Mission Statement

UCT aspires to become a premier academic meeting point between South Africa, the rest of Africa and the world. Taking advantage of expanding global networks and our distinct vantage point in Africa, we are committed, through innovative research and scholarship, to grapple with the key issues of our natural and social worlds. We aim to produce graduates whose qualifications are internationally recognised and locally applicable, underpinned by values of engaged citizenship and social justice. UCT will promote diversity and transformation within our institution and beyond, including growing the next generation of academics.

Foundation statement underpinning the mission statement

Our research-led identity is shaped by a commitment to:

- academic freedom as the prerequisite to fostering intellectual debate and free inquiry;
- ensuring that research informs all our activities including teaching, learning and service to the community;
- advancing and disseminating knowledge that addresses the key challenges facing society - South African, continental and global;
- protecting "curiosity driven research";
- nurturing and valuing creativity in the sciences and arts including the performing and creative arts;
- stimulating international linkages of researchers and research groupings.

We strive to provide a superior quality educational experience for undergraduate and postgraduate students through:

- providing an intellectually and socially stimulating environment;
- inspired and dedicated teaching and learning;
- exposure to the excitement of creating new knowledge;
- stimulating the love of lifelong learning;
- the cultivation of competencies for global citizenship;
- supporting programmes that stimulate the social consciousness of students;
- offering access to courses outside the conventional curricula;
- attracting a culturally and internationally diverse community of scholars;
- guaranteeing internationally competitive qualifications;
- offering a rich array of social, cultural, sporting and leadership opportunities;
- providing an enabling physical and operational environment.

In advancing UCT as an Afropolitan university, we will:

- expand our expertise on Africa and offer it to the world;
- extend our networks on the continent, along with our global connections and partnerships;
- promote student and staff exchanges and collaborative research and postgraduate programmes;
- engage critically with Africa's intellectuals and world views in teaching and research;
- contribute to strengthening higher education on our continent.

We strive to provide an environment for our diverse student and staff community that:

- promotes a more equitable and non-racial society;
- supports redress in regard to past injustices;
- is affirming and inclusive of all staff and students and promotes diversity in demographics, skills and backgrounds;
- offers individual development opportunities to all staff;
- is welcoming as a meeting space for scholars from Africa and around the world.
Teaching and Learning Charter

Mutual Commitment
Benefiting from the opportunities of education requires a mutual commitment on the part of both student and teacher.

Students should understand that, by accepting the offer of a place at the University, they undertake responsibility for their own learning. This requires that they attend classes, tutorials, practicals and other scheduled activities and prepare assignments to the best of their ability, handing in work on time. Students should be considerate to the needs of others in their behaviour in lectures and tutorials. They should act with honesty and integrity, ensuring that work that they hand in is their own, that all the sources that they use are properly acknowledged, and that they respect and follow the rules and procedures for formal examinations.

Good teachers bring enthusiasm, originality and flair to their work. Good teaching is best fostered in a collegial atmosphere where codes of practice provide a baseline standard for professionalism, rather than serving as a prescriptive and proscriptive list of requirements. While Heads of academic departments are formally responsible to Senate for teaching and learning in their departments, individual members of the academic staff are accountable for their contribution to the university's educational mission.

Teachers should understand that, by accepting employment on the academic staff of the University, they undertake to provide all reasonable assistance to students to enable them to succeed in their studies. This requires that they deliver lectures and other scheduled classes and make every reasonable effort to make alternative arrangements if they are unable to do so. Teachers should be available for student consultations at reasonable and clearly advertised times, and should hand back student work timeously, and with appropriate comment. Teachers' expectations of students should be clearly set out in course outlines, available before the course starts. Required reading and other preparation should be clearly specified, and teachers should ensure that such materials are available to students in the Library, in textbooks that are available, and in authorized course readers. Methods of evaluation and assessment that will be used in the course must be defined and described in the course outline and followed in the course. Expectations of students in formal examinations must be set out, and such formal examinations must have a fair and reasonable relationship with the ground covered in the course.

Consequently:
Students should make a formal undertaking, as part of the process of admission to the University, to take responsibility for their own learning, to respect the requirements of the courses for which they register, and to take part in the academic life of the University with integrity and honesty.

Academic staff should
1. provide clearly written course outlines, setting out what is expected of students for the complete course, that are available well in advance of the beginning of the course, to allow students adequate time to prepare;
2. provide lists of required and recommended reading for courses, in advance of the beginning of the course, and to establish that this material is in the University Library, in local bookshops (by timeous submission of reading lists), or in course readers (with copyright clearance, and within agreed policy for course levies);
3. set out a clear and well designed system of assessment for the course, which defines what is expected of a student, and the relative value of different coursework, test and examination components; set clear and consistent DP requirements for courses, consistently enforced;
4. present lectures and tutorials in a clear manner, explaining technical terms where appropriate;
5. establish a fair and consistent approach to hearing requests for concessions and re-marking of assignments, and for leave of absence from lectures (where attendance is compulsory), tutorials and other class sessions;

6. adhere to an agreed and published timetable for lectures, tutorials and other teaching sessions, that respects the need of students to plan their class attendance and study time;

7. ensure that they, and other teaching staff involved in their courses, are available to meet with students at advertised office hours, and interact with students without discrimination or favoritism;

8. return work submitted for assessment within a reasonable period of time, with adequate and appropriate comments and other forms of evaluation, and ahead of formal examinations, so that students can incorporate feedback in their examination preparation;

9. ensure consistent marking of examination papers and, for large classes, effective moderation of examination marking by the lecturer concerned;

10. Organize a written evaluation for each course, allowing students to express their views freely and, if they wish, anonymously, and build on the outcomes of such evaluations in adapting the course for the future.

Postgraduate students have particular needs, and the relationship between postgraduate students and their supervisors is set out in a parallel policy, which should be read in conjunction with this Teaching and Learning Charter.
UNIVERSITY OF CAPE TOWN

FACULTY OF SCIENCE

2012

Postal Address: University of Cape Town
Private Bag X3
7701 RONDEBOSCH

Dean's & Faculty Offices: Room 6.43, P D Hahn Building
28 Chemistry Road
Upper Campus

Office Hours: Mondays to Fridays: 08h30 - 16h30

Fax: (021) 650 2710
(021) 650 4511

Telephones: Dean's Office (021) 650 2711
Faculty Office (021) 650 2712/3023
Accounts and Fees (021) 650 4076/2134
Admissions (021) 650 2128

Internet: UCT's Home Page http://www.uct.ac.za
Faculty Website http://www.science.uct.ac.za
Faculty Office sci-science@uct.ac.za
International Academic
Programmes Office int-iapo@uct.ac.za
Information for prospective international students can be obtained at
http://www.uct.ac.za/about/iapo/overview/welcome/

The Admissions Office and Student Records Office are located in the Student Administration
Building, Middle Campus, and are open from 08h30 to 16h30. The Cashier’s Office is located in
Kramer Building, Middle Campus, and is open from 09h00 to 15h30.

This handbook is part of a series that consists of

Book 1: Information for applicants for undergraduate degrees and diplomas
Book 2: Authorities and information of record
Book 3: General rules and policies
Book 4: Academic calendar and meetings
Book 5: Student support and services
Books 6-11: Handbooks of the Faculties of Commerce, Engineering and the Built
Environment, Health Sciences, Humanities, Law, Science
Book 12: Student fees
Book 13: Financial assistance for undergraduate students
Book 14: Financial assistance for postgraduate students
The University has made every effort to ensure the accuracy of the information in its handbooks. However, we reserve the right at any time, if circumstances dictate, to
(i) make alterations or changes to any of the published details of the opportunities on offer; or
(ii) add to or withdraw any of the opportunities on offer.
Our students are given every assurance that changes to opportunities will only be made under compelling circumstances and students will be fully informed as soon as possible.
CONTENTS

Telephone numbers of Departments in the Faculty of Science .. 1

General Information ... 2
 Officers in the Faculty ... 2
 Senior Student Advisers in the Faculty .. 3
 Student Advisers in the Faculty ... 3
 Faculty Student Councils ... 4
 Postgraduate Centre, The .. 4
 Fellows in the Faculty ... 5
 Distinguished Teachers in the Faculty ... 5
 UCT Book Award .. 5
 Prizes ... 6
 Scholarships .. 6
 Class Medals .. 7
 Dean's Merit List .. 7
 Minimum requirements for admission to an undergraduate degree 7
 Explanatory Notes on Course Codes ... 7

Rules for degrees / Degree Programmes .. 9
 Rules for the degree of Bachelor of Science .. 9
 Rules for the degree of Bachelor of Science (Honours) (BSc (Hons)) 27
 Rules for the degree of Master of Philosophy/Science ... 28
 Rules for the degree of Doctor of Philosophy ... 30
 Rules for the degree of Doctor of Science ... 31

Departments in the Faculty ... 33
 Department of Archaeology ... 33
 Department of Astronomy .. 39
 Department of Botany .. 44
 Department of Chemistry .. 50
 Department of Computer Science ... 58
 Department of Environmental & Geographical Science ... 67
 Department of Geological Sciences .. 77
 Division of Geomatics (Faculty of Engineering & the Built Environment) 83
 Department of Human Biology (Faculty of Health Sciences) 89
 Department of Mathematics & Applied Mathematics ... 93
 Department of Molecular & Cell Biology ... 112
 Department of Oceanography ... 120
 Department of Physics ... 125
 Department of Statistical Sciences .. 134
 Department of Zoology .. 143

Inter-faculty Unit ... 154
 Electron Microscope Unit .. 154

Schedule of courses .. 155

Courses by lecture period .. 161

Index ... 167
TELEPHONE NUMBERS OF DEPARTMENTS IN THE FACULTY OF SCIENCE

Archaeology 650 2353
Astronomy 650 5830
Botany 650 2447
Chemistry 650 2446
Computer Science 650 2663
Environmental & Geographical Science 650 2874
Geological Sciences 650 2931
Human Biology (Faculty of Health Sciences) 406 6235
Mathematics & Applied Mathematics 650 3191
Molecular & Cell Biology 650 3276
Oceanography 650 3277
Physics 650 3326
Statistical Sciences 650 3219
Zoology 650 3603
GENERAL INFORMATION

Officers in the Faculty

Dean of the Faculty of Science:
Professor A P le Roex, BSc Stell BSc (Hons)
PhD Cape Town

Deputy Deans:
Associate Professor D W Gammon, PhD HDE
Cape Town
Associate Professor M J O’Riain, BSc (Hons)
PhD Cape Town

Secretary to the Dean:
E Taladia

Academic Administration:
Faculty Manager (Academic):
K T Wienand, MSc Advanced Certificate HE
Management Cape Town

Deputy Faculty Manager (Academic):
A Rooks, BA PGCE PG Dipl Educ Cape Town

Senior Administrative Officer
(Undergraduate):
T Mohamed, BSc BCom (Hons) UWC

Administrative Officer (Postgraduate):

Administrative Officer:
S Moodley, Dipl HR Management UNISA

Senior Secretaries/Receptionists:
L Masella
L Morgan
C Richfield, BSocSci (Hons) Cape Town

Student Development Adviser:
E Abrahams, BA (Hons) UWC ACE Cape Town
Communications & Marketing:
Facility Manager (Communications,
Development & Marketing):
K Thomson, BA (Hons) HDE Cape Town

Schools Liaison & Recruitment Officer:
S Smith, BCom (Hons) UWC

Finance Administration:

Faculty Manager (Finance):
S Custers, BSc Cape Town BCompt BCom
(Hons) UNISA

Assistant Faculty Manager (Finance):
L Roos, BCom BCom (Hons) UWC

Senior Faculty Finance Officers:
S Champion, Nat.Dipl Fin Inf Sys CPUT
L Spaltman, BBusci Australia

Assistant Faculty Finance Officer:
M Mayiya

Rm 6.46 P D Hahn Building
sci-dean@uct.ac.za

Rm 7.11 P D Hahn Building
david.gammon@uct.ac.za
Rm 3.20 John Day Zoology Building
justin.oriain@uct.ac.za
Rm 6.46 P D Hahn Building
elhaam.taladia@uct.ac.za

Rm 6.56 P D Hahn Building
karen.wienand@uct.ac.za

Rm 6.54 P D Hahn Building
amy.rooks@uct.ac.za
Rm 6.54 P D Hahn Building
tasneem.mohamed@uct.ac.za
Rm 6.57 P D Hahn Building

Rm 6.53 P D Hahn Building
eva.abrahams@uct.ac.za
Rm 6.51 P D Hahn Building
katherine.thomson@uct.ac.za
shanaaz.smith@uct.ac.za

Rm 6.47 P D Hahn Building
sue.custers@uct.ac.za

Rm 6.45 P D Hahn Building
lily.roos@uct.ac.za
Rm 6.44 P D Hahn Building
shaahid.champion@uct.ac.za
laurence.spaltman@uct.ac.za
Rm 6.44 P D Hahn Building
martina.mayiya@uct.ac.za
Human Resource Management:
Senior Human Resource Adviser:
A Tilney
Human Resource Adviser:
N Maharaj, BCom Natal Dipl HR Management
Natal

Senior Student Advisers in the Faculty

Information Technology & Statistics
Associate Professor S Berman

Biology, Earth & Environmental Sciences
Professor J J Bolton

Chemical, Molecular & Cellular Sciences
Associate Professor N Ravenscroft

Mathematics, Physics & Astronomy
Associate Professor A Buffler

General Entry Programme for Science (GEPS)
Associate Professor B Davidowitz

Student Advisers in the Faculty

Information Technology & Statistics

Dr B Erni
Dr F Gumedze
Associate Professor M Kuttel
Professor G Marsden

Biology, Earth & Environmental Sciences

Dr B J Abiodun
Professor T Hedderson
Associate Professor M Picker (1st semester)
4 GENERAL INFORMATION

Dr C Reed (2nd semester) Rm 3.25 John Day Zoology Building cecile.reed@uct.ac.za
Associate Professor S Richardson Rm 353 Geological Sciences Building steve.richardson@uct.ac.za

Chemical, Molecular & Cellular Sciences
Professor N Illing Rm 426 Molecular Biology Building nicola.illing@uct.ac.za
Dr P Meyers Rm 202 Molecular Biology Building paul.meyers@uct.ac.za
Dr G Smith Rm 7.08 P D Hahn Building gregory.smith@uct.ac.za

Mathematics, Physics & Astronomy
Dr D Solomons Rm 323.1 Mathematics Building deon.solomons@uct.ac.za
Dr S Wheaton Rm 4T4 R W James Building spencer.wheaton@uct.ac.za

General Entry Programme for Science (GEPS)
Mr G Stewart Rm 304 Computer Science Building gary.stewart@uct.ac.za

Faculty Student Councils

Postgraduates:
The Science Postgraduate Students Association (SPGSA) is elected by the postgraduate students in the Faculty of Science. The SPGSA represents the postgraduate students on the executive committee of the University PGSA. The Chairperson of the SPGSA may be contacted via email: sciencepgsa@gmail.com.

Undergraduates:
The Science Students' Council (SSC) is elected annually by the undergraduate students in the Faculty of Science. The SSC office is located in the PD Hahn Building, Level 4, room 4.18 and may be contacted via email: uct_ssc@uct.ac.za.

The SPGSA and SSC form an important part of the Governance and Committee structures in the Faculty of Science (see booklet "Faculty of Science, Governance and Committees").

The Postgraduate Centre
The Postgraduate Centre was recently established in the Otto Beit Building, Upper Campus. This state-of-the-art facility houses the executive committee of the Postgraduate Students Association (PGSA) as well as the Postgraduate Funding Office. The centre is equipped with IT facilities and includes a seminar room. This facility is open to all Masters and Doctoral students as well as postdoctoral research fellows. Postgraduates are encouraged to make full use of this centre, in particular, the Funding Office, which administers all postgraduate bursaries and scholarships. The Postgraduate Centre may be contacted at gradcentre@uct.ac.za or visited at www.pgfo.uct.ac.za.
Fellows in the Faculty

The Council of the University has established Fellowships for members of the permanent academic staff in recognition of original distinguished academic work of such quality as to merit special recognition. The following are Fellows in the Faculty of Science.

Professor I V Barashenkov
Professor W J Bond
Professor S Bourne
Professor D M Butterworth
Professor M R Caira
Professor K Chibale
Professor A Chinsamy-Turan
Professor T J Egan

Distinguished Teachers in the Faculty

The University makes a Distinguished Teacher Award in recognition of the importance of excellence in teaching at all levels in the University. Up to three awards are made annually. The following are recipients, in the Faculty:

1983: Professor G M Branch (Zoology)
1984: Professor J H Webb (Mathematics)
1986: Associate Professor B R Davies (Zoology)
1990: Associate Professor H S T Driver (Physics)
1992: Dr J J Conradie (Mathematics)
1992: Professor J E Parkington (Archaeology)
1994: Professor J R Moss (Chemistry)
1996: Professor M J Hall (Archaeology)
1996: Dr M D Picker (Zoology)
1997: Dr N Morrison (Mathematics)
1998: Mr A N Rynhoud (Mathematics)
1998: Professor J A Thomson (Microbiology)
1998: Associate Professor I V Barashenkov (Mathematics)
1998: Professor J U M Jarvis (Zoology)
1999: Dr T Egan (Chemistry)
2000: Associate Professor D L Reid (Geological Sciences)
2001: Dr V Abratt (Molecular & Cell Biology)
2002: Professor J W Lutjeharms (Ocean & Atmosphere Science)
2002: Dr S Oldfield (Environmental & Geographical Science)
2002: Dr A Buffler (CHED/Physics)
2003: Dr D W Gammon (Chemistry)
2004: Dr B Davidowitz (CHED/Chemistry)
2004: Dr S Mundree (Molecular & Cell Biology)
2006: Dr R R Ackermann (Archaeology)
2008: Dr J O'Riain (Zoology)
2009: Associate Professor G Marsden (Computer Science)
2011: Dr G Smith (Chemistry)

UCT Book Award

The University makes a Book Award in recognition of the publication of books, written by University staff, that bring credit to the University.

Professor G M Branch
The Living Shores of South Africa 1985
6 GENERAL INFORMATION

Professor G M Branch, Associate Professor C L Griffiths, Mrs M L Branch and Dr L E Beckley
Professor B Warner
Dr P Bruyns

Two Oceans - A guide to the Marine life of southern Africa 1995
Cataclysmic Variable Stars 1997
Stapeliads of Southern Africa & Madagascar 2008

Prizes

(Further information regarding the value of prizes may be obtained from the Faculty Office.)

J Barry Hawthorne Centennial Prize
Awarded to the best student in third-year Geology who will be proceeding to Honours in the Department.

Chemistry Prize
Awarded to the best student in second-year Chemistry who will be proceeding to third-year Chemistry.

Dick & Dorothy Borcherds Prize
Awarded to the student achieving the highest standard at the end of the second year in Botany or Astronomy.

Frank Schweitzer Memorial Prize
Awarded to one or more outstanding senior students in Archaeology, at the discretion of the Head of Department.

Gordon Percy Memorial Award
Awarded to the best student in Chemistry Honours.

Joseph Arenow Prize
Awarded at the discretion of the Dean for original postgraduate research.

Merck Prize plus medal
Awarded to the best student in third-year Chemistry who will be proceeding to Honours in the Department.

Merck Prize
Best student in Molecular & Cell Biology Honours

Purcell Memorial Prize
Awarded for the best MSc or PhD dissertation dealing with a Zoological subject.

Scholarships

(Further information regarding the value of scholarships may be obtained from the Faculty Office.)

Dr Jacob Burlak Memorial Scholarship Tenure 1 year
Awarded to the best student in second-year Mathematics, registered in the Faculty of Science, who will be proceeding to third-year Mathematics.

Myer Levinson (Emdin) Scholarship Tenure 2 years
Awarded every second year to a candidate who has obtained the BSc (Hons) degree in the first class and who proposes to pursue further study.

Twamley Undergraduate Scholarship Tenure 1 year
Awarded for the most outstanding academic performance at the end of the first year of study.
Class Medals
A class medal may be awarded to a student who has demonstrated special ability in a course, but an award shall not be made if there is no candidate of sufficient merit. Only one medal shall be awarded for each course. Students undertaking a course for a second time are not eligible.

Dean's Merit List
Students who obtain consistently good results may be included on the Dean's Merit List, issued annually, in recognition of their academic achievements. To qualify for the Dean's Merit List in a particular year, a student must normally:
(a) have taken the equivalent of the following minimum number of courses:
 BSc degree:
 - first year: four full courses
 - second year: three full courses, two of which must be senior courses
 - third year: two full courses, one of which must be a third-year course
 GEPS:
 - first year: two full courses
 - second year: two full courses
 - third year: three full courses, two of which must be senior courses
 - fourth year: two full courses, one of which must be a third year course
(b) have passed all these courses in the year;
(c) not be repeating courses;
(d) have obtained a weighted average of over 70% for the courses taken.

Minimum requirements for admission to an undergraduate degree
A candidate for the degree of bachelor must have obtained a National Senior Certificate endorsed by Umalusi to state that he or she has met the minimum admission requirements for degree study, or a matriculation certificate or have obtained a Senior Certificate endorsed to state that he or she has met the matriculation requirements or an exemption certificate issued by the Matriculation Board. Council and Senate may, in addition, prescribe, as a prerequisite for admission to any programme or course, the attaining of a specified standard in specified subjects at the matriculation or equivalent examination. (Where these have been prescribed, they are set out in the Admission Policy.) The Matriculation Board's website address is http://hesa-enrol.ac.za/mb
Further information on Faculty entrance requirements can be found in Book 1, Information for Applicants for Undergraduate Degrees and Diplomas and in the Undergraduate Prospectus.

Explanatory Notes on Course Codes
The curriculum for the bachelor degree in the Faculty of Science is based on a semester system, where a semester course is equivalent to a half-year of academic study. Courses for the bachelor degree may be completed in one semester (ie. a "half-course") or over two semesters (ie. a "full-course"). In this respect, the following codes are used:
F 1st semester half-course
S 2nd semester half-course
H half-course taught over the whole year*
W full-course taught over the whole year
X special allocation
Z any other combination

* H courses in GEPS may be of the "intensive type" ie: half credit but full contact time over the whole year.
Summer/Winter Term courses:
P November - December
U November - January
L June - July

CEM1000W Chemistry 1000
CEM designates a Chemistry course
1 designates a first-year course
000 serves to distinguish this from other first-year Chemistry courses
W designates a full-course taught over the whole year

BIO3002F Marine Ecosystems
BIO designates a Biology course
3 designates a third-year course
002 serves to distinguish this from other third-year Biology courses
F designates a first semester course.

NOTE: second-year and third-year courses are usually regarded as 'senior courses' in terms of meeting the curriculum requirements for the bachelor degree in the Faculty of Science.

DEGREES OFFERED IN THE FACULTY OF SCIENCE

i) Bachelor of Science (BSc) degree
 Students entering the Faculty of Science from 2010 will register at the degree level, with one or more elected majors (see page 13); selected students will be registered on the General Entry Programme for Science.
 Students who registered for the first time before 2010, or senior students who transferred in 2010, will register on one of the following programmes:
 SB006 - Programme in Information Technology
 SB012 - Programme in Biology, Earth & Environmental Sciences
 SB013 - Programme in Chemical, Molecular & Cellular Sciences
 SB014 - Programme in Mathematical, Physical & Statistical Sciences

ii) Bachelor of Science (Honours) (BSc (Hons)) degree

iii) Master of Science (MSc) degree

iv) Master of Philosophy (MPhil) degree

v) Doctor of Philosophy (PhD) degree

vi) Doctor of Science (DSc) degree
RULES FOR DEGREES / DEGREE PROGRAMMES

The following rules are specific to the Faculty of Science. They must be read in conjunction with the general University rules (G and GB) for degrees and diplomas in Book 3 of this series.

General rules for Bachelor of Science (BSc) degree programmes

FB1 Except by permission of Senate, all students who registered in the Faculty of Science for the first time after 2009 will be subject to the general rules of the BSc degree and curricula rules for majors, other than those admitted to the General Entry Programme for Science (GEPS) who will register for that programme. Note: Except by permission of Senate, transferring students may not register on the General Entry Programme for Science (GEPS).
Students who registered prior to 2010, and students who transferred into Science as senior students in 2010, will be subject to the rules and curricula for degree programmes SB006, SB011-SB014 inclusive.

Duration of the Bachelor of Science degree

FB2 The curriculum for the Bachelor of Science degree shall extend over not less than three academic years of study.
The curriculum which includes the General Entry Programme for Science (GEPS), SB011, will usually extend over four academic years of study.
Note: At the discretion of the Dean, the Faculty may admit candidates for the BSc degree who, due to special circumstances, are unable to study on a full-time basis. Students would complete the degree over an extended period of time by taking a reduced number of courses each year, but would attend normal lectures and practicals as scheduled in the University timetable. All enquiries should be directed to the Faculty Manager (Academic).

Restriction on registration and examination

FB3 A student shall not register for more than:
(a) the equivalent of four half-courses in each semester in the first academic year of study;
(b) the equivalent of three half-courses in each semester in any other year of study.
This restriction also applies to the number of courses for which a student may be examined.

Policy
Permission of Senate to waive these restrictions will only be considered under certain circumstances, as follows:
(a) where a student has obtained an average of 50% or more in all courses written in the most recent set of ordinary examinations and/or tests, (ie. in June or November);
(b) waivers to students who satisfy (a) above will depend on an assessment, by a Student Adviser or Deputy Dean, of the merits of each individual case.
Supplementary examinations

First-year students
FB4.1 The Senate may permit a first-year student who has registered for a bachelor degree in the Faculty of Science, and who has failed the ordinary examination in one or more courses, to write supplementary examinations in a maximum of three full-year courses or the equivalent.

Policy and guidelines:
(a) A supplementary examination may be awarded to a student who has obtained marks from 40% to 49% in first-year courses in Mathematics. For MAM1000W, MAM1019H, MAM1043H and MAM1044H, supplementary examinations will only be awarded to students who obtain from 45% to 49%.
(b) A supplementary examination may be awarded to a student who has obtained marks from 45% to 49% in a first-year course in any Science Faculty department.
(c) A department (other than Mathematics - see (a)) may recommend the award of a supplementary examination to a student who has obtained marks from 40% to 44% in a first-year course provided that the Head of the Department submits a written recommendation and motivation to reach the Dean before the meeting of the Faculty Examinations Committee.
(d) Where a student is awarded supplementary examinations in more than three full-year courses or the equivalent, he/she must choose which supplementary examinations to write in terms of the restriction detailed in FB4.1 above.

Students other than first-year students
FB4.2 The Senate may permit a student other than a first-year student to write supplementary examinations in a maximum of two full-year courses or the equivalent, only one of which may be a third-year course.

Policy and guidelines:
(a) Departments will act according to guidelines (a), (b) and (c) listed under FB4.1 in respect of first-year courses.
(b) A supplementary examination in a senior course may be awarded if the mark obtained is at least 45% and if the department concerned recommends it.
(c) A finalist who has obtained marks from 40% to 44% in any course, which is the only credit outstanding for the award of the degree, may be awarded a supplementary examination if the department concerned recommends it.
(d) Where a student is awarded supplementary examinations in more than two full-year courses or the equivalent, or more than one full-year third-year course or the equivalent, he/she must choose which supplementary examinations to write in terms of the restriction detailed in FB4.2 above.

FB4.3 The decision on whether or not to award a supplementary examination, in accordance with the policies outlined above, shall be taken by the Senate on the recommendation of the Head of the Department concerned and be based on the student's academic performance in the course concerned, except that the Senate may decide to award, or refuse to award, a supplementary examination in a course or courses taking account of the student's overall academic record.
Refusal of readmission to the Faculty and related matters

Bachelor of Science Degree Programme (excluding GEPS)

FB5.1 Except by permission of Senate, a student who has registered for the Bachelor of Science degree, shall not be permitted to reregister in the Faculty unless he or she has completed:

(a) one and a half courses or the equivalent, including one and a half courses specific to a major, by the end of the first year;

(b) three and a half courses or the equivalent, including all first-year courses required for a major, by the end of the second year;

(c) five and a half courses or equivalent, including one and a half senior courses, by the end of the third year;

(d) seven and a half courses, including three senior courses, by the end of the fourth year.

(e) Students are expected to complete all the requirements of the degree by the end of the fifth year.

FB5.2 In addition to the readmission requirements listed in FB5.1 above, the fulfilment of other specific requirements may be required by individual majors. These requirements will be communicated to students.

General Entry Programme for Science (GEPS)

FB5.3 Except by permission of Senate, a student who registered initially on the General Entry Programme for Science (GEPS), shall not be permitted to reregister in the Faculty unless he or she has completed:

(a) one and a half courses or the equivalent, including one course specific to a major, by the end of the first year;

(b) three full-year courses or the equivalent, including two and a half courses specific to a major, by the end of the second year;

(c) five full-year courses or the equivalent, of which at least one shall be a senior course, by the end of the third year;

(d) seven full-year courses, of which at least two and a half shall be senior courses, by the end of the fourth year.

General

FB5.4 Except by permission of Senate, where the academic circumstances of a student do not permit the application of Rules FB5.1-FB5.3, a student shall be required to complete the equivalent of two full-year courses per year of study.

FB5.5 In special cases, or in the case of undergraduates transferring from other faculties or other universities, the Senate may impose probationary academic requirements which must be fulfilled before the student shall be permitted to renew his or her registration in the Faculty in the following year.

FB5.6 A student who fails to complete the University examination in a course after two years of study may, at the discretion of Senate, be excluded from further attendance of such a course.

FB5.7 Except by permission of Senate, a student who has been refused permission to reregister in another faculty may not register in the Faculty of Science.

FB5.8 Re-registration in the Faculty does not imply a right to register for senior courses in subjects for which the student has completed prerequisite courses.
Transfer from other faculties into the Faculty of Science

FB6.1 Except by permission of Senate, a student who, after a year or more in another faculty, wishes to register in the Faculty of Science, shall, as a minimum:
(a) satisfy the normal school-leaving entrance requirements for admission to the BSc degree, and
(b) have complied with the provisions of Rule FB5.1-FB5.3 as appropriate, as applicable *mutatis mutandis*.

