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Convergence under x, of x, Invariant Measures
on the Circle

AIMEE JOHNSON AND DANIEL J. RubpoLpH*

Mathematics Department, Tufts University, Medford, Massachusetts 02155; and
Mathematics Department, University of Maryland, College Park, Maryland 20742

Consider the semigroup of maps {7}, where T,{x)=nx mod 1. Suppose p
and g are multiplicatively independent integers in that they are not both powers of
the same integer. Further suppose that x is a Borel probability measure, invariant,
ergodic, and of positive entropy for 7,. We show that the sequence of measures
T, () converges weak* to Lebesgue measure on a subsequence of values i of
uniform full density.  © 1995 Academic Press. Inc.

1. INTRODUCTION

Consider the abelian semigroup of maps {T,},.n where T,(x)=nx
mod | on the circle, which we will write as [0, ). Symbolically, the map
T, is the shift on the n-adic expansion of points in [0, 1). There has been
much interest in the dynamics of subsemigroups of this semigroup, in par-
ticular doubly generated ones of the form {T;, T{I} .jen Where p and g are
not both powers of the same integer (we refer to such as multiplicatively
independent integers.) Furstenberg [F] has shown that the only infinite
closed subsets of [0, 1) invariant for such a subsemigroup is all of [0, 1).
In [R] Rudolph showed that the only Borel probability measures invariant
for such a subsemigroup where p and ¢ are actually relatively prime either
have zero entropy for all elements, or must be Lebesgue measure. Johnson
[J] extended this result showing that the necessary and sufficient condition
forcing a positive entropy ergodic measure to be Lebesgue is multiplicative
independence of p and q.

Another direction of interest 1s to be seen in the work of Schmidt [S]
and Pearce and Keane [ PK]. They have shown that for certain types of
T, invariant measures p, u-a.e. x is in fact normal to the base ¢, ie. is
generic for Lebesgue measure under 7,. The measures they consider are
1.i.d. or mixing Markov on the symbolic level, hence definitely of positive
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118 JOHNSON AND RUDOLPH

entropy and ergodic. This has recently been strengthened by Feldman and
Smordinsky [FS] to the case of u a nondegenerate p-Bernoulli measure.

Our results here will concern a weaker class of measures, those which
simply are ergodic and of positive entropy for T,,. Our conclusions will also
be weaker, being convergence in probability rather than pointwise. Let us
be more precise.

DeFNITION 1.1, Consider the collection of intervals IS N, I={i,i+ 1, ..., j}.
Order these according to their length /(I)=;—i+1 with I, <[, iff
1) <I(1,).

Fix the multiplicatively independent pair p, g and let T=T7,and S=T,.
For any Borel measure ¢ on [0, 1), set

1 d
K0 Y, S

del

Let 4 denote Lebesgue measure. Our principal result is the following:

THEOREM 1.2.  If 1 is a Borel probability measure, invariant and ergodic
Jor T with entropy h,(T) >0 then

hm ;=4
NIy — oo

DermNniTION 1.3, A subset 4 = N has uniform full density in N if for every
small « there exists an M so that if (J) > M then #(AND/I(I)21—a (We
prefer this more evocative name to the more standard Banach density 1.)

We say a sequence of measures z,; converges to x4 in uniform full density
if for every £>0 the set A(e)= {i:w,(i;, 1) <&} has uniform full density.
Here by w, we mean some choice for a metric giving the weak* topology
on measures.

COROLLARY 14. For p as in Theorem 1.2, the measures S'(u) converge
to A in uniform full density.

Proof. 1If the corollary is false we can find an ¢>0 and a sequence of
intervals I, with /(1) - oo so that

#AE) L)
I(1,)
That is to say, a fixed fraction of the S‘(u)’s in each I, stay a fixed fraction

away from A Using compactness of the space of Borel probability
measures, let {m, m,,..,m,} be a finite ¢/3-dense set of measures. Any
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measure which is ¢ away from A must be within &/3 of some m; which is at
least 2¢/3 away from A. Thus along some subsequence of values k we know
that a fraction of at least ¢/t of the measures S’(u), i€ I, are within &/3 of
some fixed m; which is at least 2¢/3 away from A. Split these averages into
two pieces, those near m; and those not, and choose a further subsequence
where both pieces converge. We are left with two 7, invariant measures
which average to 4, one of which is at least &3 away from A. But T, acts
ergodically on 4 and we have a conflict. |

Compactness of the space of Borel probability measures tells us that
Theorem 1.2 is equivalent to the following.

THEOREM 1.5. For u satisfying the hypotheses of Theorem 1.2, consider
I, with I(1,) —» co and with u, converging weak* to some measure fi. Then
A=A

The rest of this paper concerns itself with proving Theorem 1.5. From
now on the sequence of intervals 7, will be fixed, so we write them as I{k),
I: N — {intervals in N} and we abbreviate lim, _, ., 4, =/ by u; = 4.

