (i, j) € Z?}. Then T and S each
generate a Z-subaction. Ergodicity of the Chacon Z? action is clear from
the construction but it is the ergodicity of the Z action that will be needed
for this paper. This result is a consequence of the careful choice of pattern
used in the Chacon Z? actions and is proven in [PR]. In this paper we will
write statements in terms of 7 and leave the analogous statements and
proofs for S to the reader. We conjecture that in fact they can be extended
to TS/ for any fixed (i,,j,). We divide this paper into two parts,
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338 JOHNSON AND PARK

corresponding to our two main results:

(1) Let P be the time zero partition, described further in Section 2.
Then P is a generating partition under 7.

(2) The centralizer of T is the Z?2 group {T'S':(i, j) € Z?).

Thus the second result yields a centralizer which is countable but nontriv-
ial. There are not many actions with a countable centralizer. For instance,
rotations on the circle automatically give an uncountable centralizer. The
Ledrappier 3-dot example [S] is a Z? action with a Z-subaction which,
although it does not generate as in (1), does exhibit a certain generating
property. However, the centralizer of this subaction is uncountable. Also,
J. King [K] has shown there is a rank 1 Z? action with a Bernoulli
subaction, thus this subaction has an uncountable centralizer. On the
other hand, D. Rudolph has shown in [R] that if U has minimal self
joinings then the centralizer of UX U is {U' X U/:(i,j) € Z}} U
(¢: ¢(x,y) = (y, x)). However, that example of a countable centralizer
has different properties than the Chacon example explored in this paper.
For instance, “he centralizer of T has the property of minimal self joinings
as a ZZ-action while the centralizer of U X U above does not.

The entropy of T can be shown to be zero simply by using the structure
of the symbolic description of the action. Notice that if the weak Pinsker
property were known to be universal, then this result would follow directly
from (2). Also notice that (2) shows that T is a coalescent map, as defined,
for example, in [GLL] by P. Gabriel, M. Lemanczyk, and P. Liardet.

Note that result (1) says that we do not need the entire Z%-name in
order to distinguish points. Without this result, any approximation of a
map ¢ € C(T) by a finite code would depend on rectangular names, as
would a comparison of the two images. But this would require ¢ to also
commute with S. Thus result (1) becomes a prerequisite of result (2).
Result (2) is the natural extension of A. delJunco’s result [dJ] on the
centralizer of the 1-dimensional Chacon action. It is not possible to
directly use his methods in the 2-dimensional case, because 2-dimensional
cutting and stacking yields many possibilities for the blocks seen in one
direction. Thus there are many cases that must be exhausted in the proof
of (2). An alternate method one could use to find the centralizer of T is to
first investigate the self joinings of T and show that the set of self joinings
consists of measures concentrated on {(x, T°S’x): (i, j) € Z?}. This can be
done in a manner similar to that used by delJunco, Rahe, and Swanson in
[dJRS] for the 1-dimensional Chacon action and in some ways is slightly
simpler than the direct approach used in this paper. However, it still
involves investigating many different cases and does not display the struc-
ture of T as well as the direct approach. The structure explored here may
be useful in investigating the actions in other directions, including ques-
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tions about their directional entropy. We also believe that our direct
approach is useful in the study of substitution systems.

2. A 1-DIMENSIONAL GENERATOR FOR THE
CHACON Z? ACTION

2.1. Review of Construction

The construction of the Chacon Z? action was done by K. K. Park and
E. A. Robinson in [PR]. The prototypical example will be reviewed here.
We leave the interested reader to investigate the general situation in [PR].

Let [0,1) be cut into two pieces: [0, 43/47) which is the “spacer”
portion, and [43 /47, 1) which is further cut into nine equal pieces of length
I, labeled LY, with i,j = 0,1,2. These are stacked into a 3 X 3 box, B,,
and left and up translation are defined where possible, i.e., T: L), —
Ly S5 LY = Ligaay

Let h, =3 and h, = 3h,_, + 1. Then the construction is done induc-
tively by thinking of B, as (1/9)"-1, X [0,...,h, — 11 % [0,...,h, — 1].
So B, is a h, X h, box with each “position” containing an interval of
length [,/9,. These intervals are again cut into nine pieces. Group
together the first ninth of each interval, maintaining their relative posi-
tions, and label it B]. Similarly label the second ninth B?, etc. Place these
together as shown below to create B, ,, where the gaps are filled in with
intervals of the same length, I, /9"" !, cut from the spacer portion of [0, 1).
T and § are again left and up translation.

B7 BB BQ

Bn+1 =

It is shown in [PR] that the Z? action defined as above on the limiting
system of this construction is ergodic and weak mixing but not mixing. It is
also shown that T and § separately are ergodic.

LEMMA 2.1.1. Fora.e. £ € [0,1), there exist N such that£ € B,, m > N.

Proof. This follows immediately from the construction. [
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DEeFINITION 2.1.2. If £ € B, then define p = pi(n) €({1,...,9} to be
that integer with £ € B?. Thus p describes which of the nine slices of B, %
lies in.

LEMMA 2.1.3. For a.e. £ € [0,1) and for any block b € {1,...,9)**! for
k arbitrary, #{n: p(n)... p(n + k) = b} = .