FB6.2 Except by permission of Senate, a student who, after a year or more in another faculty wishes to register in the Faculty of Science, may not register on the General Entry Programme for Science (GEPS).

Bachelor of Science degree structure

All courses have been assigned a credit value and level, according to the Higher Education Qualifications Framework (HEQF).

The standard BSc degree comprises a total of 432 HEQF credits of which at least 276 HEQF credits and the equivalent of six full-year courses must be Science courses; a maximum of 132 HEQF credits may be counted from other Faculties. Read in conjunction with rule FB7.1a-FB7.5a (or FB7.1-FB7.5).

Standard 3-year BSc degree structure:
First Year:
Four first year courses (each full course=36 HEQF credits) - 144 HEQF credits at HEQF level 5

Second Year:
Three second year courses (each full course=48 HEQF credits) - 144 HEQF credits at HEQF level 6

Third Year:
Two third year courses (each full course=72 HEQF credits) - 144 HEQF credits at HEQF level 7

Total HEQF credits: 432

Extended BSc degree structure - General Entry Programme for Science (GEPS)
First Year:
Four first year half courses (each half course=18 HEQF credits) - 72 HEQF credits at HEQF level 5

Second Year:
Four first year half courses (each half course=18 HEQF credits) - 72 HEQF credits at HEQF level 5

Third Year:
Three second year courses (each full course=48 HEQF credits) - 144 HEQF credits at HEQF level 6

Fourth Year:
Two third year courses (each full course=72 HEQF credits) - 144 HEQF credits at HEQF level 7

Total HEQF credits: 432

Rules for general Bachelor of Science curricula (from 2010)

The rules below apply to all students who register in first year in the Faculty of Science from 2010 *(refer to pg 18 for curriculum rules for students who registered on degree programmes for the first time in 2009 or earlier)*

All bachelor degree curricula in the Faculty of Science include courses carefully selected to provide adequate foundation for and depth in the major discipline, as well as providing generic skills to function as a graduate. All curricula therefore require students to achieve skills in numeracy, computer literacy, problem solving and communication in the context of their major.
RULES FOR DEGREES / DEGREE PROGRAMMES

Students must choose one or more majors, with curricula including compulsory courses as outlined under rules FB7.6a and FB7.7a below. The general rules governing BSc curricula are rules FB7.1a to FB7.5a which stipulate the minimum number of courses required, and the range of choices possible.

All curricula can lead to postgraduate study.

Total number of courses

FB7.1a The curriculum shall include the equivalent of at least nine full-year courses of which at least six full-year courses must be Science courses. A maximum of three full-year courses or the equivalent may be counted from other faculties.

Number of senior courses

FB7.2a The curriculum shall include the equivalent of at least four full-year senior courses or the equivalent, of which at least three shall be Science courses.

Mathematics

FB7.3a The curriculum shall include at least a half Science course in Mathematics (18 HEQF credits, level 5) plus a half Science course in Statistics (18 HEQF credits, level 5), or a full Science course in Mathematics (36 HEQF credits, level 5).

Elective courses

FB7.4a Any course in the Faculty of Science may be taken as an elective. Courses from other Faculties may also be taken as electives, but subject to the following constraints and approval by a Student Adviser or Deputy Dean:

- Only courses with an HEQF credit value of 18 or more will be counted (a first year half course in the Science Faculty has an HEQF credit value of 18).
- If the equivalent of two or less full Science courses are replaced by courses from another Faculty, then any courses not specifically excluded by Science Faculty rules can be chosen.
- If more than two full year Science courses are replaced with electives from another Faculty, then the further electives must form part of a hierarchical sequence linked to those already completed.
- Courses taught by the Faculty of Science for other Faculties are not available for students registered in Science. However, students transferring into Science from other Faculties may be able to count such courses towards their Science curriculum, with the credit weighting, equivalence and conditions established by the Departments concerned.

FB7.5a In order to satisfy the requirement of competencies including numeracy, computer literacy, problem solving and communication or as a measure of integrated assessment, a Student Adviser may add one or more compulsory courses to a curriculum.

Major(s)

FB7.6a The curriculum shall include a major from the following list:

- Applied Biology
- Applied Mathematics
- Archaeology
- Astrophysics
- Biochemistry
- Business Computing*
- Chemistry
- Environmental & Geographical Science
- Genetics
- Geology
- Human Physiology
- Marine Biology
- Mathematical Statistics
- Mathematics
RULES FOR DEGREES / DEGREE PROGRAMMES

Computer Science Microbiology
Computer Engineering* Ocean & Atmosphere Science
Computer Games Development* Physics
Ecology & Evolution

* These majors may only be taken in conjunction with a major in Computer Science.

Note: Acceptance into the Science Faculty does not guarantee acceptance into your chosen major. Formal acceptance for specific majors only takes place at the start of the second year on registration for the second year level courses. A number of majors (currently Biochemistry, Genetics, Geology, Human Physiology and Microbiology) have limits on the number of students accepted into second year level courses. Selection criteria, based on academic performance in first year courses, are outlined to students during the first year of study. Students will be advised in their first year to take courses which could lead to several majors. Students are encouraged to consult timeously with the relevant Department or Student Adviser regarding possible restrictions.

FB7.7a The curriculum will generally include two majors chosen from the above list. A second major from another Faculty is permissible, providing rules FB7.1a-FB7.5a are adhered to.

Compulsory courses to be completed for each major:
Note: The compulsory courses listed below are the minimum which a student must complete for the major, in addition to those listed in FB7.3a. Courses deemed by the Faculty as equivalent can be substituted as appropriate (for example: MAM1005H+MAM1006H is deemed equivalent to MAM1000W; CEM1009H+CEM1010F is deemed equivalent to CEM1000W, etc).

APPLIED BIOLOGY (BIO01)
1000-level courses: BIO1000F, BIO1004S, CEM1000W, MAM1004F+STA1007S (or MAM1000W)
3000-level courses: BIO3013F, BIO3014S

APPLIED MATHEMATICS (MAM01)
1000-level courses: MAM1000W, MAM1043H, MAM1044H
2000-level courses: MAM2000W, MAM2046W
3000-level courses: MAM3040W

ARCHAEOLOGY (AGE01)
1000-level courses: GEO1009F (or EGS1004S), AGE1002S, MAM1004F+STA1000S (or MAM1000W)
3000-level courses: AGE3013H and at least one of AGE3011F and AGE3012S

ASTROPYHYSICS (AST02)
1000-level courses: PHY1004W, MAM1000W
3000-level courses: AST3002F, AST3003S

BIOCHEMISTRY (MCB01)
(This major has limits on the number of students accepted into second year level courses)
1000-level courses: BIO1000F, CEM1000W, MAM1004F (or MAM1000W), STA1007S
2000-level courses: MCB2014F, MCB2015S
3000-level courses: MCB3020F, MCB3024S and MCB3012Z
BUSINESS COMPUTING* (CSC02)
1000-level courses: CSC1015F, CSC1016S, MAM1000W
2000-level courses: INF2009F, INF2011S
3000-level courses: INF3011F, INF3012S, INF3014F
*Must be taken concurrently with a Computer Science major

CHEMISTRY (CEM01)
1000-level courses: CEM1000W, MAM1000W, PHY1031F, PHY1032S
2000-level courses: CEM2007F, CEM2008S
3000-level courses: CEM3005W

COMPUTER ENGINEERING* (CSC03)
1000-level courses: CSC1015F, CSC1016S, MAM1000W
2000-level courses: EEE2040F, EEE2026S
3000-level courses: EEE3078W
*Must be taken concurrently with a Computer Science major

COMPUTER GAMES DEVELOPMENT* (CSC07)
1000-level courses: CSC1015F, CSC1016S, MAM1000W
2000-level courses: INF2009F, CSC2003S
3000-level courses: CSC3020H, CSC3022H
*Must be taken concurrently with a Computer Science major

COMPUTER SCIENCE (CSC05)
1000-level courses: CSC1015F or CSC1018F, CSC1016S, MAM1000W
3000-level courses: CSC3002F, CSC3003S

ECOLOGY & EVOLUTION (BIO04)
1000-level courses: BIO1000F, BIO1004S, CEM1000W, MAM1004F+STA1007S (or MAM1000W)
3000-level courses: BIO3015F, BIO3016S

ENVIRONMENTAL & GEOGRAPHICAL SCIENCE (EGS02)
1000-level courses: GEO1009F (or EGS1004S), EGS1003S, MAM1004F (or MAM1000W), STA1007/1000S
2000-level courses: EGS2013F, EGS2014S
3000-level courses: Two of EGS3012S, EGS3020F, EGS3021F, EGS3022S

GENETICS (MCB04)
(This major has limits on the number of students accepted into second year level courses)
1000-level courses: BIO1000F; BIO1004S, CEM1000W, MAM1004F (or MAM1000W), STA1007S
2000-level courses: MCB2018F, MCB2019S
3000-level courses: MCB3019F, MCB3023S, MCB3012Z

GEOLOGY (GEO02)
(This major has limits on the number of students accepted into second year level courses)
1000-level courses: GEO1009F (or EGS1004S), GEO1006S, CEM1000W, MAM1004F+STA1000S (or MAM1000W)
3000-level courses: GEO3005F, GEO3001S, GEO2005X*
* field work half-course to be taken over second and third years of study
HUMAN PHYSIOLOGY (HUB17)
(This major has limits on the number of students accepted into second year level courses)
1000-level courses: CEM1000W, BIO1000F, BIO1004S, MAM1004F+STA1007S (or MAM1000W), 1000-level Physics highly recommended
2000-level courses: HUB2019F, HUB2021S, one full senior Science course
3000-level courses: HUB3006F, HUB3007S

MATHEMATICAL STATISTICS (STA02)
1000-level courses: MAM1000W, STA1006S
2000-level courses: STA2004F, STA2005S
3000-level courses: STA3041F, STA3043S

MARINE BIOLOGY (BIO05)
1000-level courses: BIO1000F, BIO1004S, CEM1000W, MAM1004F, STA1007S
3000-level courses: BIO3002F/S, BIO3017S

MATHEMATICS (MAM02)
1000-level courses: MAM1000W, MAM1019H
2000-level courses: MAM2000W
3000-level courses: MAM3000W

MICROBIOLOGY (MCB05)
(This major has limits on the number of students accepted into second year level courses)
1000-level courses: BIO1000F, CEM1000W, MAM1004F (or MAM1000W), STA1007S
2000-level courses: MCB2016F, MCB2017S
3000-level courses: MCB3021F, MCB3022S or MCB3024S, MCB3012Z

OCEAN & ATMOSPHERE SCIENCE (SEA03)
1000-level courses: GEO1009F, MAM1004F+STA1007S/1000S (or MAM1000W), PHY1031F or PHY1032S
2000-level courses: SEA2004F, EGS3012S *
3000-level courses: SEA3003F, SEA3004S
* Students registered in 2nd year in 2011 only will be permitted to count BIO2013S together with SEA2004F as the second year requirements for this major

PHYSICS (PHY01)
1000-level courses: PHY1004W, MAM1000W
3000-level courses: PHY3021F, PHY3022S

NOTE: The Faculty of Science reserves the right to change the details of the curricula for all majors and reserves the right to change or add to majors or to discontinue any major offered in the Faculty of Science, depending on circumstances and demand.
Distinction

The Bachelor of Science (BSc) degree may be awarded with distinction, and with distinction in one or more majors. See Rules FB8.1 and FB8.2 for distinctions in specialisations.

FB8.1a **Rules for distinction in a major (from 2012)**

(a) In order to obtain a distinction in a major, a student will be required to obtain first class passes in the courses listed below, except as specified in (b) and (c):

- **Applied Biology:** BIO2010F; any one of BIO2011S, BIO2012S, BIO2013S, plus BIO3013F, BIO3014S
- **Applied Mathematics:** MAM2046W (or two of MAM2047H, MAM2048H and MAM2043S) and MAM3040W
- **Archaeology:** Four senior half-courses in Archaeology
- **Astrophysics:** AST2002S, AST3002F, AST3003S
- **Biochemistry:** MCB2014F, MCB2015S, MCB3020F, MCB3024S
- **Business Computing:** INF3011F, INF3012S, INF3014F
- **Ecology & Evolution:** BIO2010F; any one of BIO2011S, BIO2012S, BIO2013S, plus BIO3015F, BIO3016S
- **Chemistry:** CEM2007F, CEM2008S, CEM3005W
- **Computer Engineering:** EEE2040F, EEE2026S, EEE3078W
- **Computer Games Development:** CSC2003S, INF2009F, CSC3020H, CSC3022H
- **Computer Science:** CSC2001F, CSC2002S, CSC3002F, CSC3003S
- **Environmental & Geographical Science:** EGS2013F and EGS2014S; any two of EGS3012S, EGS3020F, EGS3021F, EGS3022S
- **Genetics:** MCB2018F, MCB2019S, MCB3019F, MCB3023S
- **Geology:** GEO2001F, GEO2004S, GEO3005F, GEO3001S
- **Human Physiology:** HUB2019F, HUB2021S, HUB3006F, HUB3007S
- **Marine Biology:** SEA2004F, BIO2013F/S, BIO3002F, BIO3017S
- **Mathematics:** MAM2000W, MAM3000W
- **Mathematical Statistics:** STA2004F, STA2005S, STA3041F, STA3043S
- **Microbiology:** MCB2016F, MCB2017S, MCB3021F, MCB3022S or MCB3024S
- **Ocean & Atmosphere Science:** SEA2004F, BIO2013S (2012 graduates only), SEA3003F, SEA3004S
- **Physics:** PHY2014F, PHY2015S, PHY3021F, PHY3022S

(b) If a student obtains a first and an upper second class in two half-courses at second-year level listed in (a) above, the marks obtained in these half-courses shall be averaged. If this average is 75% or more the student will be regarded, for this purpose only, as having obtained first class passes in both these half-courses. The
same applies at the third-year level.

(c) In special cases the Board of the Faculty may replace a first class in one of the courses listed above by a first class pass in a cognate course (which has not been used for distinction in that cognate subject).

FB8.2a **Rules for distinction in the BSc degree as a whole**
To obtain a distinction in the degree as a whole, a student must
(a) obtain a distinction in at least one major (rule FB8.1a); and
(b) obtain first class passes in at least six courses (or the equivalent in half-courses), including at least four senior courses or obtain an aggregate of at least 75% for each of four first-year courses, three second-year courses and two third-year courses obtained in a minimum period. (The minimum period will usually be three years).

In applying the rules above, only passes at the first attempt are taken into account, i.e. ordinary examinations in June or December and/or deferred examinations will be taken into account, but not any supplementary examinations.

Curriculum rules for SB006, SB012, SB013 and SB014 (Degree Programmes) (for students who registered for the first time before 2010)

All bachelor degree curricula in the Faculty of Science include courses carefully selected to provide adequate foundation for and depth in one or more areas of specialisation, as well as providing generic skills to function as a graduate. All curricula therefore require students to achieve skills in numeracy, computer literacy, problem solving and communication in the context of their specialisations.

Curricula are organised and managed in Programmes which bring together areas of specialisation which are in similar fields of scientific enquiry or have similar foundational requirements.

Students must choose one or more area of specialisation, with curricula including compulsory courses as outlined under rules FB7.6 and FB7.7 below. The general rules governing BSc curricula are rules FB7.1 to FB7.5 which stipulate the minimum number of courses required, and the range of choices possible.

All curricula can lead to postgraduate study.

Total number of courses

FB7.1 The curriculum shall include the equivalent of at least nine full-year courses of which at least six full-year courses must be Science courses. With the permission of the Programme Convener, a maximum of three full-year courses or the equivalent may be taken from other Faculties.

Exceptions to this rule have been approved for the specialisations Actuarial Science and Business Computing, where the curriculum consists of five and five and a half (or equivalent) Science courses respectively.

Number of senior courses

FB7.2 The curriculum shall include the equivalent of at least four full-year senior courses or the equivalent, of which at least two shall be Science courses.

Mathematics

FB7.3 The curriculum shall include at least a Science half-course in Mathematics.
Elective courses
FB7.4 Any course in the Faculty of Science may be taken as an elective. Courses from other Faculties may also be taken as electives, but subject to the following constraints and approval by a Student Adviser, Programme Convener or Deputy Dean:

- Only courses with an HEQF credit value of 18 or more will be counted (a first year half course in the Science Faculty has an HEQF credit value of 18).
- If the equivalent of two or less full Science courses (maximum 72 level 6 HEQF credits) are replaced by courses from another Faculty, then any courses not specifically excluded by Science Faculty rules can be chosen.
- If more than two full year Science courses are replaced with electives from another Faculty, then the further electives must form part of a hierarchical sequence linked to those already completed.
- Courses taught by the Faculty of Science for other Faculties are not available for students registered in Science. However, students transferring into Science from other Faculties may be able to count such courses towards their Science curriculum, with the credit weighting, equivalence and conditions established by the Departments concerned.

FB7.5 In order to satisfy the requirement of competencies including numeracy, computer literacy, problem solving and communication or as a measure of integrated assessment, the Programme Convener may add one or more compulsory courses to a curriculum.

Specialisation(s)
FB7.6 The curriculum shall include a specialisation from the following list, grouped according to programmes:

Programme in Information Technology (IT/SB006)
Applied Computing; Bioinformatics; Business Computing; Computer Engineering; Computer Games Design; Computer Science.

Programme in Biology, Earth & Environmental Sciences (BEES/SB012)
Archaeology; Atmospheric Science; Ecology; Environmental & Geographical Science; Biodiversity & Evolutionary Biology; Geology; Marine Biology; Ocean & Atmosphere Science; Zoology; Geoinformatics (Geoinformatics must be accompanied by a Science specialisation.)

Programme in Chemical, Molecular & Cellular Sciences (CMCS/SB013)
Biochemistry; Chemistry; Genetics; Human Bioscience; Microbiology; Physiology (Physiology must be accompanied by a Science specialisation.)

Programme in Mathematical, Physical & Statistical Sciences (MPSS/SB014)
Actuarial Science; Applied Mathematics; Astrophysics; Mathematics; Physics; Statistics.

FB7.7 The curriculum may include more than one specialisations which may be chosen from any programme in the Faculty of Science. If the curriculum includes specialisations from two or more programmes in the Faculty of Science, the student must indicate a primary specialisation and therefore in which programme they wish to be registered. A third-year half course may be counted towards more than one specialisation. However, the curriculum must contain at least two distinct third-year semester courses recognised by the Faculty for each specialisation.
Compulsory courses to be completed for each specialisation:

Note: The compulsory courses listed below are the minimum which a student must complete for the specialisation. Certain courses may supersede the courses specified eg. MAM2000W may supersede MAM2001H.

Programme in Information Technology

Specialisation in APPLIED COMPUTING (CSC01)

1000-level courses: CSC1015F or CSC1018F, CSC1016S, MAM1000W (or equivalent)

2000-level courses: CSC2001F, CSC2002S

3000-level courses: CSC3002F, CSC3003S and a full 3000-level course in another discipline

Note: It is possible to specialise in Geoinformatics by including the following courses: CSC1015F or CSC1018F, CSC1016S, MAM1000W, CSC2001F, CSC2002S, CSC3002F, CSC3003S, APG2015F, APG2018X, APG3011S and a half-course equivalent selected from APG2014S, APG2026F, APG3012S, APG4011F+APG4010X. MAM2004H/2000W with module 2LA is required for APG2014S. If APG3012S is taken in the second year then APG4011F+APG4010X can be taken in the third year. If APG2014S or APG2026F is taken in the second year, then APG3012S must be taken in the third year.

It is possible to major in Psychology only if MAM1043H and STA1006S are taken in first year, i.e. only in the case of the fully-prescribed curriculum comprising: CSC1015F or CSC1018F, CSC1016S, MAM1000W, PSY1001W, MAM1043H, STA1006S, CSC2002S, three second-year semester courses in Psychology, CSC3002F, CSC3003S, three third-year semester courses in Psychology (PSY3007F is compulsory.)

Specialisation in BIOINFORMATICS (MCB02)

1000-level courses: CEM1000W, CSC1015F or CSC1018F, CSC1016S, MAM1000W (or equivalent), and STA1006/STA1000/STA1007

3000-level courses: CSC3002F, CSC3003S, MCB3012Z and two additional 3000-level MCB courses

Note: MAM2004H and STA2004F are strongly recommended.

Specialisation in BUSINESS COMPUTING (CSC02)

1000-level courses: CSC1015F or CSC1018F, CSC1016S, MAM1000W (or equivalent), STA1006/1000S, and either BUS1004W or an approved full-course equivalent selected from ACC1006F, ACC1011S, BUS1005F, ECO1010F, ECO1011S, ECO1006F

3000-level courses: CSC3002F, CSC3003S, INF3011F, INF3012S

Specialisation in COMPUTER ENGINEERING (CSC03)

1000-level courses: CSC1015F or CSC1018F, CSC1016S, MAM1000W (or equivalent), (PHY1031F + PHY1032S) or equivalent

3000-level courses: CSC3002F, CSC3003S and at least a half course equivalent selected from EEE3067W (EEE3064W + EEE4096S), EEE3077W (EEE3064W + EEE3074W), EEE3078W (EEE3064W + EEE3074W + EEE4096S) or EEE3079W (EEE3074W + EEE4096S).

Note: BUS1004W is strongly recommended
Specialisation in COMPUTER GAMES DESIGN (CSC04)
1000-level courses: CSC1015F or CSC1018F, CSC1016F, MAM1000W (or equivalent), MAM1043H
3000-level courses: CSC3002F, CSC3003S, CSC3020H
Note: MAM1044H is strongly recommended.

Specialisation in COMPUTER SCIENCE (CSC05)
1000-level courses: CSC1015F or CSC1018F, CSC1016S, MAM1000W (or equivalent), and one of MAM1043H or MAM1044H or STA1006S
3000-level courses: CSC3002F, CSC3003S
Note: BUS1004W is strongly recommended

Note: It is possible for IT programme students to take "language" courses (such as English) as part of their degree.

Programme in Biology, Earth & Environmental Sciences

Specialisation in ARCHAEOLOGY (AGE01)
1000-level courses: GEO1009F (or EGS1004S), MAM1004F + STA1000S (or equivalent) or MAM1000W
3000-level courses: AGE3013H and at least one of AGE3011F and AGE3012S

Specialisation in ATMOSPHERIC SCIENCE (SEA02)
1000-level courses: GEO1009F, MAM1000W (or equivalent), PHY1031F + PHY1032S (or equivalent), CEM1000W (or equivalent)
2000-level courses: EGS2013F (or EGS2012S), SEA2003F, SEA2002S, MAM2052F/S
3000-level courses: EGS3012S, EGS3021F (or EGS3013F) [or EGS3020F (or EGS3014S) if no EGS2013F (or EGS2010F)], SEA3002F

Specialisation in BIODIVERSITY & EVOLUTIONARY BIOLOGY (BIO02)
1000-level courses: BIO1000F, BIO1004S, MAM1004F + STA1007S (or equivalent), CEM1000W
3000-level courses: BIO3010F, BIO3011S

Specialisation in ECOLOGY (BIO03)
1000-level courses: BIO1000F, BIO1004S, MAM1004F + STA1007S (or equivalent), CEM1000W
3000-level courses: BIO3006F, BIO3011S or BIO3003S

Specialisation in ENVIRONMENTAL & GEOGRAPHICAL SCIENCE (EGS02)
1000-level courses: GEO1009F (or EGS1004S), EGS1003S (or EGS1002S), MAM1004F + STA1000S (or equivalent) or MAM1000W
3000-level courses: Two of EGS3020F (or EGS3014S), EGS3021F (or EGS3013F), EGS3012S, EGS3022S (or EGS3015S)
Specialisation in GEOLOGY (GEO02)
1000-level courses: GEO1009F (or EGS1004S), MAM1004F + STA1000S (or equivalent) or MAM1000W, GEO1006S, CEM1000W (or equivalent)
3000-level courses: GEO3005F, GEO3001S, GEO2005X*
* field work course to be taken over second and third years of study

Specialisation in MARINE BIOLOGY (BIO05)
1000-level courses: BIO1000F, BIO1004S, MAM1004F + STA1007S (or equivalent), GEO1009F, CEM1000W
2000-level courses: BIO2004F, SEA2003F, BIO2009S or BIO2006F
3000-level courses: BIO3002S, and one of BIO3012F, SEA3002F, BIO3011S

Specialisation in OCEAN & ATMOSPHERE SCIENCE (SEA03)
1000-level courses: GEO1009F (or EGS1004S), MAM1004F + STA1000S (or equivalent) or MAM1000W, PHY1031F (or equivalent)
2000-level courses: SEA2003F, SEA2002S
3000-level courses: SEA3002F, EGS3012S

Specialisation in GEOINFORMATICS (APG11)
Note: This specialisation must be taken together with a Science specialisation.
1000-level courses: CSC1015F or APG1015S, APG1016F, MAM1004F + STA1000S (or equivalent) or MAM1000W, PHY1031F (or equivalent)
2000-level courses: APG2015F, APG2018X plus APG2014S* or APG2026F or APG3012S** plus any other 2000-level courses towards a Science specialisation
3000-level courses: APG3011F plus APG2014S* or APG2026F or APG3012S** or APG4011F+APG4010X plus any other 3000-level courses towards a Science specialisation.
Note:
* MAM1000W and either MAM2000W or MAM2004H (module 2LA plus any other module) are required for APG2014S.
** If APG3012S is taken in the second year then APG4011F+APG4010X can be taken in the third year. If APG2014S or APG2026F is taken in the second year, then APG3012S must be taken in the third year.

Specialisation in ZOOLOGY (BIO06)
1000-level courses: BIO1000F, BIO1004S, MAM1004F + STA1007S (or equivalent), CEM1000W
3000-level courses: BIO3012F and BIO3010F or BIO3003S

Programme in Chemical, Molecular & Cellular Sciences
Specialisation in BIOCHEMISTRY (MCB01)
1000-level courses: CEM1000W (or equivalent), MAM1000W (or MAM1004F/H or MAM1005H + STA1007S or STA1000S). Highly recommended: BIO1000F and 1000-level Physics
3000-level courses: MCB3020F/S, MCB3019F (highly recommended) or MCB3022S or MCB3024S, MCB3012Z
Specialisation in CHEMISTRY (CEM01)
1000-level courses: CEM1000W (or equivalent), MAM1000W (or equivalent), PHY1031F, PHY1032S (or equivalent)
2000-level courses: CEM2007F, CEM2008S.
3000-level courses: CEM3005W
Note: Completion of MAM2052F/S is highly recommended.

Specialisation in GENETICS (MCB04)
1000-level courses: CEM1000W (or equivalent), MAM1000W (or MAM1004F/H or MAM1005H + STA1007S or STA1000S), BIO1000F, BIO1004S
2000-level courses: MCB2018F, MCB2019S
3000-level courses: MCB3019F, MCB3023S or MCB3024S, MCB3012Z.

Specialisation in HUMAN BIOSCIENCE (HUB18)
1000-level courses: CEM1000W, MAM1000W (or MAM1004F/H or MAM1005H + STA1007S or STA1000S), BIO1000F, BIO1004S, PSY1001W
3000-level courses: HUB3006F, HUB3007S, PSY3007F/S, two of PSY3008F, PSY3009F, PSY3004S, PSY3005S or PSY3010S

Specialisation in MICROBIOLOGY (MCB05)
1000-level courses: CEM1000W (or equivalent), MAM1000W (or MAM1004F/H or MAM1005H + STA1007S or STA1000S), BIO1000F
3000-level courses: MCB3021F, MCB3019F or MCB3022S or MCB3024S, MCB3012Z.

Specialisation in PHYSIOLOGY (HUB13)
Note: This specialisation must be taken together with a Science specialisation.
1000-level courses: CEM1000W, MAM1000W (or MAM1004F/H or MAM1005H + STA1007S or STA1000S), BIO1000F, BIO1004S. Highly recommended: 1000-level Physics
2000-level courses: HUB2019F, HUB2021S. Any SB013 Science full course or equivalent
3000-level courses: HUB3006F, HUB3007S. Any SB013 Science full course or equivalent.

Programme in Mathematical, Physical & Statistical Sciences
Specialisation in ACTUARIAL SCIENCE (BUS01)
1000-level courses*: MAM1000W, ECO1010F, ECO1011S, ACC1006F, ACC1011S, STA1006S, BUS1003H
3000-level courses: BUS3018F, BUS3024S, STA3041F, STA3043S, STA3045F

* It is possible for Actuarial Science students to take CSC1015F in the first semester of their first-year in addition to the courses listed above.
** Entry to BUS2016H (effectively entry to 2nd-year) is governed by the continuation criteria set out in the Commerce Handbook 2010.
*** The course BUS2019S is optional, but credit for all three of the courses ACC1006F, ACC1011S and BUS2019S is needed to be eligible for exemption from the CT2 examination of the Institute (and Faculty) of Actuaries. Normally BUS1010F/S is a
prerequisite and ECO2003F and ECO2004S are co-requisites for BUS2019S, but these requirements will be waived for Actuarial Science students.

Please note that students who change from the specialisation in Actuarial Science to another specialisation will need to satisfy the requirements of that specialisation; in particular, their curriculum should include at least six full year Science courses.

Specialisation in APPLIED MATHEMATICS (MAM01)
1000-level courses: MAM1000W (or equivalent), MAM1043H, MAM1044H, STA1006S
2000-level courses: MAM2000W, MAM2046W
3000-level courses: MAM3040W

Specialisation in ASTROPHYSICS (AST02)
1000-level courses: PHY1004W, MAM1000W (or equivalent), MAM1043H, MAM1044H or STA1006S, AST1000F highly recommended
3000-level courses: AST3002F, AST3003S, PHY3021F, PHY3022S or MAM3041H
Note: It is possible to focus on the area of Astro-Engineering by including the following Engineering courses (or their equivalent) EEE2035F, EEE2039W, EEE3086F, EEE3077W.

