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ABSTRACT. The authors generalize the dynamical system constructed by
J. Auslander in 1959, resulting in perhaps the simplest family of examples
of minimal but not strictly ergodic systems. A characterization of unique er-
godicity and mean-L-stability is given. The new systems are also shown to
have zero topological entropy and fail to be weakly rigid. Some results on the
set of idempotents in the enveloping semigroup are also achieved.

1. INTRODUCTION

In 1958, J. Auslander [1] introduced a minimal, mean-L-stable, yet non distal
dynamical system which is a subset of the unit square and projects onto the triadic
adding machine on the unit interval. This example was inspired by an example due
to E. E. Floyd [4]. Auslander’s example was provided with the intent to illustrate
possible behaviours of mean-L-stable systems, and due to its intriguing properties,
earned interest in its own right.

The construction leading to Auslander’s example naturally lends itself to gener-
alization. In this paper, we study a class of generalizations of this example which
yield minimal topological systems we term Auslander systems. These systems are
easy to describe and not difficult to visualize, yet they exhibit nontrivial dynamics
which are explored in this paper. Several results are achieved including of note: On
entropy: in [2], Auslander and Berg show that the entropy of Auslander’s original
example is zero. We show that this remains true for all Auslander systems. On
unique ergodicity and mean-L-stability: We prove that Auslander systems can ei-
ther be uniquely ergodic, or fail to be so, and we give a characterization of when
unique ergodicity holds. As a consequence, some Auslander systems are mean-
L-stable and some are not. On the set of idempotents J(X) in the enveloping
semigroup: we compute J(X) for a “well behaved” class of Auslander systems,
resulting in a set of cardinality ¢ (the largest cardinality J(X) could achieve in
general is 2¢), and give insight to the fact that in general Auslander systems, J(X)
could be quite complex (for a thorough and enlightning treatment on the role of the
set of idempotents in the enveloping semigroup, see [3]). Despite the complexity of
the enveloping semigroup for these systems, it is possible to prove that the identity
function is never in the asymptotic enveloping semigroup of an Auslander system.
So Auslander systems are never weakly rigid.

Received by the editors August 15, 1995 and, in revised form, January 16, 1996.

1991 Mathematics Subject Classification. Primary 54H20, 54H15.

Key words and phrases. Dynamical system, minimality, proximality, entropy, unigue ergodic-
ity, enveloping semigroup.

©1997 American Mathematical Society

2161



2162 KAMEL N. HADDAD AND AIMEE S. A. JOHNSON
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2. THE CONSTRUCTION

Let By = [0,1] x [0,1]. We say that « determines a subdivision pattern for By,
given by a subset a(By) of By, if a(Byg) is a union of subrectangles of By, denoted
by BY, B!, ..., B*1, such that for every superscript 1,

e The width of B equals (2n — 1)71,

e B! is centered about the axis x = s4:tl_
2(2n—1)?

e B! meets the axisy =0 or y =1,
e B has height 1 or 5.

Say that B’ is of type F (for full height) if the height of B? is 1 and of type H (for
half height) if the height of B is 3.

We can then define « on any rectangle R C By by superimposing a(Bg) onto R.
This yields a union of subrectangles of R which again can be described as of type

F or H by analogy to a(Bp). For example, if «(By) is given by:

BS

Bl 32

Unat Square

then a(B?) is given by the shaded portion:

In the above figure, the two middle shaded rectangles are of type F.

A fixed sequence {«;};en of subdivision patterns determines a dynamical sys-
tem (X,T) in the following inductive manner: let n; be the number of rectangles
in a;(By) and set v; = [[i_, nk. Let By = ay(Bo) = BYu Bl U---uUBM
Denote a;(Bj_;) by Bf U Bj.c+y(”l) U U BP0 a0 then set B; =

J
U:ia”qaj(BJ’?_l), which can also be denoted, using the above, by U:J;OlBJA No-

tice that the superscripts of these rectangles Bj no longer increase successively from
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left to right, although BY is always the leftmost rectangle and B;Fl the rightmost.