Proof. The values of p,(n) exactly correspond to the nine-adic expan-
sion of £ in this interval. Thus the result holds because of the ergodic
theorem for X9 mod 1. |}

2.2. The Symbolic Representation

One can develop a symbolic version of the Z2-Chacon’s that mimics the
construction of the last section in the following way. First set (0) equal to
a 3 X 3 block of zeros,

o(0) =

OO O
OO O
OO O

Define h, as before and let o (n) be the h, X h, block of symbols defined
by placing the symbols of o(n — 1) into each square of the pattern and
filling in the rest with 1’s:

Define X c {0, 1}%” to be the double infinite sequences x such that each
finite block of x is a subblock of some o (n). Let T be the left shift and §
the down shift. (X, 7, S) is isomorphic to the system described in Section
2.1 by partitioning [0,1) into P, = [0, 43/47) and P, =[43/47, 1) and
mapping £ €[0,1) to a point x € X by x(i, j) =k when T'§/(%) € P,.
The Lebesgue measure on [0, 1) is then mapped to A on X. The analogs to
Lemmas 2.1.1 and 2.1.3 are the following:

LEMMA 2.2.1. Fora.e. x € X, there exists N such that x(0,0) € o(m) for
m > N.

DEFINITION 2.2.2.  For x(0,0) € o(n) and x(0,0) € o(n + 1), let p(n)
be the position of o(n) in o(n + 1).
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LemMA 2.2.3. For a.e. x € X and for any block b in {1,...,9 " with k
arbitrary, #{n: p(n)... p(n + k) = b} = .

2.3. The Time-Zero Partition

DEeriniTION 2.3.1. Let P be the time-zero partition for X, so P =
{{0], [1}} where [i] = {x: x(0,0) = i}.

DEeFINITION 2.3.2. Given x € X, the T — P name of x is the one
dimensional array of symbols (... x(—1,0), x(0,0), x(1,0),...), i.e., it is the
horizontal axis of symbols in x.

DEFINITION 2.3.3. P generates under T if V7. _, T‘P =%, the Borel
o-algebra. An equivalent characterization is to say that V¥ __ T 'P
differentiates points a.e., i.e., there is a set X c X of full measure such
that if x,y € X and x # y then there exists some N and two different sets

41,4, € VY. _y T7'P such that x € q, and y € q,.

The purpose of this section of the paper is to prove the following
theorem, which says that the Z? Chacon system has a one dimensional
generator.

THEOREM 2.3.4. P is a generating partition under T.

Proof. Let X, C X be the set of full measure determined by Lemmas
2.2.1 and 2.2.3. The proof is in two parts. For the first half, recall that each
block of x € X lies in some o (k). Thus there are o (i), [ <k, inside o(k),
some of which intersect the T — P name of x. Mark off where these
intersections occur. We will denote such a block of symbols as s(i), i.e.,
s(7) is one of the horizontal lines of symbols from o(i). The following
proposition claims this can be done by just looking at the T — P name of x
and does not require any two dimensional array of symbols.

PROPOSITION 2.3.5. Letx € X,,. Then the T — P name of x will determine
the locations within it of s(i) fori € N.

The proof will be given in Subsection 2.4.

PROPOSITION 2.3.6. Given the T — P name of a point x € X, and the
locations within it of s(i), i € N, we can determine the level of these s(i) in

o (D).
This proof will be given in Subsection 2.5.

Proof. Continued for Theorem 2.3.4. Take x,y € X distinct points.
Thus there exists (i, j) such that x(i, j) # y(i, j). If we can find N such
that x(N,0) # y(N,0) then the cylinder sets from VY _, T 'P given by
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[x(—INL,0),...,x(IN|,0)] and [y(—=|N|,0),...,y(IN|,0)] will satisfy the
definition. So assume such an N does not exist. Thus x and y have the
same T — P name.

By Lemma 2.2.3 we can find m such that x(0,0) and x(i, j) are both in
o(m) and likewise for y. By Proposition 2.3.5 we know that x(0,0) and
y(0,0) must have the same horizontal position in o (m) and by Proposition
2.3.6 they must have the same vertical position as well. But this means that
x(i, J) = y(i, j) and we have reached a contradiction. [

2.4. Horizontal Position

Recall that o (n) has h, horizontal lines of symbols, not all of which are
distinct. Let s(n) be an arbitrary line from o(n), fixed within each
statement unless otherwise noted.

Notation.
s(n), is the bottom line of o (n).
s(n), is the top line of o (n).
s(n)* are the lines in o(n) that could be above the line s(n).
s(n), are the lines in o (n) that could be below the line s(n).
1"~ is a block of consecutive 1’s of length #,,.

Notice that for n > 0, s(n), # s(n),.

LEmMMA 2.4.1. The following is a complete list of predecessors and follow-
ers to s(n) that can be found in any x € X:

Block Lines
s(m)1s(n) 1,...,h,
lh" 1 g(n)b hn + 1
s(n), 1" h,+1
s(n)1s(n)* h, +2,...,2h,
s(n)s(n), h,+2,...,2h,
s(n), 11 2h, +1
1" 1s(n), 2h, + 1
s(n)s(n) 2h, +2,...,3h, + 1

Proof. Certainly these all occur, as the line numbers indicate their
position in a(n + 1). If ¢(»n) is on the edge of o(n + 1), we must look to
a larger o(k) to find its predecessors or followers. But the o (n)’s on the
left and right side of o (k), n < k are at the same vertical positions. Thus
placing the o(k)’s together as allowed in o(k + 1) will yield the same
relationships for the s(n) as listed above. 1
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LEMMA 2.4.2. Let k > n. Then there are at most three (possibly distinct)
s(nYs directly next to each other in o (k).

Proof. o (k) is constructed by concatenating together many o(n + 1)’s,
with two consecutive o(n + 1)’s ecither at the same level or with one
shifted vertically by one unit. In the first case, the zigzag of spacers in
o(n + 1) prevents more than three consecutive s(n)’s. In the second case,
the vertical shift causes certain s(n)s to be placed next to strings of 1’s
and the zigzag of spacers takes care of the rest. |

The proofs of the following lemmas follow directly from the construction
of a(n + 1). Recall that s(n) is an arbitrary, fixed line of o(n).

