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ABSTRACT. A one-dimensional shift of finite type can be described as the
collection of bi-infinite “walks” along an edge graph. The Decomposition The-
orem states that every comjugacy between two shifts of finite type can be
broken down into a finite sequence of splittings and amalgamations of their
edge graphs. When dealing with two-dimensional shifts of finite type, the ap-
propriate edge graph description is not as clear; we turn to Nasu's notion of
a “textile system” for such a description and show that all two-dimensional
shifts of finite type can be so described. We then define textile splittings and
amalgamations and prove that every conjugacy between two-dimensional shifts
of finite type can be broken down into a finite sequence of textile splittings,
textile amalgamations, and a third operation called an inversion.

1. INTRODUCTION

Let A be a finite alphabet. Then the full two-dimensional shift space on A is
A#", with shift map o, defined, for each ¢ € Z2, by [o,(1)]s = ys,o for all b € Z2.
We let p denote the usual metric on A% : pla,y) = 27% where k is the largest
integer such that zp =y for all b € [~k, k]* C Z2. A two-dimensional shift space
Y is a closed subset of A% which is invariant under all shift maps o,, ¢ € 2.

A two-dimensional shift of finite type (SFT) X is a shift space defined using two
transition matrices A7 and A4, indexed by elements in 4. Thus

X =X(A1,42) = {2 € A7 : Ay(Ta,Tare,) =1 forall a € 72,4 = 1,2}.

SFTs are more usually defined using allowable blocks, which can be shown to be
equivalent to the above definition (see Proposition 2.3.9 in [LMQS] for the one-
dimensional result; the proof for higher dimensions is similar).

Difficulties arise in the two-dimensional case which do not occur in the traditional
one-dimensional case. For example, given a single transition matrix, it is relatively
easy to determine whether the corresponding one-dimensional SF'T is nonempty.
In two dimensions, the guestion of whether there are any two-dimensional arrays
~of symbols satisfying the transition requirements of A; and A, is referred to as
the nonemptiness problem and is undecidable. The extension problem, which asks
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whether a given admissible block wili actually occur in a two-dimensional array in
X (A1, A9), is also undecidable.

In one dimension, & SFT is nonempty if and only if it contains periodic points.
This is false in higher dimensions as the existence of aperiodic tiling dynamical
systems illustrates. The undecidability results described above are closely related
to this fact [B66], [R71].

There are settings in which these difficulties can be avoided. N. Markley and M.
Paul consider matrix subshifts satisfying an overlapping condition {MP81], [MP281]
and B. Kitchens and K. Schmidt restrict their attention to higher dimensional
shifts for which A has a group structure [KS88], [KS92]. For these classes of two-
dimensional SFTs , the nonemptiness and extensior problems can be answered and

_progress has been made towards understanding other dynamical properties. (See
again [MP81], [MP281], |[KS88] and [KS92].) In general, however, little is known
about higher dimensional SFTs. (For a complete list of references and a thorough
overview of higher dimensional shifts see [LM95], Chapter 13.)

A useful tool in studying one-dimensional SFTs is the edge graph. Bi-infinite
walks along an edge graph yield a SF'T and conversely, using a higher block presen-
tation if necessary, every one-dimensional SFT can be obtained in this way. The
appropriate edge graph representation of a two-dimensional shift is not immediately
obvious. In [N95], Nasu proposes the teztile system, involving two edge graphs and
two graph homomorphisms as a way of constructing two-dimensional SFTs. In fact,
moving to a higher block presentation if necessary, all two-dimensional shifts can
be represented in this way. In Section 2 we discuss these facts and propose the
textile system as the appropriate two-dimensional “edge graph”.

In Section 3 we define textile splittings and amalgamations. These definitions
involve splitting (or amalgamating) one of the edge graphs in the textile system and
extending to the other graph appropriately. The main theorem of this section is a
two-dimensional decomposition theorem which states that any conjugacy between
two-dimensional SFT's can be broken down into a finite sequence of textile gplittings,
amalgamations and a third operation which interchanges the horizontal and vertical
directions. The formal definition of this operation, called a shift inversion, is given
below.

