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ABSTRACT
Let S be a nonlacunary subsemigroup of the natural numbers and let u
be an S-invariant and ergodic measure. Using entropy arguments on a
symbolic representation of the inverse limit of this action, we show that if

any element in § has positive entropy with respect to g, then y is Lebesgue.

1. Introduction

In this paper we want to explore multiplication on the interval mod 1. Let S be
a semigroup generated by such maps. Consider the set M of Borel probability
measures, invariant and ergodic for §. If § is generated by just one map then
M is very large. If § is generated by two numbers that are powers of the same
number, then M is still large. This is because we obtain all the measures from
the singly generated semigroup. But in other situations, M is quite different.

We can characterize a semigroup 3 of N to be nonlacunary if it is not contained
in a singly generated semigroup. For example, the semigroups generated by 2
and 3, or 6 and 10, are both nonlacunary. In [F] Furstenberg showed that any
closed subset of [0, 1) invariant under a nonlacunary semigroup of integers must
be finite or all of [0, 1). He conjectured that a stronger result held, that any
invariant ergodic Borel probability measure for such a semigroup must be either
atomic or Lebesgue.

Under a stronger hypothesis, Lyons [L] obtained the following result. If ¥ is

generated by two relatively prime integers and if either one of these two elements
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is exact as a measure-preserving endomorphism then p is Lebesgue measure. This
raised the issue of using entropy, which Rudolph [R] incorporated, to show that
if p is ergodic for a relatively prime pair of integers and if either map has positive
entropy with respect to g then p is Lebesgue measure. The purpose of this paper
is to extend Rudolph’s result to the following:

THEOREM A: Let p and q generate a nonlacunary subsemigroup of the integers.
Let T = xp (mod 1), 5 = xg¢ (mod 1) on the circle. If u is a Borel probability
measure invariant and ergodic for T and S then either p is Lebesgue measure or

hu(T) = 0= h,(S).

Theorem A tells us that in the case of 2 maps, M is a small set, containing
only Lebesgue measure and measures of entropy zero. The main body of this
paper will prove Theorem A. We will first use Theorem A to prove the general

result:

THEOREM B: Let ¥ be any multiplicative nonlacunary subsemigroup of N and
let p be an invariant Borel probability measure that is ergodic for ©. Then
either p is Lebesgue measure or h,(t) = 0 for every t € X, where t represents

multiplication by t mod 1 on the circle.

Proof: Let us assume there exists some t with A,(t) > 0. Consider this element
t € ©. We want to show that there is a doubly generated nonlacunary subsemi-
group of ¥ that contains ¢. Since 3 C N there is a smallest number a € N such
that t is a power of a. By definition of nonlacunary we can find s ¢ {a™}3%,,
such that the semigroup S generated by s and ¢ is a nonlacunary subsemigroup
of ¥ as wanted.

By [Ro] there is a decomposition of the measure y denoted by p = [ p.dz
where i, is ergodic for S. It is well known that h,(b) = [ h,,(b)dz for b € S.
Since we are assuming h,(t) > 0, the set {z : h,_(f) > 0} must have positive
measure. By Theorem A such p, are Lebesgue. Then we can decompose p as
¢ =aL + (1 — a)p where L is Lebesgue measure and & > 0. But both L and p
are invariant and ergodic for ¥ and thus we must have o = 1. Thus if h,(t) > 0
for any ¢t we have g = L. This in turn shows hu(t) > 0 for every ¢t € £ so in
particular we have shown that h,(t) = 0 for one t implies h,(t) = 0 for every ¢.

This completes the proof of Theorem B. |

Notice that Theorem B reduces the Furstenberg conjecture to the entropy zero
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case,

2. The Symbolic Representation, Measures, and Entropy

In this chapter we review material from [R]. Since the proofs appear in that
paper, we will just state the results here. Let Tp be multiplication by p mod 1
and Sy be multiplication by ¢ mod 1. We will describe the action of Ty and Sy
on the circle symbolically.

Partition the circle, {0,1), into pg intervals

I._[J' j+1]”‘1
7o lpe’ pg oo

Notice that i1 o +1)
To(I;) = p ¥ [J_ J__]=[zﬁ L]

pa’ pg P’ pq
Let : = pj mod pq. Then we can write this image as
i i+p]PT?
[—, P] :I,'U--'UI,'+p_1.
pq’ pq |

Similarly, So(J;) = Iy U+ U Ix44—1 where k = ¢j mod pq. Thus {I;}225" forms
a Markov partition for both T and Sy. Let

V= ze[O,l):mzL;n,m,teN .
pmqm

V contains the points for which there exists n and m such that 77 7' S5 'z lie
on a boundary of our partition.
Define Fr(:) = {j : I; C To(I;)} and similarly let Fy(i) = {j : I; C So(Ii)}.
These are the ‘followers’ of a symbol ¢ for the maps Ty and Sy, respectively.
Now we can associate to each T and Sy a pg X pqg transition matrix of 0’s and
V’s: Mr = [a"j] where a;; = 11iff j € Fr(i),Mg = [b,‘j] where b,'j = 1iff j € F,(1).
Let £ = {0,1,...,pq — 1} be the state space associated with these matrices.

If {{6,%1," -+ ,in—1] is a finite word of elements of & with all Qigigy, = 1 then

ﬂ;:ol To_j(I,-j) is an interval [t/p"q, (t+1)/p"q|. Thus to any one-sided infinite

Mr-allowed word 7 = [ig, 4y,...] there corresponds a point zr =20 To_j(I,'j) €
{0,1).
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Similarly for any Mj,-allowed word

ﬂ;";ol S(J_j(I,-,.) is an interval [t/pg™, (t + 1)/p¢™] and to each one-sided infinite
M;-allowed word there corresponds a point z = (524 Sg 7 (£i;)-

Let N = {0,1,2,...} and let ¥ C TN consist of all arrays which are Mrp-
allowed on rows and M,-allowed on columns. We can think of a point y € ¥ as
a ‘first quadrant’ of symbols, where there is a symbol at each nonnegative lattice
point. Let T be the left shift and S the down shift. That is, Ty(z,7) = y(: +1,7)
and Sy(¢,5) = y(i,7 +1).

To any point z € [0,1) \ V there corresponds a unique point y, € Y. Just set
yz(n,m) = j if TSPz € I;. Recall that for z € V there exists k,r, s such that
z=k/p"¢®. Thusforalln >r~1and m > s—1,T}S*z is on the boundary of
two I;’s. The symbol at (n,m) could indicate the left or right interval. However,
if we specify the left (right) interval at (r — 1,5 — 1) then in order to obey the
transition rules we must take the left (right) interval at all (n,m) withn > r —1

and m > s — 1. So there are two points in Y that represent each z € V.