LEMMA 2.43. If s(n + 1) = s(n) 1s(n)s(n) then s(n + 1), could be
@ s(n), 1s(n), s(n),
D) s(m), 1stn)ys(n),
(iii) 1" 1s(n) 1" if s(n) = s(n),.
s(n + 1)* could be
®  s(m)*1s(n)*s(n)*
() s(n)1s(n)*s(n)
(i) s(n) 11" s(n) if s(n) = s(n),
Gv) 1" 16(n), 1" if s(n) = s(n),.
LEMMA 2.44. If s(n + 1) = s(n)s(n) 1s(n) then s(n + 1), could be
@ s(n),sn), 1s(n),
(D) s(n), 11" s(n), if s(n) = s(n),.
s(n + 1* must be (i) s(n)*s(n)* 1 s(n)*.

LEMMA 2.45. If s(n+ 1) =s(n)1" 1s(n) then it must be that
s(n) = s(n), and s(n + 1, = s(n), 1s(n), s(n), and s(n + 1)* =
S'(n)b S'(n)b 1 9(”)[,-

LEMMA 24.6. If s(n + 1)
s(n) = s(n), and s(n + 1),
s(n), 1s(n), s(n),.

PrOPOSITION 2.4.7. Consider the T — P name of x € X. If we know the
locations of all s(n) in this name then we can find the locations of all
s(n + 1) in this name.

1" 1 ¢(n) 1" then it must be that
s(n), 1s(n), s(n), and s(n + 1* =

Il

Proof. Consider a s(n) in the T — P name of x. By Lemma 2.4.2 we
must have one of

(D) Ts(n) 1 (2) 1sy(n)sa(n) 1 (3) Lsy(n) s2(n) s5(n) 1.
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[The subscripts are used to indicate that these s(n)’s need not be the same
block of symbols.] The theorem is proven by determining, for each case,
the location of each s(n) in s(n + 1), i.e., if it is the left, middle, or right
block in ¢(n + 1). Notice there is no s(n + 1) that does not have at least
one s(n) in it.

The method for finding the location is simple: in each case write all
possible ways the case can occur. Then we will show that the T — P name
distinguishes these from one another by assuming it doesn’t, letting
that further dictate the pattern the symbols must take, and reaching a
contradiction.

The s(n + 1)’s will be indicated by overlined brackets, and the portion
of the block that corresponds to the particular case being examined is put
in parantheses.

Case 1. Possible ways to see 1s(n)1. If s(n) is the first block in
s(n + 1), we could have

(2) (1 5(n) 1) s(n)s(n)
(b) (1s(n) 1) s(n)*s(n)
(c) (Ls(n) 1) 1" s(n),.

If s(n) is the middle block in s(n + 1), the only possibility is

(d) 1 (15(n),1) 1471,

If s(n) is the last block in s(n + 1), we could have

(e) s(n), 1" (1s(n), 1)

(f) s(n) s(n) (1s(n) 1).

Lemmas 2.4.5 and 2.4.6 can distinguish (c), (d), and (e) from all other
possibilities. When comparing, cither the two will immediately look differ-
ent or there will be no way to extend one to match the other. Below are
two of the comparisons; all others are similar.

Proof. Compare (c) and (d). For n > 0, s(n), # s(n),, so these are
distinguishable.

For n = 0, the first step in the inductive process, the s(1) block in (c),
000 1 111 000, cannot be proceeded by 111 1 because that will not
correspond to s(1)* or s(1), 1. This s(1) # (1), or s(1), so those are the
only possibilities.

S _ __
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Proof. Compare (¢) and (a). By Lemma 2.4.1, the only followers for the
s(n + 1) in (e) that could start with 1s(n) are 1s(n + 1) and 1s(n + 1*.
By Lemma 2.4.5 we know neither will match the pattern in (a). |

This leaves (a), (b), and (f). We do not need to distinguish between (a)
and (b) since both are situations where s(#) is the first block in s(n + 1).

Proof. Compare (a) and (f). If they are not distinguishable then it must
be that (a) and (f) can be extended to

(a) s(n) s(n) (1s(n) 1)s(n) s(n)
() s(n) s(n) (1s(n) 1s(n)s(n).

By Lemma 2.4.1 the only way the s(n# + 1) in (a) can be proceeded so as to
match (f) is by s(n + 1)1 or s(n + 1), 1. Using Lemma 2.4.3 the only
possibility is

() s(n) 1s(n) s(n) (1 s(n) 1) s(n) s(n).

Similarly, the only way to extend (f) consistent with (a) is

() s(n) s(n) (1s(n) 1) s(n) s(n) 1s(n).

So (a) must be followed by 1s(n). The second s(n + 1) in (a) can be
followed by 1s(n + 1) or 1s(n + 1)*. In either case, (a) extends to

(a) s(n)1s(n)s(n)(1s(n)l)s(n)s(n)ls(n)l...
which in turn implies that (f) must extend to the form
(f) ls(n+1)1s(n +1)1.

But for such a s(n + 1), this form does not exist in any x € X. This can be
seen by attempting to determine how these s(n + 1) can fit into s(n + 2)
and finding that they cannot. 1

Proof. Compare (b) and (f). From Lemma 2.4.1 we see that the s(n + 1)
in (f) can only be followed by 1s(n + 1) or 1s(n + 1)*, If it is the former
we must have s(n)* = ¢(n). If it is the latter, use Lemma 2.4.4 to conclude
the same thing. Thus it reduces to comparing (a) and (f). 1§
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- Case 2. Possible ways to see 15(n)s,(n)1. Their positions in s(n + 1)

ﬂw :.. d be
Tﬁ" ' . 1sy(n) sy(n)1...

f.ﬁ) 1s,(n)sy(n)1...
(dii) o 1g(n) sy(n) 1.