We conclude this section with a review of some vocabulary and notation involving
shift conjugacies and with the definition of a shift inversion. We also remark that
similar results involving bipartite codes have been obtained by Hirashi Aso [A9T].
Bipartite codes are used by Nasu [N86] to prove a variant of the Decomposition
Theorem which states that any conjugacy between one-dimensional subshifts is the
composition of a finite number of bipartite codes. Aso generalizes this result to two
dimensions.

In two dimensions, a continuous, shift commuting map @ between shifts X C A%
and X C 47" is a sliding block code. An ((m,n), (r,s))=block code & : X — X is
defined via

Tl-mgrs) 0 L{ig+s) 7 Tlitngts)
@)y =0 | Ta-mp 0 Tan  Tlieny)

Llimmj—r) 0 Blg—r) 0 LTliingor)
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where ¢ is a map from ((m,n}, (r, s))—blocks (as depicted above) of symbols from
A to symbols in A. Note that a ({0, 0), (0,0)}~block map is defined using a map ¢
which sends symbols to symbols. We call m {r) the horizontal (vertical) memory
and n (s) the horizontal {vertical) anticipation. If ® is invertible, we say that X
and X are conjugate, denoted (X, Z2) = (X, Z2).

In two dimensions, the choice of horizontal versus vertical direction is somewhat
arbitrary and so we define an inversion which interchanges these directions. Let 8
map a two-dimensional shift X to the two-dimensional shift #(X) via 6(x); ;) =
T and let o3 = 0,,, i = 1,2. Tt is clear that 0108 = f ooy and 02060 =
0 oo and thus (X, 01,00) & (6(X),02,01). Furthermore, § 1 = #. Note that if
®: X — X is an {(m,n), (r,s))—block map, then 0o B o 4 : §(X) — 6(X) is an
({r,s), (m,n)}—block map.

2. TEXTILE SYSTEMS AND SIFTs

We begin this section by reviewing edge graphs before using them to define a
textile system. For a more complete review, see [LM95].

Let & be an edge graph with vertices Viy and arcs E¢ . For each o € Eg, let
ig(a) ({g(e)) be the initial (terminal) vertex of a. We say that (7 is essential if
both ip and #; are onto.

Let X denote the collection of bi-infinite walks on . That is,

=T .1l 1X2"

is in Xg if and only if z; € Eg for all i € Z and ig(ziry) = to(a;).
The transition mairiz associated with an edge graph & is the Fg x BEg 0-1 matrix
A= [Ayp| where Ayp = 1 if and only if tz{a) = iz(B).
A graph homomorphism between graphs I and G is a pair of mappings ¢z :
FEr — Eg and oy : Vi — Vg such that
iG e ¢r = ¢v oir,
teogr=¢yoir.
A graph homomorphism ¢ : I' — ¢ induces a one-block factor map & : Xp — Xg
in the obvious way.

Definition 2.1. A textile system consisis of an essential edge graph T, a single
vertex edge graph &, and two graph homomorphisms, p,q : I — G, such that the
quadruple (ir(«), tr{a), p(a), ¢(a)) uniquely determines a € Er.

Definition 2.2. A textile weaved by T is a two-dimensional array
2
(ig))iez € BE
where (a; ;) )iez € Xp for all j € Z and q(og 1)) = plog,y) for all 4, j € Z.

We can view a textile system as & means of associating the edges in I' with a
collection of Wang tiles: the edge « is associated with the tile depicted below.

ir(c) tr{a)
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If we let XT be the set of all textiles weaved by T then X is & closed invariant
subset of EF , and the textile dynamical system and the geometric tiling dynamical
systern are isomorphic.

‘We remark that in Nasu’s original deﬁmtlon, T is not required to be essential and
7 is not required to be a single vertex graph. However, these are not fundamental
restrictions. If I' is not essential, then there exists an essential graph IV with
Xr = Xr+. If G is not a single vertex graph, then we can construct G, consisting of
a single vertex and the edges from G, and 77 = (¢/, ¢’ : I' — &) with p’{o) = p(0),
g (o) = g(@) for &« € Ep. It is clear that Xo = X,

The inversion of a textile dynamical system X is also given by a textile system,
known as the dual T of T. We define the dual TV of T by

EPT - Er\ and
VFT = EG,
and for o € Vpr = Er
ipr{o) = ple)  and
trr (o) = gla).
The single vertex graph G7 has edges indexed by V. The inversion of the textile
dynamical system X7 is then given by the textile system T* = (p*,¢7 : I'7 — G¥)
where
o7
(o) =ir(e),
qT(a) = tr(a).
It follows from the definition that (T*)* = T and i (g y)ijez € X7, then
{ag)iiez € K1+
A textile dynamical system is isomorphic to a geometric tiling dynamical system

and thus it is clear that textile dynamical systems are two-dimensional SFTs. The
converse ig also true, as the following proposition demonstrates.