Remark 2.1: For any symbols ag, a,az,... € L there exists y € Y with y(4,1) =
a;. All such y will agree on y(i,7),1 # J. [ |

Remark 2.2: Consider the map ¢(y) = (g, To_iSJi[Iy(i,i)]. This is a map from
(Y,5,T) to ([0,1), So,To) which is 1 to 1 everywhere except on the countable set
V where it is 2 to 1. |

Put the product topology on Y;¢ is continuous. Let V* C Y be those count-
ably many points with ©(y) € V. Note that V* is invariant for both T and
S.

Remark 2.3: Any Mr-allowed horizontal ray of symbols ¢(n m)t(nt1,m) - - - deter-
mines all symbols y(j, k), 2 n,k > mof any y € Y with y(72, m) = iz m), % 2 n,
aslong asy ¢ V*.
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Similarly any Ms-allowed vertical ray of symbols i, 4)¢( ¢41) - - - determines all
symbols y(,5), ¢ > s, § 2t of any y € Y with y(s,5) = 4(,,j), j > t as long as
ygve.

Pictorially this means that a vertical ray of symbols determines all symbols to

its right and a horizontal ray of symbols determines all symbols above it. |

Let Y C £2° be those doubly infinite arrays where all rows are Mp-allowed and
all columns are Mg-allowed. For § € Y, let () be the point in [0, 1) associated
with the first quadrant. Let T and S still represent left and down shifts. Note
that Ty = T and Spp = @S.

Next, let M be the space of all Ty and Sy invariant Borel probability measures
on [0,1). This is a weakly compact convex space. Let My C M be the ergodic
measures minus the point mass at zero. In this last case it is trivially true that

hu(T) = 0 = hy(So).

Remark 2.4: If p € M and z € V,z # 0 then p(z) = 0. |

Because V is a Ty and Sy invariant set, any p € My must give it zero or full
measure. Using this remark and that we've already excluded the point mass to
zero, it must be that pu(V) = 0.

Remark 2.5: Any measure p € My lifts to a unique T and S invariant Borel

probability measure on Y. [ |

Let M be the T and S invariant Borel probability measures on ¥ and M be
the ergodic ones (excluding the point mass at 0).
Let P be the partition of ¥ according to the symbol %(0,0).

Remark 2.6: For any ji € M,\/32, T~(P) = \/;2, S7I(P) ji-a.e. ]
Remark 2.7: For j € M, hy(T) = hy(T, P) and hy(8) = hy(S, P). ]
THEOREM 2.8: For i € My and any T and S invariant algebra A,

log p
o qh,,(S, A).

h‘;(T, A) =

For the rest of the paper we fix an arbitrary p € My.
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3. The 6, Distribution

Recall that p and q are two integers that generate a nonlacunary semigroup.
Specifically, we can write

p=pom(t oyt g =qomyt ...yt
where py, o, T1,...,Th are pairwise relatively prime integers, ny/m; > .-+ >
nn/mp and either pg # 1 or A > 2. This form comes from writing p and ¢ in

their prime number decomposition and grouping the terms as shown.
Fix a point § € Y. Let ¢(§) = z € [0,1). Then

Ty (z) = {% + i}p_l .

p 1=0

For 3 this corresponds to the p possible symbols that could be at position (—1,0)
that are consistent with the first quadrant of 3.
Given this 1-1 correspondence, the terminologies will often be intertwined. In
particular, {;—, + ;‘Z—}f__fol will be referred to as the preimages associated to (—1,0).
Define ko) to be the smallest integer such that ko;m; > ny. Clearly koym; > n;
for i = 1 to h. Notice that kq; is defined so that

qkm 3 q(’)‘m 7[.;"1 koy L ﬂ.;;"vh ko1 3 ‘107"';“1 koy—my L ﬂ,":lh koy —na
p powyt ... wRt Po
Thus ) ,
ko1 kor; Y\ P~ ko1 iy Po—
k -1 R e qg T 1
Sk (:1:)={—+— = -
P P i=0 P Po ) ;=g

This corresponds in our symbolic representation to the py possible symbols at

(—1, ko1), given a first quadrant of symbols. Notice that

kg 1 Pol
Sk Ne) = {2_ + —} for every k > ko,
p bo

=0

so in fact there are py possible symbols at (—1,k),k > ko, given a first quadrant
of symbols. As before, we will often refer to {9% + ;,%_ Po=1 as the preimages

associated with (—1,k). Let zo1 be that particular 9% + ;% which is the actual
value of p(SkorT—1).
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Definition 3.1:

60(9,1) [L] =E;

Po

S‘kOlT<P ;1301-1- IVT (P]

=0
|

60(9, 1) is a distribution on

i)
po'p’ 7 po

where the number associated with 0 is the expectation of the actual preimage.

x i P!
wr@={F ),
i=0

Let ko, be the smallest integer such that ko,m; > rn;. As before this also insures
that ko,m; > rn; for : =1,...,h. Then

Next consider

st Ty(a) = {

kory  gRori )P 7!
gz +4_}

pr pr 1=0
- —rny ) Po1
{ ko':ZJ N q(’)to.-ﬂ.fmml rny 7.r”:o.-mh rhh }
= = - .
p Po 1=0

These are the pj possible preimages associated with position (—r, ko, ). Let zo,
be that particular 9— +or whlch is the actual value of p(S*rT~7).

Definition 3.1 (General):

botivr) || = &

Py

S~Rr T (2o, + Z%)lVT‘%P)] (@).

0 i=o
[ |

This is the probability that ¢(§) extends under S(I;""TO"' to a point translated
by 1/pj from (S*erT—74).
For the next lemma we want to see what happens to this distribution when S

is applied to §.
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Notation: 6o(y,r) is the distribution put on the points {i/pf§ figl as just de-
scribed. Let §; be an element in Y with o(9;) = z/q+3j/q € Sy tp(§) with
9;(1,£4+1) = §(3,£€) for £ > 0 and all ¢. Let ior = <p(Sk°'_1T_rﬁ) Then 8o(§;,7)
is the distribution put on the points {s'/p§}7°; ! where 8o(9;,7)[7'/pg) is the ex-
pectatlon of Zo,+1'/pg given z/q+j/q. Define S&o(§;,7) to be the distribution on
{z /po}p° =1 where Séo(§;,7)[¢/pg] is the expectation of xo,+1/p] given z/q+ j/q;
this is just 8o(y;,r) rearranged by the correspondence between {Zor + ¢'/pf}
and {zo, + ¢/pj} given by multiplication by ¢ mod p{, which corresponds in the
symbolic space to an application of S. Also, let

z J
it

E

T

-1 E .1 > — ~
Se (‘1+‘1)|,~\=/0T (P)| (9)

LEMMA 3.2: 8o(9,r) = Sbo(g;,7) for j =0 tog—1.

