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Abstract

A strong connection exists between combinatorial properties and dynamical properties of
topological dynamical systems. In thig paper, we prove two theorems of a combinatorial nature about
the recurrence of generalized Morse sequences, as defined by Keane (1968). These theorems are a
strengthening of some of our earlier results. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

A topological dynamical system (X, 7) consists of a topological space X and a
homeomorphism 7 : X — X. For a natural number n € N, 7" will denote the composition
of T with itself n times and 7" will denote (7~!)". Given a topological dynamical system
(X, T), let E(X) be the closure of the set {7": n € Z} under the product topology of
XX, where Z denotes the set of integers. Let H (X) = E(X) — {isolated points of E(X)}.
E(X) and H(X) are called the enveloping semigroup of X and the asymptotic enveloping
semigroup of X, respectively, and both are semigroups under composition of functions
(3,81 i

An [P set in N (or Z) is a subset P of N (or Z) which coincides with the set of finite
SUMS Py + -+ Puys M| < - < 0y, taken from a sequence (p,)°° | of distinct elements

n=l|

in N (or Z). The sequence (/7,1),,°°=1 is called the generating sequence of P.
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Given a topological dynamical system (X, T) and an [P subset P of Z, an [P cluster point
(IPCP) f along P is an element of H (X) satistying the property: For every neighborhood
U of f (in the product topology), {n € P: T" € U} contains an [P set.

A function f is an IPCP along an IP set P if and only if f is a pointwise limit
of idempotents in E(X) [8]. This result is one of several in a vein that tics dynamical
properties of topological dynamical systems with combinatorial properties (for further
literature on the aforementioned connection, please consult any of [1,2,4-7]).

In [9], the authors compute the set of IPCPs of a class of dynamical systems known as
generalized Morse flows [10]. Some combinatorial results follow from this computation.
In this paper, we show that in a certain sense, these results can be strengthened.

2. Preliminaries

Let 2= {0, 1)¥ and X = {0, 1}V Let B be the set of finite blocks of 0’s and 1’s. For
be B, £2,or X, denote the i th slot of b by b;, and define b, the dual of b, as

"1 ifb; =0
Forz e 2 (or X),ifaeZ (or N)andn € Nset z{a,n) = z,24+1 - Za+n—1. Let I(b) be

the length of block b, and when /(b) is even, set

=<2 (120 =],

the cylinder set associated with b.

Define on /8 an operation “x on blocks by first setting b x 0 =h andbhx 1 =h forb € B
and then for a fixed block c = cgc| -+ - ¢, € B,defineb xcasb xco+bxci+---+bxcy,
where “+” denotes concatenation. If ¢g = 0, then » x ¢ is simply an extension of ». The
operation x just defined is associative, and if %, b', b2, ... are chosen so that 4, = 0 and

"I(b'y > 1 forevery i 3 1, then the sequence b x b! x b? x - - is well defined and infinite.
Such a sequence shall be called a recurrent sequence. It is shown in [10] that a recurrent
sequence is periodic if and only if there exists a £ € N U {0} such that b x pFF1 x ...
equals either 00000. .. 0r 010101. ...

Forz € £2, let

B, ={b € B: 3k € Z such that z(k. {(h)) = b}.
Similarly, for x € X, let
By = {b e B: 3k € N such that z(k, [{(b)) = b}.
Forx € X, let
Oy ={we 2: B, C B}
Let S be the shift map on 2 defined by
SEYn)=En+1) forEePandneZ.
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The orbit of a point £ € 2 1s O(&) = (S™(€): n € Z}.

In [10], Lemma 4 shows that every recurrent sequence x can be extended to the left in
two and only two ways so that the extension is in O, . Furthermore, the two extensions are
dual of each other at the negative indices. We will denote the elements of §2 which coincide
with x at all non-negative indices by w, and v;. We will write 0, = w and v, = v when
dropping the index x does not lead to confusion. The following proposition follows casily:

Proposition 2.1. Let ¢! = b% x b' x --. x b’ and denote the length of ¢* by I;. Set
C={(N: 1< N<tandb” endswitha 1). If |C] is odd, then w(~1,,2l;) = ¢' +¢' and if
IC| is even, then w(—1l;,2l;) = +¢'.