Proposition 2.3. Let (X,01,03) be a SFT given by transition matrices Ay and
As. Then, moving to a higher block presentation of X if necessary, there exists a
textile system T' = (p,q: ' — &) such that X = Xp.

Proof. Consider the higher block presentation X of X given by the ((0,1),(0,1))—
block map ® : X — X where

when

ed Lt i1y Lligd i cd
P L= (1,4+1) i+l )
@ = g T(i,5) Tlir1,9) ab

Then X is given by transition matrices A and A, defined in the obvious way.
We show that (X, Z?) is given by a textile system 7' = (p,¢: I' — G). Let

8§ = {2 x 2 A;, Ay admissible blocks}.
Construct an edge graph ' by
Vr = {columus of 2 x 2 blocks in S},
Er=8,
with

ir(B)= ., @)=
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for all B = Z(; € Er. Then construct a single vertex edge graph G with edges

labeled by
Eg = {rows of 2 x 2 blocks in S}.
Define graph homomorphisms p, ¢: T' — G via
p(B)=ab, ¢(B)=cd

for all B = Zg € Er. Then T' = (p,g: T — G) is a textile system and X7 = X.

This follows from the fact that if o, 8 € S then
Av{e, By =1 if and only if
ir(a) = tr(8)
and
Ax(a, ) =1 if and only if
g{a) = p(B).
O

Proposition 2.3 is not surprising since every two-dimensional SFT is isomorphic
to a tiling dynamical system. (See for instance [M89].)

3. A TWO-DIMENSIONAL DECOMPOSITION THEOREM

In one dimension, the decomposition theorem states that any conjugacy between
SFTs can be decomposed into a finite sequence of splittings and amalgamations.
We will prove an analogous theorem for two dimensions. The crucial lemmas will
show that horizontal and vertical memory and anticipation of a block map can be
reduced using a notion of textile splittings and amalgamations. A textile splitting
(or amalgamation) of T = (p,q : T — @) will involve a splitting (or amalgamation)
of I', extended appropriately. I determines the horizontal transition rules and thus,
such operations will be able to decrease horizontal memory and anticipation. To
decreage vertical memory and anticipation, we will first interchange the horizontal
and vertical direction with an inversion and secondly apply textile splittings and
amalgamations.

Let T = (p,q : I' — ) be a textile system with V¢ = {v1,...,v.}, Bpr =
{oa,..., e}, and Eg = {B1,...,5:}. We next define T = (5,§: T — @), the
textile out-splitting of T. First, we out-split the graph I' by refining the natural
partition of Er; for each v € Vp, we partition £, = {a € Er : ir(a) = v} into
subsets £},...,&" ) Then set

Vi = {’U%,... ,v}n{vl),w%,... ,v?(vz),... ol ...'uff(”“)}

73
and

Fr = {a%,... Japln(e)) a1 ,ay(fr(ar>>}

with iz(ed) = ir(a;)t where oy € 8;:'1,(%) and t:(c) = tp(ey)?. This new graph is

denoted T. Next, extend p and ¢ by setting fi(a?) = p(a;} and §(o) = g(a;) for all-
CE“;-' S Ef. :
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In a similar way we can construct the textile in-splitiing T” of T by refining the
partition of incoming edges. B