Proof: We see zo, + t/pf at S(f“'TO_r(:l:) only if for some j,

+2 and SPTTE L) =z, 4+ 2
9 g Po

So (I)

.am
Y

We can write this as

bo(f,7) = ZE

I] 560(95,7)-

Taking the entropy,

q—1
hlbo(g,7)] = h E|=+=|z| S6u(9;,7)
7=0
q—1 z .
>SN E|Z 4 Liz| h[S6o(5;,7)]
Sl C R
g—1
=) E|-+~ I] h(8o(9;,7)]
7=0

where the inequality is an equality iff Séo(3;,7) is the same for every j and thus
in fact equals 83(y, 7). Notice that

h{8o(g5,7)] = A[S&o(95,7)] < h[6o(3,7)]
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because in the last we are conditioning on less information. But

[ #léa(asriida = [ higo(a,rilda
using the S-invariance of fi. Together these give

hl6o(3,7)) = h{6o(g,7)] for every j
and we get the necessary equality. |

The above lemma says that the expectations of the symbols at (—r, ko,) are
independent of the symbol at (0,—1).

COROLLARY 3.3: ) .
. 2 . 7

80(S9,7)[ %= mod 1) = 6o(§, r)[~].
Po Po

Proof: On the right is the expected value of z¢, +¢/p}, given ¢(§). By Lemma
3.2, this is the same as the expected value of ¢ X (zo- + 1/pf) given p(SY). But
g X zor = p(S*rT~75%) so this equals the expected value of the real preimage
plus ¢i/p] mod 1, given ¢(S7). |

Recall that in the symbolic representation, we are given the first quadrant of
symbols and we have various posibilities for the symbolic paths in the second
quadrant, which correspond to preimages of z = ¢(§). For §, we are interested
in the preimages that correspond to each position (—r, ko, ); these are the possible
preimages of the point z under the map S**T~" and we know there are p§ of
them. To each preimage associated with (—r 4 1, kg (,~1)) there corresponds po
possible preimages associated with (—r, ko, ), altogether making up the total pj.
The next lemma states that the probability of a certain preimage corresponding
to (—r + 1,kq (r—1)) is exactly the sum of the probabilities of the associated po
preimages corresponding to (—r, kor).

LEMMA 3.4: i .
. 2 " J
So(g,r — 1 [—_} = Ebo(9,7) [—}
( ) Py " Lph
where this sum is over all j such that jrp' .- w* = igkor ~¥o--1) mod pj~'.

r—1

0
multiplied by the expectation of zo, + j/p§ given zo (r—1y) + 1/p;~'. In other

Proof: The expectation of zo, + j/pj equals the expectation of zo (1) +¢/p
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words,

5o, | 2] =t -1 [ 7]

0 Po
B [T o, + 201 T, T R) T TR @)
0 = 1=

This is for ¢ and j such that

)

r)-

T0($0r+ i;) — Sko,-—ko(r—l)(g;o (r—1) + —
Do 0

Fix ¢, sum over all such valid j. Note that the sum of the second terms is exactly

one. The j’s thus described are such that

pi _ grrTRo i

s P

aptLapty o gFerTRe-ng
o w

as wanted. ]

COROLLARY 3.5: & (T79,2r) determines §(T'j,r +1) for 0 <i <.

Proof: By Corollary 3.3, §,(T79,2r) determines §o(S™*0 --)T7§,2r). Let
war = (ST T A gk - T7)

and
wy—i = p(SK =TGR =TT ) = (T'),

The expectation of wsy, + j/p2", given
p(SFo =0Ty,

is the expectation of wa, + j/p2™ given w,_; multiplied by the expectation of
wr—; given (SR -0 T7§). We can write this as

8o(SH0 =0 T7g, 21) [J—] B
Po

Eit [S_k°(2')T2r¢—l ($2r+ ;g_r) |S—ko(r_.-)Tr—i<p—1(wr_i)
0

X By[STR =0T o™ (w, )l (SR -0 T7(§)),
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but only if wy, 4+ j/p2” and w,_; are consistent with one another. In other words,

7 must satisfy

Pt (xzr + p]2,> = groen ~hor-i (w,_;),
Q

which will occur iff

i mrti) o na(rdd)
p2r]=0mod1¢>7rl r_:rh ) = 0mod1
Py Py

<=>j=kp(r]_i fork=0,'--,p8_i—1.

Then

So(S Rt =0T 27) [k—zg;—} = 6o(T'§, 7 +1) [?k;—l] So(ST =D TG, r —4)[0].
0 0

But we know the first and last terms, and thus can find the middle term. ]

LEMMA 3.6: If §; and §, agree on their first quadrants, then &y(f1,7) and
60(f2,7) differ by a translation mod 1 of size ¢(S*r T~ ") — p(SkorT=7§y).

Proof: By definition of éy, only the first quadrant is used to find the expecta-
tions. The value at (—7, ko) is used only to determine the ordering which begins
with the expectation of w(S¥orT~74). Thus &(:1,7) and 6p(f2,7) have the same
weights but with different starting points. |

4. Preimages and Their Movement

Definition 4.1: Define ko; for a = 1,...,h — 1 and 7 > 1 to be the smallest
integer such that

jna+l - kaj(ma+lna - na+]ma) S 0.

[ Note that ng/ma > nay1/mat1, so such an integer exists.]
Define kp; = 0 for every j > 1.

Definition 4.2:

=} 0 o0 a—1
Doy = \/T'i(P) V] VS—ko.'Ti(P) v \/ \/ §kjing pitkjim; (P).
i=0 i=1 i=1j5=1
Dy = QT"(P) v Vs-ko-'T*(P).

1=0 i=1

Let Da—_1(§) be the array of symbols given by the first quadrant of §, §(—3, ko;)
for i > 1, and §(—i — kjimj, kjin;)fori > 1,7 =1toa—1. |
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In Section 5 we will construct distributions é,,a = 1,..., k, that will be similar
to 6p. Instead of moving the preimages up by 5, we will move them diagonally
by S™eT~™e (‘up the staircase’). D,_; holds the information from previous
staircases.

The objective for this chapter is to show that given D,—1, the possible preim-

ages corresponding to position (—r,0) are a coset of the group

?
A ™m ™™my
Tha T™hRA ’ Z_O)H'v(ﬂ-aa'“ﬂ-h _1)!
7ra .l-7rh

the possible preimages corresponding to position (—r — kqymg, karng) are a coset

1
— ) — LR Tna —
{ﬂ_;‘na}’ 1_01 ,ﬂ'a 17

and the correspondence between the two is a 13" - ;™" to one map. Further

of the group

application of S®eT~™a will yield a 1-1 map with movement given by multipli-

cation by an integer that depends only on r and a. |

Notation: When the letter d is used in prescribing the range of an index, it
always refers to the denominator of the fraction appearing in the expression in
question.