Specialisation in MATHEMATICS (MAM02)
1000-level courses: MAM1000W (or equivalent), MAM1043H, STA1006S
2000-level courses: MAM2000W
3000-level courses: MAM3000W

Specialisation in PHYSICS (PHY01)
1000-level courses: PHY1004W, MAM1000W (or equivalent), MAM1043H, MAM1044H or STA1006S
3000-level courses: PHY3021F, PHY3022S

Specialisation in STATISTICS (STA04)
1000-level courses: MAM1000W (or equivalent), MAM1043H or CSC1015F, STA1006S
2000-level courses: STA2004F, STA2005S
3000-level courses: STA3041F, STA3043S

Distinction

The Bachelor of Science (BSc) degree may be awarded with distinction, and with distinction in one or more specialisation.

FB8.1 Rules for distinction in a specialisation

(a) In order to obtain a distinction in a specialisation, a student will be required to obtain first class passes in the courses listed below, except as specified in (b) and (c):

Actuarial Science:

Applied Computing:
Two of CSC2001F, CSC2002S, CSC2003S; and two of CSC3002F, CSC3003S, CSC3020H
<table>
<thead>
<tr>
<th>Degree Programme</th>
<th>Required Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Mathematics:</td>
<td>MAM2046W (or two of MAM2047H, MAM2048H and MAM2043S) and MAM3040W</td>
</tr>
<tr>
<td>Archaeology:</td>
<td>Four senior half-courses in Archaeology</td>
</tr>
<tr>
<td>Astrophysics:</td>
<td>AST2002S, AST3002F, AST3003S</td>
</tr>
<tr>
<td>Atmospheric Science:</td>
<td>Two of EGS2012S, SEA2003F (or SEA2000F), SEA2002S and two of EGS3012S, EGS3013F, SEA3002F</td>
</tr>
<tr>
<td>Biochemistry:</td>
<td>MCB2014F, MCB2015S, MCB3020F, MCB3024S or MCB3022S or MCB3019</td>
</tr>
<tr>
<td>Biodiversity & Evolutionary Biology:</td>
<td>Two of BIO2008S, BIO2006F, BIO2009S, BIO3010F, BIO3011S</td>
</tr>
<tr>
<td>Bioinformatics:</td>
<td>Two senior half-courses coded CSC and two senior half-courses coded MCB</td>
</tr>
<tr>
<td>Chemistry:</td>
<td>CEM2007F, CEM2008S, CEM3005W</td>
</tr>
<tr>
<td>Computer Engineering:</td>
<td>Two of CSC2001F, CSC2002S, CSC2003S; and two of CSC3002F, CSC3003S, CSC3020H</td>
</tr>
<tr>
<td>Computer Games Design:</td>
<td>Two of CSC2001F, CSC2002S, CSC2003S; and two of CSC3002F, CSC3003S, CSC3020H</td>
</tr>
<tr>
<td>Computer Science:</td>
<td>Two of CSC2001F, CSC2002S, CSC2003S; and two of CSC3002F, CSC3003S, CSC3020H</td>
</tr>
<tr>
<td>Ecology:</td>
<td>Two of BIO2004F, BIO2003S, BIO2006S, BIO2009; BIO3006F plus one of BIO3011S or BIO3003S</td>
</tr>
<tr>
<td>Environmental & Geographical Science:</td>
<td>EGS2013F and EGS2014S (or two of EGS2010F, EGS2011S, EGS2012S); Two of EGS3012S, EGS3020F (or EGS3014S), EGS3021F (or EGS3013F), EGS3022S (or EGS3015S)</td>
</tr>
<tr>
<td>Genetics:</td>
<td>MCB2018F, MCB2019S, MCB3019F, MCB3023S or MCB3024S</td>
</tr>
<tr>
<td>Geoinformatics:</td>
<td>APG1016F, APG2015F, APG3011S, APG3012S and APG4011F+APG4010X</td>
</tr>
<tr>
<td>Geology:</td>
<td>GEO2001F, GEO2004S, GEO3005F and GEO3001S</td>
</tr>
<tr>
<td>Mathematics:</td>
<td>MAM2000W and MAM3000W</td>
</tr>
<tr>
<td>Microbiology:</td>
<td>MCB2016F, MCB2017S, MCB3021F, MCB3022S or MCB3024S or MCB3019</td>
</tr>
</tbody>
</table>
Ocean & Atmosphere Science:
- SEA2003F (or SEA2000F), SEA2002S, SEA3002F and EGS3012S
- PHY2014F, PHY2015S, PHY3021F, PHY3022S
- HUB2019F, HUB2021S, HUB3006F, HUB3007S
- STA2004F, STA2005S, STA3041F, STA3043S
- Two of BIO2009S, BIO2003S, BIO2008F, BIO2004F; BIO3012F plus BIO3010F or BIO3003S

(b) If a student obtains a first and an upper second class in two half-courses at second-year level listed in (a) above, the marks obtained in these half-courses shall be averaged. If this average is 75% or more the student will be regarded, for this purpose only, as having obtained first class passes in both these half-courses. The same applies at the third-year level.

(c) In special cases the Board of the Faculty may replace a first class in one of the courses listed above by a first class pass in a cognate course (which has not been used for distinction in that cognate subject).

FB8.2 Rules for distinction in the BSc degree as a whole
To obtain a distinction in the degree as a whole, a student must
(a) obtain a distinction in at least one specialisation (rule FB8.1); and
(b) obtain first class passes in at least six courses (or the equivalent in half-courses), including at least four senior courses or obtain an aggregate of at least 75% for each of four first-year courses, three second-year courses and two third-year courses obtained in a minimum period. (The minimum period will usually be three years).

In applying the rules above, only passes at the first attempt are taken into account, i.e. ordinary examinations in June or December and/or deferred examinations will be taken into account, but not any supplementary examinations.

Curriculum rules for the General Entry Programme for Science
The General Entry Programme for Science (GEPS) provides students with the opportunity to establish a sound educational foundation for further university studies. GEPS is run in association with the Academic Development Programme (ADP). GEPS comprises a combination of intensive first-year half-courses in Mathematics, Physics, Chemistry, Computer Science and Earth Systems Science. Admission onto GEPS is restricted and is offered to applicants at the Dean's discretion.

All majors offered in the Faculty of Science are accessible via GEPS, and students will register for one or more of these majors after their first year of study.

A typical curriculum for the first year on the General Entry Programme for Science will consist of four (intensive) half-courses completed over the full year (i.e. "H" courses).

FB9.1 The curriculum for the GEPS programme of study is subject to the general rules for the Bachelor of Science degree (FB7.1a - FB7.5a inclusive) and subject to individual requirements, e.g. course prerequisites as specified by each Department.

FB9.2 The standard curriculum for the first year of the GEPS programme is as follows:
- MAM1005H and three from CEM1009H, CSC1010H, AGE1003H or PHY1023H.

FB9.3 Except with the approval of the Dean a student is constrained to the courses recorded in the curricula for the GEPS programme of study.
Rules for the degree of Bachelor of Science (Honours) (BSc (Hons))
(To be read with General Rules on Honours Degrees (G and GH) in Book 3 of this series).

Admission
FH1 A person shall not be admitted as a candidate for the degree unless he or she
(a) is a graduate of the Faculty of Science who has been awarded a bachelors degree in
the discipline in which he or she proposes to proceed to Honours, or has
subsequently met the conditions which would have enabled him or her to be
awarded the degree in the Faculty with that subject as a discipline; or
(b) is a graduate of any other faculty in the University who has completed courses and
fulfilled conditions accepted by Senate as equivalent to those required under (a)
above; or
(c) is a graduate of any other university recognised by Senate for such purposes who
has completed courses and has fulfilled conditions accepted by Senate as
equivalent to those required under (a) above.

Duration
FH2.1 Subject to the provisions of rule GH3 the BSc (Hons) is offered over a period of not less
than one academic year. Normally, candidates are required to complete the programme
within one academic year.

FH2.2 In exceptional circumstances, where an application for the BSc (Hons) degree does not
have an adequate undergraduate academic background, he/she shall, with permission of
the Head of Department, register as an occasional student to complete preparatory
courses. On completion of such courses, he/she will be permitted to enrol on the Honours
course.
*NOTE: Students following rule FH2.2 are required to apply for admission to the Honours
programme for the following year.*

FH2.3 In exceptional circumstances, the Senate may admit a suitably qualified student as a part-
time candidate for the Honours degree. Any such candidate shall be required to complete
the programme within two academic years.

Subjects
FH3 The degree may be conferred in any one of the following subjects:
- Applied Mathematics
- Archaeology
- Archaeology & Environmental Science
- Astrophysics & Space Science
- Atmospheric Science
- Botany
- Chemistry
- Computer Science
- Environmental & Geographical Science
- Geochemistry
- Geology
- Industrial Mathematics
- Information Technology
- Mathematical Statistics
- Mathematical & Theoretical Physics
- Mathematics
- Mathematics of Computer Science
- Molecular & Cell Biology
- Ocean & Atmosphere Science
- Physics
- Statistical Sciences for Actuaries
- Theoretical Physics
- Zoology

Restriction on registration
FH4 A student may not take any course(s) other than those prescribed by the Honours
programme for which he or she is registered.
Rules for the degree of Master of Philosophy/Science
(To be read with General Rules on Master Degrees (G and GM) in Book 3 of this series).

Master of Philosophy (MPhil)
The degree will normally be awarded for work on inter-faculty topics or where a student holds an undergraduate or honours degree other than in Science.

Admission
FM1 A person shall not be admitted as a candidate for the degree unless he or she
(a) is the holder of an honours degree or four year equivalent of the University or of any other university recognised by Senate for the purpose; or
(b) is a graduate of the University or of any other university recognised by Senate for the purpose who has shown by examination or publication or a record of appropriate training that he or she has reached the current level in the subject or discipline equivalent to an honours degree; or
(c) has in any other manner attained a level of competence which in the opinion of Senate is adequate for the purpose of admission to the degree.

Master of Science (MSc)

Admission
FM2 A person shall not be admitted as a candidate for the degree unless he or she is
(a) an honours graduate in the Faculty of Science, or a graduate of another faculty or another university who holds a degree recognized by the Senate as being equivalent to an honours degree in the Faculty of Science; or
(b) a graduate of the University, or of any other institution recognised by the Senate for the purpose, who has shown by examination or publication or a record of appropriate training, that he or she has reached a level in the subject or cognate subject equivalent to an honours degree in Science.

Guidelines for applicants
Prospective candidates should contact the Head of the Department most closely concerned with their research interests, or the member of the academic staff of the department with whom they would like to do a project. The Dean (through the Head) is responsible for the acceptance of the candidate, and appointment or approval of the supervisor(s). The candidate may be required, after consultation with the prospective supervisor(s) to draw up a project proposal. This may then be inspected by a departmental board or panel appointed by the Head, before the candidacy is submitted for the approval of the Head and the Dean.

Subjects
FM3.1 The degree may be conferred in any one of the following subjects:
Applied Marine Science
Applied Mathematics
Archaeology
Astronomy
Astrophysics & Space Science
Bioinformatics (MSc/MPhil)
Botany
Chemistry
Climate Change & Sustainable Development (MSc/MPhil)
Computer Science
Geology
Information Technology (MSc/MPhil)
Mathematical Statistics
Mathematics
Molecular & Cell Biology
Ocean & Atmosphere Science
Ocean & Climate Dynamics
Operational Research
Operational Research in Development
Physical Oceanography
Statistical Sciences
RULES FOR DEGREES / DEGREE PROGRAMMES 29

Conservation Biology Theoretical Physics
Environmental & Geographical Science Tertiary Chemistry Education
Environmental, Society & Sustainability Tertiary Physics Education
(MPhil) Zoology
Geochemistry

Award of the degree
FM4.1 The degree of MSc/MPhil may be conferred
(a) after acceptance by Faculty of a dissertation constituting a detailed report on a
research project performed under the guidance of an approved supervisor (Masters
by dissertation only); or
(b) after a programme of advanced formal training and supervised research, for which
a dissertation would be a partial requirement (Masters by coursework and
dissertation).

FM4.2 Supplementary examinations are not awarded to candidates for the degree of Master.

FM4.3 The degree may be awarded with distinction. In the case of a Masters by coursework and
dissertation, a distinction must be obtained in both components.

Registration and candidacy
FM5 Subject to the provisions of Rule FM7, a candidate for the degree shall register for not
less than one academic year. Except by permission of Senate, full-
time students are
required to complete the requirements for the degree within two years. In exercising its
discretion, Senate may take into account the nature of the research project undertaken.

Guidelines for candidates
After registration the candidate is expected to consult regularly with the supervisor(s). Prior to re-
registration, both the candidate and the supervisor(s) are expected to present brief written progress
reports to the Head of Department. These may be considered before the Head recommends re-
registration for the degree. In appropriate cases, the supervisor(s) and Head may propose to Faculty
that the candidate's registration be converted to a PhD. This should take place during the second year
of MSc registration.

The dissertation
FM6.1 The dissertation shall demonstrate the successful completion of a programme of training
in research methods, a thorough understanding of the scientific principles underlying the
research project and an appropriate acquaintance with the relevant literature. It shall be
clearly presented and conform to the standards laid down from time to time by the
department and the Faculty. (Refer to Faculty Postgraduate Information Handbook).

FM6.2 (a) The dissertation shall be accompanied by a written undertaking by the candidate,
empowering the University to reproduce for the purpose of research the whole or
any part of the dissertation.
(b) A publication may not, without the prior permission of the Senate, contain a
statement that the published material was, or is to be, submitted in fulfilment or
part fulfillment of a Masters degree.

FM6.3 A candidate required to submit a dissertation shall
(a) inform the Head of Department in writing of his or her intention to submit the
dissertation for examination within two weeks of the intended submission date.
(b) submit three copies (by dissertation only) or two copies (Masters by coursework
and dissertation) in temporary binding to the Dean by the third week in February
for graduation in June or the third week in August for graduation in December. A
further one unbound copy plus an electronic copy on a CD must be submitted once all necessary corrections and revisions to the dissertation have been made.

NOTE: (1) The letter of intention to submit should include the name of the supervisor(s) and the title of the dissertation. (2) Depending on the date of submission, certain fee rebates may apply. See Book 12, Student Fees, for details.

Guidelines for candidates
The dissertation will usually consist of a detailed report on the conduct of, and analysis of the results of, a research project performed under the close guidance of a suitably qualified supervisor or supervisors. It is not essential for the Masters degree that the dissertation constitute a distinct contribution to knowledge in the subject, nor that the research project(s) undertaken necessarily be original. The degree is usually regarded as a training course to equip the candidate with the skills necessary either for employment in a given field, or for further, independent research for the degree of PhD in the same or related subject area. The course of training provided, and the research project(s) undertaken, will usually be less rigorous, and require less independent thought, than would study for a PhD.

Length of Masters dissertation
A Masters dissertation, submitted in fulfilment of the degree, should not exceed 50 000 words (appendices excluded).

Part-time programme
FM7 On the recommendation of the Head of Department, the Senate may permit a candidate who is unable to complete the programme within the minimum period, to complete the programme part time over a period of at least two years or more.

NOTE: No reduction in fees is made for part-time Masters degree students.

Recognition of attendance at another institution
FM8 The Senate may accept, in lieu of, part or all of the required periods of attendance, periods of attendance at other approved laboratories or institutions with facilities for the purpose of the proposed study, provided that supervision of the candidate by an approved officer of the University is assured.

Rules for the degree of Doctor of Philosophy (PhD)
(Rules for the PhD degree may be found in Book 3, General Rules for Students.)

Admission
The entrance requirement to the PhD is a Masters degree, but it is sometimes possible to upgrade to a PhD after completing the first year of Masters research.

The thesis
Where a candidate intends to submit his or her thesis for examination in the hope of the award of the degree at either the June or December graduation ceremonies, he or she must inform the Doctoral Degrees Board Office in writing of his or her intention to do so by not later than 5 January or 21 June respectively; the final dates for receipt of theses by the Doctoral Degrees Board Office are 8 February or 16 August. The University does not, however, undertake to reach a decision on the award of the degree by any specific date.

Length of the PhD thesis
The Senate has approved a recommendation from the Doctoral Degrees Board that a doctoral thesis should not exceed 80 000 words (rule GP6.8; this excludes appendices and
illustrations). Any request to deviate from these limits must be discussed with the supervisor and forwarded with the supervisor's comments to the Dean for consideration and possible approval.

Rules for the degree of Doctor of Science

FD1 The degree of Doctor of Science is a senior degree, and is awarded for substantial and original contributions to knowledge in a field of scientific endeavour. Such contribution will normally be the result of work carried out and published over a period of years, and will be such as to have established the candidate's position as a leading authority in the field(s) in which he or she has worked. Candidates will ordinarily be senior scientists with a PhD, post-doctoral experience, and a track record of at least ten years as a leading researcher.

FD2 A Candidate for the degree must be a graduate of:
(a) the University (only in exceptional cases will candidates who do not have a PhD be considered); or
(b) a university recognised by the Senate for the purpose (only in exceptional cases will candidates who do not have a PhD be considered) who has or has had established research or teaching associations with the University.

FD3 A candidate for the degree of Doctor of Science
(a) must submit published work, which must constitute a substantial, original and important contribution to learning in some branch of science;
(b) may submit other published or unpublished work as collateral testimony of his or her fitness for the degree;
(c) must be registered for the degree for a minimum of two academic years and during the period of examination, whichever is the longer.

FD4 (a) The examination will consist primarily of an assessment of the work submitted by the candidate, but a candidate shall, if required by Senate, present him/herself for an oral examination on the subject of the work presented.
(b) No work will be accepted which has already been accepted by another university for the purpose of obtaining a degree.

FD5 A candidate must submit three copies of all publications he or she wishes to be assessed for examination or as collateral testimony. If, at the date of its presentation, any portion of the work submitted has not been published, or is not being published, in a manner satisfactory to the University, the candidate must grant the University in writing a free licence to reproduce the work in whole or in part for the purpose of research. The University may waive the right so granted if the candidate subsequently makes arrangements for publication in a manner satisfactory to the University.

NOTES
1. The DSc is the highest and most prestigious degree awarded in the Faculty of Science; it is of higher status than the Doctor of Philosophy (PhD) degree and is awarded very rarely. In these respects the DSc at UCT is based on the DSc tradition followed by many universities in the United Kingdom. (Some universities confer the DSc degree for a thesis on research done under supervision; such a DSc is the equivalent of a PhD. UCT does not.)
2. The DSc at UCT is awarded on the basis of published research work in a specific scientific field in which the supplicant has been active and productive for at least ten years.
3. Examiners for the DSc will be asked to consider whether the work submitted for the DSc to constitute a substantial, original and important contribution to learning in some branch of science in the sense that
4. (a) it is likely to be regarded as 'benchmark' research in the relevant field now and in years to come, and
(b) it demonstrates that the candidate has achieved a leadership role (internationally) in
that field of scientific research, and will be reminded that the emphasis in assessing the work of a DSc candidate must be on originality, substance and excellence.
DEPARTMENTS IN THE FACULTY

DEPARTMENT OF ARCHAEOLOGY

The Department is housed in the Beattie Building, 5 University Avenue
Telephone (021) 650-2353 Fax (021) 650-2352
The Departmental abbreviation for Archaeology is AGE.

Professor and Head of Department:
J C Sealy, MSc PhD Cape Town

Associate Professor:
R R Ackermann, MA Arizona PhD Washington

Senior Lecturers:
D R Braun, MA PhD Rutgers
S Chirikure, MA PhD UCL
S L Hall, MA Wits DPhil Stell

Lecturers:
R Sithaldeen, BSc (Hons) PhD Cape Town (CHED)
D D Stynder, MA PhD Cape Town

Senior Scholar:
J E Parkington, MA PhD Cantab

Emeritus Professor:
N J van der Merwe, MA PhD Yale

Emeritus Associate Professor:
A B Smith, PhD Berkeley

Principal Scientific Officer:
J L Lanham, BA (Hons) Cape Town

Senior Scientific Officer:
L Hutten, BSc (Hons) MSc Pretoria

Administrative Officer:
L J Cable

Laboratory Assistant:
D H Jacobs

Departmental Assistant:
E Britton

RESEARCH IN ARCHAEOLOGY

Research in Archaeology embraces a wide variety of topics, some of which are listed below. More detailed information can be obtained by writing to the Department of Archaeology. Some research programmes lie mainly in the areas of arts and humanities; others have closer affiliations with the natural sciences. Archaeological sites contain a rich record of the long-term history of peoples' interaction with the environment, and palaeoenvironmental research is one focus of activity within the department. Particular research interests include issues related to human evolution, the emergence of modern humans, and the history of hunter-gatherer, pastoralist and farming communities in southern Africa, as well as the archaeology of more recent colonial settlement.

The department houses and manages the University's light isotope mass spectrometers, and has a strong research programme in the area of light stable isotopes as environmental and dietary tracers. Short courses on the theory and practice of light isotope mass spectrometry are offered from time to time. The Archaeometry Laboratory is also equipped with a range of smaller items of equipment used in analytical studies of archaeological remains. Most, but not all, work in this area is focused on archaeological questions; other activities include surveys of selected modern environments to provide comparative data for studies of the past, and wildlife forensics.

There is also a laboratory for the study of archaeomaterials, with facilities for the preparation and
study of metallographic and other specimens. Identification and interpretation of biological residues from archaeological sites is routine, and the department houses comparative material for this purpose, including mammal, reptile and fish skeletons, marine mollusc shells, and botanical specimens. Larger reference collections are readily available in related University departments and allied institutions. Further information may be found in the Department's website at http://www.uct.ac.za/depts/age.

Undergraduate Courses

NOTE: Lectures are usually given four times a week, but the fifth day may also be used and should therefore be kept free.

First-Year Courses

AGE1002S AFRICA & WORLD ARCHAEOLOGY

18 HEQF credits at level 5

Course co-ordinator(s): Dr D Stynder

Entrance requirements: None

Course outline:

An overview of the human past from the perspective of Africa. The course will provide an introduction to human origins and the origin of the archaeological record in Africa, the expansion of the human population from Africa, a comparative perspective on hunter-gatherers, the development of farming and the origins of complex societies, and the contact between Africa, Asia and Europe in the colonial period.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Tutorials: One tutorial/practical per week, Friday, 5th period or as arranged.

DP requirements: Attendance and participation in tutorials; submission of written work.

Assessment: Essays and tests count 50%; one 3-hour examination in November counts 50%. A sub-minimum of 40% is required for the examination.

SAN1015F WORDS, DEEDS, BONES & THINGS

18 HEQF credits at level 5

Course co-ordinator(s): Associate Professor M Spiegel

Entrance requirements: None

Course outline:

How might one explain the beginnings of our species and diversity of human social, cultural and linguistic forms that have arisen as humans have developed into and now live as modern people? The course compares approaches taken by archaeologists, linguists and social-cultural anthropologists in their attempts to answer such questions. We delve into what lies behind the many ways people interact, communicate and use the material resources around them. Using examples from a wide variety of social, cultural, linguistic and ecological contexts, we address debates about the idea of human evolution, about the relation between nature and nurture and its links with concepts such as race, gender and kinship; and about the social-cultural underpinnings of language use and linguistic variations. A core theme is to understand and recognise the limitations of a cultural relativist approach. A core goal is to introduce students to critical academic skills that enable us to understand the bases on which new knowledge is developed and thereby to recognise how provisional knowledge is.

Lectures: Three lectures per week, times to be confirmed.

Tutorials: One tutorial per week, time to be arranged.

DP requirements: Attendance at tutorials and submission of all written work, plus class test.

Assessment: Assignments and class tests count 50%; one 2-hour examination in June counts 50%.
GEO1009F INTRODUCTION TO EARTH & ENVIRONMENTAL SCIENCES
See course details under the Department of Geological Sciences.

AGE1003H FOUNDATIONS OF BIOLOGY, EARTH & ENVIRONMENTAL SCIENCES
18 HEQF credits at level 5
A course for students on the General Entry Programme for Science (GEPS), providing a general introduction to the study of the earth and its living and non-living systems.
Course co-ordinator(s): Dr R Sithaldeen
Entrance requirements: This half course is taken by students on the General Entry for Programmes in Science, and is run over the whole year.
Course outline:
This introductory course in Earth System Science treats the earth as an integrated system, and seeks a deeper understanding of the physical, chemical, biological and human interactions which determine the past, current and future states of the earth. The course will provide the essential skills, including communication skills, necessary for students to continue in one or more of Biology, Earth and Environmental Sciences. Students will develop a basic understanding of the four primary Earth Systems (the earth, oceans, atmosphere and life), and how they affect, and interact with, one another. Particular focus will be the major effects and interactions of humans on our planet and its ecosystems. The aim is to provide a scientific understanding of the whole Earth System by describing how its component parts have evolved, how they function, and how they may be expected to continue to change in the future.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Practicals:</td>
<td>One practical or tutorial per week, Friday, 14h00-17h00.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment:</td>
<td>Class record (comprising tests, practicals and tutorials) counts 50%; one 2-hour paper written in November counts 50%. A sub-minimum of 40% is required for the examination.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second-Year Courses

AGE2011S HUMAN EVOLUTION
24 HEQF credits at level 6
Course co-ordinator(s): Associate Professor R R Ackermann
Entrance requirements: Any first-year Science course, or any first-year Humanities course from a related discipline such as Social Anthropology, Historical Studies, Sociology, etc or by permission of the Head of Department.
Course outline:
In AGE2011S we examine the record of primate and hominid evolution, showing how the traces of fossil skeletons and artefacts are interpreted in terms of human behaviour and evolutionary processes. We answer such questions as Why in Africa? Why a larger brain? Why bipedalism? Why make tools? and situate the study of human origins in its evolutionary context. The syllabus for AGE2011S includes practical sessions for the study of primate and human, fossil and recent skeletal material and the artefacts associated with early hominids.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Practicals:</td>
<td>One 2-hour practical per week at times to be arranged.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements:</td>
<td>Attendance at practicals and completion of assignments.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment:</td>
<td>Essays and tests count 50%; one 3-hour examination in October/November counts 50%. A sub-minimum of 40% is required for the examination.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AGE2012F SOUTHERN AFRICAN HUNTERS & HERDERS
24 HEQF credits at level 6
Course co-ordinator(s): Professor J C Sealy

Entrance requirements: Any first year Science course, or any first-year Humanities course from a related discipline such as Social Anthropology, Historical Studies, Sociology, etc or by permission of the Head of Department.

Course outline:
Humans have been hunter-gatherers for 99% of their evolutionary history, which means that our physical, psychological and social selves have been shaped by this way of life. Southern African Khoesan hunter-gatherers and herders have contributed significantly to our understanding of such societies. In this course, we focus on hunting and gathering as a way of life in Southern Africa from some 20 000 years ago to the twentieth century, concluding by considering the contemporary socio-political environment, in which many South Africans are (re-) connecting to a Khoesan identity. The course will include coverage of rock art and its significance, as well as other material culture, biology, linguistics and economic and environmental issues.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Practicals:</td>
<td>One 2-hour practical per week, at times to be arranged.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DP requirements: Attendance at practicals, completion of assignments and participation in one-day field trip.

Assessment: Practical hand-ins, essays and tests count 50%; one 3-hour examination in June counts 50%. A sub-minimum of 40% is required for the examination.

Third-Year Courses

AGE3006H DIRECTED READING & RESEARCH
36 HEQF credits at level 7

Entrance requirements: For students specialising in Archaeology, with permission of the Head of Department.

Course outline:
A flexible intensive study course in a specific area customised to the needs of individual students.

Lectures: By arrangement

DP requirements: Completion of assignments.

Assessment: Essays and tests count 20%; a long paper counts 40%; one 3-hour examination in November counts 40%.

AGE3011F ROOTS OF BLACK IDENTITY
36 HEQF credits at level 7

Course co-ordinator(s): Dr S Chirikure

Entrance requirements: AGE2011S or AGE2012F, or by permission of the Head of Department.

Course outline:
In AGE3011F we explore the history of southern Africa's people over the past 2000 years. Why are southern African populations so diverse? What lies behind the linguistic map of modern South Africa? What are the links between human biology, culture and language? We use the archaeological record of artefacts, settlement systems, food waste, environmental contexts and human skeletons to look at population movement, assimilation, conflict, co-operation and domination. We explain the origins of current demographic patterns, problematise the notion of 'settler' and explore the rich and diverse heritage of the making of South Africa.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Practicals: One 2-hour practical per week, at times to be arranged.
DP requirements: Attendance at practicals and completion of assignments.
Assessment: Essays and tests count 50%; one 3-hour examination in June counts 50%. A sub-minimum of 40% is required for the examination.

AGE3012S GLOBAL INTERACTION & THE TRANSFORMATION OF SOUTH AFRICAN SOCIETY
36 HEQF credits at level 7
Course co-ordinator(s): Dr S L Hall
Entrance requirements: AGE2011S or AGE2012F, or by permission of the Head of Department.
Course outline:
Over the last thousand years, trade, population movements and exploratory settlement led to massive impacts on indigenous economies in southern Africa. In AGE3012S we look at these transformations from both foreign and local viewpoints. The archaeological record of Indian and Atlantic Ocean expansions record events of great significance and drama, including the process of colonization, slavery, genocide and eventually apartheid. Material culture, historic written records and excavated artefacts all inform our understanding of these events, many of them the major determinants of current conflicts and differences. We trace the history of interactions, the roots of inequalities and the course of differentiation through the archaeological record.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Practical:</td>
<td>One 2-hour practical per week, at times to be arranged.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements:</td>
<td>Attendance at practicals and completion of assignments.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment:</td>
<td>Essays and tests count 50%; one 3-hour examination in November counts 50%. A sub-minimum of 40% is required for the examination.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AGE3013H ARCHAEOLOGY IN PRACTICE
36 HEQF credits at level 7
NOTE: This course is a three and a half week residential field-school during the January/February vacation.
Course co-ordinator(s): Dr D Stynder
Entrance requirements: AGE2011S and AGE2012F, or by permission of the Head of Department.
Course outline:
The curriculum covers field training in site location, excavation, field note taking, stratigraphic observation, site survey, use of GPS and total station, photography, rock art recording, processing of field observations, spreadsheet use, preliminary conservation and accessioning of materials. The daily programme consists of lectures, followed by fieldwork and a short period of laboratory processing.
DP requirements: Attendance at field-school and completion of assignments.
Assessment: Essays and tests count 30%; projects count 20%; examinations count 50%.

