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Abstract. In this paper the results of Shub and Sacksteder are extended to the
following theorem: let f; and f, be two commuting, expansive, orientation-preserving
maps of the circle with a common fixed point and with both in C'** or C’, r=2.
Assume f; is p-to-1 and f, is g-to-1 where p and q generate a nonlacunary semigroup.
Then there exists a diffecomorphism g of the same class such that gfig™' = T, and
ghg'= T,. =

1. Introduction
Consider the circle to be the group [0, 1) under addition modulo 1. By T, we will
mean the function T,(x) = px mod 1. This paper extends the following results.

THEOREM. [Sh). Letf:8'> S" bea C' function such that |df|> 1 on all of S', where
df is the derivative of f. If f is a p-to-1 map then f is homeomorphically conjugate to
T,, i.e. there exists a homeomorphism g with g"'fg = T,,.

THEOREM. [S). Let f, and f, be expanding, orientation-preserving maps of S' that
commute, have degrees n and m respectively, and are of class C"™ (n=2). Then if n
and m are relatively prime, there is a diffeomorphism g of class C"” satisfying
g(fi(x)) = T.g(x) and g(fxx)) = T.g(x).

There is a well known obstruction to Shub’s homeomorphism g being a
diffeomorphism. We describe this in § 2. However, we can now extend Sacksteder’s
result to integers p and g where p and g generate a nonlacunary semigroup of N.
In § 3 this theorem is stated formally along with the definition of nonlacunary. §§ 4
and 5 contain the results needed to prove this theorem. In § 6 we will discuss the
case when f, and f; do not have a common fixed point.

2. The diffeomorphism obstruction
: From Shub’s theorem we know f =gT,g'. So g must send the fixed points of T,
to those of f. Let us write this as g(i/(p—1)) =z;. If g is differentiable then

df(x) = dg(T,g"'(x)) dT,(g"'(x)) dg~"(x).

In particular,
df (z;)=dg(i/(p—1)) dT,(i/(p—1)) dg”'(z).
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But dg(i/(p~1))xdg'(z) =1, so

df(z)=dT(i/ p—-1))=p.
Thus g cannot be differentiable if f has a derivative at a fixed point not equal to
p- Applying this idea to powers of f gives obstructions from all periodic orbits of

[ According to Katok [Ka] these are the only obstructions, and an alternative proof
of our main theorem can be constructed along these lines.

3. Main theorem

Definition. A semigroup of N is said to be nonlacunary if it is not contained in a
singly generated semigroup. For instance, the multiplicative semigroup generated
by 6 and 10 is nonlacunary, the one generated by 4 and 8 is not.

Recall that fe C'*° if f has a continuous derivative that is Hélder, with Holder
constant . We say fe C", r=2, if f has r continuous derivatives. By € let us mean
one of these classes of functions. If €= C'"® then by ¢’ we mean C®. If €=C"
then €' =C" .

MAIN THEOREM Let f, and f, be two commuting, orientation-preserving maps in 6
with a common fixed point. Assume they are both expanding and that f, is p-to-1 and
J2 is g-to-1 where p and q generate a nonlacunary semigroup. Then there exists a
diffeomorphism g € € such that gf,g™' =T, and gf>g™"' =

ProrosiTION 1. For f, and f, as in the theorem, there exists a homeomorphism g that
conjugates f, to T, and f; to T,.

Proof. Let 0 be the common fixed point. From Shub there is a homeomorphism
g:S'> ' with g7'f,g=T,. Since T, and f; both have 0 as a fixed point we can
assume g fixes 0 (compose g with a rotation as necessary). Then g™'f,g = f2 is a
q-to-1 orientation-preserving map of S' to itself, fixing 0 and commuting with T,.

Let f2 be the unique lift of f2 to a homeomorphlsm of the universal cover, R,
fixing 0. Thus fz(px) pfz(x) and for neN, fz(n) gn. It is then easy to show that
£(X a;/p’) = q(E a;/p’) and hence fo(x) = gx, thus f,=T,

We want to show that this conjugation g is in %, This will be done in the next
two sections. First we generalize our theorem to the non-orientation preserving case,
CoroLLARY OF MAIN THEOREM. Let f; and f, be as described in the main theorem
except not necessarily orientation preserving. Then there exists g € € such that gf,g~" =
T, and gf;g ™" = T, with |r|=p and |s|=q. The sign of r and s is determined by the
orientation of the associated map.