If Do(7) is given then it is enough to assume Do(y) = 0, since the possible

preimages in the general case are just a coset of those found in this case. In

wo-{3),

i, d—l
SkrTy7(0) = {—} :

T
Do Jir=o

section 3 we showed that

had

If we specify i’ = 0 (i.e. that Do(j) = 0) then we are left with

. i
I, 7(0) = {WTH—W;J}

We will prove the objective of this section by induction on a. It will proceed

d—1
=0
as follows: assume that if D,_1(9) = 0 then the possible preimages associated to

(—r,0) are {1/m " ... ;" }::01 This is true for a = 1, as stated above. We will

show that:
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}:-1;01 and

(i) The possibilities associated to (—r — kqrmg, korn,) are {i/ml"a
the map between the possible preimages associated to (—r,0) and
(=7 — karma, korna) is w::_“l“ coemp™ o 1.

(ii) For the next step in the induction it is enough to consider D,(j) = 0.
This will reduce the possible preimages corresponding to (—r,0) down to

{i/mistt S

LEMMA 4.3: Given D,_1(9) = 0, the preimage associated to (—r,0) determines
the preimage at (—r — kmg,, kn,) for every k > 0.

Proof: If the preimage associated to (—7,0) is fixed as b/72e" .- - 73*" then the
g h

possible preimages associated to (—r — km,,0) are the

R d—1
J
W:a(r+kma) . 7r}7:h(r+kma) )

j=0

such that

Tkm, J —
0 7|,‘:tc.(r+kmf.)_”7|,Ir:;-(r+kma) T T

d—1
Thus the possibilities here have the form {‘& +i/mpekma .. pin kma }i—o' Apply
Sk to get

d—1
mykn kng muykn,
{qk"a— q()7r1l a..'ﬂ-l'lna ..'Whh az}

7r(r:alcm‘, . ﬂ,n,.kma -
1=

{q""°a +gmi{reme T nery) m'i(""'"”""“"")i} = ¢*"eg mod 1.

This gives the preimage as wanted.
In order to prove statement (i) consider what happens to {¢/x[" -7 "* }::0x

when we ‘move up the staircase’. Associated to (—r — km,,0) we have

. d-1
3
a km, ’
ﬂ_:a(r+km ) . .W:,.(r+ ma) .

1=0

Apply SE™ to get

d—1
q(l;ua ™ kna . W;“hknai B
ﬂ,:a(r-f-kma) _._ﬂ,;‘lh(r+kma) T
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kng(_my Ma—_1\kn Map1Nag—Nat1Mg Mpng—npMmaNk
{qo (it emg ) e (g Tyt )%

PPN
Since no/ma > nifm;j for j = a+1,...,k, the terms in the above fraction have

positive exponents. Let k = k,,. By Definition 4.1 we have
kar(ma+lna - na+1ma) Z TMa41.
CLAM 4.4: kgr(ming —nim,) 2 fori=a+1,...,h.

Proof: Since ng41/me+1 > ni/m; for i > a+ 2, we get
ma+1n_a_ﬁ<mina Ma

for: > a+2.
Na41 T T ng r T

Using Definition 4.1 we see the left-hand side is > 1/k,, so that the right side
must also be. Rearrange the terms to yield the result. |

Proof of (i): Using Claim 4.4 we see that the only remaining preimages as-

sociated with (—r — ksrmg, karng) are {3/ /7% ;-i,;t), so that the map must be
wZi“l*" cem™ to 1. |

Proof of (ii): From Lemma 4.3 it is easy to see that the movement ‘up the
staircase’ is an endomorphism. This tells us two things. First, if ¢/ = 0 (i.e.
D7) = 6) then the possible preimages left at (—r,0) form a subgroup {i/b ?;g.
Secondly, if o' # 0 then the possible preimages at (—r,0) form a coset of this
subgroup. By Lemma 4.3 these cosets are disjoint. Each coset has b elements and

TRy

their union must equal the original 7;™e ... 7™ possible preimages at (—r,0).

Thus b= 7, 5" .- 7;"*. This completes the induction. ]

What remains of our objectives for this section is to show that further ap-
plication of S™eT~™a to the preimages corresponding to (—r — kqrmg, karne)
yields a 1-1 map with movement given by multiplication. We previously showed
that the possible preimages associated with (—r — ksrmq, korng) are a coset of

{j/w;‘“’}‘;;g. Similar arguments show this for (—r — km,, kn,) for any k > k,,.

LEMMA 4.5: There is a 1-1 correspondence between the preimages at
(=7 — kmg, kn,y) and (—r — (k + 1)ma, (k + 1)n,) for k > k,y.

Proof: This follows just as the argument for the proof of (ii). Specifying the
value at (—r — (k + 1)mq, (k + 1)n.) restricts the values at (—r — kmg, kn,) to
a coset of the possibilities that one gets when the first value is given as zero.
Lemma 4.3 tells us all these cosets are disjoint and thus each coset can have only

1 element in it. [ |
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The preimages associated to (—r — km,, kn,), for k 2 k,r, are
(SR TR g) + (i) m7eT)
and at (—r — (k + 1)ma, (k + 1)n,) they are
<‘(,(S(k+l)nﬂT—r—(k+1)mag) + {j/ateTy.

By Lemma 4.5 we can define a 1-1 map from {z/x2<"} to {j/72+"}. Denote this
map by fax-

LEMMA 4.6: f.x is the same map for every k > k,,. In other words, if

1 c
fak(F) =

then '
far(—as) = —=s  for all k' > kay.

mre’ b0k

Proof: Assume not. Then at k; we can find j; such that

q"t "«
pmemgt  pMe  wgeT

and at ky we can find j; such that

qred q"j2 _ c2
premytt | pme T ompel’

But then we have _ .
¢"(J1—J2) ca-—c

ngr °
pe whe

On the left we do not have n"¢ in the denominator, which is a contradiction.
[ |

LEMMA 4.7: The map from the preimages associated to (—r — kmg, kn,) to the
preimages associated to (—r — (k +1)m,, (k+ 1)n,) is given by multiplication by
an integer we will denote by m? ..