Postgraduate Courses

AGE4000W BSc (HONS) IN ARCHAEOLOGY
160 HEQF credits at level 8
(includes research project of 48 credits)
Course co-ordinator(s): Professor J Sealy
Entrance requirements: A BSc degree majoring in Archaeology and an acceptable academic record. Students applying for admission to the Honours programme in Archaeology must satisfy the Head of Department that they have adequate field work experience.
Course outline:
The purpose of the Honours programme in Archaeology is to look in depth at current issues in the
discipline, both internationally and in southern Africa. Those taking part are expected to become
fully involved in the academic life of the Department, attending such seminars as may be given by
staff members, research students and visitors. In addition, they must participate in the structured
programme of lectures and tutorials, and write a research dissertation. The dissertation is a central
part of the Honours programme. Each student must prepare a project proposal, worked out with a
supervisor and approved by the Head of Department. In addition, students must take part in one
open seminar, where they present their project to the Department. All students are required to attend
a one-week field trip held during the year.
Assessment: On average examinations count 50% of the final mark, coursework counts 20% and
the research project counts 30%. A sub-minimum of 50% is required for the research project.

AGE4001W BSc (HONS) IN ARCHAEOLOGY & ENVIRONMENTAL SCIENCE
160 HEQF credits at level 8
(includes research project of 48 credits)
Course co-ordinator(s): Professor J Sealy
Entrance requirements: A BSc degree with majors in both Archaeology and Environmental &
Geographical Science. Acceptance will be at the discretion of the Head of Department.
Course outline:
Using the resources of both the Departments of Archaeology and Environmental & Geographical
Science, this honours programme focuses on the paleoenvironmental context in which humans lived
during the long course of the Quaternary. Course requirements include modules from both
Archaeology and from Environmental & Geographical Science and a research project and a
dissertation (48 credits).
Assessment: On average examinations count 50% of the final mark, coursework counts 20% and
the research project counts 30%. A sub-minimum of 50% is required for the research project.

AGE5000W MASTERS IN ARCHAEOLOGY
180 HEQF credits at level 9
Candidates will be required to present a dissertation on an approved topic.
See also AGE5006W, Faculty of Humanities Handbook.

AGE6000W PhD IN ARCHAEOLOGY
360 HEQF credits at level 10
Candidates will be required to present a thesis on an approved topic. Candidates are referred to the
rules for this degree as set out in Book 3, General Rules.
DEPARTMENT OF ASTRONOMY

The Department is housed in the 5th Floor RW James Building, 9 University Avenue
Telephone (021) 650-5830 Fax (021) 650-4547; website http://www.ast.uct.ac.za
The Departmental abbreviation for Astronomy is AST.

Professor and Head of Department:
R C Kraan-Korteweg, Diplom (MSc) Basle PhD Phil II Basle
South African Research Chair in Astrophysics and Space Science:
W J G de Blok, MSc PhD Groningen
SKA South African Research Chair in Multi-wavelength Extragalactic Astronomy:
C Carignan, MSc Montréal PhD Canberra
Associate Professor:
P A Woudt, MSc Groningen PhD Cape Town
Senior Lecturer:
K J van der Heyden, BSc (Hons) MSc Cape Town PhD Utrecht
Lecturer:
S-L Blyth, MSc PhD Cape Town
V A McBride, MSc Cape Town PhD Southampton
Honorary Academic Member:
P K S Dunsby, BSc PhD London
Senior Scholar:
B Warner, BSc (Hons) PhD DSc London MA DSc Oxon Assoc.RAS FRSSAf
Honorary Professors:
M W Feast, BSc (Hons) PhD London DSc (h.c) Cape Town ARCS DIC Assoc.RAS FRSSAf
P A Charles, BSc (Hons) PhD London FRAS
SKA Visiting Professor:
R Fender, PhD Milton Keynes
Visiting Professor:
P A Whitelock, DIC London PhD London
Honorary Research Associate:
I Stewart, PhD Armidale
Computer System Manager:
B Kuck
Administrative Officer:
C Marsh
Senior Secretary:
R Daniels

RESEARCH CENTRE IN ASTROPHYSICS, COSMOLOGY AND GRAVITATION
The core of the Centre consists of the members of the Astronomy Department (AST) and the
members of the Cosmology and Gravity Group (CGG) of the Department of Mathematics and
Applied Mathematics (MAM):
Directors:
R C Kraan-Korteweg (AST), Diplom (MSc) Basle PhD Phil II Basle
P K S Dunsby (MAM), BSc PhD London
Deputy Directors:
J Murugan (MAM), MSc PhD Cape Town
P A Woudt (AST), MSc Groningen PhD Cape Town
Core Members:
S-L Blyth (AST), MSc PhD Cape Town
W J G de Blok (SARChi Chair; AST), MSc PhD Groningen
It also incorporates numerous postdoctoral fellows: Drs Angus, Armstrong, Hess, Lucero, Maddox, Puglielli, Ribeiro, Schurch (AST) and Drs Larena, Goiswami, Goheer, Hamilton, Regis, Salmi, Smith, Bolejko, Ananda (MAM).

Affiliated members from other departments and faculties at UCT, the SAAO, the KAT Project Office, UWC and the National Institute for Theoretical Physics are welcome.

RESEARCH IN ASTRONOMY

The department makes use of the Southern African Large Telescope and other instruments at the South African Astronomical Observatory at Sutherland. Studies are carried out on galaxies (optical, NIR and radio), their dark matter content, large-scale structures, including those partially obscured by the foreground Milky Way (Professors Kraan-Korteweg, de Blok, Carignan, Associate Professor Woudt and Drs Blyth and van der Heyden) and the extra-galactic distance scale (Professor Feast). Research also includes the theory and observation of variable stars, in particular, cataclysmic variable stars and degenerate variable stars (Professor Warner and Associate Professor Woudt), Long Period Red Variables (eg. Miras), Cepheids and RR Lyrae Stars (Professor Feast) and X-ray binaries (Professor Fender and Dr McBride). The history of astronomy in South Africa is also studied (Professor Warner).

The Research Centre in Astrophysics, Cosmology and Gravitation (http://www.acgc.uct.ac.za) was established in 2009. Its primary goal is to form a major research hub in astrophysics, cosmology and gravitation in Southern Africa, with particular emphasis on projects involving the new facilities SALT and MeerKAT that will require the expertise from both observers and theorists. The Centre provides a natural home for the students and staff of NASSP, the National Astrophysics and Space Science Programme (http://www.star.ac.za).

Undergraduate Courses

First-Year Courses

AST1000F INTRODUCTION TO ASTRONOMY

18 HEQF credits at level 5

Course co-ordinator(s): Dr S-L Blyth

Entrance requirements: None

Course outline:

Second-Year Courses

AST2002S ASTROPHYSICS

24 HEQF credits at level 6

Course co-ordinator(s): Dr V A McBride

Entrance requirements: PHY1004W or PHY1031F and PHY1032S, MAM1000W.

Course outline:
- Hubble Law, expansion of the Universe, primordial nucleosynthesis, 2.726 K background radiation, the Big Bang model. Radio, infra-red, ultra-violet, x-ray and gamma-ray-astronomy.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Tutorials: One tutorial per week, Wednesday, 14h00-16h30. One field trip to Sutherland.

DP requirements: Satisfactory attendance at lectures and tutorials; class record of at least 35%.

Assessment: Class record 50%; one 2-hour final examination 50%; subminimum requirement of 40% for final examination.

Third-Year Courses

AST3002F STELLAR ASTROPHYSICS

36 HEQF credits at level 7

This course will not be offered if there are insufficient students unless required for a major in Astronomy.

Course co-ordinator(s): Associate Professor P A Woudt

Entrance requirements: AST2002S, PHY2014F, PHY2015S.

Course outline:
- Stellar atmospheres; radiative transfer and atomic processes; Boltzmann formula; Saha equation; scattering; theory of line formation; Doppler profile; Voigt profile; curve of growth; spectral analysis; physics of stellar interiors; stellar structure and evolution; hydrostatic equilibrium; thermal equilibrium; convective instability; theory of energy transport; energy generation; nuclear fusion; homologous stars; stellar birth, evolution and death; white dwarfs, neutron stars and black holes; supernovae; stellar pulsation.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Practicals: One practical or tutorial per week, Wednesday, 14h00-16h30. One week observing trip to Sutherland.

DP requirements: Satisfactory attendance at lectures and tutorials; class record of at least 35%.

Assessment: Class record 50%; one 2-hour final examination 50%; subminimum requirement of 40% for final examination.

AST3003S GALACTIC & EXTRAGALACTIC ASTROPHYSICS
36 HEQF credits at level 7

This course will not be offered if there are insufficient students unless required for a major in Astronomy.

Course co-ordinator(s): Professor R C Kraan-Korteweg

Course outline:
Interstellar gas and dust; size shape and properties of dust grains; interstellar extinction and reddening; 21-cm radiation; molecular clouds; masers; radiative and collision processes in gaseous nebulae; galactic structure; differential galactic rotation; Oort equations; galaxy morphology; rotation curves; dark matter; spiral structure; large-scale distribution of galaxies; galaxy collisions; starbursts; active galaxies; radio galaxies, Seyfert galaxies, quasars; cosmology; scale of the universe; expansion of the universe; the Big Bang; primordial nucleosynthesis; cosmic background radiation.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Practicals: One practical or tutorial per week, Wednesday, 14h00-16h30. One observing trip to Sutherland.

DP requirements: Satisfactory attendance at lectures and tutorials; class record of at least 35%.

Assessment: Class record 50%; one 2-hour final examination 50%; subminimum requirement of 40% for final examination.

Postgraduate Courses

AST4007W BSc (HONS) IN ASTROPHYSICS & SPACE SCIENCE (National Astrophysics and Space Science Programme (NASSP))
160 HEQF credits at level 8
(includes research projects of 32 credits)

Course co-ordinator(s): Professor P K S Dunsby

Entrance requirements: AST3002F and AST3003S or PHY3021F and PHY3022S or MAM3040W or equivalent. Candidates with an Engineering background will also be considered. Enrollments are limited to 20 students. Candidates must satisfy the Steering Committee that they have sufficient background in Mathematics. Admission is subject to the approval of the Steering Committee and an application must be made before 30th October of the preceding year. Late applications will also be considered.

Course outline:
The Honours course in Astrophysics and Space Science consists of courses presented by distinguished South African researchers from research institutions participating in NASSP. There is a theory component which includes courses in spectroscopy, electrodynamics, general relativity, general astrophysics, galaxies, computational physics, astrophysical fluid dynamics and computational methods, as well as an observational techniques component which includes optical and infrared astronomy and radio astronomy. In addition students will complete a mini research project as well as a main research project and go on a number of field trips to the national facilities.
Assessment: The assessment of the coursework is based on the class records and examinations for each of the modules. In general they are made up from tests, oral presentations, projects and a final examination. Examinations count 40%, class record 40% and research project 20% of the final result.

AST5003F TAUGHT COMPONENT OF THE MASTERS IN ASTROPHYSICS & SPACE SCIENCE (National Astrophysics and Space Science Programme (NASSP))
90 HEQF credits at level 9
Course co-ordinator(s): Professor P K S Dunsby
Entrance requirements: This programme is open to Honours graduates in Astronomy and Space Science (AST4007W), Physics (PHY4000W, PHY4001W, PHY4002W) or equivalent, and Engineering. Entrance is subject to a minimum pass mark of 60% in the Honours degree.
Course outline:
A selection of advanced topics presented by distinguished South African researchers from research institutions participating in NASSP. The courses vary from year to year but usually include cataclysmic variables, extragalactic astronomy, space technology, hot topics in cosmology, advanced general relativity, high energy astrophysics, observational cosmology, geomagnetism and aeronomy, plasma physics and magnetohydrodynamics.
Assessment: On average, examinations of individual modules count 60% of the final result, and marked practical work counts 40%.

AST5001W DISSERTATION COMPONENT OF THE MASTERS IN ASTROPHYSICS & SPACE SCIENCE
90 HEQF credits at level 9
Entrance requirements: AST5003F
Dissertation: Students will work on an approved research topic on which a dissertation must be presented.

AST5000W MASTERS IN ASTRONOMY
180 HEQF credits at level 9
The normal route to an MSc in Astronomy is via AST5003F and AST5001W as above. However, in certain circumstances, the Head of Department may recommend an MSc by research work and the writing of a dissertation only. General Rules for this degree may be found at the front of the handbook.

AST6000W PhD IN ASTRONOMY
360 HEQF credits at level 10
Candidates are referred to the rules for this degree as set out in Book 3, General Rules and Policies. Supervision of research work towards this degree is provided by the Department.
DEPARTMENT OF BOTANY

The Department is housed in the H W Pearson Botany Building, 8 University Avenue
Telephone (021) 650-2447 Fax (021) 650-4041
The Departmental abbreviation for Botany is BOT. Courses jointly offered with the Zoology
Department are designated BIO.

Professor and Head of Department:
J J Midgley, BSc (Hons) PhD Cape Town

Harry Bolus Professor of Botany:
W J Bond, BSc (Hons) Exeter MSc Cape Town PhD UCLA

Leslie Hill Professor of Plant Conservation:
M T Hoffman, BSc (Hons) PhD Cape Town

H W Pearson Honorary Professor of Botany:
J S Donaldson MSc Rhodes PhD Cape Town

Professors:
J J Bolton, BSc (Hons) PhD Liverpool
T A Hedderson, MSc Memorial PhD Reading

Associate Professor:
M D Cramer, MSc Wits PhD Cape Town
L Gillson, BA Oxon MSc Imperial DPhil Oxon
G A Verboom, BSc (Hons) PhD Cape Town

Senior Lecturers:
E C February, BA (Hons) PhD Cape Town
A M Muasya, MPhil Moi PhD Reading

Lecturer:
S B M Chimphango, MSc Malawi PhD Cape Town
A G West, MSc Cape Town PhD Utah

Honorary Professors:
R M Cowling, BSc (Hons) PhD Cape Town
H P Linder, BSc (Hons) PhD Cape Town

Honorary Associate Professor:
R J Anderson, BSc (Hons) Wits PhD Cape Town

Principal Technical Officer:
G A Aguilar, MSc Chile

Senior Scientific Officer:
D Hattas, B Tech (Cape Tech) MSc UWC

Technical Officer:
D I Barnes

Administrative Officer:
S Smuts

Senior Secretary:
T Nozewu

Departmental Assistants:
N Davids
Z Jikumlambo
F Majola

BOLUS HERBARIUM

Director:
J J Midgley, BSc (Hons) PhD Cape Town

Keeper:
T A Hedderson, MSc Memorial PhD Reading

Curator/Principal Technical Officer:
T H Trinder-Smith, BSc (Hons) MSc Cape Town
Chief Scientific Officer (part-time):
C Klak, BSc (Hons) PhD Cape Town

Librarian:
C P Kotze, BA Unisa PTD III Dept Ed PG Dip LIS Cape Town

Departmental Assistant:
C J Christians

PLANT CONSERVATION UNIT
Director:
M T Hoffman, BSc (Hons) PhD Cape Town

Deputy Director:
L Gillson, BA Oxon MSc Imperial DPhil Oxon

Administrative Assistant:
A Stain

SEAWEED RESEARCH UNIT
MARINE & COASTAL MANAGEMENT (DEPARTMENT OF ENVIRONMENT AFFAIRS)
Head:
R J Anderson, BSc (Hons) Wits PhD Cape Town

Oceanographic Researcher:
M D Rothman, BSc (Hons) UWC MSc Cape Town

Principal Oceanographic Research Assistants:
C J T Boothroyd
F A Kemp

RESEARCH IN BOTANY

The mission of the Department is to conduct high quality teaching and research in the physiology, ecology, evolution, systematics and conservation of terrestrial and aquatic plants. The courses offered in the Department have been designed to train students in basic and applied botany, as well as to play a leading role in the teaching of ecology, biodiversity and evolutionary biology. Botanical research includes population, community and reproductive ecology (Professors W J Bond, J J Bolton and J J Midgley), ecophysiology (Dr S B M Chimphango, Associate Professor M D Cramer, Dr E C February, Dr A G West), floristics, biogeography, ecology and economics of marine algae (Professor J J Bolton), systematics, ecology and evolutionary biology of angiosperms (Dr A M Muasya, Associate Professor G A Verboom), and of bryophytes (Professor T A Hedderson), as well as palaeoecology (Associate Professor L Gillson and Dr E C February). The Bolus Herbarium undertakes plant taxonomic research with an emphasis on the flora of the Cape Peninsula. In addition the Botany Department houses the Plant Conservation Unit which is involved in research on biological diversity and restoration ecology as well as dryland degradation and environmental history (Professor M T Hoffman and Associate Professor L Gillson). The Department is also home to the Seaweed Research Unit of Marine and Coastal Management, under the direction of Associate Professor R J Anderson, which conducts research into the biology of economic seaweed resources.

Undergraduate Courses

DP Requirements: In all undergraduate courses the class record comprises marks from essays, tests and practical write-ups (as well as seminars and projects in some senior courses).

First-Year Courses

BIO1000F CELL BIOLOGY
18 HEQF credits at level 5

Course co-ordinator(s): Dr S B M Chimphango

Entrance requirements: Admission will be restricted to students who have passed either Physical Science or Life Sciences/Biology at NSC level 5.
Course outline:
Basic biological principles and processes at a cellular level provide an essential grounding for future study in the life sciences. Chemistry concepts necessary for understanding biological processes are introduced, as well as the structure and function of cell components. Cellular respiration and the energetic relationships of photosynthesis, and cellular processes associated with nitrogen assimilation, animal physiology and animal behaviour follow. Sections dealing with genetics and cell division provide an introduction to biological diversity.

Lectures:
- Mon: 5
- Tue: 5
- Wed: 5
- Thu: 5
- Fri: 5

Tutorials: One tutorial per week, by arrangement.

Practicals: One afternoon per week, Monday or Tuesday or Wednesday or Thursday, 14h00-17h00.

Assessment: Class record counts 45% (three class tests count 27% and a practical book mark of 18%); one practical paper counts 15%; one 2-hour examination paper written in June counts 40%. A subminimum of 40% is required in the June examination.

BIO1004S BIOLOGICAL DIVERSITY
For course details see entry under Department of Zoology.

AGE1003H FOUNDATIONS OF BIOLOGY, EARTH & ENVIRONMENTAL SCIENCES
18 HEQF credits at level 5
A course for students on the General Entry Programme for Science (GEPS), providing a general introduction to the study of the Earth and its living and non-living systems. For course details see entry under Department of Archaeology.

Second-Year Courses

BIO2010F PRINCIPLES OF ECOLOGY AND EVOLUTION
BIO2011S LIFE ON LAND: ANIMALS
For course details see entry under the Department of Zoology.

BIO2012S LIFE ON LAND: PLANTS
24 HEQF credits at level 6
Course co-ordinator(s): Dr E C February
Entrance requirements: BIO1000F, BIO1004S

Course outline:
Terrestrial plants inhabit a broad range of environments, that are distinguished by their abiotic (e.g. light, temperature, water, nutrients) and biotic (e.g. animals, plants, microbes) features. Adaptation to contrasting habitats has generated a diversity of form in plants, as well as a fascinating array of ecophysiological and ecological strategies. Starting with roots, stems and leaves, and finishing with reproductive structures (flowers and seeds) and life-histories, this course explores plant structure and function, and the manner in which this has changed through the course of evolutionary history. This is followed by an introduction to the diversity of vascular plants, with an emphasis on flowering plants, particularly those that typify the Cape flora. Finally, the biology of bryophytes (mosses and relatives) is considered, highlighting the very different solutions they employ for a life on land.
DP requirements: Minimum of 40% for class record and attendance at practicals and five day field camp.

Assessment: Class record counts 50% (tests count 15%; practicals (assessed weekly) count 10%; project counts 25%); two 2-hour written examinations in November each count 25%. A subminimum of 40% is required for examinations.

BIO2013S LIFE IN THE SEA
For course details see entry under the Department of Zoology.

Third-Year Courses

BIO3013F GLOBAL CHANGE ECOLOGY
36 HEQF credits at level 7
NOTE: This course replaces BIO3011S
Course co-ordinator(s): Dr A West
Entrance requirements: BIO1000F, BIO1004S
Course outline:
How are organisms and ecosystems affected by the drivers of global environmental change? This course begins with a brief overview of key drivers of global environmental change, including both natural (e.g. Milankovich cycles) and anthropogenic "forcings" (e.g. greenhouse gas emissions, nitrogen deposition and pollution, land-use change). It then examines how these drivers influence (and are influenced by) primary productivity, nutrient cycling, water relations and vegetation-climate feedbacks. Biological responses to global change are examined in the context of marine, freshwater and terrestrial ecosystems. The course provides an integrated knowledge of contemporary environmental issues related to global change (e.g. carbon sequestration, climate change mitigation, and dynamic global vegetation models).

Period
<table>
<thead>
<tr>
<th></th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Practical: One practical per week, Monday, 14h00-17h00.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DP requirements: Minimum of 40% for class record.
Assessment: Class record counts 50% (practicals 20%, tests 15% and projects 15%); two 2-hour written examinations in June count 25% each. A subminimum of 40% is required in examinations.

BIO3015F ECOSYSTEM ECOLOGY
36 HEQF credits at level 7
NOTE: This course replaces BIO3006F
This course is a residential two week field course, occurring before term starts. During term time further lectures and various assignments need to be completed.
Course co-ordinator(s): Professor J J Midgley
Entrance requirements: BIO2010F
Course outline:
This course focuses on terrestrial and freshwater ecosystems, especially of Africa. Lectures take place mainly on a field camp where there is ample opportunity for practicals and individual projects. Typical practicals concern the distribution and impact of small mammals and large herbivores, succession between fynbos and forest, the role of soil water on ecosystem attributes and freshwater vlei and river dynamics. The course begins with an introduction to ecosystem ecology and the role of abiotic factors (such as nutrients, fire and water) and biotic factors (such as predation). The issue of scale, both spatial (from metres to kilometres) and temporal (for days to millennia) is considered as is the issue of scaling and scaling-up in ecosystem ecology. Trophic ecology, the causes and consequences of the elimination of predators is discussed, with examples from Africa. Besides
developing field work skills in ecosystem ecology, students will also develop modelling skills including simple demographic and succession models. Finally, the dynamics, management and conservation of Africa's terrestrial and freshwater resources are studied.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Tutorials: By arrangement.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practicals: By arrangement.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements: A minimum of 40% for class record, attendance of two week field camp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Assessment**: Class record counts 50% (practicals 25%, project based on field camp data collection 10%, class test 10%, seminars 10%); one 2-hour theory examination and one 2-hour practical examination written in March/April each count 25%. A subminimum of 40% is required in examinations.

BIO3016S SYSTEMATICS & MACROEVOLUTION

36 HEQF credits at level 7

NOTE: This course replaces BIO3010F

Course co-ordinator(s): Professor T A Hedderson

Entrance requirements: BIO2010F

Course outline:
This course deals with the description and analysis of biodiversity and evolution at the species level and above. The course begins by considering the nature and definition of "species," the processes by which new species arise in nature (speciation), and the data and procedures employed in the practical discovery, naming and description of previously-undescribed species. Thereafter, the focus shifts to the inference of phylogenetic (evolutionary) relationships amongst species, with an emphasis on the data (morphological, molecular) and analytical methods (parsimony, likelihood, Bayesian) employed in phylogeny reconstruction. Following on from this, the utility of phylogenetic data in the study of macroevolution is explored, specifically in relation to the study of adaptation, key innovation, evolutionary radiation and molecular dating. Students will also be introduced to several key biodiversity initiatives including the Tree of Life Project and The Consortium for the Barcode of Life.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Practicals: One practical per week, Thursday, 14h00-17h00.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements: Minimum of 40% for class record and attendance at weekend field camp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Assessment**: Class record counts 50% (practicals and tutorials 20%, class tests 30%; two 2-hour written examinations in November each count 25%. A subminimum of 40% is required in examinations.

Postgraduate Courses

BOT4000W BSc (HONS) IN BOTANY

160 HEQF credits at level 8

(includes research projects of 72 credits)

Course co-ordinator(s): Associate Professor G A Verboom

Entrance requirements: A BSc degree with specialisation in Botany, Ecology or Biodiversity and Evolutionary Biology, or at the discretion of the Head of Department. Enrolments are limited to 20, and acceptance will be at the discretion of the Head of Department who will consider quality of final year results, material covered in the undergraduate curriculum, and possibly also referees' reports.
Course outline:
The Honours course is designed to enrich the student's appreciation of theory through advanced coursework, essay writing, seminars, discussion groups and compulsory field work. In addition to a compulsory coursework module, students are required to complete six elective theory modules (selected from a list of 12) addressing topics in ecology, evolution, ecophysiology, systematics, plant diversity and phycology. Students are also expected to conduct two research projects.

Assessment: Two written examinations count 10%; two projects count 45%; theory and research seminars (one of each) count 7% and 5%, respectively; compulsory module coursework counts 9%; elective module coursework counts 12%; elective module coursework counts 21%. The elective module (including coursework and a theory examination) component of the course, each project and the general exam each carry a sub-minimum of 45%.

BOT5000W MASTERS IN BOTANY
180 HEQF credits at level 9
General rules for this degree may be found at the front of the handbook.

BOT6000W PhD IN BOTANY
360 HEQF credits at level 10
Candidates are referred to the rules for this degree as set out in Book 3, General Rules and Policies.
DEPARTMENT OF CHEMISTRY

The Department is housed in the P D Hahn Building, 28 Chemistry Mall
Telephone (021) 650-2446 Fax (021) 650-5195
The Departmental abbreviation for Chemistry is CEM.

Professor and Head of Department:
S A Bourne, BSc (Hons) PhD Cape Town CChem MRSC MSACI

Mally Professor of Organic Chemistry:
R Hunter, BSc (Hons) PhD London DIC

Jamison Professor of Inorganic Chemistry:
T J Egan, BSc (Hons) PhD Wits MSACI

Professor of Physical Chemistry:
M R Caira, MSc PhD Cape Town Dr Hon Causa Univ Med Pharm 'Iuliu Hatieganu' Romania

South African Research Chair in Drug Discovery:
K Chibale, BScEd Zambia PhD Cantab

South African Research Chair in Scientific Computing:
K J Naidoo, MSc Cape Town PhD Michigan

Professors:
G E Jackson, BSc (Hons) PhD Cape Town CChem FRSC MSACI

Associate Professors:
B Davidowitz, MSc PhD Cape Town MSACI
D W Gammon, BSc (Hons) PhD HDE Cape Town MSACI
A T Hutton, MSc PhD Cape Town CChem MRSC MSACI
N Ravenscroft, BSc (Hons) PhD Cape Town MSACI

Senior Lecturers:
M A Jardine, MSc PhD Cape Town
G S Smith, BSc Natal BSc (Hons) MSc PhD UWC MSACI
S Wilson, BSc (Hons) PhD Cape Town

Lecturers:
C L Oliver, BSc (Hons) PhD Cape Town
G A Venter, MSc PhD Stell MSACI

Senior Scholars:
L R Nassimbeni, MSc Rhodes PhD Cape Town CChem FRSC FRSSAf MSACI
A L Rodgers, MSc PhD Cape Town

Emeritus Professors:
J R Bull, MSc Natal DPhil Oxon CChem FRSC FRSSAf Hon MSACI
P W Linder, MSc Natal PhD Cantab CChem MRSC MSACI
A M Stephen, MSc PhD Cape Town DPhil Oxon CChem MRSC MSACI

Honorary Research Associates:
S Churms, BSc (Hons) PhD Cape Town
R J Haines, MSc Natal PhD London FRSSAf
E M Timme, BSc (Hons) Wits PhD Cape Town

Senior Research Scholar:
L R Nassimbeni, MSc Rhodes PhD Cape Town CChem FRSC FRSSAf MSACI

Research Chief Scientific Officer:
A Nhinda, MSc Yaounde I PhD Rhodes

Chief Scientific Officers:
D Jappie, BSc (Hons) Cape Town MSACI
C Lawrence-Naidoo, BSc (Hons) MSc Cape Town
E Murray, BSc Med (Hons) Stell PhD Cape Town

Senior Scientific Officers:
A Gamieldien, BSc (Hons) HDE UWC
M Hearshaw, BSc (Hons) PhD Cape Town
Principal Technical Officers:
P D de Kock, BEng MEng Stell
A de Jager

Chief Technical Officers:
A D Joseph
G Hesse

Senior Technical Officers:
G Benincasa, BSc (Hons) Natal
P Roberts
H Su, MSc PhD Cape Town

Technical Officer:
K Willis

Assistant Technical Officer:
M McLean, N Dipl Anal Chem CPUT

Administrative Officer:

Research Administrative Officer:
K Badenhorst

Administrative Assistant:
D C Brooks

Research Administrative Assistants:
L M Bezuidenhorst
E Rutherford-Jones, BScSc Cape Town

Senior Secretaries:
L Lalbahadur
S D Naicker
P Smit

Departmental Assistants:
S Y Dyule-Nozewu
A F Hendricks
A M Khoapa
G M Mlungu
N Ngamani
K M Sigam
C M Stanley

Workshop Assistant:
Y Ely

RESEARCH IN CHEMISTRY

The Department of Chemistry is equipped for many and varied research activities. In addition to a microanalytical service, gas-liquid chromatography, high-speed liquid chromatography and other routine facilities, major items of modern physical equipment include NMR (Varian VXR 200, Mercury 300 multi-nuclear and solid-state spectrometers) and atomic absorption spectrometers (flame and graphite furnace), an inductively-coupled plasma spectrometer, mid-IR spectrophotometers, UV-visible spectrophotometers, X-ray generators and single-crystal diffractometers (four-circle and CCD detector) for crystallographic studies, a spectropolarimeter, and workstations for both thermal and electrochemical analysis. The Department is also fortunate in having the opportunity of utilising facilities in other departments within the University. In terms of computing the Department has several research and teaching microlabs, several workstations for molecular modelling, workstations for the processing of NMR data, and full access to the local area network.