In the following two lemmas we verify that T is indeed a textile system and that
XT EP.C
Lemma 3.1. T =(5,§: 1 — G) is a textile system.
Proof. Clearly I' is essential if T" is, and , § are graph homomorphisms. It remains
only to check that the quadruple (zp( N, te(ed), plad), §( 3)) uniquely determines
a;? € Eg. Suppose that a;Z # o, and consider their respective quadruples.
Case 1. Suppose i = k. Thus j # [ and #x(o)) = #r(e)? # () = t=(cf) and
the second entry will distinguish the two quadruples.
ir{an) If ip(ai) 75 ip(ak) or
if ©# £ z, then in(ad) = ip(a;)® # ir{ew)® = ip(al) and the quadruples are
distingnished by their first element. Simﬂarly, if tp(ew) £ tr{ag) or 7 # 1, the
quadruples are distinguished by their second element. Finally, if 0 (o) = ir(ay),

r =z tr(a) = fr{ag), and § = [, then because T is a textile system, we know
(ir(ea), tr(as), plo), o)) # (ir (o), tr{ew), p(ax), g(ex)). So either

plad) = plow) # plow) = plak) or dlad) = qloy) # alow) = §(cd).

Case 2. Suppose @ # k and o € &7 o) Xk € &£z

Lemma 3.2. Let T be a textile out-splitting of T. Then
{(Xg,01,02) 2 (X7, 01,09).

Proof. Define a ((0,0), (0,0))—block map & : X3 — XT via ¢(od) = a; and a
((0,1),(0,0))—Dblock map ¥ : Xy — X+ via v,b(an,cuj) = of, where a; € Sir(a 3

It is not difficult to check that ®(X;) € X7 and ‘P(XT) C Xy. It is clear that
(W (x)),5 = o, for all z € Xrp since adding and removing superscripts has
no effect. Thus we only need check that U($(x))(; ;) = %5 for all z € Xy, Let
z € X7 We need to show that

V(D(z)) .5 = W(D(2.5))¢(@+1.5))) = Tiij)-
Suppose z(; 5y = ok, (i1, = aﬁL € Ep. Because (z;;))icz € Xp, tr(a fn}
tr(am)® = ir(om)® = in(al), where o, € & ey Thus fr(am) = ir(an), k =
and a, © EF So

ir(an)

¥ (@) (@ r1,5))) = ¥ ($lad)d(ah) = Vlaman) = of, =z 5. 0

When the partition P consists of singleton sets then T is called the complete
out-splitting of T and, in general, if T is a textile out-splitting of 7' then we call
®: Xy — Xpthe out-amalgamation code from XptoXpandwecall ¥ : Xp — X5,
the out-splitting code from Xr to X;.

We can define a textile in-splitting T of T analogously by using an in-splitting TV
of I'. We will then have a ((1,0),(0, 0)}—block in-splitting code and a {(0, 0}, (0,0))—
block in-amalgamation code, both giving Xov 2 Xp.

In the remainder of this section, we give a proof of the two dimensional decompo-
sition theorem. In Lemma 3.8 we show that a higher block presentation of a textile
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gystem is the composition of a finite sequence of textile splittings, amalgamations
and inversions. Then, by moving to a higher block presentation if necessary, we
may assume tha} the conjugacy ¢ between two textile systems is a ((0, 03, (0,0))—
block map with an ((m,n), {r, s))—block inverse. If m = n = r = s == 0, then this
conjugacy is just a relabeling of the symbols and as such is a trivial splitting. So
we would like a way to reduce the horizontal and vertical memory and anticipa-
tion of the inverse of . We will reduce the horizontal memory and anticipation in
Lemmas 3.3 and 3.4 by using textile splittings and amalgamations. Then, in Corol-
lary 3.6, we interchange the vertical and horizontal directions using an inversion
- and reduce the vertical memory and anticipation, again using textile splittings and
amalgamations.

Lemma 3.3. Let Ty = (Pr,qe : U — Gi) , k = 1 and 2, be textile systems.
Suppose @ : X1, — X1, 15 ¢ ((0,0), (0, 0))—block conjugacy with an ((m,n},{r, s})—
block inverse. Then there are textile out-splittings Ty, of Ty, such that the following
diagram commutes:

©
X, —— X,

Xj;l T} Xﬁ,
where Uy, Wy are oul-splittings and where @ is o ({0,0),(0,0))—block conjugacy
with an ((m,n — 1), (r, s)}—block inverse.