In Section 2 we will represent the 2-dimensional dynamical system sym-
bolically. The main idea of the proof of Theorem 1.5 is to investigate the
origin of the entropy of j within that of the original x. This leads us
to examine the conditional expectations of preimage symbols under the
map T. In Section 3 we will discuss how such preimages lie in the second
quadrant of symbols in our symbolic system and how our maps act on
them. In Section 4 we will show that if #,— 2, then g can be written as
al+ (1 —a)uo where h, (T)=0 and a>0. In order to show that in fact
oa=1 we will partition the second quadrant of our symbolic representation
into a finite number of staircases descending to the origin, as in [J], with
slopes determined by the numbers p and ¢. If « # 1 we show that u-a.s. the
symbols to the right of each staircase determines the symbols to the right
of the next steepest staircase, which inductively tells us the first quadrant
of symbols determines the second. But this implies 4,(7) =0 completing
the proof.

In Section 8 we will return to the two areas of interest mentioned earlier,
measures invariant for both 7 and S, and under what conditions on a
T-invariant measure u will we be able to say most points relative to u are
normal to the base g. We will give some partial insight into these questions
that follows from Theorem 1.2.

2. THE SYMBOLIC REPRESENTATION

We will first consider how to lift the two maps 7 and S from the circle
to symbolic representations and then how to lift the measure u to this
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symbolic space. These ideas can be found in [R] and thus proofs of the
basic results will be omitted.

Let P be the partition (up to overlapping boundaries) of [0,1) into
subintervals I, = [ j/pg, (j+ 1)/pq], 0<j<pg—|. Clearly {I,} is a Markov
partition for both 7" and S. Let V={xe[0, 1) x=t/p"q", n,meN}.
V contains all points x for which 7" ~'S”~!(x) is a boundary point of P.

Associate to cach map a pg x pg transition matrix of zeros and ones:
My=[a;] where a;=1 iff I,cT(l,) and similarly define M . Let
Z={0,1,.,pg— 1} be the state space associated with these matrices.

Let Y=Y ™ consists of all 2-dimensional arrays which are M, allowed
on rows and M allowed on columns. We can think of a point ye Y as a
first quadrant’ of symbols, where there is a symbol at each nonnegative
lattice point. Since the left shift on Y corresponds to T on [0,1) we will again
call it 7. Similarly, let S represent the downshift on Y. More precisely, for
ye Y, Ty(i,j)=yli+1,/) and Sy(i, j) = p(i, j+ 1).

To any point xe [0, 1)\V there corresponds a unique point y(x)e Y.
Just set y(x)(n,m)=j iff T"S"xel,. For xeV there is some n, m with
7"S8™x on the boundary between two I;’s. The symbol y(x)(n, m) could be
chosen to be either the interval to the right or that to the left of x.
However, if we specify the left (or right) interval then in order to obey the
transition rules we must take the left (or right) interval for all larger n, m.
Thus there are exactly two poiats in Y that represent each xe V.

Define the map ¢: Y — [0, 1) by {y) =N/, T“S‘i(ly(i_ »)- This is 1-1
everywhere except the countable set ¥ where it is 2-1. With the product
topology on Y, ¢ is continuous and ¢( y(x)) =x.

Let ¥=X% be those doubly infinite arrays where all rows are M,
allowed and all columns are M allowed. Thus a point $e ¥ is an entire
2-dimensional integer lattice of symbols. Let ¢: ¥— [0, 1) be the map
which sends § to the point in [0, 1) associated by ¢ with its first quadrant.
Let T and S again represent the left and downshift. Notice that on ¥ these
maps are invertible and that 7¢ = @7, S¢ = ¢S.

@~ '(P) is the time zero partition of ¥ and will also be denoted by P.
Then \/?_, T~'P is the partition of ¥ into cylinder sets determined by sym-
bols at positions in the block [(0, 0), ..., (r, 0)]. Such a block corresponds
to an interval of length 1/p"*'g in [0, 1). In particular, the positive
horizontal axis of symbols determines the point x = @( ).

Now we want to describe how to lift the measure g to this symbolic
space. Recall that g is invariant for 7 but not necessarily for S.

LemMa 2.1. u(V)=0.

Proof. Since T is ergodic and of positive entropy for g, £ must be non-
atomic, and of course }is countable. ||
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Since there is a [-1 p-a.e. correspondence between the first quadrant of
symbols and [0, 1) we can lift 4 to a measure on Y. In particular, if C is
a cylinder set from V7_, T'P then u(C) is the measure of the associated
interval in [0, 1). This measure on cylinders extends to a T-invariant
measure on Y as it extends to all cylinders indexed on Z and any
finitely additive measure on cylinders of such a symbolic space extends
to a unique T-invariant Borel measure. Now consider a cylinder set
CeV'_ o T7'S*P. Then C=S8XC)eV’_,T ‘P, and $e Ciff S¥(p)eC.
So (€)= pu{y: 8*pe C} = u(§ *C) = S*u(C). Thus the measure x on cylin-
der sets in row k is just S*u of the same cylinder but sitting in row zero.