In its Strategic Plan the Department has affirmed the central importance of the sub-disciplines of Inorganic, Organic and Physical Chemistry, and their applications in synthesis and analysis. These three themes constitute the essential pillars of the discipline of Chemistry. The Department wishes to
consolidate and strengthen four main focus areas for its research activities:

Synthetic and medicinal chemistry - the discovery, design, synthesis and activity of bio-active molecules (M R Caira, K Chibale, T J Egan, D W Gammon, R Hunter, G E Jackson, M A Jardine, N Ravenscroft).

Supramolecular chemistry - the application of X-ray diffraction and other physical methods to the understanding of inclusion phenomena and other molecular associations (S A Bourne, M R Caira, L R Nassimbeni, C L Oliver).

Transition metal chemistry - the discovery, design, synthesis and properties of new coordination and organometallic compounds of the transition metals with potential applications as materials or catalysts (A T Hutton, G S Smith).

Biophysical and structural chemistry - the application of spectroscopic, diffraction and computational methods to the understanding of molecular and macromolecular phenomena (T J Egan, G E Jackson, K J Naidoo, N Ravenscroft, A L Rodgers, G A Venter).

Research is also carried out on aspects of **chemistry education** - curriculum design, writing and communication within the discipline (B Davidowitz).

Further information may be found on the Department's website at http://www.uct.ac.za/depts/cem

Undergraduate Courses

Supplementary examinations:
For all undergraduate Chemistry courses, borderline candidates may not necessarily be awarded a supplementary examination to be written in January/February of the following year. As an alternative, the Department reserves the right to apply rule G19.6 which implies that a further test, which may be oral or written, may take place before the date of the Faculty Examinations Committee. Students are accordingly warned that they may be expected to make themselves available for such further testing.

Textbooks:
The lecturers in charge of each course will advise students at the commencement of the course on the textbooks required and recommended.

First-Year Courses

CEM1000W is the first-year full qualifying course for entrance to second-year courses in the Faculty of Science and in Chemical Engineering in the Faculty of Engineering and the Built Environment. CEM1009H and CEM1010F are half courses taken by students who are admitted to the General Entry Programme for Science or the Engineering Foundation Programme, and completion of both courses is equivalent to the full course CEM1000W. The Department also offers CEM1008F: Chemistry for Engineers and CEM1011F: Chemistry for Medical Students, which is repeated as CEM0011S and CEM1011X as part of the Faculty of Health Sciences Intervention Programme. Details of these courses can be found in the relevant faculty student handbooks.

The practical courses are designed to test and apply the principles discussed in the lectures, and include titrimetric analysis, introductory instrumental techniques and the preparation and reactions of organic compounds.

CEM1000W CHEMISTRY 1000

36 HEQF credits at level 5

Course co-ordinator(s): Dr G S Smith

Entrance requirements: Students wishing to register for CEM1000W will normally be expected to have passed Physical Science at least at NSC level 5.

Course outline:
Microscopic and macroscopic concepts, atomic structure, chemical bonding and molecular structure, chemistry of the elements and inorganic chemistry, chemical equilibrium, acids and bases, solubility products, chemical analysis, phases of matter, thermodynamics and thermochemistry, colligative properties, oxidation and reduction, electrochemistry, chemical kinetics and radiochemistry.
Introduction to structure and reactivity in organic chemistry and the language of organic chemistry; describing and predicting organic reactivity; introduction to the structure, properties and reactivity of biologically important molecules.

Lectures: Four lectures per week, Monday to Wednesday and Friday, 2nd or 4th period.

Tutorials: One tutorial per week, Thursday, 2nd or 4th period.

Practicals: One practical per week, Tuesday or Friday, 14h00-17h00.

DP requirements: Attendance and completion of practicals, tests and tutorial exercises and at least 35% for the class record.

Assessment: Class record (comprising tests and practicals) counts 50%; one 3-hour paper written in November counts 50%. It is necessary to pass the theory examination and the whole course in order to secure an overall pass.

CEM1009H CHEMISTRY 1009

18 HEQF credits at level 5

This half course is taken by students who are admitted to the General Entry Programme for Science and is run over the whole year. Students who pass CEM1009H can register for CEM1010F during the following academic year. The half courses CEM1009H and CEM1010F together are equivalent to the first-year full course CEM1000W.

Course co-ordinator(s): Associate Professor B Davidowitz

Course outline:
Microscopic and macroscopic worlds, gases, atomic structure, chemical bonding and molecular structure, introduction to acids and bases, solutions, thermochemistry, kinetics, chemical equilibrium, acid-base equilibria, introduction to the language of organic chemistry, functional groups and isomers in organic chemistry.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Tutorials</td>
<td>Two tutorials per week, Monday and Tuesday, 4th period.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practical</td>
<td>One practical per week, Wednesday, 14h00-17h00.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements</td>
<td>Attendance and completion of practicals, tests and tutorial exercises and at least 35% for the class record.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment</td>
<td>Class record (comprising tests and practicals) counts 50%; one 2-hour paper written in November counts 50%. It is necessary to pass the theory examination and the whole course in order to secure an overall pass.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CEM1010F CHEMISTRY 1010

18 HEQF credits at level 5

This half course is taken by students who have completed CEM1009H during the previous academic year. The half courses CEM1009H and CEM1010F together are equivalent to the first-year full course CEM1000W.

Course co-ordinator(s): Associate Professor A T Hutton

Entrance requirements: CEM1009H

Course outline:
Volumetric analysis, chemical bonding, the solid state, liquids, colligative properties of solutions, acid-base equilibria, solubility products, chemical kinetics, oxidation and reduction, electrochemistry, introductory thermodynamics, describing and predicting organic reactivity, introduction to the structure, properties and reactivity of biologically important molecules.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Tutorials: One tutorial per week, by arrangement.
Practicals: One practical per week, Thursday, 14h00-17h00.
DP requirements: Attendance and completion of practicals, tests and tutorial exercises and at least 35% for the class record.
Assessment: Class record (comprising tests, tutorials and practicals) counts 50%; one 2-hour paper written in June counts 50%. It is necessary to pass the theory examination and the whole course in order to secure an overall pass.

Second-Year Courses
CEM2007F and CEM2008S are required courses for students proceeding to a major in Chemistry. CEM2013S is an elective course which may also be taken by non-chemistry majors.

CEM2007F PHYSICAL CHEMISTRY & SPECTROSCOPY
24 HEQF credits at level 6
Course co-ordinator(s): Professor S A Bourne
Entrance requirements: CEM1000W (or equivalent), 1000-level full course in Physics, 1000-level full or semester course in Mathematics; concurrent registration for STA1000F/S is highly recommended.
Course outline: Introduction to spectroscopy, molecular spectroscopy, thermodynamics, phase equilibria, electrochemistry, kinetics, solid-state chemistry. The practical course covers the lectured material.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Tutorials:</td>
<td>Six tutorials per semester, by arrangement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practical:</td>
<td>One practical per week, Thursday, 13h30-17h00.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements:</td>
<td>Attendance and completion of practicals, tests and tutorial exercises and at least 50% for the class record.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment:</td>
<td>Class record (comprising tests and practicals) counts 50%; one 2-hour paper written in June counts 50%. It is necessary to pass the theory examination and the whole course in order to secure an overall pass.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CEM2008S ORGANIC & INORGANIC CHEMISTRY
24 HEQF credits at level 6
Course co-ordinator(s): Associate Professor D W Gammon
Entrance requirements: CEM1000W (or equivalent), 1000-level full course in Physics, 1000-level full or semester course in Mathematics, DP certificate for CEM2007F.
Course outline: Main-group chemistry and trends in the Periodic Table, chemistry of the transition metals and coordination chemistry, structure elucidation of organic molecules, organic reactivity, reaction mechanisms and stereochemistry, elimination reactions and carbonyl group reactivity, substitution and addition reactions, chemical biology. The practical course covers the lectured material.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Tutorials:</td>
<td>One tutorial per week, by arrangement.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practical:</td>
<td>One practical per week, Thursday, 13h30-17h00.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements:</td>
<td>Attendance and completion of practicals, tests and tutorial exercises and at least 50% for the class record.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Assessment: Class record (comprising tests and practicals) counts 50%; one 2-hour paper written in November counts 50%. It is necessary to pass the theory examination and the whole course in order to secure an overall pass.

CEM2013S CHEMISTRY IN HEALTH & DISEASE
24 HEQF credits at level 6
NOTE: This course will not be offered in 2012.
Course co-ordinator(s): Dr M A Jardine
Entrance requirements: CEM1000W (or equivalent); MCB2014F is highly recommended.
Course outline:
Introduction to chemistry in health and disease; molecular structure of drugs and drug targets; physicochemical issues in drug design and development; chemical perspectives on African diseases (chemistry of vaccine development, role of chemistry in the understanding and treatment of HIV/AIDS, chemical insights into malaria); bioinorganic chemistry - metals in living systems and as therapeutic agents; biomineralization - role in crystal deposition disease.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Practicals:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements:</td>
<td>Attendance and completion of practicals, tests and tutorial exercises and at least 50% for the class record.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment:</td>
<td>Class record (comprising tests, assignments and practicals) counts 50%; one 3-hour paper written in November counts 50%. It is necessary to pass the theory examination and the whole course in order to secure an overall pass.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Third-Year Courses
CEM3005W is the required course for students proceeding to a major in Chemistry.

CEM3005W CHEMISTRY 3005
72 HEQF credits at level 7
Course co-ordinator(s): Professor M R Cairo
Entrance requirements: CEM2007F and CEM2008S, 1000-level full course in Mathematics; completion of or concurrent registration for STA1000F/S is highly recommended.
Course outline:
Wave mechanics and spectroscopy, adsorption and heterogeneous catalysis, X-ray crystallography, dynamics, inorganic reaction mechanisms, organometallic chemistry, organic structure and reactivity, organic synthesis, organic dynamic stereochemistry. The practical course covers the lectured material.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Practicals:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements:</td>
<td>Attendance and completion of practicals, tests and tutorial exercises and at least 50% for the class record.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment:</td>
<td>Class record (comprising tests, writing project and practicals) counts 50% and two 3-hour papers written in November count 50% towards the final mark. It is necessary to pass the theory examination and the whole course to secure an overall pass.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Postgraduate Courses

CEM4000W BSc (HONS) IN CHEMISTRY
160 HEQF credits at level 8
(includes a research project of 66 credits)
Course co-ordinator(s): Professor T J Egan

Entrance requirements: A BSc degree (or equivalent) with a major in Chemistry at a sufficiently high standard to satisfy the Head of Department. Entrance to the Honours course is competitive and applications are considered individually, taking into consideration the entire academic record. Priority will be given to UCT graduates, who require 60% or higher in CEM3005W as the normal minimum prerequisite for admission. Applicants from other universities must satisfy the Honours steering committee that they have covered the same topics at the equivalent level.

Note: Entrance is limited to 16 students.

Course outline:
The programme starts at the beginning of February with a four-week course on modern instrumental methods and group theory, providing a strong grounding in key instrumental techniques that are extensively used in modern chemistry. It includes theory lectures and hands-on practical work in NMR spectroscopy, X-ray methods of analysis, separation methods, modern electrochemical methods, and group theory.

This is followed by the core lecture course, providing the basic conceptual tools in inorganic, organic and physical chemistry. It is tested by written examination in June and comprises 40 lectures in each of inorganic chemistry (aqueous coordination chemistry, organometallic chemistry, bioinorganic chemistry and catalysis), organic chemistry (organic synthesis in action, the third dimension in organic reactions, asymmetric synthesis and advanced reagents in organic synthesis) and physical chemistry (statistical thermodynamics, quantum chemistry, solid state chemistry and liquids).

This leads to the research project, lasting from August to November, in which each student chooses a research project of personal interest. There is a two-week period to prepare and present a full research proposal, and then ten weeks of full-time research work in the laboratory of an academic member of staff, culminating in the presentation of a short dissertation and an oral presentation to the Department. Training in oral communication is also carried out in the second semester.

Lectures: By arrangement. Lectures, tutorials and practicals start at the beginning of February. Lectures and tutorials are daily in the first three periods and at other times arranged. Practical work and other activities occupy three afternoons per week during the first semester and all day all week during the second semester.

Assessment: Examinations count 33%, coursework 26% and the Honours research project 41%. To pass the Honours course candidates must obtain an overall average of 50%, an average of 45% for the Core Course written examinations with a subminimum of 33% on each individual paper of the Core Course examinations. In addition, candidates must attain at least 50% for the Research Project, complete the Modern Instrumental Methods and Group Theory module, all practical work, tutorial assignments, generic skills course and any other compulsory activities.

CEM5000W MASTERS IN CHEMISTRY
180 HEQF credits at level 9
Candidates must submit a dissertation on an approved research topic. General rules for this degree may be found at the front of the handbook.

CEM5004W MASTERS IN TERTIARY CHEMISTRY EDUCATION
180 HEQF credits at level 9
Candidates must submit a dissertation on an approved research topic. General rules for this degree may be found at the front of the handbook.
CEM6000W PhD IN CHEMISTRY
360 HEQF credits at level 10
Candidates for the PhD degree must submit a thesis on an approved research topic, and are referred to Book 3, General Rules and Policies, in which the rules for the degree are set out.

CEM6001W PhD IN TERTIARY CHEMISTRY EDUCATION
360 HEQF credits at level 10
Candidates for the PhD degree must submit a thesis on an approved research topic, and are referred to Book 3, General Rules and Policies, in which the rules for the degree are set out.
DEPARTMENT OF COMPUTER SCIENCE

The Department is housed in the Computer Science Building, 18 University Avenue
Telephone (021) 650-2663 Fax (021) 689-9465
The Departmental abbreviation for Computer Science is CSC.

Associate Professor and Head of Department:
S Berman, BSc Rhodes MSc PhD Cape Town

Professors:
E H Blake, BSc (Hons) Wits PhD London
G Marsden, BSc (Hons) PhD Stirling

Associate Professor:
J E Gain, MSc Rhodes PhD Cantab
M Kuttel, MSc PhD Cape Town
H Suleman, MSc UDW PhD Virginia Tech

Senior Lecturers:
A Bagula, MEng UCL MSc Stell PhD KTH
A Kayem, MSc Yaoundé PhD Queens
H Le, BA BSc Hanoi PhD UTS
P C Marais, MSc Cape Town DPhil Oxon
A Mbowgo, MS PhD City Univ of New York

Lecturer:
G Stewart BSc (Hons) Cape Town

Honorary Professor:
J Bishop, BSc (Hons) Rhodes MSc Natal PhD Southampton

Adjunct Professor:
A C M Hutchison, MSc HDE (PG) Sec Cape Town PhD Zurich

Computer System Managers:
A Adekayode
C Balfour, BSoSci Cape Town BA (SS) Hons UNISA

Administrative Officer:
S Valley

Administrative Assistant:
E M Gill

Senior Secretary:
N Makatesi, Nat. Dipl Public Management CPUT

Departmental Assistant:
B J Sam

RESEARCH IN COMPUTER SCIENCE

Research in the Department is organised into well-equipped laboratories funded by international, governmental and industrial sponsors. More information can be obtained by writing to the department or on the Departmental Web pages.

COLLABORATIVE VISUAL COMPUTING (Co-ordinator: Associate Professor J Gain). Topics of research include: Collaborative Virtual Environments; Usability and Human-Computer Interaction; Computer Graphics; Image Analysis applied to Medical Images; Virtual Reality and Behavioural Therapy; allowing end-users to create interesting virtual environments; Interaction with Mobile Computing Devices; Scalable Interfaces; and implications of these for Government Information Technology Policy. Special interests within the CVC lab include Socially Aware Computing, VR Methodology, Virtual Environments, Modelling and Procedural Graphics.

DIGITAL LIBRARIES (Co-ordinator: Associate Professor H Suleman). Research areas covered within digital libraries include information storage and retrieval; multilingual retrieval; Web-based systems; scalable and flexible repositories; interoperability and protocols; component-based systems; Open Access; and cultural heritage preservation.
HIGH PERFORMANCE COMPUTING (Co-ordinator: Associate Professor M Kuttel). This laboratory hosts investigations into all aspects of high performance and high throughput computing, including: parallel architectures and algorithms; scientific computing; high performance visualisation; large-scale information retrieval; high-performance digital archives; grid and volunteer computing; software optimization; and multi-core and GPU programming.

ICT FOR DEVELOPMENT CENTRE (Director: Professor G Marsden). The UCT Centre in ICT for Development seeks to create ICTs that are appropriate for developing nations. To date, most innovation in ICT has been driven by the developed world to meet challenges originating from that context. This centre will design, create and evaluate technologies that address the needs of the developing world and the people who live there.

INTELLIGENT SYSTEMS AND ADVANCED TELECOMMUNICATIONS (Co-ordinator: Dr A Bagula). The aim of this research group is to advance the science and engineering of intelligent systems and their applications. Main research activities are in the design, modelling, simulation and prototype implementation of intelligent systems with a specific focus on (1) novel speech and vision based human computer interaction and (2) exact and heuristic optimisation methods using Evolutionary techniques, Neural networks, Immune systems and Statistical models to solve telecommunication problems.

NETWORK AND INFORMATION SECURITY (Co-ordinator: Dr A Kayem). Artificially Intelligent Security Mechanisms: this group aims to design security mechanisms that can adapt automatically to changes in security policies; research include service oriented architectures, database security and autonomic computing. Computer Network Security: this group aims to design and implement network security protocols to address problems of security in web services, cloud computing environments and enterprise environments; research includes goal-oriented protocol design and identity management.

Undergraduate Courses

First-Year Courses

CSC1010H COMPUTER SCIENCE 1010
18 HEQF credits at level 5
This course is part of the General Entry Programme for Science.

Course co-ordinator(s): Mr G Stewart

Entrance requirements: The permission of the Dean or the Head of Department is required prior to registration for this course.

Course outline:
As for CSC1015F

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>This includes one tutorial per week.</td>
</tr>
<tr>
<td>Practicals:</td>
<td>One practical per week, Thursdays, 14h00-17h30.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements:</td>
<td>Minimum of 45% aggregate in practical work.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment:</td>
<td>Theory tests count 15%; practical tests and practical assignments count 25%; one 3-hour paper written in November counts 60%. Subminima: 45% for practicals, 45% on weighted average of theory tests and examination.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Credit will not be given for CSC1015F and CSC1016S together with any of the following: CSC1009F/S, CSC1010H, CSC1011H.

CSC1011H COMPUTER SCIENCE 1011
18 HEQF credits at level 5
This course is part of the General Entry Programme for Science.

Course co-ordinator(s): Mr G Stewart
Entrance requirements: CSC1010H, MAM1005H

Course outline:

Period

<table>
<thead>
<tr>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

This includes one tutorial per week

Practicals: One practical per week, Mondays, 14h00-17h30.

DP requirements: Minimum of 45% aggregate in practical work.

Assessment: Theory tests count 25%; practical tests and practical assignments count 25%; one 3-hour paper written in November counts 50%. Subminima: 45% for practicals, 45% on weighted average of theory tests and examination.
recommended that students register concurrently for second-year courses in Mathematics, Applied Mathematics or Statistics.

Course outline:
Object-oriented design. Data structures: Abstract data types and assertions; Linear structures - lists, strings, stacks, queues; Recursive algorithms, tree structures - binary trees, AVL trees, B-Trees; Graphs - Graph traversals, minimum spanning trees, sets, hashing, priority queues.
Database systems: Conceptual modelling, design, query and manipulation of relational databases.

Period

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Four or five lectures per week.

Practicals: One 4-hour practical per week, Monday to Friday, 14h00-18h00.

DP requirements: Minimum of 45% aggregate in practical work.

Assessment: Tests count for 16.7%; practicals and projects count 33.3%; one 3-hour paper written in June counts 50%. Subminima: 45% on weighted average of theory tests and examination.

CSC2002S COMPUTER SCIENCE 2002

24 HEQF credits at level 6

Course co-ordinator(s): Dr A Bagula

Entrance requirements: CSC2001F (or supp for CSC2001F), MAM1000W or equivalent. It is strongly recommended that students register concurrently for second-year courses in Mathematics, Applied Mathematics or Statistics.

Course outline:

Period

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Four lectures per week.

Practicals: One 4-hour practical per week, Monday to Friday, 14h00-18h00.

DP requirements: Minimum of 45% aggregate in practical work and minimum of 50% in practical test.

Assessment: Tests count for 16.7%; practicals, practical test and projects count 33.3%; one 3-hour paper written in November counts 50%. Subminima: 45% on weighted average of theory tests and examination.

CSC2003S COMPUTER GAMES

24 HEQF credits at level 6

Course co-ordinator(s): Dr P Marais

Entrance requirements: CSC2001F, MAM1000W or equivalent.

Course outline:

Period

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Four lectures and 1 tutorial per week.

Practicals: One 4-hour practical per week, Monday to Friday, 14h00-18h00.

DP requirements: Minimum of 45% aggregate in practical work, minimum of 50% in practical test and minimum of 40% in theory tests.
Assessment: Tests count for 16.7%; practicals, practical test and projects count 33.3%; one 3-hour paper written in November counts 50%. Subminima: 45% on weighted average of theory tests and examination.

Third-Year Courses

CSC3002F COMPUTER SCIENCE 3002
36 HEQF credits at level 7
Course co-ordinator(s): Dr H Le
Entrance requirements: CSC2001F and CSC2002S. It is strongly recommended that students should have completed a second-year course in Mathematics, Applied Mathematics or Statistics.
Course outline:
Networks, Operating Systems, Databased systems.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Practical</td>
<td>Two 4-hour practicals per week, Monday to Friday, 14h00-18h00.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DP requirements: Minimum of 45% aggregate in practical work.
Assessment: Tests count 15%; practical work counts 35%; one 3-hour paper written in June counts 50%. Subminima: 45% for practicals; 45% on weighted average of theory tests and examination.

CSC3003S COMPUTER SCIENCE 3003
36 HEQF credits at level 7
Course co-ordinator(s): Associate Professor J Gain
Entrance requirements: As for CSC3002F.
Course outline:
Compiler construction: language and compiler design; regular expressions and automata; context-free grammars; parsing and parser generators; abstract syntax trees; scope and symbol tables; intermediate representation language translation; canonicalisation and optimisation; liveness analysis; register allocation. Design and analysis of algorithms; analysis of lower bounds; P versus NP problems, handling algorithmic complexity.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Practical</td>
<td>Two 4-hour practicals per week, Monday to Friday, 14h00-18h00.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DP requirements: Minimum of 45% aggregate in practical work.
Assessment: Tests count 15%; practical work counts 35%; one 3-hour paper written in November counts 50%. Subminima: 45% for practicals, 45% on weighted average of theory tests and examination.

CSC3020H THREE DIMENSIONAL & DISTRIBUTED GAMES DESIGN
36 HEQF credits at level 7
Course co-ordinator(s): Dr P Marais
Entrance requirements: CSC2001F, CSC2002S and CSC2003S.
Course outline:
Computer Graphics for Gaming, Agents in Gaming, Multi-User and Distributed Games, Game Design.
Lectures: CSC3020H and CSC3022H together occupy 3rd period daily
Practicals: 4 hours per week, by arrangement
DP requirements: Minimum of 45% aggregate in practical work.
Assessment: Tests count 16.7%; practical work counts 33.3%; examinations count 50%. Subminima: 45% for practicals, 45% weighted average of theory tests and examination.

CSC3022H C++ WITH APPLICATIONS
36 HEQF credits at level 7
Course co-ordinator(s): Dr P Marais
Entrance requirements: CSC2001F, CSC2002S
Course outline:
C++ programming: Introduction to C++; pointers and memory management; streams and I/O; object orientation in C++; operator overloading; function objects; templates; the STL; C++ threading model; exceptions; design patterns/advanced topics. Introduction to machine learning: types of learning – supervised, unsupervised, evolutionary, reinforcement; overview of learning techniques; neural networks; decision tree learning; genetic algorithms.
Lectures: CSC3020H and CSC3022H together occupy 3rd period daily
Practicals: 4 hours per week, by arrangement
DP requirements: Minimum of 45% aggregate in practical work.
Assessment: Tests count 16.7%; practical work counts 33.3%; examinations count 50%. Subminima: 45% for practicals, 45% weighted average of theory tests and examination.

EEE3067W DIGITAL ELECTRONICS & MICROPROCESSORS
24 HEQF credits at level 7
Course co-ordinator(s): Mr S Ginsberg
Entrance requirements: CSC2001F, CSC2002S, EEE2040F or equivalent.
Course outline:
This course comprises EEE3064W: Digital Electronics & Microprocessors and EEE4096S: Neural Fuzzy & Evolving Systems, taken together as a single course. Please see Engineering and the Built Environment Faculty handbook for further details.
Lectures: EEE3064W has 48 lectures and 8 practicals; EEE4096S has 24 lectures and project(s). Refer to department.
DP requirements: Satisfactory completion of coursework in EEE3064W, as well as 80% submission of all assignments and satisfactory completion of a hands-on proficiency test in EEE4096S.
Assessment: Final mark for EEE3064W counts 66.7% and final mark for EEE4096S counts 33.3%.

EEE3077W DIGITAL & EMBEDDED SYSTEMS
36 HEQF credits at level 7
Course co-ordinator(s): Mr S Ginsberg
Entrance requirements: CSC2001F, CSC2002S, EEE2040F or equivalent.
Course outline:
This course comprises EEE3064W: Digital Electronics & Microprocessors and EEE3074W: Embedded Systems, taken together as a single course. Please see Engineering and the Built Environment Faculty handbook for further details.
Lectures: EEE3064W has 48 lectures and 8 practicals; EEE3074W has 48 lectures, 6 practicals and projects. Refer to department.
DP requirements: Satisfactory completion of coursework in EEE3064W, as well as completion of all practical reports and project report in EEE3074W.
Assessment: Final mark for EEE3064W counts 44% and final mark for EEE3074W counts 56%.
EEE3078W DIGITAL, EMBEDDED & ADAPTIVE SYSTEMS
44 HEQF credits at level 7
Course co-ordinator(s): Mr S Ginsberg
Entrance requirements: CSC2001F, CSC2002S, EEE2040F or equivalent.
Course outline:
This course comprises EEE3064W: Digital Electronics & Microprocessors, EEE3074W: Embedded Systems and EEE4096S: Neural Fuzzy & Evolving Systems, taken together as a single course. Please see Engineering and the Built Environment Faculty handbook for further details.
Lectures: EEE3064W has 48 lectures and 8 practicals; EEE3074W has 48 lectures, 6 practicals and projects. EEE4096S has 24 lectures and project(s). Refer to department.
DP requirements: Satisfactory completion of coursework in EEE3064W, as well as completion of all practical reports and project report in EEE3074W; 80% submission of all assignments and satisfactory completion of a hands-on proficiency test in EEE4096S.
Assessment: Final mark for EEE3064W counts 36%, final mark for EEE4096S counts 18% and final mark for EEE3074W counts 46%.

EEE3079W EMBEDDED & ADAPTIVE SYSTEMS
28 HEQF credits at level 7
Course co-ordinator(s): Mr S Ginsberg
Entrance requirements: CSC2001F, CSC2002S, EEE2040F or equivalent.
Course outline:
This course comprises EEE3074W: Embedded Systems and EEE4096S: Neural Fuzzy & Evolving Systems, taken together as a single course. Please see Engineering and the Built Environment Faculty handbook for further details.
Lectures: EEE3074W has 48 lectures and 6 practicals and projects; EEE4096S has 24 lectures and project(s). Refer to department.
DP requirements: Completion of all practical reports and project report in EEE3074W, as well as 80% submission of all assignments and satisfactory completion of a hands-on proficiency test in EEE4096S.
Assessment: Final mark for EEE4096S counts 29% and final mark for EEE3074W counts 71%.

Postgraduate Courses

CSC4000W BSc (HONS) IN COMPUTER SCIENCE
160 HEQF credits at level 8
(includes research project of 60 credits)
Course co-ordinator(s): Dr A Kayem
Entrance requirements: Students must have a BSc degree in Information Technology from UCT, with an average of at least 60% in CSC3002F and CSC3003S. Registrations are limited to 45.
Course outline:
A pamphlet outlining the year's programme is available from the Department (and at http://www.cs.uct.ac.za/teaching). A major research project makes up 60 credits and the remaining 100 credits is calculated from the coursework modules. The modules given vary from year to year but will typically be a selection from: Research Methods (compulsory), New Venture Planning (compulsory), Distributed Systems, Database Systems, Mobile Interaction Design, ICT for Development, Computer Graphics, Network Security, Digital Libraries, Biologically Inspired Computing, Image Processing and Computer Vision, Games and Virtual Environments, Intelligent Systems Design, Parallel and Multicore Computing, Wireless Sensor Networks. Some courses may also be taken from other departments, with approval of the Honours Course Co-ordinator.
DP requirements: Students will only be allowed to proceed with the second semester if, by the end of the first semester, they have an overall average of 50% in their coursework having gained credit for at least 60 credits of coursework (including compulsory modules).
Assessment: Project mark counts 3/8 of the total (60 credits out of 160). The remaining 5/8 of the mark (100 credits) is calculated from the best modules taken. They must include Research Methods and New Venture Planning. No module will be considered for course credits unless a student has obtained at least 40% in that module.

Subminima: At least 50% must be achieved in the Project. At least 40% must be achieved in the Research Methods and New Venture Planning modules. An average mark of at least 50% must be attained in the modules making up the best 100 course credits. The final mark, calculated as explained above, must not be less than 50%.

CSC4016W BSc (HONS) IN INFORMATION TECHNOLOGY
160 HEQF credits at level 8
(includes research project of 60 credits)
Course co-ordinator(s): Professor E Blake

Entrance requirements: Entrance requirement is a Bachelors degree with a major in Computer Science or related field. Students must have an average of at least 60% in the major. Combined entry to CSC4000W and CSC4016W is limited by available resources and is restricted to 45 students; priority will be given to students meeting the requirements for CSC4000W. Acceptance will be at the discretion of the Head of Department who will consider quality of final year results, and material covered in the undergraduate curriculum.

Course outline:
A pamphlet outlining the year's programme is available from the Department (and at http://www.cs.uct.ac.za/teaching). A major research project makes up 60 credits and the remaining 100 credits is calculated from the coursework modules. The modules given vary from year to year but will typically be a selection from: Research Methods (compulsory), New Venture Planning (compulsory), Distributed Systems, Database Systems, Mobile Interaction Design, ICT for Development, Computer Graphics, Network Security, Digital Libraries, Biologically Inspired Computing, Image Processing and Computer Vision, Games and Virtual Environments, Intelligent Systems Design, Parallel and Multicore Computing, Wireless Sensor Networks. Some courses may also be taken from other departments, with approval of the Honours Course Co-ordinator.

