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Any higher dimensional shift space (X, Z¢) contains many lower dimen-
sional shift spaces obtained by projection onto #-dimensional sublattices
L of Z¢ where r < d. We show here that any projectional entropy is
bounded below by the Z¢ entropy and, in the case of certain shifts of
finite type satisfying a mixing condition, equality is achieved if and only
if the shift of finite type is the infinite product of a lower dimensional
projectior.

i 1 Introduction

Higher dimensional shifts of finite type consist of arrays of symbols con-
taining only certain allowed configurations. They are a key object of
study in symbolic dynamical systems and find applications in informa-
tion theory and in the study of global properties of cellular automata.
One important property of a shift of finite type is its topological entropy;
this provides a measure of the complexity of the system and is invariant
under conjugacy. In an attempt to understand the subdynamics of a
system, one can consider lower dimensional directional entropies such
as those defined by Milnor {1]. Unfortunately, for higher dimensional
shifts of finite type with positive entropy, the directional entropy is not
helpful because it is always infinite. In this paper, we consider a more
naive directional entropy, namely the entropy of the lower dimensional
shift space obtained by restricting the points in the 7% shift space to a
Z" sublattice L where r < d. We call this the L projectional entropy
of the Z¥ shift space. Projectional entropy is related to Milnor’s direc-
tional entropy in that the 7-dimensional directional entropy of L is the
supremum of the L projectional entropies within a conjugacy class. We
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244 A. Jobnson, §. Kass, and K. Madden

will be concerned with investigating the infimum of the L projectional
entropies within a conjugacy class.

The entropy of the Z9 shift space is a lower bound for its projec-
tional entropies (Lemma 4.3) and thus the infimum of the projectional
entropies within a conjugacy class is greater than or equal to the 74
entropy. It is possible for the infimum of the projectional entropies to
equal the Z? entropy of the Z? shift space. For example, consider the
two-dimensional full shift on two symbols {0, 1) where all horizontal and
vertical transitions are allowed; the Z? entropy and the one-dimensional
projectional entropy in any direction are log2. For another example
consider the two-dimensional shift on two symbols {0, 1} where 11 is
not allowed horizontally but every other transition is allowed. In this
example, the Z2 entropy and the projectional entropy on the hosizontal
axis are both equal to log{(1 + V5)/2) while the projectional entropies in
all other directions are log2. We will call both of these examples, as the
infinite cartesian product of the lower dimensional shift space obtained
by projection onto L = {ke, : k € Z}, degenerate (see Defmition 2.2). In
Theorem 4.1 we show that for an extendible, block strongly irreducible
shift of finite type, the projectional entropy is equal to the Z? entropy if
and only if the system is degenerate.

In the next section, we review the basic terms needed for what fol-
lows. Further background details can be found in [2]. In section 3 we
discuss entropies associated with higher dimensional symbolic systems.
In section 4, we define projectional entropy and consider which projec-
tional entropies are possible within a conjugacy class. We conclude in
section 5 with a discussion of examples and open questions.

! 2. Background

Let A = {1,2,...,1} be a finite alphabet and let Xﬁ,] be the compact

. d d N
metric space A%, For x € Xj and v € 74, let x; denote the symbol at
position 7 in x. Let

oyt Xﬁq x 29 > Xfﬂ]
be the continuous Z4-action defined by
0%, V) = Xpui
for all 9,5 € 7% and all x Xf{n;. We call o, the d-dimensional shift

map and (an],O},) the d-dimensional full n-shift. When it causes no
confusion, we will denote the d-dimensional full n-shift by {X,, ;).

- 4 .
For any & = (v),Vy,..-,v,) € Z9 and x & X, we say x is v-
coordinate-wise periodic if

.O-d_(xa <q1y1, V5044, qd”d)) =X
for any g; € Z.
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If X is a closed, shift invariant subspace of an], we call (X,0) a
d-dimensional subshift or shift space.

For x € X and B c Z¢%, we will denote the configuration of symbols
appearing in x at the locations determined by B as x;. We define
S(X,B) = {xp : x € X}). In other words, S(X, B) is all configurations
occurring at the locations determined by B in any x & X. A subset of y i
of particular interest is the “rectangle” with side lengths w14, 115, ..., 72

‘ d ;
By sy, = Uapyday o sag) € 201 0 < a; <y for1 =i=d}.