If s,(n) # s,(n), these can be extended to

(i) s(n)ps(n)y (1s(n)y s(n),1) 1" s(n),
(ii) this cannot be extended in any valid way
(iii) s(n) (1s(n)*s(n) 1)s(n)1s(n)*s(n)

s(n)(1s(n)*s(n) 1) s(n)*1s(n)**s(n)*.

Then (i) can be distinguished from (iii) because 1" # s(n) or s(n)*.
If s,(n) = s,(n) then there are more valid ways to extend these.

(1) s(n) 1" (1s(n) s(n)1) V" s(n),

s(n), 1% (1s(n), s(n), 1) s(n),s(n),
(ii) s(n) s(n) 1s(n) (1 s(n)s(n)1)s(n)
s(n)xs(n)y 1s(n) (1 s(n)s(n)1)s(n)

s(n), 11" s(n) (1 s(n)ps(n)51) s(n),

et (1 s(n)ys(n)y 1) s(n)s

(iii) “ s(n) (1s(n) s(n)1) with various followers.

Everything in (i) can be distinguished from (ii) and (iii) because (i) has the
form: (not 1’s) 1"» proceeding 1s(n)s(n)1 and that does not appear
elsewhere. In (ii) the first three can be easily distinguished because
1s(n)s(n)1 is proceeded by 1s(n) 1 and we can use Case 1 to determine
the location of that block and thus the two blocks following it. The last one
in (ii) can be distinguished from (iii) because it is proceeded by 1’s. |
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Case 3. Possible ways to see 1s,(n) s,(n)s,(n) 1. These could be grouped

as
(i) co1sy(n) sy(n)sy(n) ..., or
(i) ... Isi(n) sy(n) sy(n)l....

If s,(n) # s,(n) then it must be (ii) since the second s(n + 1) in (i) does
not permit two different blocks. So assume that s,(n) = s5(n). If ¢/(n) is
different than the other two, then (i) must be extended as

M s(m)*s(m)* (1s(n)* s(n)s(n) 1) s(n).

The first s(n + 1) in (i) must be of the form ¢(n)1s(n)*s(n), yet
comparing (i) and (ii) yields s(n) = s(n)* = s,(n), contrary to our assump-
tion. Thus it must be that all the s,(n) are the same block.

Notice both (i) and (ii) have the s(n + 1)’s directly next to each other
which means we must see s(n + Ds(n + 1D ors(n + Ds(n + D,. In (D),
let s(n + 1) = s(n)s(n)ls(n) and by Lemma 2.4.4 the only consistent
s(n + D* is s(n)*s(n)*1s(n)*. To match (ii) we must have s(n)* = s(n).
Similarly, in (ii) we must have s(n + 1) = ¢(n)ls(n)s(n) and the only
follower that matches (i) is the same s(n + 1). Thus we have

(1) s(n)s(n) (1s(n) s(n)s(n)1)s(n)

(i) s(n) (1s(n)s(n) s(n)l)s(n)s(n).

Thus (i) must be followed by s(n) and (ii) proceeded by s(n). As before we
find that the extensions are

()

s(n)s(n) (1s(n) s(n)s(n)l)s(n) s(n)s(n)ls(n)
(i) s(n)1s(n)s(n) s(n)(1s(n)s(n) s(n)l)s(n)s(n).

But now the only way to match (ii) to (i) is to follow with another s(n + 1),
which gives four ¢(n + 1) in a row. This contradicts Lemma 2.4.2. |

Proof of Proposition 2.3.4. For x € X, there will be infinitely many 0’s
and 1's in its 7 — P name. This lets us start the first step of the induction
with the observation that zeros appear only in groups of three so we can
casily determine locations of s(0). For the induction step, assume we know
the locations of all s(n). For each s(n), determine if it is in Case 1, 2, or 3.
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Then consider the 24, ; symbols to each side of s(n) and how the other
s(n)’s are placed there; determine a s(n + 1) pattern consistent for this
block. By Proposition 2.4.1 this is the only way s(n) can be fitted into a
s(n + 1) and we now know the location for this s(n + 1). 1

2.5. Vertical Position

DEFINITION 2.5.1. A spacer line is any s(n) in o(n) with at least three
consecutive 1s.

LEmMA 2.5.2.  Spacer lines are unique.

Proof. We know that to be true in o (1). Assume it is true for o (n). Let
I be the collection of spacer lines is o (n). Then the collection of spacer
lines for o(n + 1) is {i,i + h,, i +h, + 1,i +2h, + 1, h, + 1, 2h, +
1:iel).

Notice that the lines at 4, + 1 and 2h, + 1 are the only lines in o(n)
with &, consecutive 1’s and thus are certainly unique.

The lines i,i + h, + 1, and { + 2h, + 1 all have the same first A,
symbols, s(n), and are the only lines in o(n + 1) to do so, by induction
hypothesis. They are followed by 1¢(n) s(n), 1s(n)*s(n), and s(n)1s(n),
respectively. The first two are not equal by the induction hypothesis and
the first and last are not equal because s(n) # 1"~ If the last two are equal
it must be that ¢(n) starts with a ¢(k + 1), k < n, of the form 1#~ 1 ¢(k), 1%+
and thus ¢(n)* starts with 1"+ ¢(k), which is inconsistent with o (k + 1).