DP requirements: Students will only be allowed to proceed with the second semester if, by the end of the first semester, they have an overall average of 50% in their coursework having gained credit for at least 60 credits of coursework (including compulsory modules).

Assessment: Project mark counts 3/8 of the total (60 credits out of 160). The remaining 5/8 of the mark (100 credits) is calculated from the best modules taken. They must include Research Methods and New Venture Planning. No module will be considered for course credits unless a student has obtained at least 40% in that module.

Subminima: At least 40% must be achieved in the Project, and in the Research Methods and New Venture Planning modules. An average mark of at least 50% must be attained in the modules making up the best 100 course credits. The final mark, calculated as explained above, must not be less than 50%.

MAM4007W BSc (HONS) IN MATHEMATICS OF COMPUTER SCIENCE
See details under the Department of Mathematics and Applied Mathematics.

CSC5000W MASTERS IN COMPUTER SCIENCE
180 HEQF credits at level 9
Course co-ordinator(s): Associate Professor J Gain
Entrance requirements: A relevant Honours degree or four year equivalent.

Course outline:
Certain applicants who are graduates of universities other than the University of Cape Town may be required to complete specified courses. Continued registration is dependent upon successful
DEPARTMENT OF COMPUTER SCIENCE

completion of these courses.
This degree may be conferred after satisfactory completion of a dissertation embodying research under the guidance of an approved supervisor. The normal duration of the course is two years although it may be completed in one year. The Department has a research programme in association with industry and, depending on the research topic, additional funding may be available. General rules for this degree may be found in the front of the handbook.

CSC5001W and CSC5002W MASTERS IN COMPUTER SCIENCE
(by coursework and dissertation)
Coursework: 90 HEQF credits at level 9
Dissertation: 90 HEQF credits at level 9
Course co-ordinator(s): Associate Professor J Gain
Entrance requirements: A relevant Honours degree or four year equivalent.
Course outline:
Candidates are required to complete coursework (CSC5001W) involving studies in database theory, computer networks and protocols, artificial intelligence, computer graphics, distributed computing and software engineering, at the end of which they will sit formal examinations. They are required also to submit a dissertation (CSC5002W) which counts half of the requirements for the degree. The course lasts at least one year.
Assessment: Coursework modules are assessed by a combination of practical work and examination. All modules contribute equally to the final coursework mark, which counts for half of the final degree requirement, with the other half provided by the dissertation. Both the coursework component and the dissertation must be passed for the degree to be awarded.

CSC5005H, CSC5006H, CSC5004W MASTERS IN INFORMATION TECHNOLOGY
(by coursework and dissertation)
Coursework: 90 HEQF credits at level 9
Dissertation: 90 HEQF credits at level 9
Course co-ordinator(s): Dr A Mbagho
Entrance requirements: An Honours degree or 4-year equivalent plus access to the Internet.
Course outline:
CSC5005H and CSC5006H together constitute the coursework component. CSC5005H comprises 4 modules selected from the following: Object-oriented programming; Human–Computer Interaction; Databases; Networks; Web Programming; Software Engineering; Cyberlaw and Ethics; Research Methods. CSC5006H comprises the remaining 4 modules, i.e. excluding modules for which credit was received in CSC5005H. All study is via on-line self-study materials. CSC5004W consists of a one year research project submitted as a dissertation.
Assessment: In CSC5005H and CSC5006H assignments count 30% and the examination 70%. A subminimum of 40% for examinations is required in each of CSC5005H and CSC5006H. A module can be repeated once only; two unsuccessful attempts constitute a fail. A student who accumulates two failed modules cannot continue in Masters in Information Technology. To pass each course an overall average of at least 50% is required.

CSC6000W PhD IN COMPUTER SCIENCE
360 HEQF credits at level 10
Supervision is provided in the areas of research represented in the Department. The Department has a research programme in association with industry and, depending on the research topic, additional funding may be available. Candidates are referred to the rules for this degree as set out in Book 3, General Rules and Policies.
DEPARTMENT OF ENVIRONMENTAL AND GEOGRAPHICAL SCIENCE

The Department is housed in the Shell Environment & Geographical Science Building, South Lane Telephone (021) 650-2874 Fax (021) 650-3456
The Departmental abbreviation for Environmental & Geographical Science is EGS.

Professor and Head of Department:
M E Meadows, BSc (Hons) Sussex PhD Cantab FSSAG

South African Research Chair in Climate Change:
B C Hewitson, BSc Cape Town MSc PhD Penn State

Professor:
S M Parnell, MA PhD Wits

Associate Professors:
S E Oldfield, BA (Hons) Syracuse MA PhD Minnesota
M F Ramutsindela, MA UNIN PhD London
M R Sowman MSc PhD Cape Town
R P Wynberg, BSc (Hons) MSc MPhil Cape Town PhD Strathclyde

Senior Lecturers:
F D Eckardt, BSc (Hons) KCL MSc Cranfield DPhil Oxon
R C Hill, BSc (Eng) Cape Town Pr Eng PhD Cape Town
G Ziervogel, BSc (Hons) Rhodes DPhil Oxon

Lecturers:
B J Abiodun, MTech FUTA PhD Uppsala
J Battersby-Lennard, MA Newcastle DPhil Oxon
S Daya, MA PhD Durham
K J Winter, BA (Hons) Cape Town MA London PhD Cape Town

Emeritus Professors:
R J Davies, MSc Rhodes PhD London FSSAG
R F Fuggle, BSc (Hons) UED Natal MSc Louisiana PhD McGill

Honorary Professors:
J Boardman, BSc (Hons) PhD Cantab
J Crush, MA Cantab MA Laurier PhD Queens
D S G Thomas, MA PhD Cantab

Postgraduate Co-ordinator:
P Anderson, BSc (Hons) PhD Cape Town

Honorary Research Fellow:
L Nathan BBus Sci/LLB Cape Town MPhil Bradford PhD LSE

Administrative Officer:
S Adams

Senior Secretary:
S Samsodien

Librarian:
S Reddy, BA PGDipLIS MPhil (Adult Educ) Cape Town

Laboratory Departmental Assistant:
S Hess

Library Assistant:
T George

ENVIRONMENTAL EVALUATION UNIT

Director:
M R Sowman, MSc PhD Cape Town
Deputy Director:
R P Wynberg, BSc (Hons) MSc MPhil Cape Town PhD Strathclyde

Honorary Research Associate:
D Fig, BA Cape Town BSc (Hons) PhD LSE

Senior Researcher:
M Hauck, MA (Criminology) Cape Town PhD Cape Town
S Rippon, BSc Architectural Studies MPhil Cape Town

Post-Doctoral Researcher:
S Raemaakers, MSc Ghent PhD Rhodes

Researchers:
K Scott, BSc (Hons) MSc UKZN
J Sunde, BSc (Hons) Cape Town MA York
J van Niekerk, BSc (Hons) Stellenbosch MPhil Cape Town
S Williams, BA (Hons) MA UWC

Office Manager:
A Arendse
Secretary:
F Hartley

CLIMATE SYSTEMS ANALYSIS GROUP

Director:
B C Hewitson, BSc Cape Town MSc PhD Penn State

Post-Doctoral Researchers:
R Cerezo, BSc MSc Baja California DPhil Oxon
O Crespo, MSc Montpellier II PhD Toulouse III
L Kalognomou, MPhys Manchester MSc Cape Town PhD Aristotle University of Thessaloniki
C Lennard, BSc (Hons) MSc PhD Cape Town

Researchers:
L Coop, BSc (Hons) MSc Cape Town
P Johnston, BSc (Hons) HDE Stell MSc PhD Cape Town
M Tadross, BSc (Hons) Newcastle PhD Cantab
R Walawege, BSc (Hons) MSc Cape Town

Administrative Assistants:
S Barnard
I Najaar

RESEARCH IN ENVIRONMENTAL AND GEOGRAPHICAL SCIENCE

Research in Environmental and Geographical Science embraces a variety of topics that are listed below. More detailed information can be obtained by writing to the Department of Environmental and Geographical Science or by consulting the departmental website, www.egs.uct.ac.za.

The Department undertakes research into numerous aspects of the environment, but is particularly involved in studies of environmental change and human-environment interactions. There is an active graduate programme. An 18-month Master's degree in Environment, Society and Sustainability is organised and taught within the Department, and research for higher degrees is also supervised in the more traditional way. There are postgraduate programmes in Environmental & Geographical Science by coursework and dissertation.

Of major interest is the identification and evaluation of environmental problems, along with the assessment of environmental impacts. The Environmental Evaluation Unit of the Department is active in projects which involve assessing the impact of development projects on the biophysical and social environment.

The problem of urbanisation in Africa provides a focus for staff engaged in an analysis of the process in both contemporary and historical contexts. Biogeographical research is also pursued by staff and research students. The ways in which environmental change and human activities have shaped the landscape and vegetation patterns of southern Africa are interpreted through
palaeoecological, remote sensing and geomorphological studies. The Department houses a large reference collection of pollen slides and photographs which is used in reconstructing former vegetation types. Research in climatology focuses on Southern Hemisphere climate variability, regional implications of global climate change, climate modelling, precipitation controls, satellite climatology, and mesoscale meteorology.

Undergraduate Courses

Field work
All students attending courses in Environmental & Geographical Science are required to take part in field work arranged during the year.

First-Year Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE1003H</td>
<td>FOUNDATIONS OF BIOLOGY, EARTH & ENVIRONMENTAL SCIENCES</td>
<td>18 HEQF credits at level 5, course for students on the General Entry Programme for Science (GEPS), providing a general introduction to the study of the Earth and its living and non-living systems. For course details see entry under Department of Archaeology.</td>
</tr>
<tr>
<td>GEO1009F</td>
<td>INTRODUCTION TO EARTH & ENVIRONMENTAL SCIENCES</td>
<td>See course details under the Department of Geological Sciences.</td>
</tr>
<tr>
<td>EGS1003S</td>
<td>GEOGRAPHY, DEVELOPMENT & ENVIRONMENT</td>
<td>18 HEQF credits at level 5, course coordinator(s): Associate Professor M F Ramutsindela, entrance requirements: Geography at NSC level 4 or GEO1009F (or ERT1000F), course outline: The course introduces students to development and environment debates in geography, by exploring the geography of third world development, focusing on the historical roots and spatial patterns that underpin development.</td>
</tr>
<tr>
<td>EGS1004S</td>
<td>INTRODUCTION TO EARTH & ENVIRONMENTAL SCIENCES</td>
<td>18 HEQF credits at level 5, note: EGS1004S is a tutorial-based reinforcement of GEO1009F, offered to students who fail but gain a DP in or are awarded a supplementary for GEO1009F. Credit will not be given for both GEO1009F and EGS1004S. No supplementary examination will be offered, course coordinator(s): Ms K Vickery, entrance requirements: DP in GEO1009F.</td>
</tr>
</tbody>
</table>
Course outline:
As for GEO1009F.

Tutorials: One tutorial per week, Friday, 14h00-17h00.

Assessment: Marked classwork counts 40%; one 3-hour theory examination written in November counts 45%; one 1-hour practical examination written in November counts 15%. Subminima of 40% are required in practical and theory examination papers.

Second-Year Courses

EGS2013F THE PHYSICAL ENVIRONMENT
24 HEQF credits at level 6
Course co-ordinator(s): Dr F Eckardt
Entrance requirements: GEO1009F or EGS1004S

Course outline:
The course focuses on contemporary Atmosphere-Earth surface interactions in particular the role of precipitation and water from a global to a regional scale and examines temporal dynamics, driven by natural process as well as anthropogenic pressures. It covers in detail global circulation patterns, climate variability, soil formation, polar response to climate change, tropical deforestation, desertification and earth observation technology. It concludes with a detailed study of local scale systems and applications covering stream catchments, estuaries, wetlands and coastlines. It is expected that students will enhance their understanding of Earth system dynamics, systems interactions and develop an appreciation for scales both temporal and spatial. Students are also expected to put the local context into a regional setting and make linkages to the larger global picture.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Practicals</td>
<td>One practical per week, Friday, 14h00-17h00.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fieldwork</td>
<td>There is a compulsory fieldwork component involving half-day field excursions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements</td>
<td>Satisfactory completion of practicals and all written assignments, including projects, fieldwork reports, practicals, essays and class tests. Students must attain an average mark of not less than 40% for the coursework.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment</td>
<td>Project, essays, class tests and practical assignments including fieldwork report count 50%; one 3-hour examination written in June count 50% (subminimum of 40% required).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EGS2014S CONTEMPORARY URBAN CHALLENGES
24 HEQF credits at level 6
Course co-ordinator(s): Dr J Battersby-Lennard

Entrance requirements: For BSc: EGS1003S (or EGS1002S); For BA or BSocSci: EGS1003S (or EGS1002S) or Social Science Foundation course and two full first year Humanities courses, or equivalent).

Course outline:
This course draws together historical and contemporary analysis of social, political, economic and environmental dimensions of the South African city. This conceptual material is grounded in field-based experiential learning in Cape Town.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Practicals</td>
<td>One practical or tutorial per week, Friday, 14h00-17h00.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fieldwork</td>
<td>There is a compulsory fieldwork component involving half-day field excursions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements</td>
<td>Attendance and satisfactory completion of practical including fieldwork and tutorial assignments; students must attain an average mark of not less than 40% for the coursework.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Assessment: Essays, a class test, practical assignments based on compulsory fieldwork and tutorial work count 50%; one 2-hour theory paper written in November counts 50% (subminimum of 40% required).

Third-Year Courses

EGS3012S ATMOSPHERIC SCIENCE
36 HEQF credits at level 7
Course co-ordinator(s): Dr B J Abiodun
Entrance requirements: GEO1009F or equivalent, EGS2013F (or EGS2012S), SEA2004F (or SEA2002S or SEA2003F) or approved 2000-level Science course or any 1000-level Physics course.
Course outline:
Atmospheric energy balance; winds and circulations; clouds and cloud formation; thermodynamics; rainfall and weather systems in the tropics and midlatitudes; general circulation of the atmosphere; South African weather and climate; droughts and floods.

<table>
<thead>
<tr>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon</td>
</tr>
<tr>
<td>Lectures:</td>
</tr>
<tr>
<td>Practicals:</td>
</tr>
</tbody>
</table>

DP requirements: Satisfactory completion of practicals and all written assignments, including essays, project reports and class tests.
Assessment: Essays and tests count 20%; project reports and practicals count 20%; one 3-hour examination in November counts 60% (subminimum of 40% required).

EGS3020F ENVIRONMENTAL CHANGE & CHALLENGE
36 HEQF credits at level 7
Course co-ordinator(s): Professor M E Meadows
Entrance requirements: EGS2013F, EGS2014S (or EGS2010F, EGS2012S)
Course outline:
The course explores the nature of physical environmental change as manifested through processes associated with biological, physical and human components of ecosystems with a focus on southern Africa. The recent geological past (the late Quaternary) provides a longer term perspective that enables recent and contemporary environmental changes to be placed in context. The nature and extent of human impact on landscapes is examined along with a consideration of how conservation efforts are applied in order to mitigate these changes. Environmental change is conceptualised as geohazard; and disaster risk and disaster risk profiling is introduced at the regional and local scale. The course further considers key land surface processes in a range of environments and how these respond to environmental dynamics.

<table>
<thead>
<tr>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon</td>
</tr>
<tr>
<td>Lectures:</td>
</tr>
<tr>
<td>Practicals:</td>
</tr>
</tbody>
</table>

Fieldwork: There is a compulsory four day residential field excursion during the University vacation.
DP requirements: Attendance at residential fieldwork during a University vacation is compulsory; satisfactory completion of practicals and all written assignments, including fieldwork report, essays and class tests. Students must attain an average mark of not less than 40% for the coursework.
Assessment: Field report, essays, class tests and practical assignments count 45%; two 2-hour examinations written in June count 55% (sub-minimum of 40% required).
EGS3021F SUSTAINABILITY & ENVIRONMENT
36 HEQF credits at level 7
Course co-ordinator(s): Associate Professor M Sowman
Course outline:
The course critically engages with current debates and discourses in the fields of sustainability, vulnerability and environmental management, including examination of key concepts such as integration, systems-thinking, complexity, equity, vulnerability, risk, resilience, adaptation and mitigation. Approaches and methods for analysing environmental problems and integrating risk reduction as well as sustainability principles and practices into policy, programme, plan and project cycle processes are investigated and applied in different contexts.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Practicals:</td>
<td>One practical per week, Wednesday, 14h00-17h00.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fieldwork:</td>
<td>There is a compulsory fieldwork component involving half-day field excursions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements:</td>
<td>Attendance and satisfactory completion of practicals (including fieldwork), other assignments and tests; students must attain an average mark of not less than 40% for the coursework.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment:</td>
<td>Practical reports (including fieldwork), class tests and other assignments count 50%; one 3-hour June examination counts 50% (subminimum of 40% required).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EGS3022S GEOGRAPHIC THOUGHT
36 HEQF credits at level 7
Course co-ordinator(s): Dr S Daya
Entrance requirements: EGS2013F, EGS2014S (or EGS2010F, EGS2011S)
Course outline:
The course focuses on international debates in classical and contemporary human geography. It considers important thematic areas in the geographical literature, such as: development; spatiality; urban, political and feminist geographies.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Practicals:</td>
<td>One practical or tutorial per week, Wednesday, 14h00-17h00.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements:</td>
<td>Satisfactory completion of essay assignments and class test; students must attain an average mark of not less than 40% for the coursework.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment:</td>
<td>Essay and other assignments count 50%; two 2-hour written examinations in November count 50% (subminimum of 40% required).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Postgraduate Courses
Ancillary activities
In addition to formal courses, students undertaking postgraduate courses are required to participate fully in other departmental activities of an academic nature. Such activities are weekly seminars on environmental topics addressed by persons prominent in their fields, field camps and field exercises away from Cape Town, and study tours to obtain first-hand exposure to environmental problems and their solutions. Graduate students who, in the opinion of the Head of Department, have not had adequate exposure to undergraduate courses with environmental content may also be required to attend specified courses.
EGS4001W BSc (HONS) IN ATMOSPHERIC SCIENCE
160 HEQF credits at level 8
(includes research project of 40 credits)
Course co-ordinator(s): Dr B J Abiodun
Entrance requirements: As for EGS4004W, with the additional requirement of at least a half-course in Mathematics or a full-course in Physics, as well as a senior undergraduate course in climatology or atmospheric science. Experience with computers is highly recommended.

Course outline:
The Atmospheric Science programme provides a 4th year of development for those interested in following a career associated with atmospheric science and climatology, or for progression to research in this area. The focus is on practical skills and the application of theory to the issues related to the climate system. The programme follows the same pattern as EGS4004W, with the constraint that three of four course modules must be from the atmospheric options, and the fourth module from one of the honours level physical science options in Environmental & Geographical Science or the Oceanography department. Included in the requirements are a research project, two seminar presentations, and course fieldwork. Students will also attend and present at the annual conference of the South African Society for Atmospheric Scientists.

Assessment: The examinations will follow the same structure as EGS4004W. Not all course options have formal examinations, and a significant portion of the total coursework mark may be based on set project tasks. Examinations on average count 50% and coursework 50% for each module. The research project counts 25% of the degree as a whole.

EGS4004W BSc (HONS) IN ENVIRONMENTAL & GEOGRAPHICAL SCIENCE
160 HEQF credits at level 8
(includes research project of 40 credits)
Course co-ordinator(s): Dr P Anderson
Entrance requirements: A BSc degree with a major in Environmental & Geographical Science or related field. Enrollments are limited to 30, and acceptance will be at the discretion of the Head of Department who will consider quality of final year results, material covered in the undergraduate curriculum, and referee reports. Preference may be given to UCT graduates who meet the entrance requirements.

Course outline:
There are three Honours streams within Environmental & Geographical Science: Environmental Management, Human Geography and Physical Geography. Students complete four advanced semester modules. In all streams, one of these four modules must be a research methods module. Students complete a research methods course and then select a further three modules from a range of advanced courses in Environmental and Geographical Science that have foundations in one or more of the following areas of study: Human Geography, Disaster Risk Science, Environmental Management, Physical Geography. Curricula must be approved by the course convenor in consultation with the Head of Department. In addition, each student completes a research project. At the discretion of the course convener, in consultation with the Head of Department, students may take one course from outside the Department (in addition to the methods course) towards the BSc (Hons) degree in Environmental & Geographical Science.

Assessment: Courses will be examined at the end of each semester, and the marks combined with project, essay, field work and seminar presentation marks. Examinations on average count 50% and coursework 50% for each module. The research project counts 25% of the degree as a whole.

EGS5003W MASTERS IN ENVIRONMENTAL & GEOGRAPHICAL SCIENCE
180 HEQF credits at level 9
Following completion of an Honours degree (or equivalent) acceptable to the Head of Department, candidates must undertake an independent research project and submit the results in the form of a
dissertation. General rules for this degree may be found in the front of the handbook. In addition to submitting an application to the University, prospective candidates must complete an application form available from the department.

EGS5008H and EGS5009W MPhil IN ENVIRONMENT, SOCIETY & SUSTAINABILITY (by coursework and dissertation)
Coursework: 90 HEQF credits at level 9
Dissertation: 90 HEQF credits at level 9
This MPhil programme is designed for students with diverse backgrounds who have an interest in environment, society and sustainability. Problems pertaining to the environment, society and sustainability are interdisciplinary in nature and students with backgrounds in geography, natural and social science, planning, engineering, education, economics and law are encouraged to apply.

Course co-ordinator(s): Dr P Anderson

Entrance requirements: Students must hold an Honours degree (or equivalent). In special circumstances graduates who have shown by examination, or publication, or a record of appropriate training, that they have reached a level equivalent to an Honours degree may be admitted.

Applications for admission: Prospective students are advised that, because there is a limit of 12 places in the Environment, Society and Sustainability programme, only selected students are admitted. Selection will be at the discretion of the Head of the Department, based on quality of qualification, experiential learning and/or referee reports. It is therefore imperative that intending applicants, in addition to submitting an application to the University, complete the application form available from the Department and submit this before the annual deadline - the date is displayed on the departmental website - see www.egs.uct.ac.za.

Course outline:
Prescribed coursework (EGS5008H): In the first year of the programme, students select five departmental coursework modules in, for example, Theory and Practice of Environmental Management, Capital Politics and Nature, Geography of Development and Environment, Living with Environmental Change, Urban Food Security, Cultural Geographies, Managing Complex Human-Ecological Systems, or Remote Sensing. Assessment for these modules includes both written examinations and coursework assignments. Examinations on average count 50% and coursework 50% for each module.

Dissertation (EGS5009W): In the second year students undertake a research project demonstrating the application of theory to practical issues in the research area of environment, society and sustainability. The work must be submitted in the form of a dissertation that counts 50% of the final course outcome.

EGS5010H and EGS5020W MASTERS IN ENVIRONMENTAL & GEOGRAPHICAL SCIENCE
(by coursework and dissertation)
Coursework: 90 HEQF credits at level 9
Dissertation: 90 HEQF credits at level 9
Course co-ordinator(s): Dr P Anderson

Entrance requirements: Candidates must have completed a BSc (Hons) degree in Environmental & Geographical Science. Individual specialist modules may carry additional prerequisites. In addition to submitting an application to the University, prospective candidates must complete an application form available from the department.

Course outline:
Students select four modules from a range of advanced courses in Environmental & Geographical Science that have foundations in one or more of the following areas of study: Human Geography, Physical Geography, Atmospheric Science, Environmental Management, Geographical Information Systems. In addition, each student conducts a major research project examined by dissertation (EGS5020W). At the discretion of the course convener, in consultation with the Head of
Department, students may count one or two modules from outside the department towards the MSc degree in Environmental & Geographical Science by coursework and dissertation.

Assessment: Modules are conventionally examined by 3-hour written papers in combination with various coursework elements such as essays, projects, practical assignments etc. Examinations on average count 50% and coursework 50% for each module. The dissertation component counts 50% of the degree as a whole.

EGS5012W MASTERS IN CLIMATE CHANGE & SUSTAINABLE DEVELOPMENT

(by coursework and minor dissertation)

Coursework: 120 HEQF credits at level 9
Minor dissertation: 60 HEQF credits at level 9

The cross-Faculty MSc/MPhil programme is designed for students with diverse backgrounds who have an interest in climate change and sustainable development. Environmental problems are interdisciplinary in nature and students with backgrounds in scientific, planning, engineering, economic, educational, social and legal disciplines are encouraged to apply.

Course co-ordinator(s): Professor M New

Entrance requirements: Students must hold an Honours degree (or equivalent).

Course outline:
This coursework Masters in Climate Change and Sustainable Development is designed to attract interested students from across the spectrum of disciplines who want to gain a broad understanding of the issues involved in climate change and development from an African and developing world perspective. The overriding message of the course is that one cannot deal with climate change and development without considering both the scientific uncertainties, and the social, technological and ethical issues at stake. South Africa is uniquely positioned geographically, as a peninsula jutting out into the world ocean, with warm and cold oceans on either side and the southern ocean to the south. Thus land-ocean-atmosphere interactions have a strong influence on our climate, and our status as a developing country with good technology and infrastructure alongside under-developed communities provide a microcosm of the world's social and economic development issues. Students from both scientific and humanities backgrounds will be enrolled so that these issues can be debated and students will learn to understand different points of view.

The programme is designed to have four compulsory core courses to cover an overview of Earth system science and the social, economic, adaptation and mitigation issues, plus more specialised elective courses (three) that may be related to a student's individual background in Science, Engineering, Humanities or Law. The different philosophies of scientific and humanistic approaches will be an integral part of this cross-disciplinary cross-faculty programme. Students will register for a separate minor dissertation component that must be passed for the degree to be awarded.

Assessment: Both coursework and dissertation components must be passed separately for the degree to be awarded. Of the coursework component, class assessments will count 50% and examinations will count 50%. **Subminima:** Six of the seven modules must be passed, with an average mark of 50% or greater for all seven (a subminimum of 33% is required for all seven modules).

EGS6003W PhD IN ENVIRONMENTAL & GEOGRAPHICAL SCIENCE

360 HEQF credits at level 10

Prospective candidates are referred to the rules for this degree as set out in Book 3, General Rules and Policies. In addition to submitting an application to the University, prospective candidates must complete an application form available from the department.
PBL5045S ENVIRONMENTAL LAW FOR NON-LAWYERS
15 HEQF credits at level 9

NOTE: The following course is offered by the Faculty of Law and forms part of the taught modules offered in EGS5008H.

Course co-ordinator(s): Professor J Glazewski

Entrance requirements: Successful completion of any undergraduate degree. Not available to students undertaking an LLB or LLM degree.

Course outline:
The inclusion of an environmental right in South Africa's Constitution has led to the emergence of many environmental laws and court decisions in the past ten years. These developments are of key relevance to those working in the environmental sector including developers, consultants, biologists, zoologists, planners, sociologists and anthropologists. This course provides students undertaking postgraduate studies relevant to the environment with an insight into relevant principles of international and domestic environmental law. Key content covered in the course includes: an introduction to basic legal principles and resources; constitutional aspects (environmental rights, access to information, administrative justice and access to courts); framework environmental laws; land-use planning laws (planning law, environmental impact assessment and protected areas); natural resource laws (biodiversity, water and marine living resources); and pollution laws (fresh water, land and air pollution).

Lectures: 2nd and 3rd, Tuesdays

DP requirements: Satisfactory attendance of lectures and completion of essays.

Assessment: Short assignment counts 10%, essay counts 40%, one 3-hour examination in June counts 50%.
DEPARTMENT OF GEOLOGICAL SCIENCES

The Department is housed in the Geological Sciences Building, 13 University Avenue
Telephone (021) 650-2931 Fax (021) 650-3783
The Departmental abbreviation for Geological Sciences is GEO.

Associate Professor and Head of Department:
S H Richardson, BSc (Hons) Cape Town PhD MIT

Chamber of Mines Professor of Geochemistry:
A P le Roex, BSc Stell BSc (Hons) PhD Cape Town

Philipson-Stow Professor of Mineralogy and Geology:

Professor:
C Harris, MA DPhil Oxon

Associate Professors:
J S Compton, BA San Diego PhD Harvard
D L Reid, MSc Wellington PhD Cape Town

Senior Lecturer:
M E Bordy, MSc Budapest PhD Rhodes
G C Smith, MA Cantab

Lecturers:
J F A Diener, MSc Stell PhD Melbourne
A Fagereng, BSc (Hons) Cape Town PhD Otago

Emeritus Professors:
J J Gurney, BSc (Hons) PhD Cape Town FRSSAf

Honorary Research Associates:
H E Frimmel, PhD Vienna
R M Smith, MSc Wits PhD Cape Town

Principal Technical Officers:
B A Cairns
J Harrison
V Moisey

Chief Scientific Officers:
C E Tinguely, MSc Clermont-Ferrand

Senior Scientific Officer:
F Rawoot, BSc UWC

Administrative Officer (part-time):
S Whitmore

Senior Secretary:
N Milton
SAP R/3 Administrator:
J Butler

Technical Assistant:
P Sieas

Thin Section Technicians:
R van der Merwe
D Wilson

Departmental Assistants:
J van Rooyen
I Wilson
RESEARCH IN GEOLOGICAL SCIENCES
Research in Geological Sciences embraces a variety of topics that are listed below. More detailed information can be obtained by writing to the Department of Geological Sciences.

The Department has research strengths in geochemistry, structural geology and tectonics, igneous and metamorphic petrology, sedimentology, marine geology, economic geology and petroleum geophysics. General research interests include: global tectonics and geodynamics with emphasis on Gondwana geology; structural geology; oceanic and continental igneous processes and the geochemical evolution of the underlying mantle; kimberlites and the genesis of diamonds; open and closed system behaviour during metamorphism and related ore genesis; economic geology with emphasis on base metal deposits; environmental geochemistry; sedimentology, sedimentary geochemistry, and sedimentary processes; chemical stratigraphy and crisis in the geological record; marine sedimentology and geophysics. The Department is well equipped for analytical studies with X-ray fluorescence, electron microprobe, ion chromatograph, and X-ray diffraction equipment, a solution and laser ablation ICP-MS facility, a solid source mass spectrometer and access to gas-source mass spectrometers for oxygen, hydrogen and carbon stable isotope measurements. The Department is also well equipped for structural and tectonic analysis and seismic interpretation, with microcomputer laboratories and GIS work stations.