For the rest of the paper, x = b% x b' x b%.-. will denote a fixed nonperiodic recurrent
sequence in X, and w and v will be as above. Set M = O (w), the orbit closure of w, and §
the shift on M. Finally, set [, = [(b% x b' x b2 x -+ x b").

3. Recurrent sequences and IP sets

The following theorem summarizes the main results in [9]. The technique used in the
proof of the theorem requires factoring M onto a simpler space, computing the sct of
idempotents there, and then working back up to (M, S).

Theorem 3.1. Let A, B, C, D be the elements of H(M) defined as the identity off the
orbits of w, @, v or v, and otherwise defined as follows:

Aw—> o, 0>, Vo> w, V> 0,
B:w—>Vv, o>, V>V, vV,
Coo>w, >0, V>0, Voo,

Diw—>v, —>7D, V>V, v

(A, B, C and D are now well defined as they commute with S on the orbits of w, @, v orv.)
Then A, B, C and D are the only IPCPs of M, and when (M, S) is viewed as an N-action
(which means that only positive powers of S are considered), then C and D are the only
IPCPsof M.

The following corollaries follow readily from Theorem 3.1:

Corollary 3.2. Let g be a map in E(M) such that g(w) € {@, V). Then there exists a
neighborhood U of ¢ such that {n € N: §" € U} does not contain an IP set.

Corollary 3.3. Let ¢ be a map in E(M) such that g(w) € {w,v} and such that g
interchanges n and 7 for some n ¢ O{w) U OW) U O@@) U OF). Then there exists a
neighborhood U of g such that {n € N: 8" € U} does not contain an IP set.
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A natural question arises: Can we be more specific about which neighborhoods U satisfy
the conclusions of Corollaries 3.2 and 3.3? The surprising answer to this question comes
in the form of the following two theorems, the main results of this paper,

Theorem 3.4. Let g be a map in E(M) such that g(w) € {w, V). Lef t be any positive
integer and let ¢! = b"' x b? x --- x b'. Let U be any neighborhood of g which satisfies the
property £ € U = E(—1(c"),21(c")) e {¢' + ¢, ¢ + ). Then {n € N: §" € U} does not
contain an [P set.

Theorem 3.5. Let g be a map in E(M) such that g(w) € {w,v} and such that g
interchanges n and 7 for some n ¢ O(w) U O(v) U O(w) U OW). Let t be any positive
integer and let ¢! =b' x b* x -1 x b'. Let U be any neighborhood of g which satisfies
the property £ € U = E(—1(c"), 2l(c") € {¢' + ¢, ¢! + ¢'}. Let V be a neighborhood of
g which satisfies the property & € V = £(n) and g(n) agree on at least the slots 0 and 1.
Then {n € N: §7 € U and S" € V} does not contain an [P set.

We now set out to prove the above two theorems. Recall that @ has forward orbit
b% x b x b2 x --.. Let i* denote a location in b¥ of a 0, and j¥ a location of a 1. That
is, for b* = Ob’fb’z‘ . 'blk(b*')—l’ b[ﬁ. is always a zero and b%, is always a . We will further
distinguish between positions of 0’s and 1°s as follows:

° ié’ are locations of zeros which are preceded by a zero;

o ’1‘ are locations of zeros which are preceded by a one;

° jé' are locations of ones which are preceded by a zero;

® jf‘ are locations of ones which are preceded by a one.

For example, if b¥ = 00110 then {i*} = {1, 4) with {i§} = {1}, {i}} = (4}, and {j*} = (2, 3
with (j§) = (2, {j{} = 3).