If m; = my = - = my, = m, we will denote this “square” by Bj.
Similarly, we will denote the “square” of side length (2m — 1) that is
centered at the origin as

B,= [(al,az,...,ad}ezd:Iai|<mfor1 <i=<d}

A subshift (X, 0y) is called a d-dimensional shift of finite type if it is
defined by a list of allowable configurations on B,, for some m > 0. We
will call a configuration of symbols on an arbitrary set B 24 allowable
if all configurations on subsets B,, + ¥ C B are allowable.

A block map ¢ - X — Y between shift spaces (X, ay) and (Y, q,) is
defined by a mapping ® between (X, B,,} for some 71 and the symbols
occurring in Y. Given @ : S(X, B,,) - A, where A is the alphabet for
Y, the block map is then given by ¢(x); = D(x;,5 ) for all 7 e 74,
Maps between shift spaces are continuous and commute with the shift
map if and only if they can be defined in this way. If a block map
is onto, it is called a factor map, and we say that (X, oy} factors onto
(Y,o). If a factor map is one-to-one, it is called a conjugacy and we
say that (X, @) and (Y, g;) are conjugate. Conjugate shift spaces exhibit
identical dynamical properties.

In two dimensions, conjugacies between shifts of finite type can al-
ways be decomposed into a finite sequence of vertical and horizontal
out- and in-splittings and amalgamations [3]. A vertical out-splitting is
constructed as follows: For each a € #A, define the vertical follower set
of a, P(a), to be the set of symbols that can appear vertically above a in
some element of X. That is,

P(a) = {b & ﬂ|x(0,mx(0,1) = gb for some x € X}.

Then for each @ € A, create a partition of P(a) consisting of k, > 0
partition elements. For B = {0,¢,} C 7% where (2,,8,} is the standard
basis for Z2 we define

$:8(X,B) »{dlac Aand 1 =i=k,)

via
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if and only if b is in the # partition element of $(a). This block map
defines a conjugacy from (X, o) onto its image. A vertical in-splitting is
defined similarly by partitioning the set of vertical predecessors for each
ae A '

Horizontal out- and in-splittings are defined analogously, and the
inverse of a vertical (horizontal) out- or in-splitting is called a vertical
(horizontal} out- or in-amalgamation.

An example of a system conjugate to a d-dimensional shift space
(X, o) is its 2m — 1)¢ higher block presentation, denoted (X[m],oy),
where m € N. X[m] c (S(X,B,))%" and thus the “symbols” in X[m]
are the blocks in 8{X, B, ). For each x € X we obtain x{m] € X[m] via
xfmly = x5, 3 that is, x[m], is the configuration appearing in x in the
(2 — 1)¢ block centered at v.

There are other shift spaces related to (X, o) that are of interest. One
such space is the d-dimensional subshift constructed from (X, o) using
a finite cartesian product. Define (X%, o) where k € N as

X=X xXx %X
where X x X denotes the usual cartesian product and where
O—d((xlj x29x33 A xk)a 7_)) = (O-d(xls {J)a Gd(xZJ a)) s G-d(xks Ij))'
For example, if 4 = 1 we can think of each element of X* as a vertical

stack of & bi-infinite sequences from X.
Another related shift space is a projection of (X, o).

Definition 2.1. Let (X,0y) be a d-dimensional shift space and let
V = {#y,...,9,}, 0 < 7 < d, be linearly independent integral vectors
in Z4. If L ¢ 7% is the subspace spanned by integer multiples of the
vectors in V, we let X; = §(X, L) be the set of arraysin X restricted to L.
The projection of {X, ¢;) onto L, denoted (X;,0;), is the Z7 subshift we
obtain by identifying V with the standard generators (¢,,...,¢é,} of Z'.

We will be particularly interested in sets V as defined above when
there exists U = (7,., .. ., U,) such that VU 9/ is a linearly independent
set of integral vectors whose integer span is Z¢. In this case we will call
I an r-dimensional sublattice of Z¢. Let L’ ¢ Z4 be the integer span of
U. Given X, as defined above, we can create a d-dimensional subshift

d—r . . .
X% whose elements are the d-dimensional arrays of symbols achieved
by associating to each location in L’ a point from X ; that is,

d—r __ . -
XE = 1% = (w1 6(3) € X ).
- .y 3 - - d—Y

To find the symbol at location @ € Z¢ in a point & € X£", decompose
@asi=#+7, 4 e l’, v el and take the symbol in position ¥ of the
element x(i):
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) . R Zd—r
We define a d-dimensional action on X1 by
(%, i)y = (i + WY s

where i = v+ @, @' = +# withv,7/ e Land &, u’ € L".