The spacer lines i + h, have the form (symbols from line i — 1)1
(line #) (line i — 1) and the induction hypothesis again ensures they are
unique. 1

LeEmMMA 2.53. o(n) can never have more than three consecutive non-
spacer lines.

Proof. This is clearly true in ¢(1). Assume it is true for o(n). The
o(n)’s in o(n + 1) are always separated vertically by a spacer line, so the
result holds for o(n + 1). 1

For the following, let N be large enough so that x(0,0) € o(m) for
m > N. We know such an N exists by Lemma 2.2.1.

LEMMA 2.5.4. Let m > N be fixed and let W represent lines from o(m),
Assume the T — P name of x around x(0,0) has the pattern

WIWW A WIWWWWIW 1| WIWW A WIWWWWIW WIWW A WIWWWW 1w,

where the overline brackets indicate s(m + 2)'s and W represents the particu-
lar s(m) that x(0,0) lies in. If the symbols are consistent with p (m)p (m +
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Dp (m + 2) = 555 then it must be the case that indeed p(m)p(m +
Dp(m + 2) = 555.

Proof. The pattern written above is consistent not only with 555 but
also with 222, 225, 252, 255, 522, 525, and 552. Let a be the particular
s(m) that x(0,0) lies in, so W = a. Since we are assuming that the pattern

is consistent with 555 we can write the pattern, starting with the ¢(/) that
x(0,0) lies in, as

aay apgloya,y aplagcap o laglagac, ap g lagcag o

If the symbols are also consistent with another number, then we must be
able to also write the pattern as one of

222 va alaa alaalalacalaa

225 aa alaa ala,a, lada,a, ala,a,

252 aca,la, a, ala,a, lalaaa,la, o,

255 caa,la, a, Gy lag o lalago, ap oy, oy
522 aay aglaa, alaa, laglaa, alaa,

525 aay azlaa, apla,oa, lag oo, o laca,
552 aay ay la,ay ty ploga, g laglaa, ap da,ay, .

But in each case, if the symbols are consistent with 555 and another
scenario then it must be that @ = o, = @, . = @, 4 «. Yet there is no
line in o (n) which is the same as the three lines underneath it.

Proof of Proposition 2.3.6. Use Lemma 2.2.1 to take N so large that
x(0,0) € o(m) for m > N. By Lemmas 2.2.3 and 2.5.4 we can find M >
max{N, i} so that p (M)p (M + Dp (M + 2) = 555. If a = (M) is the
block x(0,0) lies in, then the T — P name of x can be written in part as
A0y Oy 1A Oy Oy gy --.. By Lemma 2.5.3 one of these will be a
spacer line. If x(k,0) is in this spacer line, by Lemma 2.5.2 we will know
exactly where x(k,0) lies vertically in o (M ). But then we can move back
to x(0,0) and find its vertical position, which tells us the vertical position
of x(0,0) in o (). 1

——
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3. THE CENTRALIZER OF T

DerFINITION 3.1. C(T) is the set of (not necessarily invertible)
measure-preserving transformations ¢ on (X, A) with ¢T = T¢. Note that
we do not assume that ¢ commutes with S, the down shift.

The main purpose of this paper is to explore C(T), and the resulting
theorem is as follows:

THEOREM 3.2. C(T) = {T'S%); ;,c 5.

Certainly {T'S’); ;,c 2 € C(T). What nceds to be shown is that every
¢ € C(T) has a pair (i, j) such that ¢ = T'S/ a.e.

Because of the result of Section 2, which says that each x € X, can be
written as a 1-dimensional array of symbols, we can prove Theorem 3.2 in
a manner similar to that used by A. delJunco [dJ] for the 1-dimensional
Chacon transformation. The main difference is that now blocks in x and
¢(x) can take on many forms and we must consider these different cases.

3.1. Distinguishing Points and Blocks

Recall from the symbolic construction of X that for a.e. x there is an N
such that, for n > N, x(0,0) lies in a symbolic block o(n) of size h, X h,
and this o(n) has position k&, k € {1,...,9}, in o(n + 1). The following
lemma from [PR] relates these positions for two points.

LeMma 3.1.1. There exists D C X with full measure so that for allx,y € D
ify # T'S'x for any (i, j) € Z? then there are infinitely many positive integers
n such that

() the time-zero coordinates of x and y lie in different n-blocks of their
(n + 1)-blocks, and

(i) the n-blocks containing the time-zero coordinates of the names x
and y overlap in a rectangle with sides of length at least h,, /10.

We can rewrite (i) by letting (k, /), be the pair in {1,...,9)* such that &
describes the position of o(n) in a(n + 1) for x, as above, and / does the
same for ¢(x). Then the above lemma says that if ¢(x) = T'S’x then
there are infinitely many » such that (k, 1), & {(i,i):i =1,...,9} and such
that their n-blocks have sufficiently large overlap. We will prove Theorem
3.2 by showing such an infinite set of n does not exist. We will continue to
make use of Proposition 2.3.5 which says we can determine where the
blocks o(n) intersect the horizontal array of symbols. In particular, let
s.(n) be the intersection which includes x(0,0). Depending on the location
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of o(n) in o(n + 1), the s, (n + 1) block will be of the form

@ s(n)ls(n)s(n)
() s(W1is(m*sn)ors (), 1s(n)s(n),
(i) s (n)s(n)1s(n).

We need to be able to distinguish these cases, thus we need x such that
s(n) # s (n)* and similarly, s (n) # s (n),.