Undergraduate Courses
Field excursions:
All students attending courses in Geology are required to take part in the field excursions arranged for them during the year. These excursions take place during the Easter and September mid-semester vacations, and full daily participation is required by all students.

NOTE: Supplementary examinations are not normally granted to students for senior courses in Geology.

First-Year Courses

GEO1009F INTRODUCTION TO EARTH & ENVIRONMENTAL SCIENCES
18 HEQF credits at level 5
This course is presented jointly by the Departments of Archaeology, Environmental & Geographical Science and Geological Sciences, but administered by Geological Sciences.

Course co-ordinator(s): Associate Professor J S Compton

Entrance requirements: Physical Science, Life Sciences or Geography at NSC level 5 or AGE1003H. Preference will be given to students registered in the Science Faculty.

Course outline:
Structure and dynamics of the Earth; stratigraphy and geological history; climatology; surface processes and evolution of landscapes; biogeography; humans and the environment.

Period

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Practical:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fieldwork:</td>
<td>Students are required to attend three half day excursions in the Cape Peninsula.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements:</td>
<td>An average of 30% on all marked classwork and tests.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assessment: Marked class work counts 24%; marked class tests count 16%; one 3-hour theory examination written in June counts 60%. A subminimum of 40% is required in the theory examination paper.

NOTE: Supplementary examinations will be written in November.
AGE1003H FOUNDATIONS OF BIOLOGY, EARTH & ENVIRONMENTAL SCIENCES
18 HEQF credits at level 5
A course for students on the General Entry Programme for Science (GEPS), providing a general introduction to the study of the Earth and its living and non-living systems. For course details see entry under Department of Archaeology.

GEO1006S INTRODUCTION TO MINERALS, ROCKS & STRUCTURE
18 HEQF credits at level 5
Course co-ordinator(s): Associate Professor D L Reid
Entrance requirements: A minimum of 45% in GEO1009F or a pass in EGS1004S.
Course outline:
Crystals and minerals; Igneous and metamorphic rocks; Structural geology; Mineral deposits and economic geology; Palaeontology.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Practicals:</td>
<td>One practical per week, Thursday or Friday, 14h00-17h00.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fieldwork:</td>
<td>Students are required to attend a one-day excursion in the Cape Peninsula, and a four-day excursion through the southwestern Cape during the September vacation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements:</td>
<td>An average of 30% in all marked classwork and tests. Compulsory attendance at one tutorial session per week for all students who fail any class test, until such time as a subsequent test is passed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment:</td>
<td>Class tests count 35%; field reports count 15%; one 2-hour theory examination written in November counts 50%. A subminimum of 40% is required in the theory examination paper.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second-Year Courses

GEO2001F MINERALOGY & CRYSTALLOGRAPHY
24 HEQF credits at level 6
NOTE: Entrance is limited to 35 students.
Course co-ordinator(s): Associate Professor S H Richardson
Entrance requirements: GEO1009F (or EGS1004S) and GEO1006S, CEM1000W or equivalent.
Course outline:

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Practicals:</td>
<td>One practical per week, Wednesday, 14h00-17h00.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements:</td>
<td>Attendance at 80% of practicals, and an average of 30% in all marked class work and tests.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment:</td>
<td>Marked class work, including tests, count 20%; one 2-hour practical examination written in June counts 30%; one 2-hour theory paper written in June counts 50%. Subminima of 40% are required in practical and theory examination papers.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GEO2004S PHYSICAL GEOLOGY
24 HEQF credits at level 6
Course co-ordinator(s): Dr A Fagereng
Entrance requirements: GEO2001F
Course outline:

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Practicals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| DP requirements: One practical per week, Wednesday, 14h00-17h00.

Assessment: An average of 30% in marked class work, and attendance at 80% of practicals.

GEO2005X FIELD GEOLOGY & GEOLOGICAL MAPPING (second-year half course)
24 HEQF credits at level 6
Course co-ordinator(s): Professor C Harris
Entrance requirements: GEO1006S, GEO2004S (co-requisite)
Course outline:
This is a field-based course that introduces techniques used to identify, describe and document rocks in the field and for interpreting their inter-relationships, with the view to producing geological maps, stratigraphic logs and structural sections. Techniques covered include: mineralogical and textural descriptions of rocks using a hand-lens; measurement of attitude of bedding using compass and clinometer; measurement, description and interpretation of depositional and deformational structures; stereo plots, interpretation and use of aerial photographs; identifying contact relationships; GPS positioning. Course material is taught over four separate field camps spread over two years of study.
Lectures: None
Practicals: Five afternoons by arrangement.
Fieldwork: Nine days in Laingsburg area, nine days in northern Cape, three days in Southwestern Cape, nine days in southern Cape.
DP requirements: Attendance at all field camps.
Assessment: Maps and reports count for 70%; three 2-hour practical examinations in June and November count for 30%.

Third-Year Courses
GEO3005F PETROLOGY & STRUCTURAL GEOLOGY
36 HEQF credits at level 7
Course co-ordinator(s): Professor C Harris
Entrance requirements: GEO2001F, GEO2004S, first qualifying course in Chemistry
Course outline:
Interpreting major and trace element and isotope variations in igneous rocks. Origin and evolution of the major magma series. Thermodynamics, kinetics and chemography of metamorphic reactions. Tectonic setting of metamorphic terrains. Principles of interpretations and classification of
continental and marine sedimentary environments. Fault related folding, fold and thrust systems, kinematic principles and section balancing. Ductile deformation.

Period

<table>
<thead>
<tr>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Practicals: Two practicals per week, Tuesday and Thursday, 14h00-17h00.

DP requirements: Attendance at 80% of practicals and an average of 30% in all marked class work and tests.

Assessment: Class work counts 20%; one 4-hour practical examination written in June counts 30%; one 3-hour theory paper written in June counts 50%. Subminima of 40% required in practical and theory examination papers.

GEO3001S STRATIGRAPHY & ECONOMIC GEOLOGY

36 HEQF credits at level 7

Course co-ordinator(s): Associate Professor D L Reid

Entrance requirements: GEO2004S, DP in GEO3005F

Course outline:
The principles of stratigraphy with examples drawn from the South African rock record. The methods and procedures involved in dating rocks. The genesis of economic mineral deposits, their microscopic textures, and their valuation and exploitation. Geophysical techniques.

Period

<table>
<thead>
<tr>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Practicals: Two practicals per week, Tuesday and Thursday, 14h00-17h00.

DP requirements: An average of 30% in all marked class work and class tests.

Assessment: Practicals and tests count 25%; one 3-hour theory examination written in November counts 45%; two 2-hour practical examinations written in November count 30%. Subminima of 40% required in practical and theory examination papers.

Postgraduate Courses

GEO4000W Bsc (Hons) in Geology

160 HEQF credits at level 8

(includes research project of 40 credits)

Course co-ordinator(s): Associate Professor S H Richardson

Entrance requirements: A BSc degree with a major in Geology, first qualifying courses in Chemistry and Mathematics. A first qualifying course in Physics is recommended. The Senate may accept other courses as being equivalent to these and this criterion will be applied when considering Science graduates from other universities. Registrations are limited to 16 and acceptance will be at the discretion of the Head of Department, who will consider quality of final year results, material covered in undergraduate curriculum, and referee reports in making decisions. Preference will be given to UCT graduates who meet the entrance requirements.

Course outline:
Students are required to elect one of two streams of study - General Geology, or Petroleum Geology. A selection of compulsory and elective modules are available for each stream, and would normally include the following: Analytical Geochemistry, Applied Geophysics, Petroleum Sedimentology, Economic Geology, Igneous Petrology, Isotope Geochemistry, Mantle Petrology, Marine Geochemistry, Metamorphic Petrology, Petroleum Geology, Sedimentary Basins, Structural Geology. Evolution of the African Plate and Geodata Analysis are compulsory modules for all students. In addition, each student is required to undertake a supervised research project. Choice of optional modules and research project require the approval of the Honours course co-ordinator and
Head of Department. All students are required to attend a two week field trip held during the year.

Assessment: The compulsory and optional modules will each have an associated examination held in mid-year and towards the end of the Honours year. These examinations will count 55%, practical and assignment work done during the year counts 20%, and the research project 25% towards the final grade. Subminima of 40% are required for overall exam mark and research project.

GEO4001W BSc (HONS) IN GEOCHEMISTRY
As for GEO4000W above, but with a restricted choice of modules.

GEO5000W MASTERS IN GEOLOGY
180 HEQF credits at level 9
General rules for this degree may be found at the front of the handbook.

GEO5003W MASTERS IN GEOCHEMISTRY
180 HEQF credits at level 9
General rules for this degree may be found at the front of the handbook.

GEO6000W PhD IN GEOLOGY
360 HEQF credits at level 10
Prospective candidates are referred to the rules for the PhD degree in Book 3, General Rules and Policies.

GEO6001W PhD IN GEOCHEMISTRY
360 HEQF credits at level 10
Prospective candidates are referred to the rules for the PhD degree in Book 3, General Rules and Policies.
The division of Geomatics is part of the Faculty of Engineering and the Built Environment. Geoinformatics is only offered as a specialisation for the BSc degree when taken in conjunction with another SB012 specialisation or with SB006 Applied Computing. The Department is housed in the Menzies Building. Telephone (021) 650-2675 Fax (021) 650-3572. The Departmental abbreviation for Geomatics Division is APG.

Associate Professor and Head of Department:
A Steenkamp, MArch Pret PrArch

Associate Professor:
J L Smit, BSc (Surveying) PhD Cape Town
J F Whittal, BSc(Surveying) MSc(Eng) Cape Town PhD Calgary PrL(SA) MSAGI

Senior Lecturers:
M Abd El-Gelil, BSc Alexandria MASc Ryerson PhD York
G Sithole, MSc IGP ITC (NL) PhD TUDelft (NL) Zimbabwe

Emeritus Professor:
H Rüther, Dipl-Ing Bonn PhD Cape Town PrS(SA) FRSSAf

Emeritus Associate Professor:
C L Merry, BSc(Surv) Cape Town PhD New Brunswick

Chief Technical Officer:
D Matthee, NHD (Mechanical Eng.) ND(Surveying)

Technical Officer:

Senior Secretary:
S Shaffie

Laboratory Attendant:
S Smith

Undergraduate Courses

First-Year Courses

APG1015S PROGRAMMING FOR GEOMATICS
18 HEQF credits at level 5

Course co-ordinator(s): Dr G Sithole

Entrance requirements: None

Course outline:
Course Aims: To provide students with competence in developing GIS/Geomatics applications using high-level programming languages and scripting for and customisation of Geographic Information System (GIS) and Geomatics applications. Furthermore, students are equipped with skills to develop algorithms for Geomatics and GIS problem solving as well as being competent in the use of GIS/Geomatics applications.

Course Content: Introduction - Computing in Geomatics and GIS, Programming paradigms, Essential concepts in programming, Input/Output and essential data formats, Structured programming, Extended data types, O-O programming, Trigonometric functions and examples in Geomatics, 2D Graphics, 3D Graphics, VB vs VB.Net, VB.Net vs C/C++ and Java.

Period

<table>
<thead>
<tr>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Lectures: 4 4 4 4 4
Practicals: One practical per week, Wednesday, 14h00-17h00.

DP requirements: Completion of all tests and practical assignments with a minimum average of 50%.

Assessment: Tests, practical assignments.

APG1016F GEOMATICS I

18 HEQF credits at level 5
Course co-ordinator(s): Associate Professor J Whittal
Entrance requirements: None
Co-requisites: APG1015S or CSC1015F

Course outline:
Course Aims: To provide a foundation in geomatics as a measurement science by introducing key concepts, instrumentation, techniques and conventions in the discipline. Course Content: Introduction to geomatics, principles of measurement science, spatial data, reference systems and datums, coordinate systems, projections, spatial computations on the plane, surveying principles and instrumentation, representation of spatial data in two dimensions, interpretation of maps and plans in three dimensions, surveying software, spreadsheets, and basic programming, introduction to fields of geomatics and integrated systems.

Period

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Practicals: One practical per week, Wednesday, 14h00-17h00.
DP requirements: Class tests must be written and all practicals/assignments attended and submitted.

Assessment: Tests, 3-hour examination (sub minimum 40%).

APG2014S GEOMATICS II

24 HEQF credits at level 6
Course co-ordinator(s): Dr M Abd El-Gelil
Entrance requirements: APG1015F or CSC1015S or CSC1018F, MAM1003W or MAM1000W, APG1016F

Course outline:
Course Aims: This course builds further upon the introduction to co-ordinate systems provided in Geomatics I, and extends it to cover co-ordinate transformations, 3-D co-ordinate systems and time variations. The student is also introduced to the method of least squares as a means of solving over-determined systems of equations, with applications in co-ordinate transformations. Course Content: Introduction to error theory and error propagation, method of least squares - parametric case, software applications in Geomatics, two-dimensional co-ordinate systems, motions of the Earth, time, satellite orbits, three-dimensional co-ordinate systems.

Period

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Practicals: One practical per week, Tuesday, 14h00-17h00.
DP requirements: Completion of practical assignments to the satisfaction of the course convener.
Assessment: Tests, practical assignments, 3-hour examination (sub minimum 40%).

APG2015F GEOGRAPHIC INFORMATION SYSTEMS I

24 HEQF credits at level 6
Course co-ordinator(s): To be advised
Entrance requirements: CSC1015F or CSC1018F or APG1015S, MAM1000W or MAM1003W or (MAM1004F with STA1000S), APG1016F

Course outline:
Course Aims: To provide spherical knowledge and skills in the fundamental concepts of geographic information systems.
Course Content: GIS concepts, spatial relationships, topology, spatial and non-spatial data structures and algorithms, vector databases, raster data structures, data capture for raster GIS, spatial analysis using the raster data model, relational database management systems, data modelling, data display and presentation, theory of map projections.

Period
<table>
<thead>
<tr>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Practicals: One practical per week, Friday, 14h00-17h00.

DP requirements: Completion of practical assignments to the satisfaction of the course convener and a test average of 35% or more.

Assessment: Tests, practical assignments, 3-hour examination (sub minimum 40%)

APG2018X GEOGRAPHIC INFORMATION SYSTEMS CAMP
4 HEQF credits at level 6
Course co-ordinator(s): Associate Professor J Smit
Entrance requirements: APG1016F, APG2015F or equivalent (co-requisite)

Course outline:
Course Aims: To consolidate knowledge and skills learnt in the course GIS I. To further teach problem solving skills in relation to practical GIS problems, and to equip the student with group work skills and engender tolerance of diversity.
Course Content: This 1-week camp is structured to teach problem solving skills in relation to practical spatial data management challenges in the GIS environment. Groups are made up of students who will work together in a simulated project environment. The camp covers the basic steps of GIS project planning with a focus in project layout, data acquisition, needs analysis, user requirements, system implementation and maintenance. The successful team will present a GIS solution to a spatial project, showing the project layout, data acquisition, needs analysis, user requirements.

DP requirements: Completion of practical assignments to the satisfaction of the course convener
Assessment: Project 100%

APG2026F ELEMENTARY SURVEYING
16 HEQF credits at level 6
Course co-ordinator(s): To be advised
Entrance requirements: STA1001F or MAM1003W, or MAM1004F and STA1000S, or equivalent

Course outline:
Course Aims: This course is designed to provide understanding of graphical and spatial concepts and skills of plane surveying for students of the built environment who are not intending to study higher courses in surveying. To teach problem solving skills in relation to practical surveying problems. To equip the student with group work and technical report writing skills.
Course Content: The content of the course includes the South African co-ordinate system; introduction to reduction of observations to a reference surface and projection to a mapping surface. Joins, Polars, error, traversing, theodolite and level instruments and their calibration, height determination by levelling and trigonometric heighting, distance measurement, tacheometry and map creation and interpretation, GIS as a tool for representation and analysis of spatial data,
construction surveying: setting out of horizontal works and vertical alignment, calculation of volumes from plan, introduction to GPS as a data collection tool.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Practicals:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DP requirements: Completion of practical assignments to the satisfaction of the course convener and a test average of 35% or more.

Assessment: Tests, practical assignments, 3-hour examination (sub minimum 40%).

Third-Year Courses

APG3011S GEOSPATIAL INFORMATION SYSTEMS II

24 HEQF credits at level 7

Course co-ordinator(s): Associate Professor J Smit

Entrance requirements: CSC1015F or CSC1018F or APG1015S, APG2015F or equivalent, APG2018X

Course outline:

Course Aims: This course builds on the theory developed in the GIS I course. By the end of this course the student should have developed the knowledge and skills required to design and implement specialised GIS applications and an understanding of the theory, capabilities and limitations of various spatial analysis and optimisation techniques that are currently applied in the business of GIS. Furthermore the student should be aware of graphic design and presentation methods and have a grasp of the algorithms that are used in digital mapping. Certain legal and management issues are also addressed.

Course Content: multidimensional GIS and advanced data structures, spatial data infrastructures and metadata, distributed GIS, digital cartography, GIS application design and development using software engineering tools, GIS project management, spatial analysis, copyright and privacy issues.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

DP requirements: Completion of practical assignments to the satisfaction of the course convener and a test average of 35% or more.

Assessment: Tests, practical assignments, 3-hour examination (sub minimum 40%)

APG3012S GEOMATICS III

24 HEQF credits at level 7

Course co-ordinator(s): Associate Professor J Smit

Entrance requirements: APG1015S or CSC1015F and APG1016F and MAM1018F/S or MAM1000W

Course outline:

Course Aims: The nature and concept of satellite and airborne remote sensing: the nature of remote sensing, optical radiation models, sensor models, data models, spectral transforms, spatial transforms, thematic image classification and remote sensing for decision support. An introduction to airborne laser scanning (ALS), applications and sensor systems for ALS. Introduction to photogrammetry, geometry of Images, image measurement and co-ordinate refinement, stereo restitution, camera calibration and photogrammetric application.

Course Content: Basic mathematics of photogrammetry, stereo photogrammetry, orientation techniques, relative orientation, absolute orientation, collinearity, complanarity, bundle adjustment, DLT, camera calibration, image measurement and co-ordinate refinement, introduction to digital photogrammetry. Aerotriangulation and close range network design. DTM production, rectification,
ortho-rectification, mosaicing and automation in digital photogrammetry, laser scanning.

APG3016C SURVEYING II
12 HEQF credits at level 7
Course co-ordinator(s): Associate Professor J Whittal
Entrance requirements: APG1016S and APG2015F.
Course outline:
Course Aims: To provide insight into the origins of the surveying discipline. To introduce some specialised instruments and methods used currently. To equip the student with a theoretical and working knowledge of satellite positioning methods. To further equip the student with group work, technical report writing, research, oral presentation, and problem solving skills, and to encourage critical enquiry.
Course Content: The history of surveying in southern Africa is self-taught through reading and assessed by essay; two lectures will be delivered on essay writing and related skills. Some additional surveying instrumentation/methods not mentioned in pre-requisite courses are introduced, and students are expected to research and present a 10-minute seminar on a surveying technique, interesting surveying equipment, or a surveying project. Surveying with the global navigation satellite systems is covered in detail and consists of 80% of the course.

Period

<table>
<thead>
<tr>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Practical:</td>
<td>One practical per week, Tuesday, 14h00-17h00.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements:</td>
<td>Completion of all assignments with an average of 50%; 35% average test mark.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment:</td>
<td>Tests, practical assignments/seminars, 1.5-hour examination (sub minimum 40%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APG4010X GEOINFORMATICS CAMP
4 HEQF credits at level 8
Course co-ordinator(s): Associate Professor J Smit
Entrance requirements: APG3012S
Course outline:
This camp aims to consolidate knowledge and skills learnt in the course APG3012S. To further teach practical problem solving and production tasks in photogrammetry and remote sensing. In addition to perform 3D data modelling of results achieved and present the output by means of suitable visualisation methods. The practical work will be conducted in groups and the outcomes should be reported as a critical evaluation of the processes and methods used.

DP requirements: None
Assessment: Project work results and report (100%).
APG4011F GEOMATICS IV
24 HEQF credits at level 8

Course co-ordinator(s): Dr G Sithole

Entrance requirements: APG3012S, MAM2084F/S

Co-requisites: APG4010X

Course outline:
The nature and concept of satellite and airborne remote sensing: advanced spectral and spatial image transforms, advanced thematic image classification methods, and an introduction to data fusion and hyperspectral image analysis concepts. Processing of ALS data, including: data filtering, segmentation, object classification and 3D modelling. Photogrammetric production concepts including: aerial triangulation, DTM and ortho image production, pictometry, 3D reconstruction and visualisation.

Period

<table>
<thead>
<tr>
<th></th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Practicals: One practical per week, Tuesday, 14h00-17h00.

DP requirements: Completion of practical assignments to the satisfaction of the course convener (with a minimum average mark of 50%) and a test average of 35% or more.

Assessment: Tests, practical assignments, 3-hour examination (sub minimum 40%).
DEPARTMENT OF HUMAN BIOLOGY

The Department of Human Biology is part of the Faculty of Health Sciences and incorporates the disciplines of Anatomy, Cell Biology, Biomedical Engineering, Physiology, Exercise Science and Sports Medicine. They offer the Human Biology (HUB) courses detailed in this section towards the Human Physiology major for the BSc degree.

The Department is housed in the Anatomy Building, Room 5.14, level 5, Health Sciences Campus and Sports Science Institute building, Newlands
Telephone (021) 406-6235
The Departmental abbreviation for Human Biology is HUB.

Associate Professor and Head of Department
L A Kellaway, MSc PhD Cape Town

Hyman Goldberg Professor of Biomedical Engineering:

Discovery Health Chair of Exercise and Sports Science:
T D Noakes, MBChB MD DSc Cape Town FACSM

Professors:
E W Derman, MBChB Pret BSc Med (Hons) PhD Cape Town FACSM
S H Kidson, MSc PhD Wits HDE (JCE)
E V Lambert, BA (Phys Ed)(Hons) Rhodes MSc South Carolina PhD Cape Town
M I Lambert, BA (Phys Ed)(Hons) Rhodes MSc South Carolina PhD Cape Town
G J Louw, DVS c Pret
A G Morris, BSc (WLU) PhD Wits
V A Russell, BSc (Hons) MSc Cape Town PhD Stell
M P Schwellnus, MBChB Wits MSc MD Cape Town FACSM

Associate Professors:
A N Bosch, BA (PhysEd)(Hons) MA Rhodes PhD Cape Town
M R Collins, BSc (Hons) Stell PhD Cape Town
T S Douglas, BSc (Eng) Cape Town MS Vanderbilt PhD Strathclyde
D M Lang, Dr rer Nat Konstanz
E M Meintjies, BSc (Hons) MSc Pietermaritzburg PhD Oregn State
E Ojuka, BSc MEd (Makerere) PhD Bingham Young

Senior Lecturers:
K Bugarith, BSc (Hons) Natal PhD Washington State
L Davids, MSc PhD Cape Town
T Kolbe-Alexander, BSc UWC BSc (Hons) PhD Cape Town
M A J Poluta, BSc (Eng) Witwatersrand
S Prince, BSc (Hons) HDE PhD Cape Town
D Shamley, BSc (Hons) PhD Witwatersrand
C P Slater, MBChB Cape Town FFRad(T) SA
L van der Merwe, Nat Dip Med Tech Cape Town, BSc (Med) Hons MSc PhD Cape Town
C Warton, MBChB Rhodes LRCP MRCS London

Senior Lecturer and Principal Biomedical Engineer:
M A J Poluta, BSc (Eng) Wits

Honorary Senior Lecturers:
J de Beer, MBChB MMed (Orthop) Pretoria
J Goedecke, PhD Cape Town
L Mickersfield, PhD Cape Town
M Patrick, PhD Cape Town
R Tucker, PhD Cape Town
DEPARTMENT OF HUMAN BIOLOGY

Lecturers:
- E Badenhorst, BA(Hons) *Stell*
- J Friedling, MSc PhD *Cape Town*
- G Gunston, MBChB *Cape Town*
- L R John, BSc (Eng) *Natal PhD Cape Town*
- R Kelly, PhD *Ireland*

Emeritus Professor:
- CL Vaughan, BSc(Hons) *Rhodes PhD Iowa*

Honorary Professors:
- J L Jacobson, JD *Harvard PhD Harvard*
- S W Jacobson, PhD *Harvard*
- L van der Merwe, MSc PhD *UPE*

Honorary Research Associates:
- N Bergman, MBChB DCH MPH MD *Cape Town*

Chief Technical and Scientific Officers:
- B Möhr, BSc *Cape Town*
- T Wiggins, Dip Med Tech BSc(Ed)(Hons) *Cape Town*
- C Harris, NTC (Tool, Jig and Die making) *Athlone Tech College*
- G de Bie, BSc *Rhodes BSc(Hons) UOFS*

Technical Officers:
- I Fakier, ND *Electrical Eng CPUT*
- V Fourie
- N Kariem, BSc (Hons) *Cape Town*
- M Peterson, Dip Med Tech BTech *CPUT*

Principal Technical Officer:
- B Dando Dip Med Tech

Undergraduate Courses

Second-Year Courses

HUB2019F INTRODUCTION TO HUMAN BIOLOGY

24 HEQF credits at level 6

NOTE: Entrance is limited to 60 students.

Course co-ordinator(s): Associate Professor E Ojuka, Dr E van der Merwe

Entrance requirements: CEM1000W (or equivalent), BIO1000F

Course outline:

This course is an introduction to human anatomy and the basics of physiology. The first five weeks examine the basics of cells and tissues and cell proliferation, along with gross and histological studies and physiology of the integumentar, musculo-skeletal system, cardio-vascular system, GIT, reproductive, urinary and nervous systems. The course includes the study of homeostasis, the chemistry of life, membranes, electrophysiology, nutrition and metabolism.

Period

<table>
<thead>
<tr>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Fridays may be used for tutorials, guest lectures and tests.

Practicals: One per week, Mondays or Tuesdays

DP requirements: Attendance at all practicals, 40% average in class tests and an average of 50% for all assignments

Assessment: Class tests count 30%; assignments count 5%; practicals count 15%; examinations (theory and practical) count 50%. An oral examination may be required in the case of selected students.
HUB2021S HUMAN BIOLOGY: MAINTENANCE & INTEGRATION
24 HEQF credits at level 6
NOTE: Entrance is limited to 60 students.
Course co-ordinator(s): Dr D Shamley
Entrance requirements: HUB2019F, CEM1000W (or equivalent)
Course outline:
The course contains lectures and tutorials on the physiology, anatomy and histology of organ systems in the human body including the endocrine, nervous, reproductive, cardio respiratory, immune and excretory systems. In practical sessions, students work in small sessions to a) study the electrical, mechanical and chemical events in the contraction of skeletal and cardiac muscles using the oscilloscope and other electronic equipment, b) learn various principles of measuring the activities and concentration of enzymes and hormones c) study anatomical parts of the human body from cadavers and histological sections under a microscope.

Period
<table>
<thead>
<tr>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Fridays may be used for tutorials, guest lectures and tests.

Practicals: One per week, Mondays or Tuesdays, 14h00-17h00.
DP requirements: Attendance at all practicals, 40% average in class tests and an average of 50% for all assignments
Assessment: Class tests count 30%; assignments count 5%; practicals count 15%; examinations (theory and practical) count 50%. An oral examination may be required in the case of selected students.

Third-Year Courses

HUB3006F GENERAL & APPLIED PHYSIOLOGY
36 HEQF credits at level 7
Course co-ordinator(s): Associate Professor A Bosch
Entrance requirements: HUB2021S, CEM1000W (or equivalent)
Course outline:
The semester theme is "Living, working and playing". Topics dealt with in detail include: metabolism and homeostasis, cellular homeostasis, nutrition and metabolism, obesity and diabetes, muscle physiology, cardio-respiratory physiology, exercise physiology, thermoregulation, physiology in extreme environments.

Period
<table>
<thead>
<tr>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Practicals: One practical per week, Wednesdays or Thursdays, 14h00-17h00. The nature of the practicals will sometimes require work outside of these formal times.
DP requirements: Attendance at all practicals, 40% average in class tests and an average of 50% for all assignments
Assessment: Class tests count 30%; assignments count 5%; practicals count 15%; examinations (written and practical) count 50%. An oral examination may be required in the case of selected students.
HUB3007S BIOPHYSICS & NEUROPHYSIOLOGY
36 HEQF credits at level 7

Course co-ordinator(s): Dr A Gwanyanya and Dr D Lang

Entrance requirements: HUB2021S, CEM1000W (or equivalent)

Course outline:
Advanced lectures on topics on neuroscience, such as: electrophysiological techniques, membrane physiology, neural communication, reticular formation, motor systems, vision, pain, hypothalamus, biorhythms, learning and memory, development of nervous system imaging.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Practicals: One practical per week, Wednesdays or Thursdays, 14h00-17h00. The nature of the practicals will sometimes require work outside of these formal times.

DP requirements: Attendance at all practicals, 40% average in class tests and an average of 50% for all assignments.

Assessment: Class tests count 30%; assignments count 5%; practicals count 15%; examinations (theory and practical) count 50%. An oral examination may be required in the case of selected students.
DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS

The Department is housed in the Mathematics Building, 7 University Avenue
Telephone (021) 650-3191 Fax (021) 650-2334. The website address is http://www.mth.uct.ac.za
The Departmental abbreviation for Mathematics and Applied Mathematics is MAM.