This shift space, although technically d-dimensional, is in some sense
a trivial extension of a lowet-dimensional space. Thus we are led to the
following definition.

Definition 2.2. A d-dimensional shift space (X, o) is degenerate if there
d—r
exists a sublattice L ¢ 7% such that X = X7

While it may be difficult to determine if a shift space actually is
degenerate, given a sublattice L it is often easy to determine that a shift
space X is not equal to X%d_r. This can be done by counting coordinate-
wise periodic points of various periods. To see this in the case where
d=2andr=LleemeN H(X, o) = {Xf,az) where L = (ke, 1 k€ Z},
then it is clear that for any n €N,

{{(s11, n)-coordinate-wise periodic points of X}

= |(m-periodic points of X }".

If a constant ¢ does not exist for which the number of {2, ) coordinate-
wise periodic points of {X, ;) is equal to ¢* for all € N, then X is not
equal to X% Because the number of coordinate-wise periodic points is
preserved by conjugacy, in this case we also know that X + X7, for any
X conjugate to X. :

In the literature {e.g., [4, 5]), a shift space is said to be stromgly
irreducible if there is an s > 0 such that for any two configurations x
and xj occurring in X where B, B’ ¢ Z¢ with the distance between B
and B’ greater than s, there exists y € X with y, = xp and yp = xp. It
can be difficult to verify that a shift space is strongly irreducible, and we
do not need all the power of strong irreducibility. Thus, we introduce
a weaker mixing condition that is easier to verify, which we call block
strongly irreducible.

Definition 2.3. A shift space is block strongly irreducible if there is an
s > 0 such that for any two configurations x5 ,; and xB .y occurring
in X on blocks B, + # and B, + ' ¢ Z¢ with the distance between
B, +pand B, +7’ greater than s, there exists y € X withyy 5 = x5 3
. .
and yp .y = XB, 47/
Block strong irreducibility is implied by square mixing as defined in

[6] where it is shown (Example 3) that square mixing need not imply
strong irreducibility. Thus not all block strongly irreducible shift spaces
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are strongly irreducible. It is not difficult to-verify that block strong
irreducibility is preserved under conjugacy.
We note that when X is. block strongly irreducible, there are only a

finite number of sublattices L for which X%J_r can have entropy other
than log |A|. In this case, it is not difficult to determine if X is degenerate.

We close this section by noting that difficulties arise in higher dimen-
sions that do not occur in the traditional one-dimensional case. For
example, given a set of one-dimensional allowed blocks, it is relatively
easy to determine whether the corresponding one-dimensional shift of
finite type is nonempty. In higher dimensions, the question of whether
there are any arrays of symbols given by a set of allowed blocks is re-
ferred to as the nonemptiness problem and is, in general, undecidable
[7, 8]. Our results apply to nonempty shift spaces and our main theorem
applies only to shifts of finite type for which every allowed configuration
on a “rectangle” actually occurs.

Definition 2.4. A shift of finite type (X, ;) is extendible if given any
B=B;, . m cvery allowed configuradion on B is in S(X, B).

Extensive background material on one-dimensional shifts of finite
type can be found in [2] or [9]. D. Lind and B. Marcus also provide a
good overview of higher dimensional shifts in Chapter 13 of [2].

l 3. Entropy

Entropy describes the complexity of a dynamical system. For shift
spaces, intuitively it provides a measure of the growth rate of possible
“configurations in §(X, B, } as m increases.

Definition 3.1. The entropy of a d-dimensional symbolic dynamical sys-
tem (X, o), d = 1, is defined by : :

.l
h(X) = lim — logiS(X, B}l
b daed b7}
In fact, it is shown in [5] that for any sequence {8}, .y of convex
subsets of Z¢ such that the inradii of the 2,, diverge to infinity,

HX) = lim IEM_

b
P
m-ro0 = 1

We note that entropy is a conjugacy invariant and thus for any d-
dimensional shift space (X, a;;), we have A({X) = h(X[m]). Lemmas 3.1
and 3.2 establish the relationship between the entropy of a finite or
infinite cartesian product of a shift space and the entropy of the original
shift space.
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Lemma 3.1. For any d-dimensional shift space (X, oy), b(X®) = kB(X).