LEMMA 3.1.2. Let E, = {x | s,(n) = s,(n),}. These are the points which
lie on a line of o(n) which is the same as the line below it. Let F, =
{x | s,(n) = s .(n)*). These are the points which lie on a line of o (n) which is
the same as the line above it. Then

(nu E)=0 ad AN UFE)=-o0
k n>k k nx=k
Hence for a.e. x there exists an N = N(x) such that x € E¢ and x € F} for
every n > N.

Proof. We will prove the first statement. The second is done similarly.
Notice that E, ., CE,, so U,.; E, =E, and XN, U,.« E) =
lim, . A(E,). Thus we just need to estimate A(E,). This will be done by
induction, using the following:

(i) Recall that B, contains 100 subintervals of length [,, arranged
into 10 horizontal rows. Each row altogether has measure less than 5.

(ii) There are 2* rows in o (k) which are the same as both the rows
above and below them. This is clear for k = 1, and if assumed at step n
then n + 1 follows because o(n + 1) is constructed from o (»n) in such a
way that the top and bottom third will each have 2" such rows. The shift in
the middle third will prevent it from occurring there.

(ii) If s(n) is a row such that s(n) = s(n)* = ¢(n),, then and only
then will the associated (n + 1)-block s(n + 1) = s(n)1s(n)*s(n) be equal
to s(n + 1),.

Now we can do the induction.

First, notice by inspection that 5 out of the 10 rows of (1) are the same
as the row below it. This corresponds to the points in those 5 rows of B, so
by (), ME)) <5 X 3.

E, is that subset of E; which includes the front and back third of each
row of B; included in E,; but by (iii) only includes the middle third for
those rows which corresponded in o (1) to rows equaling both the rows
above and below them. By (ii) there are only 2 such rows and we have
ME) <2 X3 +3X2X4. Now assume ME) < (3" ' x 3 +
3 X 5 %x{(n—-1)x ()" % Then E,,, will be that subset of E, which
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includes the front and back third of each row of B, included in E, but
only includes the middle third for those rows which correspond in o (n) to
rows equaling both the rows above and below them. By (i) there are 2"
such rows and we have ME,, ) <3[(3)" 'X > + i1 X & X(n -1 X
G2 +2" X EXG) =G X 5+ 3 X5 Xxnx(3) ' Now it is
clear that as n — o, A(E,) — 0 and we have the result. ||

Let E=(N U,-x E,) and F =(N, U, F,)°. Then Lemma 3.1.2
shows AME) = 1 = MF), which says that there is, for a.e. x, some block
size N such that for n > N, s(n) is distinguishable from s /(n)* and
s(n)y.

When comparing blocks, we will need that not only are the n-blocks
distinguishable but also the (n — 4)-subblocks within the n-block. Let
G, = {x | all (n — 4)-subblocks of s (n) are different than the correspond-
ing (n — 4)-subblocks of s (n)* and s.(n),}. Let F¢ be a subset of Ff
defined as

Ef = {x:5(n) #5(n) s, 5.(n) « #5:(n) s ar (1) 4
# 5w v S ke  # S(1) sk wwr (1) 4wk
# 5 (1) ws x4 40 5:(n) #5:(n) ", 5. (n)”
# ()", s ()™ # s (n)**", s ()"

+ 9x(n)****’ 91(”)**** + 5}(")*****}-

Lemma 3.13. u(E9) = p(FS) — 10u(F,).

Proof. Consider a row s in B, such that the points x on this row are in
F¢{. If ¢ and the four rows above and below ¢ are each different from the
row above and below it, then the points in s are in F¢. Each row of B,
with points in F, eliminates at most 10 rows of points from F;, hence the
result. |

Thus we have that u(F°) — 1 as n - =, The following lemma is clear:

LemMa 3.14. F¢ CF¢

n+1

Thus we have for a.e. x, there exists N such that for every n = N,
x € F;. But F; € G, ,, so we can say there is a set G of full measure for
which the “good subblock” condition holds, i.e., for x € G, there exists an
M such that for every m > M, all (m — 4)-subblocks of s (m) are different
than the corresponding (m — 4)-subblocks of s (m)* and s, (m),.

Let X=X,NDNENFNG.Then A(X) =1 and for the remainder
of this paper we will take points x such that x and ¢(x) are in X.
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3.2. Finite Codes and d-Distances

Let a be a block of symbols of length |« and B another string of
symbols of the same length. Define d(a, B) = (1/laD#{i | a(i) # B()}.
We generalize this to strings of symbols x,y € {0,1}* by d(x,y) =
lim; ; ,, d(x[—i, j], y[ i, jD, if the limit exists, where x[—, j] is the block
of symbols starting at x(—i) and ending at x(j). We say a occurs at
position { in x if x[i,i + |a| — 1] = a.

A finite code is a map ¢ for which there exists an N such that ¢(x)}0)
depends only on x[—n, n]. We then write || < n. Since points in (X, A)
are determined by a 1-dimensional string of symbols, every transformation
¢ of (X, A) which commutes with the shift 7 can be approximated by a
finite code ¢. Thus for every e there exists a finite code ¢ such that
d(¢p(x), p(x)) < € for a.e. x.

With these two concepts we can state the following lemmas.

LemMa 3.2.1.  Suppose o occurs at positioniin s(n){(n = 5),1al > h,_;,
and B is the string of symbols of the same length that occur at position i in
s(n)*, where we assume s(n) # s(n)* and each (n — 4)-subblock of
s(n) does not equal the associated (n — 4)-subblock of s(n)*. Then
d(a, B) > 1074,

Proof. First we show that d(s(n),s(n)*) > 107, Recall that o (k) is
constructed using nine copies of o(k — 1) and inserting 1’s as “spacers”.
For most lines s(k) and ¢(k)*, there is one common position in which a
spacer occurs. This can happen at each step in the construction and can
result in the two lines having many “agreeing spacers”. Let I, be the set
of i indicating these positions in s(n). Then |I,] < 3(3" — 1). Since
h, = 3(3"7 — 1), for large enough n these spacers will take up at most +
of the symbols in a ¢(n).