3. PREIMAGES

Recall that p and g are multiplicatively independent and thus can be
written as

ny

— n
P=PoTy Ty,

my my

q=dqoTty - Ty,

where pg, g4, @y, ..., 7, are all relatively prime integers, all m, >0 and

and either p,#1, g, # 1, or 7=2. This is obtained just by grouping the
primes in the prime power decompositions of p and ¢ in the proper way.
We will now discuss the preimages of x €[ 0, 1) and how these correspond
to symbols in ¥. A more detailed description can be found in [J].
Fix a point ye ¥. Let x = @($). Then

x i)t
T’(x)={?+—;} .
P li-o

In terms of y these points correspond to the p” possible words that could
be seen in the block of positions [(—r, 0), (—r+1,0), .., (—1, 0)] that are
consistent with the first quadrant of y.

DermiTiON 3.1. Let k,, be the smallest integer such that ko.m, = rn,.

The n,’s and m;’s have been ordered so that it now follows that
ko,m;zrn, for all i=1, .., h It follows that

kor 1) o1
X 1

q . +—r} .
p Po

Sk T =7(x) ={

i'=0
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In terms of y these points correspond to the pj possible words in the block
of positions [(—r, ko,), ..., (—1, ky,)] that are consistent with the first
quadrant of symbols of . We will refer to these as the pj preimages at posi-
tion (—r, k,,). Further application of .S yields a 1-1 map between these
preimages and ones at positions ( —r, kg, + i), { = 1. Notice that $* acts as
an ... to 1 map from the preimages at (—r, 0) to those at { —r, &,).
DEFINITION 3.2.  Set

Gy = {w/ T=(P) v {O/ S —kuTi(p).

i=0 i=1

Thus Z,( p) is the array of symbols from $ occupying the first quadrant
and the blocks [(—r, ky,), ... (—1, ko), r2 1. Think of this as specifying
@(P)=x€[0,1) and a choice for the preimages associated with positions
(—r, ko).

PrOPOSITION 3.3. Given & =V 2, T~'(P) and the preimage associated
to the position (—r, ky,), the preimages at positions (—n, k,) for 1 <n<r
are determined.

Note: We are using probabilistic vocabulary here. “Given V., T~ (P)”
means “conditioning on the fixed values of the symbols in the first quad-
rant of some y.”

Proof. Knowing the preimage associated with (—r, k,,) trivially tells us
the preimage associated with ( —n, k,,), | <n <r. Since k,, = k,,, there is a
1-1 corrrespondence between the preimages associated with (—n, k¢ ) and
(—n, ko,) and this gives the result. [

PROPOSITION 3.4. For each fixed y € Y, the symbols Gy P) and the single
symbol at (—1,0) determines all the symbols Zy(T ~'p).

Proof. Recall that the preimages at ( —r, 0) are a coset of the additive
group {ifp’}¥ ! and at (—r, k), a coset of {i/ph} 75", If we are given
Zo( ), we know which of the i/pf, occurs and this narrows the possibilities
at (—r, 0) down to a coset of {i/z}" -- 7}"}. (From here on we will omit
the obvious domain of possible values for 7/ in these subgroups.) If in
addition we are told which of the cosets of {i/z}'--- =} actually occurs
at (—r, 0) this further reduces the possibilities at (—r, 0) to a coset of
{ifny =M. gy =Py We know that ko, _,, applications of S will
collapse these to one preimage and this determines the symbols of
Zo(T~9). 1
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Here we have considered preimages and how they collapse under the
map S. Next we will consider their movement under S™7 ~7 1<a<h.
We call this the movement of the preimages “up the staircase.”

DerINITION 3.5. For a=1,.,hA—1 and j>1, let k, be the smallest
integer such that

JNa+1 _kaj(mu+lna_nu+1mu) SO

Define k;; =0 for all j> 1.

DerFINITION 3.6. For a=1, ..., h define

@ « w a—1
D,_1=\/ T HP)v\ STOT(P)v \ \/ S~8uTi+4(P).
i=0 i=1 i=1j=1
Here 2, () is the array of symbols in the first quadrant of  and the
blocks [(—r—k,m;, k,n)), .., (=1, k,n)] for r21,j=1,..,a—1. The
choice of this block position is clarified in the next theorem.

THEOREM 3.7. Given 2,_(9), the possible preimages of ¢(P) at position
(—r,0) are a coset of {i/n7--.m;™}. Apply the map S™T ~™ iteratively to
these. After k,, iterations we have only a coset of {i/n7} left, and so
SkanaT ~kama js g gt ... ™ 10 | map. These are the preimages associated
to position (—r—k,m, k,n,). Further applications of S™T ~" act on
these preimages as a 1-1 map.

Proof. See section 4, lemma 5 of [J]. |}

Thus, for example, 2,(§) can be thought of as specifying first of all
the point @(p)e[0, 1), the preimages at positions (—r, ko), r=1 as
before, and also now the preimages at positions ( —r —k,,m, k,,.n,), r= 1.
A preimage at a specific (—r —k,,m,, k,,n,) then determines the preimage
at (—r—km,, kn,), k 2 k,,. These determine a periodic staircase pattern in
the second quadrant with slope —n,/m,. Notice that the n,’s and m,’s are
arranged so at each step the slope of these staircases increases. In particular
2,.1=2, and finally &, determines all the symbols in the second
quadrant.