Finally, define 1} on B;, j € N, as the linear map which sends B]’C to Bf“ for
k < v; — 1 and leaves T; undefined on B ™",

Let X = NienB;. X is a compact space which is made up of lines and points,
and inherits the Euclidean metric of the plane. From this point on, the term “line”
will always be taken to mean a line with nonzero length, and the term “degenerate
point” will be taken to mean a point in X not lying on any line.

In order to define a continuous injective map T on X by T = lim; ., T3, we need
to set some restrictions on our subdivision patterns. Continuity necessitates that
T map the line or degenerate point with z-coordinate 1 to the line or degenerate
point with z-coordinate (0. For T to be injective and well defined, X must then
have a line over z = 1 if and only if X has a line over z = 0. If these two are indeed
lines, then to ensure continuity there must exist a K such that for all i > K, B["
is of type F for all m. Otherwise, «; has both its first and last boxes of full length
for ¢ > K but has other subboxes of half length, in which case one can find two
sequences of points (z,y) converging to (1, y), one with (z,y) lying on a subbox half
the length of the other. The images under T of these two sequences converge to
different points. This violates the continuity of 7. Note that the assumption that
BI™ is of type F for all i > K and all m yields a system (X,T) isomorphic to the
direct product of the adding machine and [0,1]. Also, if there are infinitely many ¢
with B" of type H for all m, then (X, T) will again be isomorphic to the adding
machine. Since the dynamics of the adding machine are well known, we omit these
two cases in our study.

Definition 2.1. If a sequence of subdivision patterns {a;};en satisfies the prop-
erties:

e there are infinitely many i with B of type H and infinitely many j with B;“ !

of type H,
& at most finitely many i have B" of type H for all m,
then the resulting system (X, 7) will be called an Auslander system.
Auslander systems are generalizations of the dynamical system introduced by

J. Auslander in [1]. In the original Auslander example, all a; are the same and
determine the subdivision pattern shown below:

Unil Square

We may describe the points and lines of X symbolically. Let N(4) = {0,1,...,n;,—
1} be a numbering of the subboxes of «;(By) from left to right, and let Q(7) C N(7)
correspond to those subrectangles of type F. If (z,y) € X, we may describe x
uniquely by z z2z3..... € Y = [[;°, N(i) by setting x; = k < (z,y) belongs to
the (k + 1) subrectangle of a;(B7* ). We will denote 17223 ... resulting from z
by Z. Also, if L is a line in X with z-coordinate x, we will have occasion to write
L ~ zizozy.... The map T on X projects to the adding machine on Y, modulo
n; at slot 4, carrying to the right.
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The following two lemmas are consequences of the construction.

Lemma 2.2. Let (X,T) be an Auslander system. Let (z,y) € X and let T =
x1Taws . ... Then (x,y) belongs to a line iff there exists k such that for every i >k,

T; € Q(’L)

Lemma 2.3. Let (X, T) be an Auslander system. X contains only countably many
lines if and only if there exists K such that for every i > K, 1Q(i)| = 1.

Now denote Q(3)° by H (i) and divide H () into Hy,(¢) and Hy, (i), depending on
whether the corresponding rectangle of «;(By) lies in the lower or the upper half
of By respectively. Thus N (i) = Qi) U Hp (i) U Hy(¢). The following two lemmas
follow from writing z in the symbolic form Z.

Lemma 2.4. If {i : ©; € H(2)} is finite, then (x,y) belongs to a line L whose
length [(L) is 5 iff [{i : ®s € H(i)}| = k. If {i - z; € H(i)} is infinite, then (z,y)
is a degenerate point.

Lemma 2.5. If (z,y) is a degenerale point, then y can be found using T as stated
below, and if (x,y) lies on line L, then the ordinate y, of the base (botlom point)
of L can be found in the same way: delete from T all x; such that x; € Q(j) and
reindex the remaining sequence by N.

Let M ={ie N:z, € Hy(i)}. Theny (ory) equals > L

ncM 27

3. MINIMALITY

Recall that for all points (z,y) € X except those with T = (n1 — 1)(n2 —~ 1) ...,
T(x,y) is determined by some T,,.

Theorem 3.1. Let (X, T) be an Auslander system. Then T is continuous on X.