Proof. The set of continuous, monotone maps that commute with some T, is
{T,+k/(m=1):k=0,...,m—2 and n € Z}. This follows from an argument similar
to the proof of Proposition 1 and the fact that any map that commutes with T,, can
only permute its fixed points. Now we use the main theorem to find g € € such that
gfig”'=T, and gfig ' =T,. As before, we can assume g fixes 0. Then gf,g~"
commutes with T, so must have the form T, + k/( p’—1). Since it fixes zero and
has degree p it must equal T, with |r| = p. Similarly for gfg~". O
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4. Preliminary results
In this section we will define a measure u and show that it is f; and f, invariant.
Using the structure of Parry and Pollicott [PP] and Krzyzewski [Kr] on the
operator introduced by Ruelle [R], define L:C(S')->C(S") by L(w)(x)=
Zy:f.y=x w(y)/dfi(y). In Parry’s notation, this is L_og ar,y. If we let f, be the lift of
/i so that £,:[0,1) =[O, p) is 1-1 then we can rewrite this operator as
ret w(fi'(x+i))
Liw)(x)=Y —=w=———1.
W= & GGG

From [Kr] we get the following.

PrOPOSITION 2. There exists a strictly positive eigenfunction h € €', corresponding to
eigenvalue 1, of the operator L.

Thus we have L(h)=h.

PrRoOPOSITION 3.

J h(x) dx=I_l h(x) dx.

S

Proof. We have
_ et A (1)

L A dx = L Lh(x) dx= L BT i) ™

™ J h(fi'(2))

AUA+LU- - ~UA+(p—1) dfl(fl_l(z))

Now use the change of variables given by y = f7!(z). Then dy = dz/df.(f."(z)) and
we get [, h(y) dy as wanted. O

dz.

Definition 4. Take p to be the measure given by du = h(x) dx.
By Proposition 3, u is f; invariant. We next want to show that it is also f; invariant.

ProOPOSITION 5. (See [Kr].) The system (S', f,, w) is exact. In particular, it is ergodic
and h,(f,)>0.

Let f¥u be the measure defined by f¥u(E)=pu(f;'E). Then f§u is f; invariant,
since f, and f, commute.

PROPOSITION 6. f¥u=pu.
Proof. As f, is differentiable,

dffp h(y)
(%)= ———>,
a7, ) d)
Since w is ergodic for f, this gives us the result. O

This tells us that u is invariant for f,.

5. Completion of result

Consider g*u, where g is the conjugation from Proposition 1. Since u is f; and f,
invariant, g*u is T, and T, invariant.
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Prorosimion 7. g*u is Lebesgue measure A.

Proof. By Proposition 5 we know that (S',f,, #) has positive entropy. Thus
(8!, T,, g*u) also has positive entropy. Using the result from [J], we know the only
measures that are invariant and ergodic for T, and T, are A and measures of entropy
Zero. O

Proof of main theorem. Rewriting this we get (g*)™'A =u. By construction u is
absolutely continuous with respect to Lebesgue measure. We have (g*)7'A(A) =
_[A h(x) dx. Now let A=[0, 7], then (g*) 'A(A) =A(gA) = A[0, g(r)]=g(7), because
g Is an increasing function. So we have g(‘r)=jf,h(x} dx. By the fundamental
theorem of calculus dg(7) = h(r) thus since he €', we have ge %. O

6. If there is no common fixed point

In the construction of the conjugation g in Proposition 1, we used the existence of
a common fixed point for f; and f;. Now we want to discuss the situation when no
such common fixed point exists, eventually classifying the possible conjugations.

THEOREM 8. Let f; and f, be two commuting, expanding, orientation-preserving maps
in € such that f, is p-to-1 and f, is g-to-1 where p and q generate a nonlacunary
semigroup. Then there exists a diffeomorphism g € € such that gf,g ™' = T,and gf,g ™' =
T,+i/(p—1) for some i.