roof: The map f,r is an isomorphism. The only group isomorphisms on the

group {z/d} ?;0‘ is multiplication by an integer relatively prime to d. ]
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In review, this gives us the following. Given D,_:(9), the possible preim-

ages associated with (—r,0) are a coset of {i/x[" ... -1 Apply the

=0 "
map Sg*Ty ™ to these. After k., steps we have only a coset of {i/r[" }¢=]
and SkermeTykerma acts as a Tyt - mp"™ to 1 map. Further application

of Sg°Ty ™ acts in a 1-1 manner and moves z,, + i/7." to q"°z,,/p™ +

* m
LONRYE JACH

5. The Distribution §, Fora=1to h

d—1

Recall that (—r— karma, karna) is associated to the preimages {zar+2/7}" }{2),

where z4, = @(SkerneT—""karmag),

Definition 5.1:

o 1' - o rpr arMa  ,— i
ba(§7) =z ] = Ea | STHerme Tk e o™ (g0, + —2)
Ta Ta

Da..q:l (3}) [ ]

We want to compare 6,(9,7) and §,(S™*T"™<g,r). Given ¢(§) = =z, the

preimages associated to (m,, —n,) are

m m, m m NIMa—n,m Na—1Mg—"NgMa~y
Pt D) Pz p0°7rl‘ a a1l L "l e e J

n n Ng, Mad1NBa—MaNa41 NaMp =Ny M,y
qﬂa q a q a q a7r 1 R

which we will denote by p™<z/q™ + p'j/q'. Let §j; be that element in Y with

pmez  p'j
n + !
gne q

p(9;) =
and
(i — ma, k +na) = 9(6, k) for i€ Z, k>0.
6a(§,7) is the distribution put on {i/m " }{=! where &,(§,7)[i/x "] is the ex-
pectation of z4, + /7" given D,_;(§). Let

Zar = p(Sermapmr—ar=Uma gy,

Then 6,(§;,) is the distribution put on {i’/x}"s}4_} where 64(g;,r)[#'/n5"e]
is the expectation of Z,, + i'/7}", given Dg_1(j;). There is a 1-1 corre-
spondence between {Z,, + i’ /%" }:?,_:10 and {z4r + i/7" }{! by Lemma 4.5.

Let m%_.6,(§;,r) be the distribution put on {i/7]" }{=} by m?_84(§;,7)[i/x}"]
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equals the expectation of zo, + i/7;" given Da_1(§;). This is just ,(g;,7)
rearranged by the correspondence from Lemma 4.5. By E(§;[§) we mean

oo
E;[Sg=T; ™91\ T (P)(9)-
i=0
LEMMA 5.2:
8a(§,7) = m} ba(§j,r) forj=0to (¢’ —1).
Proof: We have z,, 4 i/7™ at Skerne T Farma gy iff
eg-ma(y _ PTOT P
TSy ™ (z)—F—+7
and S((,k‘”“)"“TO—r—(k“H)m“ brings this to x4, + ¢/7x]". Write this as
ql
8a(,7) = Y E(§519) m2,6a(§5,7)-
=0

Then

’

hlba(§,m)] = D E(d519)hime,64(35,7))

=0
where the inequality is equality iff m}, 6.(§;,7) is the same for every j and thus
is the same as 6,(,7). But

h(8a(5,7)] = hlmg,6a(95,7)] < A{8a(d),7)]

because the left-hand ones are conditioned on more, and

[ Hatas e = [ misa(a e

using the T*! and S*! invariance of i. Thus h[6a(§;,7) x g] = h[6a(§,7)] and
we get the result. |
COROLLARY 5.3:
. 1 N

5a(y,r)[ﬁ] =84(S5™T yvr)[ﬂ,gnra ].
Proof:  On the left is the expected value of x4, + ¢/7 ", given Do_1(§). By
Lemma 5.2 this is the same as the expected value of Sy°Tg ™ (zar + ¢/7L™)
given Dy_1(S™T~™=j). But

.
)_marz
- ™m

Ta °

SgaTo_mazar — (p(s(kar'f'l)naT—r_(kar+l)m¢g) and SgaTo—ma(

™
Ta

as specified. |
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This corollary says that the expectations for the preimages associated to

(—r — karma, karng) are independent of the possible preimages at (mq, —n,).

LEMMA 5.4:

X i . j
ba(g,r — 1) [W] = Zba(9,7) [ m,,]
Ta

Ta

where the sum is over all j such that

po] [ =i x (miy)ter TRy mod #{r =M

i#a
Proof: The expectation of z,, + j/m;™ equals the expectation of z,(,—1) +
i/m{"" ™ multiplied by the expectation of ., + j/mI"e given zg(r-1)

+i/nT"O™ | Write this as

6a(3,7) | ] =

Ta

6a(g, — 1) [—’—]

-1)n
7r((lr Ina

x E,

a

ST e <x - )
Ta

- : N
¥ ! <I'1(7“‘1) + (r-—l)na) v Da—l(y)] '
Ta

This is only for ¢ and j such that if we move z,,_1) + i/ﬂl(,r—l)n“ up the staircase

kor — ko(r—1y times it equals z,,. + j /7™ moved horizontally to the right one
(r—1) q a g

step. In other words, ¢ and ; such that

. * kar—k ,
p] _ (m _ ) ar a(r—l)z
PLar + < = 55Ty " (Ta(r—1)) + alr=1)

Ta ﬂgr—l)na
Po H LI kar—k .
i#a | (mi_1)) slr=th
A (r—1)n = (r=1)n
7ra G 7ra a

which gives us the j as specified. Fix ¢, sum over all such j. This gives the result.

1
COROLLARY 5.5: 6,(T79,2r) determines &,(T 9,7 +1) for 0 < i <r.

Proof: By Corollary 5.3, §,(T7§,2r) tells us §,(S~*atr-ma Thar—1yma T 2p),
Call this 6,(1,2r). Let wyy = p( Sk T=27"kaar)me 3); this is used to compute
84(t, 2r). Let

Wi = p(SHar-Im T Dhutrmme ) = o(TH).
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By Definition 5.1,

5:1(&727') [ﬂ_n{%‘] = Efl [S—ka(zr)naT2r+ka(zr)ma30_1 <w2r + ﬂ_n]‘,Zr)
a

a

DM} (@).

Write as

na2r
a

E [w2r+ -
iy

mqy@

If wo, + j/w;“’gr is consistent with w,_; then the expectation of wq, + j/w;"‘?r
given D,_1(1) equals the expectation of wa, + j /72" given w,—; and D,_, (i)

multiplied by the expectation of w,_; given D,_(4). Write this as

J
E \wyr + =57 war + Wr—j
Mg

X E [wy—:|Da—1] (&).

DH] () =E

J
7{_;1,,27‘
For the two to be consistent means ¢ and j satisfy

q(ka(Zr)_ka(r—i)na

r+i _ .
P (wer + W;“z,) = e W
;-
na(r—i)
Ta

& j=kn™ ) for k= 0to (ata (") 1),

Thus

E lwgr + —:—27 wr_,'] can be written FE [wzr +
T

wr_,-] .