Proof. If there exists ¢ such that z; # n; — 1 (so (z,y) is not in the last rectangle at
every stage), then at stage 4, (z,y) belongs to some Bf which maps linearly under
T to rectangle B,’FH. Clearly T' is then continuous at (x,y).

Otherwise z = 1, and (1,y) is a degenerate point. Let .J be such that B} and
B~ have height less than e. Let § = min{e, width of B}}. Then the § x § box
surrounding (z,y) is mapped within the e x ¢ box surrounding T'(z, y). O

Since (X,T') projects to the adding machine, we can follow the orbit of the z-
coordinate of a point by using the adding machine on Y. Proximality is thus easy
to determine:

Theorem 3.2. Two points (z1,y1) (2,y2) in an Auslander system are proximal
iff x1 = xo (and thus they belong to the same line).

The next lemma and theorem will show that all Auslander systems are minimal.
We will denote the usual Euclidean distance on X by d( , ), and if L is a line in
X, we will use y,(L) to denote the y-coordinate of the bottom point of L.

Lemma 3.3. Let (X, T) be an Auslander system satisfying the following condition:
(C) Given a point on a line and a neighborhood U of this point, we can find a
degenerate point (z,y) € X such that (z,y) € U.

Then (X,T) is a minimal system.
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Proof. Let (x,y) be an arbitrary point in X. We will show that the orbit closure
of (z,y) under T is all of X.

The orbit of (x,y) visits the neighborhood of any degenerate point since adding
machines are minimal.

Othel\vise suppose that (z',4') is a point on a line and let U be a neighborhood
of (z/,y"). By condition (C), there exists a degenerate point {x;,y;) in U. But as
before, the orbit of (x,y) comes arbitrarily close to (x1,y1). O

Theorem 3.4. Let (X,T) be an Auslander system. Then (X,T) s minimal uoff
both of the following are satisfied:

1) There exists infinitely many i with |Hy;(1)] > 0.

ii) There exists infinitely many j with |HL(j)| > 0.

Proof. 1f the condition does not hold then either exactly one or neither of i) and
i) is satisfied. If neither is satisfied, then (X,7T’) is not an Auslander system and
besides, is clearly not minimal.

If i) is satisfied but not ii), then there will be a height yy > 0, below which no
degenerate points exist. The set of degenerate points would then form a nonempty
proper T-invariant subset of X. A similar situation arises if ii) is satisfied but not
i).

Now assume i) and ii) are satisfied. To show (X,T) is minimal we just need to
show it satisfies condition (C) of Lemma 3.3.

Let (z,y) belong to line L. Let U be apxp nelghbmhood of (z,y) and T =
x17273.... Choose (z',y') so that 2’ = z|x)x}... and 2} = x; for 1 <4 < I, where [
is such that d(x,2") < p. Choose ] € Hy (3) U Hy (2) f01 ¢ > [ in such a way that,
by Lemma 2.5, (z/,y') is a deoenelate point in U. O

4. UNIQUE ERGODICITY AND TOPOLOGICAL ENTROPY

Recall that the adding machine is uniquely ergodic and has entropy zero.

Thus any interesting dynamical phenomena must occur on the set of lines L of
(X,T). Any ergodic measure g on (X, T) must project to the unique measure which
gives each symbol equal weight. If ;L(i) = 0 then X is measurably isomorphic to
the addlng machine and trivially (X T) is uniquely ergodic and h,(T") = 0. Note
that L is an invariant set; thus (L) = 0 or 1 for any ergodic measure. We first
show that u(L) = 1 is possible.

Divide L into UkLA where Lk = {L : L is a line associated with z-coordinate
122 ... such that k is the smallest integer with x; € Q(i) for every ¢ > k}. Then
WL) = 3, p(Ly). But p(Ly) coincides with the measure of the projection of Ly
which is {f\{,&_})l ) s ![1(\2/((2;‘ Thus u(L) = Zk_l(l‘f\{,gf 3: 152, ‘lf\?, 35) for every
possible measure. Then p(L) = 1 if and only if there exists a k with | llg( %|| > 0,
which is equivalent to the existence of a k with 777, (1 :g G ;ll) < co. For example, a
sequence of patterns {a;} with |N(i)| = 2! and |Q(7)| = 2°—1 will yield a dynamical
system having pu(L) = 1.