Proof. This follows easily from the definition of entropy and the fact
that

ISOXE, B = IS(X, B e =
Lemma 32. If (X,0) is degenerate with X = XE then A(X) = h(X).

Proof. Let V = {TysDy,--.,7,} and U = {#,4,...,7,} be the integral
bases for L and I as described previously. Consider the convex sets

and

b(x) = lim 1220
lim log IS(Ji, 2,
Fisamd=n F743

lim IOg §S(XLJ

i i

togIS(X,,

i

d-r

[k

)l

Il

8]

)l

i
logIS(X;,

= lim

HI=»CO

[l

= lim it

= ;

=h(X;). =

We close this section by noting that when d = 1, entropies of many
shift spaces, in particular shifts of finite type and factors of shifts of
finite type, are easily calculated ([2], Chapter 4). However, whend > 1,
although there are methods for obtaining entropy estimates for some
shifts of finite type [10, 11], it is usually not feasible to compute entropy
directly. Some notable exceptions can be found in [12] and [13].

jis )

"

I 4. Projectionat entropy

Definition 4.1. Let (X, o) be a d-dimensional shift space and let (X, ;)
be a projection of (X, ;). Then the L projectional entropy of {X,oy) is
h(X,).

Complex Svstems, 17 (2007} 243-257
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For the remainder of this paper, we willused = 2and L = {k2, : k € Z}
in order to simplify notation and arguments. We will denote X by X,
and we will refer to 5(X,) as the “horizontal projectional entropy.”
However, the following theorems can be generalized to any d € N and
any sublattice L. ‘

Note that projectional entropy is not a conjugacy invariant. For
example, the horizontal projectional entropy of the full shift on two
symbols is log2, but the horizontal projectional entropy of the 3 x 3
higher block presentation of the full two shift is log 8. In fact projec-
tional entropy can rise, fall, or remain constant under a conjugacy as
Lemma 4.1 demonstrates. In the statement of this lemma, X, denotes
X; where L = (k2, : k € Z).

Lemma 4.1. Let (X,0;) be a shift of finite type and let
¢ X, 5m) = (Y, 03)
be a vertical out- or in-splitting. Then'h(Yl) = h(X,)and KHY,) = b(X,).
Proof. Assume that ¢ is a vertical out-splitting. Thus for each x € X,
Plx); = x5

S4é, 19 in the M partition element of Pix;).

Note that ¢ induces a conjugacy between the one-dimensional spaces
(X,,0,) and (Y,,0;) and thus the vertical projectional entropy is us-
changed [2].

Next consider horizontal configurations

where x,

XoXg Xag, " Kym-t)e

in 8(X, B;,). For each such configuration there corresponds at least one

configuration in S(Y;, BY,). (There may be more than one corresponding

configuration in S(Y,, B:) depending on the number of allowable ways

of vertically extending configuration xx; %55 %13, -)
1t follows that

IS(X, B:;z)l < |S(Y, B;N

and h(X,) = b(Y,) as desired.
The proof for an in-splitting is similar. @

Note that Lemma 4.1 holds for horizontal out- or in-splittings with
the roles of the vertical and horizontal directions reversed. Amalgama-
tions, as the inverse of splittings, can lower projectional entropy or leave
it constant. Lemma 4.2, the proof of which is left to the reader, states
that for any (X, o) for which A(X) # 0, by taking higher and higher
block presentations, we can find conjugate systems with arbitrarily large
horizontal projectional entropy.

Complex Systems, 17 (2007) 243-257
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temma 4.2. If (X, ;) has nonzero entropy, then

lim h(Xr];) = .

For readers familiar with the notion of directional entropy [1], we
briefly explain the relationship between the horizontal directional en-
tropy and the horizontal projectional entropy for two-dimensional shifts
of finite type. In this setting the definition of horizontal directional en-
tropy reduces to

sup (lim sup % log IS{X, Bm,n)l) .

150 o0

Note that

B(X,) = limsup  log IS0, B,,

and thus the horizontal projectional entropy provides a lower bound
for horizontal directional entropy. When # > 1 we have

1
h(X{x],) = limsup -~ log 1S(X, B,,, )l
and thus when #(X} > 0, Lemma 4.2 shows that horizontal directional
entropy is infinite. We also note that in this setting, since

oo = Sup (hm sup ‘?1; 10g |S(X: Bm,n}l)

#=0 o

= sup h(X[nl;)

()

= sup {h(Y1)|(Y,CF'i) is conjugate to (X,O'Z}] s

horizontal directional entropy and the supremum of the horizontal pro-
jectional entropies in the conjugacy class of (X, 03) are both infinite and
thus are equal.