We want to discuss return times of @ to neighborhoods of itself and to neighborhoods of
its dual. So we will look at {n: $"w € [B]} where B is the block ¢/ + ¢/, ¢/ + ¢/, ¢ + ¢/,
or ¢! + ¢! for some fixed ¢ (see Proposition 2.1). We will say ‘B appears at position n’ if
S"w € [B]. Rename ¢’ as b, and renumber so that the forward orbit of w is b x b2 x b3 x - - -,
Thus B can be any elementof B={b+b, b+ b, b+ b, b+ b).

Lemma 3.6. Let Ay =b x b* x --- x b* and
Pr = ){n: 2<n<k—1andb" ends witha l}].
In Ap with pi even, b+ b appears at locations iélk_l

b+ b appears at locations i{‘[k_l .
b+ b appears at locations j{"lk_1 ,
b + b appears at locations jg lk—1.

In Ay with py odd,

b + b appears at locations i{"lk_l ,



KN, Haddad, A.S.A. Johnson / Jopology and its Applications 98 (1999} 203-210 207

b+ b appears at locations iélk_l ,
b + b appears at locations jé'lk_l ,

b+ b appears at locations jlklk_l .

Proof. Write Ay as Ak;l + Ap—1 X bf + Ap_1 X bé' +F Agop X bzk(hk)—l' Because each
b", 1 < n <k, begins with a zero, Ax—| always begins with block b. If p; is even (odd),
Ak~ will end with b (h). O

The proofs of the following two lemmas are straightforward.

Lemma 3.7. Take B € B. If B appears at location « in Ay, then it also appears at
locations ikH/k +win Ay,

Lemma 3.8. Tuke B € B. If B appears at location o in Ay, then B appears at locations
jk+l/k +ain Agy.

We will use these three lemmas to describe the locations of B. Lemma 3.6 says where a
block first appears and the next two lemmas describe how locations are carried forward by
the repetition of the construction. For example, for pi even, some locations of b + b are
jlklk_l P+ P e+ T 4 P+ R . We leave the proof of the
following proposition to the reader:

Proposition 3.9. Let m € N be arbitrary and ky < ky < --- < k. Then

[ Zak,.lk,_: Hay,: a, € {j*}}| is odd, and

r=1

ai, € {jf' } for pi, even or ax, € {jé" } for p, odd}
are locations of b + b.

m
[Zak,,lk,_: Hai,: ai, € (7* 1} is odd, and

r=I
ar, € {jé" } Jor pi, even or ax, € {jf’ } for px, odd]
are locations of b + b.

{Zakrlk,: |{ak,: ai, € {jk"}}[ is even, and

r=l1
ak, € {igl } for pk, even or ay, € {z'f‘ } for px, odd}

are locations of b + b.
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n

Zak, I, ][ak,.: ag, € {jk"]}] is even, and
r=1
a, € {if' } for py, even or ai, € {ig' } Jor p, odd

are locations of b + b.

Because of possible symmetry within a block, the above description may not include
all locations of the block B. For instance, if & = 000, b2 = 01000 then b x b% =
000 111 000 000 000 and the block b - b = 000 000 appears not only at 3/ and 4/) but
also at 3/; + 1 and 3/} 4+ 2. However, if we make » = 0 then this description is complete
and any first block b can be rewritten as 0 x b.

We can now use this information about the position of blocks to prove Theorems.3.4
and 3.5. In both cases we assume an IP set cxists and use the [emmas to find a subsequence
of the IP set which contradicts the assumption.

Proof of Theorem 3.4. It is enough to show the result for U = {£ ¢ E(M): &(w) =[B)),
where [B] ={11} or [01]. Any other neighborhood will be contained in one of these.