Theorem 4.1. An Auslander system is uniquely ergodic if and only if (L) = 0.

Proof. We need to show that (X, T) is not uniquely ergodic if u(f,) = 1. This can be
done by defining a family of mutually singular measures on (X,7T). Let 0 < a <1
and define f, to be the map from the adding machine to (X,7") which takes a point
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z to the point (z,y,), where y, lies on the line above z, with proportion a from
the bottom of this line. If there is no line above x, then define f, in the obvious
way. Then f, gives a measurable isomorphism between the adding machine and
(X, T, ju,) where the support of p, can be thought of as a cross section of (X, T).
Clearly supp(pta, ) # supp(pq,) unless a; = ay, and each p, is ergodic. |

Definition 4.2. A compact dynamical system (X, T) is said to be mean-L-stable
if for every pair of positive numbers €, and eq, there is a positive number é such
that z,y € X with d(z,y) < é implies d(T"z, T"y) < €, for all n except in a set of
upper density less than e,.

Remark. It follows from Theorem 4.1 and from results of [1] that minimal Auslander
systems are uniquely ergodic if and only if they are mean-I.-stable. More specifically,
Theorem 8 of [1] implies that a minimal mean-L-stable system must be uniquely
ergodic; and conversely, the proof given on pages 578-379 of [1] (which shows that
Auslander’s original example is mean-I-stable) generalizes to all Auslander systems
with (L) = 0.

We will compute the topological entropy h(T") of an Auslander system (X, T) as
the maximum of the measure theoretic entropies h, (7).

Theorem 4.3. Let (X, T) be an Auslander system. Then h(T) = 0.

Proof. The measures p, constructed in the proof of Theorem 4.1 are the only er-
godic measures on (X, T). Also, A, (T) = 0 for all measures p,. By the variational
principle, h(T) = 0. O

5. IDEMPOTENTS IN THE ENVELOPING SEMIGROUP
The enveloping semigroup of a (Z-action) dynamical system (X, T) is defined as
EX.T)=E(X)={Tr:necZ}

where the closure is taken in the product topology. The asymptotic enveloping
semigroup of (X,T) is defined to be E(X) — {isolated poiuts of E(X)} and is
denoted by H(X). The set of idempotents J(X) in H(X) is never empty (this is
a consequence of what is sometimes called the Ellis theorem, see for instance [3]),
and can sometimes be quite complex, as can be the enveloping semigroup itself. We
can completely determine J(X) for the subclass of Auslander systems having only
countably many lines. The complexity of the general situation is then indicated by
an example; however, the state of rigidity can be settled for all situations.

Thus we now consider minimal (X, T') with the property that |Q(k)| = 1 for every
k > K, for some K. The analysis of J(X) is simpler here because the behavior of
f € H(X) on one line is mimicked by its behavior on every other line. We first
define what it means for two pairs of lines to have the same relative position, then
show why we can find maps f € H(X) which map all lines into certain subsets of
themselves. Such maps can then be used to find the idempotents in J(X).

Definition 5.1. Given four line segments L!, L?, L?, L* in X, with lengths indi-
cated by I(L?), we say that L? is to L' what L* is to L? if the following conditions
hold:

a) (LYY - 1(L*Y) = I(L*) - |(L?), and

b) if b, denotes the height of the bottom point of L?, for ¢ = 1,...,4, then
(by — b)U(L?) = (by — b3)I(LY).
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In the following, let L; denote a line of maximal length.

Lemma 5.2. Let (X,T) be an Auslander system with the property |Q(k)| = 1 for
every k larger than some K. Let L be an arbitrary line in X. There exists a map
f € H(X) such that f maps L, linearly onto a subline of Ly which is of the same
length and at the same height as L. Furthermore, such an f is unique as it must
map any other line Ly in X linearly to a subline of itself satisfying f(La) is to Lo
what f(Ly) is to Ly, and take every degenerate point to itself.