For a fixed sublattice I, although the supremum of the L projectional
entropies over members of a conjugacy class of a shift space with positive
entropy is infinite, the L projectional entropy of each system in the
conjugacy class is finite. In this work we are not interested in the
supremum but in the infimum.

We first note that »(X) serves as a lower bound for all projectional
entropies and thus the infimum of the projectional entropies must be at
least h(X).

Lemma 4.3. Let (X,0;,) be a two-dimensional shift space. Then X)) =
bX,).

Complex Systemns, 17 (2007) 243-257
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Proof. Note that $(X, BY,) € 8(Xy, B5,)”, and thus

b amded

h(X) = lim iz—logiS(X,B;)l
n

< lim —1-2~10g{IS(X B ™)

b dec il i ¥ A 2m

= lim lIog 1S(X;, B, )l

Mmoo ¥

— b(X,)
as desired. =

So we are led to ask the following question: Given (X, ), under
what circumstances will #(X) equal the horizontal projectional entropy?
- Theorem 4.1 answers this question for a significant class of subshifts.
Example 5.3 shows that the theorem is not true without the strong
irreducibility assumption.

Theorem 4.1. Let (X, ;) be an extendible, block strongly irreducible
shift of finite type. Then »(X) = A(X,} if and only if {X, 03) is equal to
(X%, 03).

Proof. If (X, ;) is equal to (XT,03), then the fact that A(X) = h(X;)
follows from Lemma 3.2. So suppose that

h(X) = B{X,) = log(A).

Since (X, ;) is a shift of finite type, we may assume that it is defined via
7 x n allowed blocks for some 7 € N. Note that X € (X,;)%. Suppose
the claim is not true and X ¢ (X)%. Then there exists a k x k block B
which occurs in (X,)Z but not in X. (Note that block B is of the form
B, % B, % -+ X B, where each B, is a & block in X, but it is convenient
to think of it as both a & block in X% and a k x & block in (X;)%.)
Consider (X'%,crl). We show that (le,oa) is an irreducible sofic shift
{where irreducible is as defined in [2] for one-dimensional shift spaces).
First note that because {X, o3 ) is an extendible, block strongly irreducible
shift of finite type, the higher block presentation (X[n], ;) of (X, 03) is
an extendible, block strongly irreducible shift of finite type as well.
Thus both (X{n];,0;) and {(X{n],)%,07) are easily shown to be one-
dimensional irreducible shifts of finite type. There is a factor map

¢ (X[”]p 0'1) - (pr?i)-

This factor map ¢ can be extended to a factor map from ((Xn],)% o)

to (X?,o‘l). As the factor of an irreducible shift of finite type, (X’tf,crl) is
an irreducible sofic shift.

Complex Systems, 17 (2007) 243-257
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Let Y* consist of sequences in X% which do not contain B. So (Y%, 0y)
is a proper subshift of (Xfi(, ;) and thus by Corollary 4.4.9 of [2] {p. 124)
we have b(Xi‘) > h(Y*). From Lemma 3.1

B(XY = kh(X,) = klog(n) = log(A%).
Thus for some @ < 4
log(A%) = h(X%) > h(Y*) = logla®).
Note that
IS(X, BLw)l < IS((Y2)™, Bi)l = 1S(Y*, BLa ).

It then follows that

b(X) = logd) = lim —— logIS(X, Bl
m—+00 {km)

< lim — logIS((Y*)™, Bi,,)
(k)

1 -
= lim — log(IS((Y*), Be)I™)

e (fkrm)

IR
_Ehm mlong((Y ) Bl

#H—rc0

_
= kh(Y )
1
k
= log(a) < log(A).

log(ak}

P . . Z .
This is a contradiction and thus X = X7 as desired. =

I 5. Examples

We conclude with three examples and some open questions.
Example 5.1. Consider (X3, ), the full shift on two symbols.

This example
1. is extendible and block strongly irreducible,
2. has two-dimensional entropy log 2,
3. has projectional entropies of log2 on all sublattices I,

4. is degencrate with (X, 53) = (X{ZE{Z’O&)‘

Complex Systems, 17 (2007) 243-1257
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Example 5.2. Let Y(3) ¢ Xy be the shift of finite type where x € Y(3)
if and only if for any ¥ € 7%, x; + %5 5 + %35, =0,1 {mod 3). That is,
the sum of the symbols in any configuration of the foliowing form must

be zero or one {mod 3):

a b
c

This example
. 1. is extendible and block strongly irreducible,
2. has two-dimensional entropy log 2,
3. has projectional entropies of fog3 on all sublattices L,
4, is not degenerate.