Proof. Since f, is g-to-1, it must have g —1 fixed points. By the commutivity of f;
and f,, f) can only permute these. Thus there is some power k of f; that has a
common fixed point with f, and we can apply our theorem to find a conjugation
¢ € € with

¢ 'fho=T, and ¢ 'fip=Ty. (1)
Let fi=¢ 'f 0. Then f, is a p-to-1 map, T, is a g-to-1 map, and we can repeat the

above process to find an integer n such that f; and T,» have a common fixed point.
Thus there is a conjugation ¢ € € with

Y fiy=T, and Y 'Tpp=T,. ()

Define a measure y*A by y*A(A)=A(¢'A), where A is Lebesgue measure.
Because i is smooth we can use an argument much like that in Proposition 6 to
show *A = A. But the only continuous, orientation preserving, 1-1 maps that leave

Lebesgue measure invariant are rotations. So we will write ¢ as R,.

Using (1) and (2) we have

R'¢™'fieR,=T, and R;'¢ 'f,eR,=R.;'TR,.

T, and R;'T,R, must commute since f, and f, do. But T,R;'T,R,(x)=
T,(gx+qa—a)= pgx+pqga — pa, and R;'T,R,T,(x)=R;'T,R,(px)=gpx+qa—a.
Thus we get pga — pa =qa —a, or p(qa—a)=qa—a which says ga—a is a fixed
point of T,. That means ga~a=i/(p—1) for some i=0,...,p—2 and thus
a=if(p-1)(g—1).

We can then rewrite R;'T,R,(x)=gx+qa—a=gx+a(qg—1)=gx+i(p—1). Put-
ting g = R,'¢ "' gives the result of the theorem. O
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ProposiTiON 9. If (p—1) and (g —1) are relatively prime then f, and f, always have
a common fixed point. So Theorem 8 in this particular case reduces to the statement
of the main theorem.

Proof. In the proof of Theorem 8 we showed R;'¢ 'fi¢R, =T, and R;'¢ "' f1¢R, =
R.'T,R,. So f, and f, have a common fixed point iff 7, and R;'T,R, do. If p—1
and g—1 are relatively prime we can rewrite a=i/(p—1)(g—1) as i,/(p—1)+
i/(q—1), and R, as R, R, . But then we have f, conjugate to R, T,R;' and f,
conjugate to R;!T,R,,, both conjugations by @R, . Notice that both these maps
take 0 to 0.

Thus f, and f, have a common fixed point and we can assume that the conjugation
in Theorem 8 sends it to 0. Then Theorem 8 says gf,g~'(0) = (T,+i/(p-1))(0)=0
which shows that gf;g™" in fact must equal T,. Thus Theorem 8 reduces to the
statement of the main theorem in this special case. Tu)
We have

!

ae G={————mod 1: !el}.
(p-1(g-1)

If (p—1) and (g —1) are relatively prime then this group is the same as

H={—l—+—j—m0d 1: i,jeZ}
p—1 g-1

and the pair f) and f; is only conjugate to T, and T,. In general these two groups
are not the same and we get the following:

THeoREM 10. Let f, and f, be two commuting, expanding, orientation-preserving
maps in € with f| p-to-1 and f, g-to-1 where p and q generate a nonlacunary semigroup.
Then there exists g € € that conjugates the pair to T, and R;'T,R, where ac G is
unique up to its coset aH. Thus the number of possible classes for pairs f,, f; is |G|/|H|.
Proof. We need to first show that if f,, f; is conjugate to T,, Ra_l' T,R,, then they
are also conjugate to T, R;z' T,R., where a, is an arbitrary element in a,H. So we
will show T,, R;! T, R, is conjugate to T,, R, T,R,,. Let a,=i,/(p—1)(g—1) and
a,=i,/(p—1)(g—1). Then i, and i, are such that
i i € C
. + +
(p—1)(g-1) (p-D(g-1) p-1 g-1
for some c,and ¢, and we can write
Ra, = RayReyriq-0)Reyyip-1)-
Using RZ)(,-1 as the conjugation we have T,, R,'T,R, conjugate to
Rcl/(p—l)TpR:.l/(p—l): R:zl/(q—l)Rc_rzlTqRazRCz/(q—l)-
But the first is equal to T, and the second to R;z' T,R,,. This gives the result.

Next we need to show that if f,, f, is conjugate to T,, R;'T,R,, and to T,
R/ T,R,, then a, and a, must be in the same coset. So here we have ¢ such that
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Yy~ 'T,y=T,and ¢y 'R;!T,R, =R, 'T,R, . From the first relationship we see that
Y must have the form R./(,_,). From the second equation we see that
i, i € e i
(p=1)(g=1) p-1 (p=1)(g-1)
which gives the result. O
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