ProrosiTioN 3.8. Given 9,_()), the preimages at (—r—k,m,, k,n,)
determine the preimages at (—s —k,m,, k,n,) for | <s<r.

as’ " a

Proof. We will show this for s=r—1 and the rest will follow. The
preimages at (—r—k,m,, k,n,) certainly determine the preimages at
(—r+1—k,m,, k,n,). But then the result follows from the 1-1 rela-
tionship between the preimages at (—r+1—k,m,k,n,) and
(~r+l-ka(r*l)ma’ka(r~l)na)~ l
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ProPoSITION 3.9. Given %, ((P), the symbol at (—1,0) determines
'@a—-l(T'lﬁ)-

Proof. We need to show that T~ 'p(—i—k,m,, k,n,) is determined
forizl, b=1, .., a—1. Fix some arbitrary choice for i and b in these sets.
The above is equivalent to showing $(—i—1—k,m,, k,;n;) is determined.
Given 9, _ () we know the possible preimages at (—i—1—k,;m,, 0) are
a coset of

1
{n(iJr 1 + kpintp) n, L n$1i+ 1 +k/7,mh)n;,}'

a

If in addition we know the symbol at ( —1, 0) this reduces the above set to
a coset of {ifm{/Thmmeina. . gi+kemlnl Now act by S*"™ and we get just

4

those terms of the form

mﬁwwma ad ﬂ:bn“b""h
n(i+ U kpipping || (G U kpmp)np {°
a h

4

But we chose k,; so that in fact all terms here cancel and the preimage is
uniquely determined. ||

4, THE DECOMPOSITION OF /i

Recall that what we want to show is that if 1, - £, then 2 is Lebesgue
measure,

ProrosiTioN 4.1, ji is both T and S invariant and
hﬂ(T) ; h‘u( T)

Proof. Recall that u,=1/(I) ¥ 4c; S%. So Sp;=1/l(I) ¥ ;8 'u=
i; - For fany continuous function and /= {j, .., j} we can write then

[fes=[ s = /_ﬁ { [ rasio —jfd(Sf“m}

|
j—i+1

<

(WA

This converges to 0 as /(/) — co. The first integral converges to jfdﬁ and
the second to jfd(Sﬁ). Thus 2 is S invariant, and as it is the limit of T
invariant measures it is 7" invariant.

The system (Y, T, u) is a g'-point extension of (¥, T, S$'u) and so must
have the same entropy. Hence y, is the average of measures all of which
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have entropy h,(T) and thus also has entropy 4,(T). Using upper semi-
continuity in the weak* topology of entropy on such shift spaces, we have

h(T)<limh

]

(T)<hAT). 1

u

This tells us 4,(T) > 0 as we assumed 4,(T) > 0. From [J] we know that
any measure satisfying Proposition 4.1 that further is ergodic for the pair
{T,S} must be Lebesgue measure. The measure (4 is not necessarily
ergodic but can be decomposed into its ergodic components. Thus we can
write

A=ad+(1—a)uo

where a# 0 and £,(T)=0. In the remaining sections we will show that if
in fact « # 1 then a =0 completing the proof of Theorem 1.5.

5. FROM /i BACK TO u

As said in section 3, given a point x€[0, 1), T ~"(x) consists of p”
distinct points. Their names in Y agree except on their left-most n posi-
tions. These p” words correspond to elements in the partition ;" | T~'P

consistent with x. Recall that if {z;} is a list of these words then

VESErE

i=—1

is a p"-dimensional probability vector with entries E(z; | #)($). We know
that 1,(7T)=0 on a T and S invariant set of measure | —a so on this set
our map T is essentially invertible, Thus there must be exactly one j with

Eqz;| #)(§)=1.

In this case we say D (V' TP F)(p)is a trivial vector. We will

i=—1
write it as (), a standard basis vector consisting of a single 1 and all
other terms zero. Thus

ooV TP F ) (=) |z 1-n
i=—1
By the martingale convergence theorem we can pick M = M(n, ¢) so that

i {ﬁ:Dﬁ( (‘/7 e p \/ T*'P>(}A’)=<l—%>é(ﬁ)+%5(ﬁ)}>l_a_%,
j=—§ ;

i—0
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where #( §) is some arbitrary probability vector, meant to denote the small
amount of weight that /i may now put on other preimages. By conditioning
on a large but finite amount of the future, we have lost part of our set of
measure | —a and the past distribution is only almost trivial. But the dis-
tribution function now only depends on a finite cylinder set. Thus if we go
out in our sequence of measures x, far enough,

#l{ <V TP \/ T~ ’P> (l—s)e”(ﬁ)+85(}3)}>l_a_&

i=1

Since y, is the average of a block of S%s’s and &(§) is an extreme point in
the set of probability vectors, the above statement about u, gives a very
similar statement concerning some individual $%. This will be shown in
the next two propositions. Since we are now conditioning on V™ TP,
we can refer to this as a function of an (M + 1)-name 4 instead of a point
$. In other words we write

M
D(QI?7)=D<Q v T*")(y‘)
i=0

where $ has the name » at positions [0, ..., M]. This will simplify notation
somewhat.