This differs from 6,(T'g,r + ©) [k/w;‘“(r+i)] only by the locations these expec-
tations are associated with. The first is at (—r — [ka(2r) — ka(r—i)]Ma, [ka(2r) —
ko(r—i))na) and the second at (=7 — ko(r4i)Ma, Ka(r+i)72a). By Corollary 5.3 one

is just a permutation of the other so in fact we can write

7r;’:a(r+i)

s | x Bloripi @)

E [wZT +

Da_l} (@) = 6o(T'g,7 +9) [

W:ﬂ(r+i)

Rewrite again as
kﬂ.:a (r—1) *

- i~ . n*k R .
5a(u,2r) [——W] = 6a(T y, T + l) {T(T'*'—l)il X 64(’11,7' — Z)[O]
a Ta

We know the first and last terms by Lemma 5.4, and thus can find the term in
the middle. |
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LEMMA 5.6: If §, and §, have Dy (1) = Da—1(92) then éa(h,r) and §,(J2,7)
differ by a translation (mod 1) of

w(sk”na TT—karma f2) — (p(skarna T=r—karma 72).-

Proof: In Definition 5.1 the only difference would be in the ordering, which only
depends on z,, for both. |

6. Symmetric Points

Definition 6.1: A point y € Y is bp-symmetric if there exist two points ¢; and
g2 such that

() @) = @(g2) = (D).

(i1) There exists m such that §;(—m, kom) # G2(—m, kom).

(1) For every n,m, §(T™91,n) = 8o(T™H2,n).
Definition 6.2: A point § € Y is §,-symmetric if there exist two points 71 and
¥ such that:

(1) Da-1(d1) = Da-1(§2) = Da-1(9).
(i1) There exists s such that

gl(_s - kasma, kasna) :,é 172(—5 — kasma, ka,na).

(ili) For every i,j,7, 6.(T'S7th,r) = 8a(T'S7,,7).
We want to show in this section that the set of each type of symmetric point

is T and S invariant.

LEMMA 6.3: The set of ég-symmetric points is both T and S invariant. Since i

is ergodic, this set has measure 0 or 1.

Proof: Say 7 is §p-symmetric and let §; and g2 be as specified.

T-Invariance
We want to show that Ty, and T9, satisfy the definition. Note that §(—i,5) =
Tj(—i —1,5).

(i) Obviously ¢(Tg2) = ¢(T4) = ¢(T9).

(ii) Since §1(—2 + 1, koi) = g2(—i + 1, koi) for ¢ < m,

PS5 C-DTH1gy) = (54 6-DT™H1gy),
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Then the symbol at (—¢ + 1, ko;) is also the same since all cancellation is done

here after ko (;—1) steps. So
Tﬁl(—i,kOi) = gl(—i + 1,k0,‘) = gg(—i + l,ko,') = ng(—i, ko,‘) for i+ <m.
Thus
(ST T~ gy) = (St T ™™ H1g,)
and yet §1(—m, kom) # J2(—m, kom), showing that §; and §, correspond to
different preimages and still will when moved up to (—m, ko (m+1)). Then
T?l(—m -1, kO(m+1)) = ﬁl(—m, kO(m+1))
# Jo(—m, ko(m+1)) = Tg2(—m — 1, ko(m1))-

(iii) 6(T™Tg1,n) = So(T™1§1,n) = & (T™*'§,,n) by assumption, which
equals §o(T™ T, n) as needed.

S-Invariance
We want to show that Sg; and S, satisfy the definition.
(i) Obviously ¢(S71) = ¢(S92) = ¢(S7).
(1) 91(—3, koi) = G2(—1, ko;) for i < m says that p(SFT~iH) = (ki T~ig,).
All cancellation is done after moving up ko; steps thus
Q(S*FITTg) = (S* T g,) = §1(~i, koi + 1) = Ga(~1, koi + 1)
= St1(—1, koi) = SP2(—1, koi)-
But then §1(—m, kom) # §2(—m, kom) so
P(S*mT ™) # (S5 T™™gs) = p(S*mFIT™™51) # p(Sm 1T~ ™g,)
= f1(—m, kom + 1) # f2(—m, kom + 1)
= Sh(—m, kom) # ST(—m, kom)-
(iii) So(T™ S%,n) = 60(T™"¢1,n) shifted by ¢
= 60(T™ge,n) shifted by ¢
= §o(T™ S92, n). |
LEMMA 6.4: The set of §,-symmetric points, a = 1 to h, is both T and §

invariant. Since p is ergodic, this set has measure 0 or 1.

Proof: Recall that ki; = 0 for all ¢, by Definition 4.1. Let § be a symmetric
point and ¥;,J2 as specified.
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T-Invariance

(1) ObViOUSly 'Da—1(T!71) = Da_l(T'gg) = Da_l(Tg).
(ii) We want to show that

Tgl(_(3+1)—ka(s+l)ma> ka(s+l)na) 7é Tg2(_(5+1)_ka(s+l)maa ka(s+1)na)

which is equivalent to showing

Y1(=8 — ka(s+1)Ma, ka(s+1)Pa) # §2(—8 — ka(s+1)Ma, Ka(s+1)a)-

For a = h this will be true by assumption. For the rest, recall that
331(—3 — kasma, kasna) 7é QZ(_S — kggmyg, kasna)

and this is the first such s. Given D,_;(§) there are 72"+ possible preimages

a

associated with (—s — kasmg, kasna) and further application of Sg*Ty ™ is 1-1.

th and ¢, correspond to different preimages and still do after we apply

S(ka(,+‘>—kq.)n“T(;‘(ka(:-Q-l)_kaa)ma i

Thus they have different symbols at (—s — ka(s41)Ma, Ka(s4+1)7a)-

(ii1) 8(T SITH1,7) = 8(T 1595, 7)
= 8,(T"t1S574;,7) by assumption
6.(T*Si T, ).

S-Invariance

(1) Obviously D,—1(S%1) = Du—1(S%2) = De-1(S9).

(i) Let b be the first integer such that m, < bn,. Let s be the first integer such
that §1(~s — kasma, kasna) # J2(—8 — kasMa, kasna). Then we also get

!}1(—-8 - ka(s+b)mu) ka(s+b)na) ?é 92(_3 - ka(a+b)ma1 ka(a+b)na)

and so of the possible preimages associated with (—s ~ ka(s15)™a), Ka(s45)Pa), 1
must correspond to Z+ ¢y /72" and §; to T+ cp /7", But then the possibilities
at (—s — b — kg(s4-0)Ma, ka(sy5)a + 1) are qZ[p® + geifpPmite + ¢ /p® which we
can write _ , .
qz qci 17
P gt i

n.b—m,?
7r ad a
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where p',¢’, and m, are all relatively prime. But for ¢; # ¢, these are disjoint

sets, since they are translations of the set
qz 9y
{;"— - plmpebTma }

by different amounts. Thus

(p(sk"(‘+")n“+lT—s—b_k"(’+b)m“ 171) 7é (P(Sku(-+b)"¢+IT_"_b_ku(-+b)mﬂ 02)

& (ShE T TPkt e G ) L (G e TPk S ).