Proof. Without loss of generality, we assume {(L;) = 1, so L1 ~ ¢1¢q2... with
g; € Q(7) for every i. Write L ~ nyno.... Let f be the limit of a subsequence of
T™¢ where m; is chosen so that

Tm‘.(Ll) ~qiqs ... G N2 . Ny Qigpyrt] .-

Thus
m; = (N1 — 1)V + (N2 — qis2)Vivc1 + -+ (P — Qigr Widr—1-

Then f € H(X) maps L; as specified in the statement of the theorem. If Lo is an
arbitrary line, Ly ~ s;s2 ..., then since |Q(k)| = 1 for every k larger than K, there
exists M such that g, = s, for every m > M. So T™: (L) eventually has the form
$182 ... 8NN .. . NypSpiitl .., and T™(Lo) is to Ly what L is to L. Finally, since
T™: fixes the first 2 symbols of any expansion in Y, f will map every degenerate
point in X to itself. 0

Corollary 5.3. Let (X, T) be an Auslander system with the property |Q(k)| =1 for
every k larger than some K. If f € H(X) and f(L1) = {{z,y)} with (z,y) € L,
then the image under f of any degenerate point in X is itself and the image under
f of any line L is the singleton {(z',y')} where (z',y’) € L and where the position
of y' on L is proportional to that of y on Ly.

Proof. We can write f as lim;_. fi, fi € E(X), where f,(L;) = L, C Ly. Then
given an arbitrary line L in X, by Lemma 5.2, f,(L) is to L what f;(Ly) is to L;.
Since fi(L) — f(L), the result follows. 0

Now let f. be the element in H(X) which takes L, to (z,r), the point on L; of
height 7. Then Corollary 5.3 determines f. on the rest of X.

Theorem 5.4. If {c} is a sequence of subdiviston patterns producing a minimal
Auslander system (X, T) and if there exists a K such that for every k > K, |Q(k)| =
1, then J(X)={f, :r €[0,1]}.

Proof. Since idempotents must project to idempotents, any idempotent in H(X)
must project to an idempotent on the adding machine. However, the adding ma-
chine is equicontinuous and so the only idempotent in its enveloping semigroup is
the identity map. Thus if f € J(X) and L, is a line of maximum length, then either
f(L1) = Ly or f(L;) is a singleton. The first case is impossible because |Q(k)| = 1
for every k£ > K implies that there are at most finitely many lines of maximum
length in X . Thus the identity map is not in the asymptotic enveloping semigroup.

If r is a dyadic rational then we can use Lemma 5.2 to find a map in H(X)
taking L, to (z,7) on Ly. Since H(X) is closed and since the dyadic rationals in
[0,1] are dense, f, € J(X) for all € [0, 1]. O
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Note that if the system is not minimal, then one of conditions (i) or (ii) of
Theorem 3.4 is violated. If there exists only finitely many i with |Hy(2)] > 0,
then the only lines arbitrarily close to L are those with bottom point having zero
y-coordinate. This makes it impossible for any idempotent other than fy to be in
H(X). Similarly, if only finitely many i have |[H(i)| > 0, then J(X) = {fi}.

Next we exhibit a subdivision pattern {a;} resulting in an Auslander system
(X,T) with the property that there exist f € J(X) and two lines L and L' in
X both of length 1 such that f(L) is a singleton on L and f(L") = L’. Thus
it is possible that the set of idempotents for this system are much more varied
than in the subclass discussed above. However, it is not the case that such a set is
necessarily larger; in the example below it can be shown that fy (the map that takes
every line to its bottom point) is not a member of F(X). Thus not all Auslander
systems satisfy {f, :r € [0,1]} C J(X).

Let {a;} be such that for every 7, N(i) = {0,1,2,3}, Q(¢) = {1,2}, Hy (i) = {3}
and Hy (i) = {0}. In the resulting system (X,T), consider the two lines L and
L’ given respectively by the expansions 11111... and 212212212.... Let m; be
such that 77*1(11111...) = 11102011111 ... and inductively, let m; be such that
T™i(11111...) = nyng ... where n; = 1 for the first 37 symbols, then the pattern
020 is repeated for the next 3i symbols and then n; = 1 for all j after that. More
specifically, .

m; = Z"Ig—:lo(_43(i+y'>+2 4 430+ _ g3l+D),

It is easy to check that T (L) converges to the bottom point of L and that

T™i(L") converges to L’ (for instance,

T (L)) = 212121212... ., T (L) = 212212121121212212212.....

etc.). Furthermore, assuming that 77 converges on X (otherwise take a subnet),
it is also easy to see that T projects to the identity on the adding machine since
T™: leaves the first 3¢ symbols fixed in the expansion of any line or point in X.
The limit of 7™ is therefore an element of J(X) taking L to a singleton point on
L and L' to itself.