DEFINITION 5.1.
—n

Wi ={de:Dso, (VTP ) = (1= o) dln) + o n)

i=—1

PROPOSITION 5.2.
L Sun= ~ /&) ).
(1) de Wi(n)
Proof. Assume not. Let 4= {d:de W(n)°nI}. Then
R () =/ 1,(n)
n'eA

Let yeV;_, T ‘P be that preimage on which x4, puts all but ¢ of its
weight. Then
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wi(nny) Z S%U(n nye)

deA

ZfS

a'eA

>\/5\/5ﬂ1(r7)-

Thus p,(n 0y u,n)>e yet p,(nny)ju(n)=1—¢ which is a contra-
diction. |

The choice of indices W(x) may vary with #. Let .4 be the union of all
n such that

D( V TP '7> — (1—¢) &) + ()

i=—1

We know

d
(A2l —a—e ie. dZE,S/)(uI(;)

Let 4 ={(n,d):de W(n), ne /}. Proposition 5.2. says

=>l—a—e.

Su(n)
(rl,;e@’ /(1)

= (1= /&) u A,

or equivalently,

S
f‘,()")s\/éul(.ﬂ).

(n.d)¢ @
ne A

DEFINITION 5.3.

A={d Y S (1) S |

{n:(n.d)e @}

PROPOSITION 5.4.

Su(AN)
dea D)

2 (1—e") p (A
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Proof. Assume not, and

Spu(A) 14,
P TR

Consider

S“u(n) . Suln)
iz X X T

ded" (n.d)¢® (1)
ne N

X X

d (n.dy¢s

ne. ¥V

By definition of A, the above is strictly larger than

|f4 d
S(V3>\/_,u A7),

de AC l(f

But this is a contradiction. |
So
1
0 Y SN2 (1= ()

de A

and thus
—(7 Y S‘ (A= (1= ") i, (N),.
ded (WA

So for at least one de A, Su(AN)=(1 ~£m‘],u (A"). From the definition of

A we conclude

Y Sulnz(l—e") (1 —a—e).

(i (n.dye}

Since de W(n), we can rewrite this as

S{I‘u{ $: DS./;,< \/ TP

Let M — oo and o T~ iP > #. Then we have

Sﬂ;{p:@( <{/ T- ’P>‘ f'f)(sff):(l—\/(

i=—1

> (1" (1

'P> —ﬁ)éfﬁﬂﬁﬁ(ﬁ)}

=2(1—e"? (1l —a—e).

—a—¢).

(f)}
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Now let 2= S, so §42=$. Rewrite the above as

S {S"z‘: D, (S“’( §/ T"'P> l S”"f> (2)

i= =1

=(1—/¢) é(S“’z‘)+\/§z7(S"f)}
21— (1 —a—2e).
This is the same as

u {z D,,<S“’< Vi T“P) ‘ s~dzf> (2)=(1 — Je) &5%2) + /e 17{5"2")}

i=—1

2(1—e")? (1 —a—e).

These are the points with the property that if the future on row d is
given, the past of length n on row 4 is almost determined; i.e. 4 puts most
of its weight on just one of the p” possible preimages. Let the set of such
points 2 be called %. So the above says

WYz (1 —e"2 (1 —a—e).

In the next two sections we will use the symbolic machinery of sections
2 and 3 to move this down to the equivalent statement about the Oth row.

6. Do F

We know

N
spsn={pn L
9 Jj=o
which is to say there are ¢/ preimages at (0, 0) consistent with @¢(S5“%). The
expectation of any particular preimage at (—n, d) given @(S“%) is thus the
weighted average of its expectations given @(Z) + (j/¢%). So we write

D,,<S"’ V T”PlS“’f)(z”)

fi =1

q4—1 J
5ol

Jj=0

S“"ﬁ") (2)

<0,(570 V TopiF )@ @i}

i=—1

———————
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Notice that for a particular ¢(2) + j/q? its distribution vector has certain
zeros forced topologically in that not all of the preimages from
S~4(V,;_, T 'P) are consistent with @(%)+j/q?. Those that are not will
of course have zero expectation. If we fix Z then (1) has the form

q‘l—l

W=y aw,.
j—o

For Zed/, w is almost a trivial vector, one entry being nearly one and the
others nearly zero. As w is in fact a probability vector, it is enough to say
one term is nearly |, and we direct our attention to this entry. Let us say
it is the kth entry. We know then w* > 1 —. /e or \ /& > | —w*. We want to
show that most of the w, have the same property.