Now to show there exists t < s + b such that
5171(—t - katma) katna) :/é 592(_t - katma, katna)-

If we can find ¢ < s+ b then we are done. Assume not; we will show that ¢t = s+ b

works. Since further movement is 1-1, the assumption also says that
Sgl(—t - ka(s+b)may ka(a—f—b)na) = S‘_l;lg(-—t - ka(3+b)ma) ka(s—f—b)na) fort < s + b.
Using that Dy—1{SH1) = Da—1(SH2), it is easy to see that
ka(s48)a T —ka(s4b)Ma - —_ ka(si63a T —kg(stb)Ma 7y
(p(5(+) T (s+3) Syl)'—(P(S(+) T —Fa(s+s) 5y2)_

So g1 and §2 have the same first quadrant at (—kq(s45)a, ka(s4+5)na) and the
same symbols to the left up to s+ b. There we know they correspond to different

preimages so must have different symbols.

(iii) 6(T'S7S%,,7) = 8, (TS, 7)
= 6a(T"Sj+‘ﬁ2,r) by assumption
=8,(T'$'SGy,7). W

LEMMA 6.5: Let B = J*_{§;§ is a §;-symmetric point }. Then ji(B) =0 or 1.

Proof: B is just the union of T and S invariant sets. ]
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7. When the Set of Symmetric Points has Measure 1

THEOREM 7.1: If § is a o-symmetric point then the group of translations under
which 8o (4, n) is invariant contains the group < b, > where b, is a fraction whose

denominator in least terms diverges to infinity.

Proof: For §j a §y-symmetric point, there exists #;,72 such that at some first
index m, §1(—m, kom ) # G2(—m, kowm) yet 8o(§1,m) = 60(f2, m). Thus éo(f,m) is
invariant under translation by o(T~™S*om g, ) — o(T~™S*omj,) by Lemma 3.6.
Since the possibilities for o(T~™S*om §) are {Z +i/pl fi"o_l, b0 (§,m) is invariant
under translation by (iz — i,)/p§’. Notice that in least terms, the denominator
is > 2.

We will prove the theorem by induction: if §y(#, j) is invariant under translation
by u/v with v nontrivial, then 84(§,j + 1) is invariant under translation by a
fraction whose denominator, in least terms, is at least 2v. The first paragraph
gives us our beginning step. '

The possible preimages for (777 5% §) are {zo; + i/pg}figl. For j > m, we
have 7 associated to zo; + i1/p} and gz to Zoj + ig/pg,il # 3. Thus 8o(%,7) is
invariant under translation by (i — 4;)/p} which we are assuming has the form
ufv. We also know 8(91,7 + 1) = 8o(92,7 + 1) so 6(§,j + 1) is invariant under
translation by @(T-I"1§%0 G+1g3) — p(T~I"15% G+vg;).

The possibilities for (T =1 S%0 G +1)§,) are a subset of

i1y

; Po ! k Pi=1  po-1
Zo i+t 57 ={ZoG+yt Tt —
{ ’ p(’,*‘},.=0 { SN AL N

such that

il k P —ko; i2
pX |z + =3+ — | =¢0UDT Lz 4+ — ]
( (+1) pé“ po) J p'(’)

But the left side is exactly
ny nhp Z"

7r1 B 4

Po

N —kos
qko(:+1) %zo; +

so the subset we want includes only ¢’ such that

ny nnst Ko 41)—koj 5 J
Ty Ty 1 =gq 8(i 1) AP modpo.
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Since all the coeflicients are relatively prime to pg, such a unique 7’ exists; call it

1. Similarly the possibilities for

Po-—1
. o 7 k
P(T718R0+0g) = S aogen + r + '
Po 0
k=0

Thus 60(9,7 + 1) is invariant under translation by a number of the form
(e — i4)/pi*! + h/po where 0 < h < po.
Recall that (i, — ¢,)/p} = u/v in least terms. Thus

gFo+nkoi (35 —4y)  gFeu+nTheiy

7
Po v

But by the last paragraph the left side of this equation equals

TPt (i — 44) /)

and thus

1’2 _i’l _ qko(,'+1)—koju

p-(’; Sttt
Denote this by ¢'u/#'v. We can now write the above translation as a number of
the form
q'u h qdu+n'vh
E):z;; + Po - mlupy
This may not be in least terms anymore; we will show that the reduced form has
at least 2v in its denominator.

First consider v. We know v is relatively prime to u and since v is made up
of components of py it must also be relatively prime to ¢’. Thus v is relatively
prime to ¢'u + 7'vh.

Next consider ps. There may be some part of py that divides u so write
po = p1p2 where pq is relatively prime to u. Since v is made from py’s and v is
nontrivial, p; is nontrivial. But then there is some part of p; that divides v, call
it p2. Once again it must be nontrivial since v is. Then p2 is relatively prime to
q'u and divides m'vh. Thus it is relatively prime to ¢'u + 7'vh. So in least terms

the denominator must be at least pov > 2v. |
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THEOREM 7.2: If § is a 8,-symmetric point (for some a = 1,...,h) then the
group of translations under which 6,(§,r) is invariant contains the group < b, >

where b, is a fraction whose denominator in least terms diverges to infinity.

Proof: This is done similarly to Theorem 7.1 except now g4 will correspond to
Zqar + ig/m%e at the first step and to

v} ae—1,
z —d 42
a(t+1) 1‘_‘(1:+1)n. nhe o
at the next, where
po [ mjia = (mi)tec+n 7 etiy mod mye.
j#a

Again assume that §,(§,t) is invariant under (i; — ¢1)/7!"* which equals u/v

in least terms. Then §,(§,t + 1) is invariant under translation by a number of

the form
Bmh ke <h <
+ 7 where 0 < h <mge.
p{tFne  omge o
But
po [T (3 —44) .k e . B
j#a — (my,)fe+0 Rt (Gy —4y)  (m},) e+ TFety
tna = ™ =
7!',,," ,n.an "
and so
=iy _ (mahecenhuy
S R
j#a

Denote this by m'u/p'v. Thus §,(§,t + 1) is invariant under translation by a
number of the form
m'u h m'u+pvh
plorge | wRe T plowpe
As in 7.1, we can show that, in least terms, v and a nontrivial part of 72+ will

be in the denominator. 1

LEMMA 7.3: If § is a 6.-symmetric point for some a = Q to h, then §,(§,n)

converges weakly to Lebesgue measure on [0,1).