Now let us focus on the rest of the indices. Let 8(s(k), s(k)*) be the
proportion of indices such that ¢(k)(i) # s(k)*(i) and i & I,. Then
8(s(1), s(1)*), as s(1) ranges consecutively from the bottom row of o (1) to
the next to top row, is

(1] 0,0,3,5%,0,5,3,0,0.

One can think of the rows in ¢(2) as having the form
(D (1D 1s(1)s(1) or (1) s(1) 15(1), in which case 8(s(2), s(2)*) is
the same as 8(s(1), s(1)*).

() 1"1¢(1)1™ or s(1)11% (1), in which case the & distance is
trivially > 2.




354 JOHNSON AND PARK

(i) (1) 1s(1)*s(1), in which case 8(s(2), s(2)*) = 28(s(1), s(1)*) +
168(s(1)*, s(1)**). Using [1], we see that this yields, consecutively, the
o-distances of

2] 0,8,18 123 9 6 (5

2272272272271 27 27>

Repeat these three steps for o (3):

(i) yields the same 8-distances found in [1],
(i) yields at least Z,

(iii) yields the 8-distances found both in [2] and, using [2] with above
formula,

[3] 6 30 48 27 15 24 12 9 31
81> 81> 812 81>81>81>81> 81”81~

Notice that §(s(3),s(3)*) > 2 if it is not 0. We can now finish the proof
by induction. Assume 8(s(n), ¢(n)*) > Z if it is not 0. Then the lines of

o(n + 1) can come in one of three types:

(i) s(n)1s(n)s(n) or s(n)s(n)1¢(n), in which case &(s(n +
D, s(n + D*) = 8(s(n), s(n)*) = % if it is not 0.

() 1" 1s(n) 1" or s(n)11*¢(n), in which case 8(s(n + 1), s(n +
D*) > % trivially.

(ii) s(n)1s(n)*s(n), in which case 8(s(n + 1), s(n + D*) =
28(s(n), s(m)*) + 38(s(w)*, s(n)**). But 8(s(n),s(n)*) and 8(s(n)*,
s(n)**) must be listed consecutively in one of the lists [1}, (2], or [3], thus
the combination yields o (s(n + 1), s(n + 1)*) > % if not 0.

This completes the induction.

Then d(s(n), s(n)*) = 28(s(n), s(n)*) = 2 X % if not zero.

Now let «, 8 be strings of symbols occurring in s(n), s(n)*, respectively.
Since la| > h,_,, there is a s(n — 4),s(n — 4)* occurring at the same
position in « and . Thus

#{i:s(n — 4)(i) # s(n — 4)*(i)} . i h
|l 81 |«

d(a,B) = 1074 1

LEMMA 3.2.2.  Suppose a occurs at positioniin s(n) (n > 5), |a| > h, _,,
and B is the string of symbols of the same length at position i + 1. Then
d(a, B) > 1074
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Proof. Let s(n),s(n) be s(n) with the first (last) symbol removed.
Notice the following:

(1 d(s(1), s(1)) = & for every s(1).
(2) If s(k) is of the form

erle(k —1) 1" or s(k —1)11"1s(k~1),

then d(s(k),s(k)) > 4 for every k. This follows because the s(k — 1) in
the above forms is such that d(s(k — 1),s(k — 1)) > ; and it takes up at
least ; of the string of symbols.

(3) As mentioned in the proof on Lemma 3.2.1, the set of indices
corresponding to “agreeing spacers” takes up at most 3 of the symbols in

s(n).

s(n) consist of subblocks of types 1 and 2 and the “agreeing spacers”
mentioned in (3). Since % of ¢(n) is NOT these spacers, we know that
d(s(n),s(n)) = 3 X 5. Now let @, B be as described in the statement of
the lemma. Since |a| > h,_;, there must be a s(n —4) and s(n — 4)

occurring in the same position in «, B, respectively. Thus

#{izs(n — 4)(i) # s(n —4)(i — 1)}

lal

d(a,B) >

21 hnfd

328 h

n

1074 1

LEMMA 3.2.3.  Suppose a occurs at position i in s(n) (n > 5), |a| > h,_,,
and B is the string of symbols of the same length that occurs at position i + 1
in s(n)*, s(n),, or s(n)**. Then d(a, B) > 10~*.

Proof. Let s(n) be ¢(n) with the first symbol removed and s(n) , be
s(n), with the last symbol removed. Then this lemma can be proven in
the same way as Lemma 3.2.2, with the following changes:

(1 dG(D),s(1)y) 2 &-
(2) For s(k) as mentioned in last lemma, d(s(k),s(k),) > 3 for
every k. 1

3.3. Comparing Blocks

In the next two lemmas we will consider x such that x, ¢x € X and let
¢ be a finite code approximating ¢. We will compare how ¢ and ¢ map
certain blocks in x and show that certain configurations are inconsistent
with the existence of a finite code. Break {(i, j):i,j = 1,...,9} into three




356 JOHNSON AND PARK

subsets:

A={(i,i:i=1,...,9},

B ={(4,1),(5,2),(6,3),(47),(5,8),(6,9)},
and C = the rest.

LemMa 3.3.1.  Suppose ¢ is a measure preserving transformation and o is
a finite code such that d(¢x, px) < 10°° for a.e. x. Let x be such that x,
¢x € X. Let N be so large that

o lol <10 %h, ,,

o d(pxl—i, ), oxl—i,jD) <1078, where i>iy and j>j, where
[—iy, jn] denotes the indices which correspond to s,(N), and

o p(x) e Gy.
Then (k, Dy & C.