DEerFINITION 6.1, For Ze % fixed, let w be as above, and set
J={je{0,.., q"—1} such that &' > 1 —w}.

s - PR
PROPOSITION 6.2.  For 2€ % and w=31_4" a,W; as above,

Y oa;> 11—l
jeJ
Proof. Suppose not. Then ¥, a;>¢'. But then

q‘l—l

Yoa(l—whHz Y a(l—-wh>e" )y aj>£”4£”4:\/g.

j=0 jeJe jeJe

But

qi—1
Y a(l—whH=1 —w"<\/5.
j=0
This is a contradiction. §
S~ is the sub-algebra of # obtained by mapping a point 2 to
(2> ={7: p(SD)=(S%)}.

The measure u can be decomposed into p restricted to S~“%# which is
conjugate to S, with fiber measures x ., which are atomic and supported
on {z». From (1) the weights on these atoms are precisely the

a;=E (¢~ @D +jlq) | STF)2).
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By definition of %, if £ed then so is every element in {£). Thus the set

A= {<2>: D, <S*"' i/ TP| S*"fi) (2)

i= -1
=(1—/e)&(S%) + Eﬁ(S”f)}

is well defined and in S % with measures S9u(A4) = u(%).
Let

, 2 {z‘: D/,<S"’< i/ T—"P> l 97) (2) = (1 — ') &(S2) +£‘/45(Sd2)}.

i=—1

Thus B contains the set B’ of points with an almost trivial distribution
and which arise as one of the preimages of some (25 € 4. So using proposi-
tion 6.2 and the fact that B’ factors onto 4,

u(B)2u(B) = 1y duc., dS%
> (1 —g‘/“)f 1y dS%> (1 - (1 —x—¢).
So altogether we have

P { D, (S“"( (/ T*"P>]9‘> (2) =(1 —g"%) &(S92) + ¢ 5(5"2)}

i=—1

\Y

(1 -3 (1 —a—e).

Recall from Section3 that there are pj possible preimages in
S‘““’"‘r”\/,.;"_l TP, r=0, given the first quadrant of symbols. If
d=k,,+r for some r then the weights associated with the distribution at
SNV, T~'P)and S *»(\/; " |, T_,P) are the same and we can write

i=—1
o

If d<k,, then there are more than p{ possible preimages in
S~4(V"_, T~'P) given the first quadrant. However, if the distribution
vector at the dth row is almost trivial then is certainly almost trivial if the
preimages are collapsed as they move up to the k' row (with the same

error estimates) and statement (2) is still true.

b

D, <S*""< {/ T*"P) l y‘) (2)=(1—¢&"%) &(S%) +s'/45(sd2)}

i=—1

>(1—"P (1—a—e¢). 2)
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Recall now how ¢ entered these calculations. We gained one ¢/2 when we
estimated % by VM, T ‘P, but we have since let M — oo. Another ¢/2
was added when we replaced ji by u,; and the remaining errors came from
“Chebyshev” type arguments on these errors. However our conclusion has
now eliminated any dependence on I So if we let (/) —» o0 and then ¢ - 0
we can conclude that defining

G,= {z‘: D, <S"“" < \ T"‘P> ‘ 37> (2) is a trivial vector},

i=—1

mG,)z1—«a (3)

By proposition 3.3 these sets are nested G, ., £G,. Let

G:

n

G

1

n-

-8

Now

For 2e G, ¢(Z) determines the preimages at all positions (—n, k), n = 1.
Proposition 3.4 tells us then that 7~ '(G)=G and so by (3) G= ¥ u-as.
and we conclude that u-as.

=3

1. D, =F

We will prove the inclusion %, €% by induction on a, having verified
it for a=0 in the last section. Now suppose it is true for ¢ — . We can
rewrite the last statement of section 5 as

U {5: D <S“"( §/ T“‘"P)‘S“’@a-l>(f)
. P=—1
=(1—/e) &S + /¢ 5(5"2)}

>(1—e") (1 —a—¢).

The set of points measured in this statement is the set of Z such that
given 2, _,(S“%) then the past for n steps to the left of $9 is almost deter-
mined in that g puts most of its weight on just one of the possible
preimages. Again we want to move this statement about the dth row down
to the Oth row. This means we will have to compare %2, ,(S9) and
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Z,_(2). We are considering the preimages in V' , T 'P for some
arbitrary but fixed n. To make sure these preimages are not swallowed up
in 2,_,(2) we will move it over using the T-invariance of u. Let k be that
integer such that kn, <d <(k + 1)n,. Then put r = km,. This is how much
we will move the preimages over. We know

7 {T"f: D#<S“’T" < \/ T“P) l T'S~49, _ ,> (T"2)

i=—1
=(1—/e) &S%) + /¢ E(Sdf)}
(=) (1 —a—e)

Let =T"%, so we can rewrite this as

P {ﬁ: D, (swr( Vv T"’P) ] 7' ”@H> ()

=(1—/e) ST "5)+ /e ﬁ(S"T‘*y”)}
> (1 =" (1 —a—e)

Call the set of § being measured here %, .