Proof: Let A, be the set of rotations under which 6,(§,n) is invariant. By

Theorems 7.1 and 7.2 we know A, D< b, > where b, is a fraction whose
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denominator, in least terms, diverges to infinity. For any o« € A,, any f €

C(SY), [ fdéa(§,n) = [ Ra(f)dba(§,n), where R4 is rotation by . We can

write
. 1 .
[1asam = & [ Re(pdbuiin)

acA,
But |A,|, the cardinality of A,, diverges to infinity, so

1
T2 Ra(f) = fdm
IAnl QGZAn /

by definition of Riemann Integral. Thus [ fdé,(§,n) = [ fdm. |

THEOREM 7.4: If a.e. point is §,-symmetric for some a between 0 and k, then

it =m is Lebesgue measure.

Proof: Using the definition of § and 4§, and translating back, we see that
Rw(skorT—r?})ao(g)T) puts weights on

1 py—1
{ZOT,IOr‘*‘p_(,)-y"war'*' p(,). }

and R (gtarnaT-r-*armag)8a(y,7) puts weights on

TRa
(Zars Tar + ey ooy Tar 4 a1y
arsyvar 7r§"" yeeesdar 71’:;'"“ ’

Generalize to any set C by

s 17 () TP )

1=0

Rw(S"OrT“"Q})‘SO(gv T)[C] = E,“

and
Ry(gkarnar-r-2arma 3)8a(§,7)[C] = Ej [S‘“'"“T’“”"‘“(p‘l(C)IDa_l] (%)-

Let B, = { : § a 8,-symmetric point }. We are assuming that

thus there is at least one B, with full measure. Then Y = B, ae Ifa=0,

o7} (C)IS*\[ T (P)| dp

i=r

WO = [1pcrdi= [ B,

By Bo
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1=0

- / E; [S"“"T'tp“(C)lVT“(P) dis = / Rip(sror 7-r3)80(3, ) [Cldt.
Bo BO

By weak convergence of §p(3j,7) to Lebesgue measure m, this has the limit
/ m(C)dji = m(C)i(Bo) = m(C) x 1.
By
Ka=1,...,h,
[J(C) = /1¢—1(C)dil =/Ei‘ [(p_l(C)‘Sk""°T_r—k"m"Da_l] dil

B. B,

= [ By [STkermaTrRerme =Y (C)Dy1] dip
Ba

= qu(S"ar"aT"‘“'ar"‘ag)éa(g,r)[c]dﬁ.
Ba

By weak convergence of §,(7,r) to Lebesgue measure m, this has the limit

/m(C)dﬁ =m(C)a(B,) =m(C) x 1. |
B,

8. When the Set of Symmetric Points has Measure 0

Let H, be the minimal T and S invariant o-algebra for which the functions
8,(9,n) are measurable. H, is trivially S-invariant because §o(f,n) determines
60(51‘37, n) for all k¥ € N. Let H,, be the minimal S-invariant o-algebra for which
84(T"§,2r) is measurable. By Corollaries 3.5 and 5.5 the H,, are nested and
refine to H,.

LEMMA 8.1: The action of S on Hy, is periodic. Thus h(S,Hor) = 0 and using
the refinement, h(S,Ho) = 0.

Proof: This follows from Corollary 3.3. Note that the period depends on r.
|

LEMMA 8.2: hi(S™,Har) = hy(T™, H,r) and thus

h,»,(S““,’Ha) = hi‘(Tm",’Ha)
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from refinement. So

ha(T, Ha) =

Na
k; a)-

Ma I‘(SaH )

Proof: By the construction of §,(T",2r) we can find an integer d such that

SdraT—dMa acts as the identity on H,,. Thus

ha(S™e, Hap) = ha(T™ , Hayp) = dhp(S™ Hay) = dhp(T™ , Hay). B

LEMMA 8.3:

logp
ha(T, Ha) = Ei—qhﬁ(S,Ha)’

so together with the last lemma we have h;(T,Ha) =0 = hu(S, Ha).

Proof: H, is T and S invariant by construction, so we can use Remark 2.8. p

and q are generators of a nonlacunary group so

logp , na
logqg ” ma

LEMMA 8.4: If i ae g€ Y is not symmetric, then

a=0 =0

h o0 h o0

T(P)C \/HaV \/T7}(P) and h; (P[\/Ha v VT“(P)) =0.

a=0 i=1
Proof: Suppose not. This means we can find points §; and g, with ¢o(§1) =
w(92),6a(d1,7) = ba(Y2,7) Vrya = 0,...,k, but §1(—1,0) # g2(-1,0). If also
91(—1,ko1) # §2(—1, ko1) then §; is a §p-symmetric point and we have a contra-
diction. So assume ¢ (—1, ko1) = g2(—1, ko1 )-

Now define u;(b,c) = §i(b,c) for b > —1,c > 0. Extend so that Dy(t;) =
Do(tiz). Let 84(i,7) = 64a(9i,7). By assumption i,(—1,0) # @1(—1,0). If also
(=1 — k1ymi, k1iny) # t2(—1 — kyimy, k1in1) then 4, is a §;-symmetric point
and we have a contradiction. Thus they must be the same at (—1—kyymy, k11n1).

Continue with this process until finally we will have built two points with the
same Dj_;, same distributions which differ at (—1,0). But that makes them
dn-symmetric points. Thus they must be equal at (—1,0) and so §;(—1,0) =
92(—1,0). i
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h
LEMMA 8.5: hu(T,P) = h; <T, V H.,) .
a=0

Proof: X X
hu(T,P) = hy (T, \/Ha> + ha <T,P| \/H.,) :
a=0 a=0

But

h h [eS) )

hi (T,P| \/H.,) = h; <P| \/ Ha v \/T“(P)) =0
a=0 a=0 i=1

by the last lemma. |

LEMMA 8.6: For i € My, but i # t, ha(T,P) = hs(S,P) = 0, and thus by
Remark 2.7, hi(T) = ha(S) = 0.

Proof: By Lemmas 8.1 and 8.3

h h
R (s, \/Ha> <Y (S, Ha) = 0.

a=0 a=0

Thus

(s \/H) l°gqh (T \/H) Iquh,‘( T, P)

a=0
by the last lemma, which equals h;(S, P) |

This completes the proof of Theorem A. In review, we have shown that multi-
plication by p and ¢ on the circle gives rise to distributions on which combinations
of these functions act periodically. The exact combination needed is given by the
ratio of terms common to both integers. We then use these distributions to define
symmetric points and show that the set of such points has measure 1 or 0. This

is the dichotomy between Lebesgue measure and measures of entropy zero.
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