Proof. Assume (k,1), is one of these 66 possibilities. We will show that
in each case there is a block y which appears twice in x and which maps
to different blocks under ¢ which contradicts ¢ being approximable by a
finite code. Only two of the 66 cases are shown here: the others are
similar.

1f (k, Dy = (1,2) then, x, ¢x, and @x look like

x [ F1 1| ]
a’ BI

o(x) | | | |
a B

d(x) f F1{ 1| ]

Note |a'| is determined by the overlap of s (N) and s, (N). By Lemma
3.1.1, la'| = hy/10. Since ¢ is a finite code, o’ and B’ agree except on
ends, so d(a’, 8') <2-1078h, ,/la’l < 107°. Since ¢ is within 1078 of
¢ and |al is large enough, d(a, ') < 10 %y, ,/lal < 107° and similarly
d(B,B8') < 107°. Thus altogether we have d(a,B) <107° +107° +
107% < 107, Yet this contradicts Lemma 3.2.2.

Often one must go through more possibilities to reach a contradiction,
as is necessary for (k,/), = (1,8). Here the picture is

x [ L

[2 -
]
[a—

¢(x) L - L

[® -}
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and there is no immediate contradiction, as above. Rewrite the above
picture as

X ~ slss

bx~7rlr[ 1 ]

and we now must consider the possibilities for box 1. These can be:
(i) 17717, in which case we can repeat the above argument and
find a contradiction to Lemma 3.2.2.

(i) 17*7*17* in which case we can argue similarly to above, this
time contradicting Lemma 3.2.3.

(ili) 7,74 174, in which case we can argue similarly to above, this
time contradicting Lemma 3.2.1.
Thus the only possibility is

x~ slss
dx~77lT 7717

When we consider the possibilities for 2, any of s1ss,5,15,5,, or
1s*1¢*s* can appear. However, in all cases the only valid way to extend
¢x in 3 is 77 17. We can repeat the above step and show that the only
way to avoid contradicting the Lemmas of Subsection 3.2 is to have ¢x of
the form 71777 1777177717, which is impossible. I

LeEMMA 3.3.2. Suppose ¢ is a measure preserving transformation and ¢ is
a finite code such that d(px, ox) < 107% for a.e. x. Let x be such that
x, ¢x € X. Let N be so large that

° l(pl < 10_8hN-27

o d(px[—iy, jyl, oxl—iy, jnD < 1078, where [ —iy, jy 1 denotes the in-
dices which correspond for s (N), and

° ¢(x) S5 GN'

Let (k,D)y € B. Then we cannot have m € {(4,4),(5,5),(6,6)} with all
n < i < m satisfying (k,1); € A.

Proof. 1If such a situation occurred with m = n + 1 we would have, for
instance,

x~slg*slg*1g**g*, dx ~Tlrrls*¥lqs*r*,

This corresponds to (k, )y = (4,1) and (k, D)y, , = (4,4). Since ¢x € Gy,
the block T satisfies the good subblock condition and we can argue, similar
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to the last lemma, that a subblock y of ¢* maps to subblocks of = and 7*
which contradicts Lemma 3.2.1. If m >N +1 then s(N + 1) and
Sp:(N + 1) will be repeated (possibly) many times. Notice that ¢ and ¢*
maintain the same proportion in these higher blocks so ¢ must approxi-
mate ¢ with the same accuracy as in the smaller block. We can then argue
as before. [}

3.4. Proof of Theorem 3.2

Let ¢ € C(T) and choose ¢ a finite code such that d(x, px) < 1078
for a.e. x. Fix such an x with x, ¢x € X and assume ¢(x) # S‘T’x. Then
by Lemma 3.1.1 there exists an infinite subset {n,} of the integers such
that x and ¢(x) lie on different n,-blocks in their (n, + 1)-blocks and
these n-blocks overlap at least &, /10.

LEMMA 3.4.1. There cannot be infinitely many of these n, with
(k,D,, € C.

Proof. Assume there is. Then we can find a large enough N and use
Lemma 3.3.1 to reach a contradiction. |

Thus we can find an integer M such that for every n > M, either

(i) the n-blocks of x and ¢x have overlap less than 4,/10
(ii) the n-blocks have overlap at least 4, /10 and (k,/), € A U B.

With only these two possibilities, notice that if the n-blocks of x and ¢x
overlap at least A, /10, then the (rn + 1)-blocks overlap by at least 4, , ,/10.
This is because the patterns in A U B force the continuation of a large
overlap. So in fact for all large enough n, (k,1), € A U B which means
that the n such that (k, /), € B must have density zero for x, ¢x generic
points.

LEMMA 3.4.2. There cannot be infinitely many n such that (k,1), € B.

Proof. Assume there is. Find N large enough to satisfy the good
subblock condition. Look for m > N with (k,1),, € {(4,4),(5,5),(6,6)}. If
one first finds n with (k,/), € B, then replace N with this new index,
which will also satisfy the good subblock condition. Rename it as N.
Eventually one will find m > N such that for N <i < m, (k,]), € A. But
this contradicts Lemma 3.3.2. ||

The last two lemmas have contradicted Lemma 3.1.1. Thus there must
by some (i, j) with ¢x = S'T’x. Since there is an (i, j) for a.e. x, there is
some (i, j) with ¢x = S'T/x for every x € V with A(V) > 0. By ergodicity
of T we have M(V') = 1 and we have shown ¢ = ST/ a.c.
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