Assume {n € N: §"w € [B]} does contain an IP set P with generators {p;}. Recall that
each first block » can be rewritten as ¢ x b; so by Proposition 3.9, we know that every
p € P can be written as a summation which has an odd number of j's for coefficients.
This means that any two generators ps, and p, must have at least one common term
(Le., there exists k£ such that agly; and bfy are terms in py and p,, respectively, with a
and by nonzero), because otherwise p, + py will have an even number of j-coefficients.
Since each py has only finitely many terms, we can find an infinite subset of {p;} with a
common term. In fact we can find an infinite subset of {p;} (again denoted by {p;}) with
a common beginning e1 = ag + a1ly + - + aly. Write py = e + ry. Let d = degree
of p; = max{k: coefficient of /; in p, is nonzero}. It is possible to find e, with degree
> d, which is a common beginning in an infinite subset of the remaining {p;}, and to
pick p2 = e2 + r2. Continue in this manner to find a subsequence {p;, } whose terms have
a longer and longer common beginning. Since Zf]:; pi. is a location of 11 (or 01) it
can be written in summation form with an odd number of j-coefficients. Yet because
of their common beginnings, min{k: coefficient of /; in Z‘j:zl pi, 1s nonzero} > «. Thus
piand Y9H p; have no terms in common and py + Y"“F) p; has an even number of
Jj-coefficients which contradicts it being a position of 11 (or 01). O

Proof of Theorem 3.5. Assume without loss of generality that ng = 0, otherwise change
n to 7. It is enough to prove the theorem for U = {£ € E(M): &(w) € [B,,]), where
[B,]=1[00] or [10], and for V = {£ € E(M): &(n) € [By]} where (Bz] = [I1]or [01].

Assume {n € N: §$"w € [By] and 87 € [By]} contains an IP set. In a manner similar
to that used in the last proof, pick a subsequence {g;} from this IP set, each the sum over
disjoint collections of gencrators, so that ¢; = Z'k";,‘_ aply where
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t; =min{k: coefficient of /; in g; is nonzero},

mp = max{k: coefficient of I in ¢g; is nonzero}, and  m; <ti4y.

Note that the ¢; have an even number of j-coefficients.

Next take {Ky), a sequence in N going to infinity, so that Lim S¥¢w = 5 and so that
w(Kg — L,2L + 1) = n(—L,2L + 1) where L > Y% g;. This is possible because
17 € O(w). Because of the form of 5, K4 can be written with an even number of j-co-
efficients. Because w and n agree at slots K4 — L through K4 + L, and because of the the
form of 77 and Proposition 3.9, Ky +¢; can be written with an odd number of j-coefficients.

The rest of the proof explores the form Ky must have. We first find a subscquence
of {K4} which has longer and longer common beginning terms. We will say that a
summand 5;/; in K, is affected by «;/; if either i = j or { < j and Ky also includes
nonzero coefficients for all the terms /i, [;y1,...,/; 1, so that when summed with a;/;
they yield a term ¢;/;. Let K/, be those summands in K4 which are affected by the terms
in g;. Then there must be some overlap between the highest degrees term in Ké} and the
lowest degrees term in Kf/, otherwise since Ky + g1 and Ky + g4 have an odd number
of j-coefficients, Ky + ¢; + g4 will have an even number of j-coefficients. Thus K
includes terms Z;\f’zml aily and in fact this is true for any Ky, n > d. We can thus find
a subsequence, denoted by {K,}, such that for all r, all coefficients of ly,/y, ..., 1, are
identical; and a further subsequence with longer and longer common beginnings can be
constructed. Then we can find a fixed y € N such that K, 4+ y only has terms of degree
higher than /,,, so we can write K, +y =1, - &, where o, € N.

We will next see what this structure forces on n. Let C = b x b? x .- x b%. Then
@ can be written as C’s and C’s concatenated together as b’ (i > t;) dictates. So
SKe+Y (1,2l + 1) is either C +C, C + C, C + C, or C + C which agrees with
w, v, w, or v by Proposition 2.1. Note that 4 is arbitrary and /,, — co asr — oo.

Since S&rw — n, SE*Yw — §¥n and we have shown that n is either w, v, @, or T
shifted by y . This contradicts our original assumptionon . O
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