The information we are given here is 77S 9, (})=2,_ (T 'S%).
We want to move down to a statement where the given information is
%, _(P). Now given T'S 99, ,(p), the possibilities for position (0, 0)
are {§ "(@(P)+pTi/g")}, which after cancellation we can write as
{¢ (@) P)+j/b)} for some b= 1. Now T'S ~“9,_, is the sub-algebra of
9, _, where a point $ is mapped to a finite class

(P ={o"(@(P)+)/b)}.

The measure x as in the previous section can be decomposed as S on
this sub-algebra with finite fibers, and the atomic fiber measures are p (.,
with weights

E(¢ N @(D) +j/b) | TS =2, )(9).

As before the expectation of a preimage given the factor algebra
T'S ™99, , at 9 is the weighted average of the expectations of that
preimage given 2, for all we {p>. So we can write

a—1
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D, ( "T’( {/ T*'P)\T’S“"@aq)(ﬁ)

i=-1

i{ (G- P(P) +i/b) | TS 4@, _,)($)

<,(s (V1 P)‘ T >+J/b>>}

i=—1

~J a;w; and we can again show by

As before, this has the form w=3"_,
"Chebyshev’ type argument that for most j’s, W, is "almost trivial’ with
iti a—1» ‘f

a
error the square root of that for w itself. From the definition of %,
U, _, then so are all elements of { #>. Thus the set

={<y”>:D,,<S"T"<V T"P)\ s a_1><<y*>)

(1—/e) &ST "2) + /e a(sdT—'f)}

is well defined, is in 7"S~99, , and has measure

Su(A) =, _y).

Let

B= {f: D, < dT’( \/ T"P>~ ,,,1> (2)=(1 —s'/“)é(z”)-{-e""’ﬁ(f)}.
P=—1

Then B contains the set B’ of all points which have an almost trivial

distribution with the above error and which arise as one of the elements of

{p>e A Thus

(B)Zu(B) =15 duczy dSu>(1—6") (1—a—e)

from proposition 6.2 and the fact that B’ factors to A.
We know from Theorem 3.7 that given the symbols

Now let i=n—m,,.
D,_\(2) there are n2...nj" possibilities at position (—i, 0). Move these
up the staircase’ by S"“T"”". At (—i—k,m,, k,n,) these have collapsed

to just =« preimages.




INVARIANT MEASURES ON THE CIRCLE 135

B contains those points such that given the symbols 2, ,(£), the
preimage at ( —km,—n, d) is almost determined. Thus so is the preimage
at (—km,—n, (k+ 1)n,) (with the same error estimate) which we rewrite
as (—i—(k+1V)m,, (k+1)n,). f k+1=k,, then one to one-ness forces
the preimage at (—i—k, m,, k, n,) to also be almost determined
with the same error estimate. If k+ | <k, then the preimages at
(—i—=(k+1)m,, (k+1)n,) will collapse as they move up the staircase to
step k,;. If their distribution was almost trivial at step k + 1 this collapsing
can only improve the situation at step k. In either case we can write

p{iDﬂ<S*“WT“W \/ TﬂPl@“l>w)=U—w”ﬂéw)+&”ﬂﬂ}

j=-1

\%

(1—e")3 (1 —a—e).

Now let & go to zero and we have

7 {2: Dl,(S"‘”‘"“T"""'”" \/ T7P|%,_, > (2) is a trivial vector} =>1—a

j=—1

Call the set being measured here G,;. From Proposition 3.8, these sets are
nested, and so set G= ) G,. We conclude that 4(G)=lim u(G,) = 1 —a. By
Proposition 3.9 G is T-invariant and so by ergodicity u-as. G = Y. Hence
for 9,= Fu-as.

Proof of Theorem 1.5. Thus if a#1 we inductively conclude 2, = %
which is to say that p-as. the first quadrant of symbols determines the
second. This is precisely to say that /,(7) =0 conflicting with our original
assumption. Hence a=1 and =4 |

8. CONCLUSIONS

Theorem 1.2 gives some information concerning both areas mentioned in
the introduction, T and S invariant measures, and conditions on 7-invariant
measures x that might ensure g-a.e. point is normal to the base ¢. In neither
case will we give a complete answer to the issue. We will though gain some
information.

For the first issue, one possible way to seek a counterexample to
Furstenberg’s conjecture that the only 7"and S invariant ergodic measures
are either atomic or Lebesgue, would be to select some T-invariant
measure u of zero entropy and consider some limit of averages of the form
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Syuytt. Our next result says that in order to accomplish this, either y must
be chosen very carefully or the sequence I(k) must be chosen very carefully
in that generically for most # and most such subsequences I(k) the limit
is A.

To set the stage for this, let (.#,, w*) be the set of all T-invariant Borel
probability measures on Y with w* some metric giving the weak* topology.
Let 4% < .4y be those measures which are ergodic for T and let #%.< 4%,
be those of zero entropy for T. It is well known (see for example [R1])
that .49 is a residual subset of .#;.

DeriNITION 8.1, We say a subset 4 = N has full upper density if

I 0<axgyg
fm #laedi0<a<jt |
Jj— j+1

This is the weakest notion of 4 being almost every integer where uniform
full density is the strongest notion short of cofinite.