Proof. For v € Vr,, we partition £, by the image of ¢ into |, Br, {be & )
= p{a)}. (In a slight abuse of notation, we are using ¢ to denote both the
((0,0), (0,0))~block conjugacy between Xr, and X, and the map from symbols
in Er, to symbols in Ep, which defermines this conjugacy.) Then we can denote

Vi, ={v*:v eV, a€ Er, withp(a) = afor somea € £,},

Ep = {a’s ta € Er, withe(b) = Sfor someb € Er, with tr,{a) = ir, (b} }
and

i, () =i, (@%@, & (0%) = tr. (@)’

1
For of € E%s , we define 71 (a®) = p1(a). The homomorphism ¢j is defined similarly.
As shown in Lemmas 3.1 and 3.2, 7} = (p1, g1 I — G4) 18 a textile system and
Ty X — Xy is a conjugacy via ¥ (z)q 5 = Y1 ($(i,j)$(é+1,j)) = :c(,;!j)“’("”fﬂl-ﬂ).
Now let I's be a complete out-splitting of I's. So

Vi, = {v* 1 v € Vr,, o € Ap, withip, (@) = v},

BEs = {aﬁ :, 3 € Ap, with ip,{e) =10, (8)},
and
i, (@) =i, (@)%, 1, (o) =1, (o).
For o € Er,, we define g (@®) = po(a). The homomorphism g is defined similarly.
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As shown in Lemmas 3.1 and 3.2, T = (p2,do : Iy — () is a textile system and
Ty : X1, — X, I8 a conjugacy via Wa(z) 5y = ¢2 (T )% @rLg)) = La,n ¢,
Now we define the ((0, 0}, (0,0))— block map ¢ : Xz — X5 via

P)sg = ()" ) = olon) e

Clearly the diagram commutes and thus @ is one-to-one and onto. It remains only to
check that 3~ = 900 o9y ' is a ((m, n—1), (v, s))— block map. That is, we must
show that for any z € Xy, the coordinates in an ({m,n — 1}, (r, s))— block about
0y determine ¢~ 1(z)(o,0). But this follows from the observation that a ((m,n —
1), (r, 5))— block about 2 o) determines both ¢(z( o)) and a ((m, n), (r, s))— block
about %5 () (0,0- O

The proof of this lemma is similar to the proof of an analogous one-dimensional
result. See [LM95], Lemma 7.1.3.

Lemma 3.4. Lei T = (pg,qr : I'r — Gi) , k = 1 and 2, be textile systems.
Suppose @ : X, — X, is a ((0,0), (0, 0))—block conjugacy with an {(m,n), (r,s))—
block inverse. Then there are textile in-splittings T; of Ty such that the following
diogram commutes: '

%]
XT1 —_— )f'_l"2

Xy —— Xy
@

where Uy, Wy are in-splittings and where ' is o ((0,0),(0,0))— block conjugacy
with an ((m —1,n), (r,s))— block inverse.

Proof. The proof of Lemma 3.4 is analogous to the proof of Lemma 3.3. O

Corollary 3.5. Let Ty = (pr,qx : T'n — Gi) , k = 1 and 2, be textile systems.
Suppose v : X7, — X, is a ((0,0), (0,0))—block conjugacy with an ({m,n),{r,s))-
block inverse. Then there are textile systems T such that the jollowing diagram
commautes:

lp
Xr, — X,

N

Xz Mm_>c,a X7,

where the fy ’s are the composition of a finite collection of in- and out-splittings ond
@ 5 o ({0,0),10,0))—block conjugacy with an ((0,0), [r, s))-block inverse.

Corollary 3.6. Let Ty, = (pr,qr : T — Gi) , k = 1 and 2, be textile systems.
Suppose ¢ : X7y — X, is a ((0,0), (0, 0))—block conjugacy with an {(m,n), (r,8))—
block inverse. Then there are textile systems T}, such that the following diagram
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commautes:

o .
XT1 — }(312

0 l Ja
B8
Xpy —— X3

XT{ —:(5—->XT5

where the T, ’s are the composition of a finite collection of in- and oul-splittings and
% 15 a ((0,0),(0,0))~ block conjugacy with an ((0,0), (m,n))— block inverse.