6. RIGIDITY

In [5], Glasner and Maon define three degrees of rigidity for topological systems,
the two weakest being:

Definition 6.1. (X,T) is weakly rigid if Ye > 0 and points 2;,29,...2, € X,
3k € Z — {0} such that d(T*z;,2;) <e (i=1,...,n).

Definition 6.2. (X,T) is rigid (w.r.t. some sequence ny " oco) if T™z — 2z
vz e X,

Clearly Def. 6.1 is equivalent to
Definition 6.3. (X, T) is weakly rigid if idx € H(X).

Glasner and Maon show that the topological entropy of a rigid flow is zero. Note
that we have shown in section 4 that the topological entropy of any Auslander
system is zero. We show in this section that Auslander systems fail to even be
weakly rigid. Indeed, despite the complexity of J(X) for a general Auslander
system, we can still prove that idx is never in H{X).

Recall that T acts on the first coordinate as the adding machine. For T =
T1Z2 ..., let us write Tz = (x1 + 1)x2.... Then Tz = z1(z2 + Dz3 ..., T¥x =
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1. zj(@j41 + 1)z 0. . ., ete. Given a positive integer n, we can write n uniquely
ascop+eivy + -+ oy, and The = (T +¢)(ma+¢1) . (T4 + €)X 4. ... All
sums must be taken mod n; and there might be ‘carrying over’ from one index to
the next.

Theorem 6.4. Auslander systems are not weakly rigid.

Proof. Assume there are infinitely many k& with |Q(k)} > 1 (otherwise section 5
gives the result). We will assume idx € H(X) and reach a contradiction.

If idx € H(X) then given two lines L, Lo and arbitrary e, there must be m
such that 7™ (L;) is within € of L;, i = 1,2. Assume m > 0 (else switch the roles
of Liand Lo in the following argument). Pick the two lines to be

L1N111[12..., LQngllzg...

such that ly; is the smallest element in (i) and [y; the largest. (It is enough to
take this for large enough 7.) There could be ¢ such that {;; = ls;, but there are
infinitely many ¢ where they are not equal, by assumption.

Write m as ¢;¥; + ¢y 1541 + - + ¢y where ¢; # 0. We know

T9% (Ly) ~lyy-lgiyy +¢) -
and
T (La) ~ oy oo dojlagyy F¢5) e
For m sufficiently large, [,(;+1) + ¢; and lo(;11) + ¢; must be elements in Q(j + 1).
Since ¢; > 0, there must be carrying over in 79" (Ly), i.e.,
TG (L) ~ oy oy (Lo + )2y + 1) -

Now there are two possibilities:
a) If BJ'.}j_"‘;_l is of type H, then ly(; 42y +1 ¢ Q(j +2) and ¢; ., must be nonzero.
Thus m includes the summands ¢;v; and ¢; ;1. . Note

Teivsteirivin (LQ) ~lop ... lgj(lQ(j+l) + Cj)(lg(j+2) + 1+ Cj+1) .
and we again have carrying over, now in the j + 2 digit. Thus
Tt etV (L2) ~loy g (12(j+1) + Cj)(lz(j+2) + 14 Cj+1)(12(j+3) +10....

b) If B;.’ifzrl is of type F, then ly(; 42y = nj1o — 1 and whether ¢;,, is zero or
not, we have carrying over in the 7 + 2 term.

Since there is carrying over in the next digit, we can repeat the above: either
¢ji2 Is zero or not, but either way, there is carrying over to the next term. This
process never stops and we know a) occurs infinitely many times. Thus m contains
infinitely many ¢; # 0, which contradicts it being finite. O
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