It is clear that Example 5.2 is extendible. It is also block strongly
irreducible with s = 1. To see this, suppose that € 27 lies in two subsets
S, and 8, C Z? of the form S, = {#, ; — &, @, - 2,} for some @; & 72,
i = 1, 2. Suppose further that we have an allowed configuration on
S, U S,\D. Then there are two choices for the symbol in position » that
result in an aflowed configuration on S; and two choices for the symbol
in position 7 that result in an allowed configuration on S,. Because
there are only three symbols occurring in ¥(3), there must be at least
one choice that works for both §, and §,. Using this fact, it is not difficult
to see that any gap of width one between allowed configurations ontwo -
blocks can be filed in an allowable way. Thus this example is block
strongly irreducible.

To see that #{Y(3)) = log2 we note that given any configuration of
symbols in positions (0,0), &, and &,, there are two allowed choices for
the symbol in position &, + 2,. We say that Y(3} has corner condition
two and from this it clearly follows that

IS(X, B = 33712k

and h(Y{3)) = log2 as desired. :
Any sequence of symbols from {0,1,2} on a one-dimensional sublat-
tice I, € Z2 can be extended to a point in Y(3) and thus #(Y(3),) = log3.
We can see that (Y(3),03) is not comjugate to {Xp),03) because
(Y(3), 03 ) has three fixed points while (X5}, 53} has only two fixed points.
[Y(3},03) is not degenerate. For any sublattice L,

h(Y(3)%) = log3

by property 3 above and Lemma 3.2, but #(Y(3)) = log 2 by property 2
and thus by Theorem 4.1, Y(3) is not equal to Y(3)%.

Complex Systems, 17 {2007} 243-257
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The preceding argument does not allow us to conclude that a conju-
gate system will not be degenerate. However, given a specific sublattice
I, counts of coordinate-wise periodic points might eliminate the possi-
bility that a conjugate system (¥,3) will be of the form (Yf,0,). For
cxample, let L = {kg, : k€ Z}. The reader can verify that (Y{3), o) has
three (2, 1) coordinate-wise periodic points {i.e., the fixed points), but
there are fifteen (2, 2) coordinate-wise periodic points, contrary to the
observation spelled out after Definition 2.2. Thus Y(3) is not equal to
¥(3)¥ and, because conjugacy preserves coordinate-wise periodic point
counts, any ¥ conjugate to Y{3) is not equal to 1.

Example 5.3 shows that Theorem 4.1 is not true without the block
strong irreducibility assumptior.

Example 5.3. Consider the two-dimensional shift of finite type X C X
given by horizontal and vertical transition rules as described by this
adjacency matrix:

0

[l il e L

= OO OO
OO0 O e =
OO OO
O s e OO
OO = OO

This example
1. is extendible, but not block strongly irreducible,
2. has two-dimensjonal entropy log2,

3. has projectional entropy h(X,) = log2,

4, is not equal to XZ.

It is not difficult to verify that b(X,) = log2 and, because X has
corner condition two, h(X) = log 2. However X is not equal to X¥ since

clearly there are arrays in X% which do not occur in X,
Example 5.3 is clearly not block strongly irreducible.

Within a conjugacy class, the L projectional entropies for a fixed
sublattice I may vary. However, their infimum over the conjugacy class
is trivially conjugacy invariant. If some member of the conjugacy class is
degenerate for sublattice L, then this infimum is equal to the Z2 entropy.
We are left with the following guestions.

Open Questions. Let (¥, ;) be a block strongly irreducible shift of finite
type for which no member of the conjugacy class is degenerate. Let T
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denote the infimum of the L projectional entropies over all sublattices
L. and all systems conjugate to (Y, ).

1. Is I achieved as a projectional entropy?

2. Ts T greater than A(Y)?

We conjecture that in Example 5.2, 7 is equal to log 3. If this is true, it
would show that T can be achieved and can be bounded away from the
full entropy. If that is the case, what can be said about a representative
of the conjugacy class with the minimal projectional entropy? Does this
representative somehow give us the clearest picture of the way in which
the individual directions are interacting in the two-dimensional system?
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