Proof. We see that because ¢ is a ((0,0), (0,0))— block conjugacy with an ((m,n),
{r,8))— block inverse, oo is a ((0,0), (0,0))~ block conjugacy and (Bopof)™1 =
goywlodisan ((rs),(m,n))— block map. Thus Corollary 3.6 follows from
Corollary 3.5. O

Proposition 3.7. Let Ty = (pr.gr : T — Gi) , k=1 and 2, be textile systems.
Suppose @ : Xy — X, is a ((0,0),{0,0))—block conjugacy with an ((m,n), {r, s})~
block inverse. Then @ is the composition of a finite sequence of textile splittings,
amalgomations and shift inversions.

Proof. Use Corollaries 3.6 and 3.5 to obtain ¢ =7, * 08 off; L o@of 0o, where
@ is a ((0,0), (0,0))—block conjugacy with a ((0,0), {0, 0))—block inverse, that is, a
relabeling. K

In general a conjugacy between shift spaces is a ((m,n), (r, s))—block map but
the following lemma shows that by moving to a higher block presentation we may
assume it is a ((0,0), (0,0))—block map.

Lemma 3.8. Let Ty = (pi, g : Uk — Gi) , k = 1 and 2, be textile systems. Let @
Xy — X1, be a ((m,n), (r, 8))—block conjugacy and let Xr, be the ((m,n), (r, s))—
higher block presentation of Xr,. Then there exists a map n: Xp — XTI which is
a sequence of splittings and inversions, such that @ on™! is a ((0,0),(0,0))—block
conjugacy. :

Proof. Clearly, v o ™! is a ((0,0), (0,0))—block conjugacy. We need to show that
7 is a sequence of splittings and inversions.

First note that XTl can be written as a textile system, using the technique of The-
orem 2.1, with ((m,n), (r, s))—blocks playing the role of the ((0,1), (0, 1))—blocks
used there.

A complete out-splitting of a textile system vields a higher block presentation
by

— EL)
(@) =265 "
Similarly, a complete in-splitting gives
V(@) = "Dz,
Thus we can find ¥, a sequence of splittings, such that no U7 is a ((0,0), {r, s))—

block conjugacy. Then #ono BTt o @ is an {(r,s),(0,0)}—block conjugacy on the
dual spaces and the process can be repeated to find Uy, a sequence of splittings, so
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that fono®; todol, ! is a ((0,0), (0,0))block conjugacy, or simply a relabeling.
Let us denote this by 7. Then 7= 8c 7o ¥y 08¢ ¥y, and we have the necessary
result. 1

We are now ready to state the main result of this section, a two-dimensional
decomposition theorem:

Theorem 3.9. Let Ty, = (pe,qx : U — Gi) , k = 1 and 2, be textile systems,
Fuery conjugacy between X and Xr, is the composition of a finite sequence of
textile splittings, amalgomations and shift inversions. '

Proof. This theorem follows from Proposition 3.7 and Lernma 3.8. l

By Proposition 2.3, we can view a two-dimensional SET as a {extile system and
thus apply the last theorem to that scenario. We restate the result as follows:

Corollary 3.10. Given two two-dimensional SFTs, X = X(A1,4) and ¥ =
Y (By, Ba), any conjugacy between them is the composition of a finite sequence of
textile splittings, amalgamations and shift inversions.

In one dimension, the Decomposition Theorem for edge shift conjugacies resuits
in the notion of strong shift equivalence for matrices; a splitting or an amalgamation
is described by a matrix condition and the Pecomposition Theorem allows us to
deduce that two edge shifts are equivalent if and only if their adjacency matrices
are related by a sequence of these matrix conditions. It is possible to find matrix
conditions for textile splittings and amalgamations. For example, suppose {A;, Az)
((A%, AL)) are the transition matrices for the edge graphs I' and T in textile
system T (T"). Then 7" is an outsplitting of T if and only if there exist matrices
R and 5 with A; = RS, A] = SR, and ETAsR = A% where R is an “enhanced
identity” matrix, that is an identity matrix with some coliwmns repeated. The
matrix condition for out amalgamations has the roles of A; and A} reversed; this
leads to difficulty in defining a symmetric matrix relation. Another difficulty Lies in -
the fact that edge labelings play a more fundamental role in two dimensions thus
requiring the use of 0-1 transition matrices to determine SFTs. These matrices are
not closed under matrix operations. These difficulties remain to be surmounted
and we are left with the open question: can Corolary 3.10 be used to classify
conjugacies between two-dimensional SFTs using a matrix condition?
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