THEOREM 8.2. For a residual set of p€ 4y, along a subset A(y) of full
upper density,

lim Siu= 2
i— o
ie.of

Proof. Fix an ¢> 0 and define

O(n, &)= {/z € My

P < w*( S, A
#{0<i<mw (Sﬂ’))<£}>l—e}
n+1

This is w*-open.

o

Oe)= ) C(n,¢)
n=1
must contain all x with ,(T)> 0 by Theorem 1.2. Hence @(¢) is open and

dense in .#;. Any u in the residual set (,, O(1/m) must have the desired
limiting property. |l

For the second issue of normalcy to the base ¢ we also will only get

weak information. To begin we give a simple lemma about convex sets.

LemMma 8.3. Suppose (X, m) is a Banach space with metric m, Xo< X is
a compact convex subset and x, is an extreme point of X.
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Suppose {v,} is a sequence of Borel probability measures on X with

fm(x, X,) dv,—> 0 and (1)
nz<fxdvi,x0>—i> 0. (2)

We conclude
j m(x, x,) dv,—5 0. (3)

Proof. Suppose this is false. There is then an ¢>0 and a subsequence
i(k) with

lim jm(x, Xo) Aviy > €.
k— o

Let {a,, .. a,} be an g2-dense subset of X, and let
B, ={x:m(x, a;) <g/2}.

Thus J B, contains an ¢/2 neighborhood of X, and

lim v, <U B,) =1.
i— o J

Set

-1 ¢
k=1

and now the C; are disjoint sets, each of diameter at most ¢ and
t
lim ) v(C)=1
i— o j=1
Choose a subsequence i(k) with

Vil €)= b

Of course 3, b= 1.
For b; #0 consider the sequence of points

1
xj‘kzgf xdv,-(k,.
RS
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From (1) we can choose a subsequence of the &’s so that
“j,k(l)_[‘) XjeXom éj.

From (2), m(3 b;x;, x,) =0.
As x, is an extreme point of X, all x;=x,. Hence for all b, 0 we must
have x, e C,. We conclude

fim [ mlx, xo) dvin, <#/2,
— oo

conflicting with our supposition. §

Let (.#, w*) be the space of all signed Borel measures on Y, a Banach
space. Let .4, be the space of S-invariant probability measures, a cmp&ct
convex subset. We know A& ./ is an extreme point of 4.

For any ye Y, let J,(y) be a point mass at S(y) and for an 1nterval
I N, let

1
=77 2,90

LeMMA 8.4. For any sequence I(k) of intervals with I(I(k)) LN 0,

im w*(6 gu)(y), M) =0.

k— o

Proof. The probability measures in .# are a compact convex set. Hence
any subsequence of J,,(y) contains a convergent subsequence. On the
other hand, any subsequential limit point of the J,,,(y) must be in .4,.
The result follows. |

DerFiniTION 8.5, A point ye Y is called normal to the base ¢ if for

Kk)=[0,1,..,k]
Hm w*(8,(»), 4)=0.

k—x

A probability measure y€.# is called normal to the base g if

lim f WS 10 ( ), 2) dut = 0.

k— w
A probability measure u € .4 is called quasi-normal to the base ¢ if along

some subsequence k(i) — oo,

lim [ w¥(8 (), ) di =0,

i— oo
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This is the standard definition of normalcy of a point. Notice that to say
a measure is normal to the base ¢ is not to say that g-a.e. point is normal
as the distance to A is going to zero in probability, but not necessarily
pointwise. Notice that to say y is normal to the base ¢ is the same as to
say dy( y) is normal to the base ¢, and to say u is normal to the base g does
imply that y-ae. y is quasi-normal to the base ¢ in that Jy(y) is quasi-
normal to the base g¢.

THEOREM 8.6. Suppose p and q are multiplicatively independent.

(a) Ifuis T,-invariant and ergodic and h,(T,) > 0 then u is normal to
the base q.

(b) For a residual subset of all T,-invariant measures p, i is quasi-
normal to the base q.

Proof. Suppose u is a T, invariant measure and I(k) are such that
H 1tk 4
Define a function
Gy Y>> M by d’k(Y):(Snk)(J))-

Let v, = @u(u).

Now
[, i) dv = [ w46 1ol ), o) du(y) > 0 (1)
by Lemma 8.4,
Also

w ([ e, 2)=w{ [ G100t 2) =wH g D20 0. @)

We conclude from Theorem 8.3 that

[ w53, ) du = 0. (3)

The two conclusions of the theorem now follow from Theorems 1.2
and 82. |

In the proofs of all our major results, Theorems 1.2, 8.2, and 8.6, at some
point our argument rested on some general fact about convex sets or
category. It is in these places that the possible bad subsequences on which
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convergence cannot be guaranteed creep in. As we have no examples
showing such bad sequences can actually exist perhaps it is possible by
some more explicit investigation to eliminate these bad subsequences along
which convergence to A fails.
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