Associate Professor and Head of Department:
V Brattka, MSc PhD Hagen, Germany

South African Research Chair in Computational Mechanics:
B D Reddy, BSc(Eng) Cape Town, PhD Cantab FRSSAf

Professors:
I V Barashenkov, MSc Moscow PhD Dubna
B A Bassett, MSc Cape Town PhD Trieste
D S Butterworth, MSc Cape Town PhD London
K A Driver, BSc (Hons) Wits MSc Stanford PhD Wits
P K S Dunsby, BSc PhD London
G Janelidze, MSc PhD Tbilisi Georgia DSc St Petersburg
H P A Künzi, MSc PhD Berne

Associate Professors:
C R A Gilmour, MSc PhD Cape Town
C W Hellaby, BSc (Hons) St Andrews MSc PhD Queen’s (Ontario)
A B Ianovsky, MSc Sofia PhD Dubna

Honorary Research Associates:
K R Hughes, BSc (Hons) PhD Cape Town PhD Warwick
E E Plagányi-Lloyd, BSc Natal MSc PhD Cape Town
F D Richardson, BSc (Agric) Nottingham PhD London PhD Cape Town

Senior Lecturers:
P V Bruyns, MA Dphil Oxon LRSM MSc Cape Town
C AClarkson, BSc (Hons) Edinburgh PhD Glasgow
J J Conradie, MSc Stell PhD Cantab
F Ebobisse Bille, PhD Pisa
D Erwin, MSc Natal PhD Western Michigan
J L Frith, MSc PhD Cape Town
H de G Laurie, BA Stell BSc Unisa BSc (Hons) PhD Cape Town
J Murugan, MSc PhD Cape Town
A Schauerte, BSc (Hons) Natal MSc Cape Town PhD McMaster
A Weltman, BSc (Hons) Cape Town PhD Columbia

Lecturers:
NV Alexeeva, MSc Sofia PhD Cape Town
M L Archibald, MSc PhD Wits
M N Berman, BSc (Hons) MSc Cape Town DPhil Oxon
T Chinyoka, MSc Zimbabwe PhD Virginia Tech
E Fredericks, MSc PhD Wits
R Martin, BSc Guelph MSc PhD Waterloo
A Pototsky, BSc MSc Dnepropetrovsk MSc PhD Cottbus
K T P Rafel, BSc (Hons) Wits MSc Cape Town
J Ratzkin, BA Berkeley PhD Washington
N R C Robertson, MSc PhD Cape Town
D Solomons, MSc PhD Cape Town
H Spakowski, PhD Heinrich-Heine Germany
C S Swart, MSc Natal MSc PhD London
V Vougalter, BSc (Hons) Nizhny Novgorod PhD Georgia Tech

Senior Scholar and Emeritus Distinguished Professor of Complex Systems:
G F R Ellis, BSc (Hons) BCom (Hons) Cape Town PhD Cantab DSc (h.c) Natal, Haverford

Emeritus Professors:
R I Becker, BSc (Hons) Cape Town PhD MIT
G C L Brümmer, MSc Stell Docts Math Amsterdam PhD Cape Town
K A Hardie, MSc Natal PhD Cantab
J H Webb, BSc (Hons) Cape Town PhD Cantab

Emeritus Associate Professor:
R W Cross, MA St Andrews PhD London DSc London

Visiting Professor and Principal Research Officer:
R Maartens, PhD Cape Town

Senior Research Officers:
A D G Brandao, BSc Wits MSc PhD Cape Town
C L de Moor, PhD Imperial College, London
S J Holloway, MSc PhD Cape Town

Principal Technical Officer:
J Gordon, BSc Tel Aviv

Administrative Manager:
H S Leslie, BA (Hons) UPE

Administrative Assistants:
T Hannival
M King
D L Loureiro
C D Sher
N Trikam
N Walker
A Willis-Thomas

Administrative & Research Assistant:
N Gihwala

Senior Secretaries:
Z Hartley
N Davids

Departmental Assistants:
S Allie
J M Steenveld

RESEARCH IN MATHEMATICS AND APPLIED MATHEMATICS
Research activities in the Department cover the spectrum of mathematics, and there are groups which are active in areas as diverse as Topology, Analysis, Logic and Foundational Aspects of Computer Science, General Relativity and Cosmology, Biological Modelling, and Continuum Mechanics. Fields of research of staff members include:

Functional Analysis, Operator Theory (J J Conradie, R W Cross, F Ebobisse, R Martin, N R C Robertson, J H Webb)
Financial Mathematics (R Becker, G West)
Cryptography (C S Swart, H Spakowski)
Dynamical Systems (A B Ianovskiy)
General Relativity and Cosmology (B A Bassett, C A Clarkson, P K S Dunsby, G F R Ellis, C W Hellaby, J Murugan, D Solomons, A Weltman)
Group Theory, Universal Algebra, Set Theory and Model Theory (P V Bruyns, H P A Künzi.)
Industrial Mathematics (H de G Laurie)
Logic, Foundational Aspects of Computer Science and Theory of Algorithms (V Brattka, H Spakowski)
Marine Population Dynamics (A Brandao, D S Butterworth, C de Moor, S J Holloway)
Mathematical Ecology (H de G Laurie)
Mathematics Education (J J Conradie, G F R Ellis, J L Frith, C R A Gilmour, H de G Laurie, K Rafel, J H Webb)
Nonlinear Dynamics and Mathematical Physics (I V Barashenkov, N V Alexeeva)
Partial Differential Equations of Mechanics, Numerical Analysis, Dynamical Systems (B D Reddy)
Approximation theory, special functions (K Driver)
Combinatorics, Analysis of Algorithms (M L Archibald)
Geometric Analysis (J Ratzkin)
Group Theory (M Berman)
Nonlinear dynamics, complex systems (A Pototsky)
Partial differential equations, quantum field theory (V Vougalter)
Sampling theory, operator algebras (R Martin)
Computational Fluid Dynamics (T Chinyoka)
Stochastic Ordinary Differential Equations (E Fredericks)
Rangeland Systems Modelling (F D Richardson)
National Astrophysics and Space Science Programme (B A Bassett, C A Clarkson, P K S Dunsby, G F R Ellis, C W Hellaby, J Murugan, P A Whitelock, D Solomons, A Weltman)
Topology and Category Theory (J L Frith, C R A Gilmour, K A Hardie, G Janelidze, H P A Künzi, A Schauerte, G C L Brümmer)
String Theory and Quantum Gravity (J Murugan, A Weltman)
Category Theory (G Janelidze)
Discrete Mathematics, Algebraic Graph Theory (D Erwin)
Further information may be found in the Department's website at http://www.mth.uct.ac.za.

Courses Offered by the Department
For convenience and ease of reference, the undergraduate courses have been grouped separately under Applied Mathematics and Mathematics. All postgraduate courses offered by the Department are listed together. Most course administrative information, eg. booklists, lecture/tutorial timetables, test details etc, can be found on the Departmental website under "Undergraduate courses" and "Postgraduate courses".

1. All students registered for a course in the Department will be required to attend the lectures and tutorial classes prescribed for that course.
2. Most syllabuses indicate the contents of the various courses as recently given. All courses are subject to revision without advance notice.
3. Courses for Engineering and Commerce Faculty students are offered by the Department. See relevant Handbooks.
4. In exceptional cases, the usual entrance requirements may be waived with the special permission of the Head of Department.

Undergraduate Courses in Applied Mathematics

Recommended course selection
The following are recommended course selections emphasising particular interests:

Mathematical Modelling/Mechanics:

Mathematical Physics:
MAM1043H, MAM1044H, MAM2046W, MAM3040W with courses in Physics, Astronomy and Mathematics.

Biomathematics and Life Sciences:
MAM1043H, MAM1044H, STA1006S, MAM2046W, MAM2043S, MAM3042H, MAM3041H (modules 3ND and 3AN) with courses in the Life Sciences or Environmental & Geographical Science.
First-Year Courses in Applied Mathematics
The Mathematics Hot Seat in Room 210 on level 2 in the Mathematics Building is open for several hours every day and students in the courses MAM1042S, MAM1043H and MAM1044H are encouraged to go there for help with their mathematics problems.

MAM1043H MODELLING & APPLIED COMPUTING
18 HEQF credits at level 5
NOTE: This course can be taken in conjunction with MAM1044H as lectures are arranged so that this is possible.
Course co-ordinator(s): Dr A Weltman
Entrance requirements: MAM1000W (corequisite), or already have an equivalent knowledge of Mathematics.
Course outline:
An introduction to Applied Mathematics and Mathematical Modelling including approximations and estimation theory; numerical methods, dynamical systems and modelling and simulation of discrete and continuous processes with MATLAB. Exposure to research methodology and mathematical communication.
Lectures: First Semester: 2nd period Monday, Wednesday, Friday. Second Semester: 2nd period Tuesday, Thursday
Tutorials: One 1-hour tutorial per week.
DP requirements: A class record of 30% or more.
Assessment: Class record counts 40%; one no longer than 3-hour paper written in October/November makes up the balance.

MAM1044H DYNAMICS
18 HEQF credits at level 5
NOTE: This course can be taken in conjunction with MAM1043H as lectures are arranged so that this is possible.
Course co-ordinator(s): Dr J Murugan
Entrance requirements: MAM1000W (corequisite), or already have an equivalent knowledge of Mathematics.
Course outline:
A systematic introduction to the elements of mechanics; kinematics in three dimensions. Newton's laws of motion, models of forces (friction, elastic springs, fluid resistance). Conservation of energy and momentum. Simple systems of particles, including brief introduction to rigid systems. Orbital Mechanics with applications to the planning of space missions to the outer planets.
Lectures: First semester: 2nd period Tuesday, Thursday. Second semester: 2nd period Monday, Wednesday, Friday.
Practicals: One practical every second week, Friday, 6th and 7th periods.
DP requirements: A class record of 30% or more.
Assessment: Class record counts up to 33%; one no longer than 3-hour paper written in October/November makes up the balance.

Second-Year Courses in Applied Mathematics

MAM2043S INTRODUCTION TO BIOLOGICAL MODELLING
24 HEQF credits at level 6
Course co-ordinator(s): Dr S J Holloway
Entrance requirements: MAM1004F or MAM1004H or MAM1005H
Course outline:
Developing simple mathematical models useful to biologists. Models of growth, competition,
predation and sustainable harvesting. Implementing models using the computer. Elementary
statistics.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Tutorials:</td>
<td>One tutorial per week, Friday, 6th and 7th periods, plus an alternative day as chosen by class.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements:</td>
<td>Minimum of 30% in class tests.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment:</td>
<td>Class record counts 35%; 2-hour paper written in October/November counts 65%.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAM2046W APPLIED MATHEMATICS 2046
48 HEQF credits at level 6

Course co-ordinator(s): Associate Professor C Hellaby and Dr N Alexeeva

Entrance requirements: MAM1043H, MAM1044H and MAM1000W

Course outline:
The course consists of four 30-lecture modules. Modules 2OD and 2ND are offered in the first semester and modules 2BP and 2NA in the second semester.

Syllabuses:

2NA NUMERICAL ANALYSIS (coded as MAM2053S for Engineering students)

2OD ORDINARY DIFFERENTIAL EQUATIONS
First order linear and nonlinear equations; existence and uniqueness of solutions. Linear equations of the n-th order and systems of n linear first order equations. Nonhomogeneous linear equations and systems; variation of parameters; qualitative theory of nonlinear equations; phase plane analysis; externally and parametrically driven oscillators; resonances; application to the theory of nonlinear vibrations. Calculus of variations.

2BP BOUNDARY-VALUE PROBLEMS (coded as MAM2050S for Engineering students)

2ND NONLINEAR DYNAMICS

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Tutorials:</td>
<td>One tutorial per week, Thursday, 14h00-16h00.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements:</td>
<td>A class record of 30% or more is required in each module of the course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment:</td>
<td>For each module the class record counts 30% and one no longer than 2-hour examination paper counts 70%.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MAM2047H APPLIED MATHEMATICS 2047
24 HEQF credits at level 6
Course co-ordinator(s): Associate Professor C Hellaby and Dr N Alexeeva
Entrance requirements: MAM1043H, MAM1044H and MAM1000W
Course outline:
This half-course consists of two modules from MAM2046W, one of which should be the module 2OD.
Lectures: Depending on modules chosen, as for MAM2046W.
Tutorials: One tutorial per week, Thursday, 14h00-16h00.
DP requirements: A class record of 30% or more is required in each module of the course.
Assessment: Please refer to the MAM2046W examination requirement entry for the class record and examination weighting for each module.

MAM2048H APPLIED MATHEMATICS 2048
24 HEQF credits at level 6
Course co-ordinator(s): Associate Professor C Hellaby and Dr N Alexeeva
Entrance requirements: MAM2047H
Course outline:
This course is for students who have already obtained credit for MAM2047H. It consists of two modules of MAM2046W which were not taken as MAM2047H. A student who takes both MAM2047H and MAM2048H may count the combination as equivalent to MAM2046W.
Lectures: Depending on modules chosen, as for MAM2046W.
Tutorials: One tutorial per week, Thursday, 14h00-16h00.
DP requirements: A class record of 30% or more is required in each module of the course.
Assessment: Please refer to the MAM2046W examination requirement entry for the class record and examination weighting for each module.

MAM2052S QUANTITATIVE SKILLS FOR SCIENTISTS
24 HEQF credits at level 6
NOTE: This course will not be offered in 2012.
Entrance requirements: MAM1004F or MAM1004H or MAM1005H or MAM1000W
Course outline:
This course may be taken for credit by students registered in one of the programmes SB012 or SB013. A student from any other programme who wishes to take MAM2052F for credit will need the approval of the programme convener. The course will: 1. develop an ability to quantitatively analyse problems arising in the chemical, Earth and environmental sciences; 2. illustrate the great utility of mathematical models to provide answers to key chemical, geological and environmental problems; 3. develop an appreciation of the diversity of mathematical approaches potentially useful in the chemical, geological and environmental sciences. An important component of the course will be the use of computers and information technology.

Period

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Tutorials: Friday 3rd or Thursday 5th period.
DP requirements: A class record of 35% or more.
Assessment: Class record counts up to 40%; one no longer than 2-hour paper written in November makes up the balance.
Third-Year Courses in Applied Mathematics

MAM3040W APPLIED MATHEMATICS 3040
72 HEQF credits at level 7
Course co-ordinator(s): Dr A Pototsky
Entrance requirements: MAM2046W or MAM2047H and MAM2048H; and MAM2000W
Course outline:
A total of five 30-lecture modules is offered, four of which make up MAM3040W. The module 3MP constitutes core (compulsory) material while the other three modules can be chosen from 3CV, 3FD, 3AN and 3GR. Modules 3AN and 3CV will be offered in the first semester, and modules 3FD, 3GR and 3MP in the second semester. A written project will be a compulsory component of the course.
Syllabuses:
3MP METHODS OF MATHEMATICAL PHYSICS (coded as MAM3043S for Engineering students)
3CV METHODS OF FUNCTIONS OF COMPLEX VARIABLES
Complex calculus, calculus of residues, special functions, applications to physics.
3AN ADVANCED NUMERICAL METHODS (coded as MAM3050F for Engineering Students).
3GR INTRODUCTION TO GENERAL RELATIVITY (coded as MAM3049S for Engineering students) Note: This module is also available to interested parties on the Internet. Further details may be obtained from the website http://www.mth.uct.ac.za/omei/gr.
Christoffel relations, geodesics, curvature, the Riemann tensor. The energy-momentum tensor in electrodynamics and fluid dynamics. Principle of equivalence, Einstein's field equations. Black holes, gravitational waves.
3FD FLUID DYNAMICS (coded as MAM3054S for Engineering students)
Description of fluids, equations of fluid flow for simple fluids, analytical techniques. Applications.

Period

<table>
<thead>
<tr>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Lectures: One tutorial per week, Thursday, 6th and 7th periods.
DP requirements: A class record of 30% or more is required in each module of the course.
Assessment: For modules 3GR and 3FD the year mark counts 25% and the examination counts 75%. For modules 3MP, 3AN and 3CV, the year mark counts 35% and the examination counts 65%. The papers for module 3AN and 3CV are written in June and modules 3FD, 3GR and 3MP are written in October/November. All papers are no longer than 2 hours, except 3GR which is no longer than 3 hours.

MAM3041H APPLIED MATHEMATICS 3041
36 HEQF credits at level 7
Course co-ordinator(s): Dr A Pototsky
Entrance requirements: MAM2000W and either MAM2046W or both MAM2047H and MAM2048H.

Course outline:
This half course consists of two modules of MAM3040W, at least one of which should be 3MP.

Lectures: Depending on modules chosen, as for MAM3040W.

Tutorials: One tutorial per week, Thursday, 6th and 7th periods.

DP requirements: A class record of 30% or more is required in each module of the course.

Assessment: Please refer to the MAM3040W examination requirements entry for the class record and examination weighting for each module.

FURTHER BIOLOGICAL MODELLING

MAM3042H

36 HEQF credits at level 7

Course co-ordinator(s): Professor D S Butterworth

Entrance requirements: MAM2043S

Course outline:
Biological modelling concepts introduced in MAM2043S are extended: age-structured models including Leslie matrices, bioeconomic harvesting theory, diffusion, statistical power testing, introduction to generalised linear models and numerical methods.

Lectures: Average of two and a half per week, to be arranged.

Tutorials: One every two to three weeks, to be arranged.

DP requirements: A class record of 30% or more.

Assessment: Class record counts 35%; 2-hour paper written in October/November counts 65%.

APPLIED MATHEMATICS 3048

MAM3048H

36 HEQF credits at level 7

Course co-ordinator(s): Dr A Pototsky

Entrance requirements: MAM3041H

Course outline:
This course is for students who have already obtained credit for MAM3041H. It consists of two modules of MAM3040W which were not taken as MAM3041H and which, together with MAM3041H, would constitute the contents of MAM3040W. A student who takes both MAM3041H and MAM3048H may count the combination as equivalent to MAM3040W, provided a written project is completed.

Lectures: Depending on modules chosen, as for MAM3040W.

Tutorials: One tutorial per week, Thursday, 6th and 7th period.

DP requirements: A class record of 30% or more is required in each module of the course.

Assessment: Please refer to the MAM3040W examination requirements for the class record and examination weighting for each module.

Undergraduate Courses in Mathematics

First-Year Courses in Mathematics

One full course in Mathematics at first-year level is offered in the Science Faculty, MAM1000W. (The courses MAM1010 and MAM1012 are intended for Business Science students and the courses MAM1017 and MAM1018 for Engineering students. Details of these can be found in the Handbooks for the Faculties of Commerce and Engineering and the Built Environment respectively). Credit equivalent to MAM1000W can be obtained by passing MAM1005H and MAM1006H. In special cases MAM1004F or MAM1004H may be taken in place of MAM1005H; detailed rules are given under the entry for MAM1006H.

Students who intend to major in Mathematics must obtain credit for the half course MAM1019H at some point in their undergraduate career.
No student may register for more than one of MAM1000W, MAM1004F, MAM1004H, MAM1005H and MAM1006H simultaneously.
The course STA1001F/S carries no credit in the Faculty of Science. Credit will not be given for more than one of MAM1004F, MAM1004H and MAM1005H. Credit for any first-year half course in Mathematics falls away on obtaining credit for MAM1000W.
The Mathematics Hot Seat in Room 210 on level 2 in the Mathematics Building is open for several hours every day and students in all first year courses are encouraged to go there for help with their mathematics problems.

MAM1000W MATHEMATICS 1000
36 HEQF credits at level 5
Course co-ordinator(s): Dr C Clarkson and Dr C Swart
Entrance requirements: Registration for MAM1000W in February will be provisional, and will only be confirmed at the beginning of the second quarter. For such provisional registration, the minimum requirement is a pass in Mathematics with an achievement rating of at least 6 for students with a National Senior Certificate, or a pass in Mathematics with at least 50% at the Higher Grade for students who matriculated with a Senior Certificate, or at least a D symbol at A-level. Students who have not reached a satisfactory level (to be defined at the beginning of the course) at the end of the first quarter will have their provisional registration for MAM1000W cancelled, but will be allowed to decant to MAM1005H at the beginning of the second quarter.

Course outline:
Differential and integral calculus of functions of one variable, differential equations, partial derivatives, vector geometry, matrix algebra, complex numbers, Taylor series.

Lectures: Five lectures per week, Monday to Friday, 1st or 3rd period.

Tutorials: One 2-hour tutorial per week

DP requirements: Minimum of 30% for class tests and satisfactory tutorial work.

Assessment: Year mark counts 33.3%; two no longer than 3-hour papers written in October/November make up the balance.

MAM1004F MATHEMATICS 1004
18 HEQF credits at level 5
Course co-ordinator(s): Dr R Martin

Entrance requirements: The normal minimum requirement is a pass in Mathematics with an achievement rating of at least 5 for students with a National Senior Certificate, or a pass in Mathematics at the Higher Grade, or at least an A symbol at the Standard Grade, for students who matriculated with a Senior Certificate, or at least an E symbol at A-level. Students who have not reached a satisfactory level (to be defined at the beginning of the course) at the end of the first quarter will have their provisional registration for MAM1004F cancelled, but will be allowed to decant to MAM1004H (see below) at the beginning of the second quarter. (Students who have been admitted to MAM1004F without a background of Higher Grade Mathematics are expected to make up the difference between the syllabuses for themselves.)

Course outline:

<table>
<thead>
<tr>
<th>Lecture Days</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Tutorials: One per week, Monday or Wednesday, 14h00-16h00.

DP requirements: Minimum of 30% in class tests, and at least 80% attendance at tutorials.

Assessment: Year mark counts up to 40%; one no longer than 3-hour paper written in June makes up the balance.

MAM1004H MATHEMATICS 1004
18 HEQF credits at level 5
Course co-ordinator(s): To be advised

Entrance requirements: For students with a National Senior Certificate, a pass in Mathematics with an achievement rating of at least 5; for students who matriculated with Senior Certificate, a pass in Mathematics at the Higher Grade or at least an A symbol at the Standard Grade; or at least an E symbol at A-level. Students whose provisional registration for MAM1004F (see above) has been cancelled will be allowed to register for MAM1004H at the beginning of the second quarter.

Course outline:
This course is intended for students who would otherwise register for MAM1004F, but who are not likely to pass that course by the end of the first semester. The syllabus is the same as for MAM1004F, but is spread over two semesters.

Lectures: Three lectures per week, days to be arranged, in Meridian.
Tutorials: By arrangement.
DP requirements: As for MAM1004F.
Assessment: Year mark counts up to 40%; one no longer than 3-hour paper written in October/November makes up the balance.

MAM1005H MATHEMATICS 1005
18 HEQF credits at level 5
Course co-ordinator(s): Dr B Osano

Entrance requirements: For students with a National Senior Certificate, a pass in Mathematics with an achievement rating of at least 5; for students who matriculated with Senior Certificate, a pass in Mathematics at the Higher Grade or at least an A symbol at the Standard Grade, or at least an E symbol at A-level. All students admitted to the General Entry Programme in Science must register for MAM1005H. In addition, students attending the full-year courses in Mathematics may be placed into MAM1005H at the end of the first quarter. Other students who meet the entrance requirements will be permitted to register for MAM1005H as long as there is capacity in the course, and such students must have their registration approved by the relevant Student Advisor.

Course outline:
Differential and integral calculus of functions of one variable.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tutorials:</td>
<td>Friday, 1st period. Workshops: Monday, 6th and 7th period.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DP requirements: Minimum of 35% for class record and very satisfactory attendance at all lectures, workshops and tutorials.
Assessment: Year mark counts up to 40%; one 2-hour paper written in October/November makes up the balance.

MAM1006H MATHEMATICS 1006
18 HEQF credits at level 5
Course co-ordinator(s): Mr K Rafel

Entrance requirements: MAM1005H or a pass with at least 65% in MAM1004F or MAM1004H. Students who have passed MAM1004F or MAM1004H with less than 65% and who wish to register for MAM1006H will be required to write and pass the examination paper for MAM1005H in
November or the supplementary examination paper in January before they are allowed to register for MAM1006H. Such students are required to inform the course co-ordinator for MAM1005H by 1 September or 1 December, respectively, of their intention to write the examination and at the same time obtain information about the reading to be done as preparation for the examination.

Course outline:
The course consists of those topics in the MAM1000W syllabus that were not covered in MAM1005H in the previous year.

- **Lectures:** First period, three days per week.
- **Tutorials:** First period, two days per week.
- **DP requirements:** Minimum of 35% in class tests and very satisfactory attendance at lectures and tutorials.
- **Assessment:** Year mark counts up to 40%; one 2-hour examination paper written in October/November makes up the balance.

MAM1019H FUNDAMENTALS OF MATHEMATICS

18 HEQF credits at level 5

- **Course co-ordinator(s):** Associate Professor V Brattka and Dr P Bruyns
- **Entrance requirements:** At least NSC level 6 in Mathematics or 50% on Higher Grade Mathematics (SC) or a D symbol at A-level.

Course outline:
The idea of this course is to familiarise students with the most fundamental concepts and tools of modern mathematics at an elementary level. These include: fundamentals of logic and set theory, concepts of a function, of relations, of equivalence and order relations as well as some basic algebraic structures and the fundamental number systems.

- **Lectures:** Mondays, Thursdays and alternate Tuesdays in meridian.
- **Tutorials:** One hour per week, Wednesdays in meridian.
- **DP requirements:** Minimum of 30% in year mark.
- **Assessment:** Year mark counts up to 40%; one 2-hour examination paper written in November makes up the balance.

Second-Year Courses in Mathematics

MAM2000W MATHEMATICS 2000

48 HEQF credits at level 6

- **Course co-ordinator(s):** Dr F Ebobisse Bille
- **Entrance requirements:** MAM1000W or equivalent.

Course outline:
1. The course consists of four modules chosen from the list below.
2. The module 2LA is compulsory.
3. All students must take at least one of the modules 2IA or 2RA. Students who intend to proceed to MAM3000W should do both these modules.
4. The modules offered in any one year may differ from those listed below. Students should consult the departmental handout for a list of modules offered and approved combinations.

Period

<table>
<thead>
<tr>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

- **Lectures:** 5 with options in 4th period.
- **Tutorials:** One tutorial per week, Thursday or Friday, 14h00-16h00.
- **DP requirements:** Minimum of 30% in class record.
- **Assessment:** Year mark counts up to 40%; the examination mark makes up the balance. The examination consists of four papers of up to 2 hours each. First semester modules will be examined in June and second semester modules in October/November.
Each 24 HEQF credits at level 6
MAM2001H: This course will not be offered in 2012.
MAM2004H is a half-course in Mathematics at second-year level. It is also the minimum co-
requirement for MAM2046W and for PHY2014F, in which case modules 2LA and 2AC are
compulsory. MAM2002S is a half-course in Mathematics at second-year level. It is usually taken by
students who are doing it in addition to either MAM2000W or MAM2004H.
Course co-ordinator(s): Dr F Ebobisse Bille
Entrance requirements: MAM1000W (or equivalent).

Course outline:
Each half course consists of two modules. A student may register for a half course in the same year
as MAM2000W or in a subsequent year.

Lectures: For MAM2004H, MAM2002S: 5th period Monday to Friday, with some modules in 4th
period; all students must have 5th period free.

Tutorials: One tutorial per week, Thursday or Friday, 14h00-16h00.

DP requirements: Minimum of 30% in class record.
Assessment: As for MAM2000W except that the examination consists of two papers of up to 2
hours each.

Modules for Second-Year Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2AC</td>
<td>Advanced Calculus</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2DE</td>
<td>Differential Equations</td>
<td>2</td>
<td>Modules 2AC and 2LA</td>
</tr>
<tr>
<td>2FM*</td>
<td>Fourier Methods</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>2IA</td>
<td>Introductory Algebra</td>
<td>2</td>
<td>Module 2LA</td>
</tr>
<tr>
<td>2LA</td>
<td>Linear Algebra</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2RA</td>
<td>Real Analysis</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

* This module will not be offered in 2012.

Syllabuses
2AC ADVANCED CALCULUS
Differentiable functions, independence of order of repeated
derivatives, chain rule, Taylor's theorem, maxima and minima, Lagrange multipliers. Curves and
surfaces in three dimensions, change of coordinates, spherical and cylindrical coordinates. Line

2DE DIFFERENTIAL EQUATIONS: This module is aimed at Actuarial and Business Science
students. A selection from the following topics will be covered: First order difference equations.
Second order difference equations with constant coefficients. Systems of first order difference
equations. Linear differential equations and systems with constant coefficients. Laplace transforms
and applications. Nonlinear equations and phase plane analysis. Parabolic partial differential
equations, separation of variables, two point boundary value problems. Option pricing by the Black-
Scholes equation. Stochastic Differential Equations. All topics will have applications to economics
and finance.

2FM FOURIER METHODS (this module will not be offered in 2012): Signals and systems. Fourier
series. Analysis of periodic Fourier series. Discrete frequency spectra. Fourier transforms,

2IA INTRODUCTORY ALGEBRA: Group theory: basic properties, subgroups, cosets, equivalence
relations, Lagrange's theorem, order of an element, cyclic groups, generation of groups, permutation
groups, parity, conjugation, cycle structure, normal subgroups, quotients, homomorphisms, group
actions. Number theory: basic properties of the integers, unique factorization, congruences. Ring
theory: subrings, ideals, integral domains, Euclidean domains, polynomial rings, application to
linear algebra. Field theory: field of fractions, finite fields.

2LA LINEAR ALGEBRA
Matrices, Gauss reduction, invertibility. Vector spaces, linear
independence, spans, bases, row space, column space, null space. Linear maps. Eigenvectors and
eigenvalues with applications. Inner product spaces, orthogonality.

Third-Year Courses in Mathematics

MAM3000W MATHEMATICS 3000
72 HEQF credits at level 7
Course co-ordinator(s): Professor H-P Künzi
Entrance requirements: MAM2000W. MAM1019H required as a pre- or co-requisite from 2012.
Course outline:
1. MAM3000W is the full-year major course for the BSc degree. Credit for MAM3000W is obtained by selecting an approved combination of four modules from those listed below. Such a selection must include at least one of the modules 3AL or 3MS. A student will not be given credit for MAM3000W without having completed the modules 2RA Real Analysis and 2IA Introductory Algebra. Students who did not take both these modules for MAM2000W will be allowed to take one of them as one of the modules for MAM3000W.
2. The modules offered in any one year may differ from those listed below. Each module consists of thirty lectures and twelve tutorials.
3. Written projects with oral presentations will be a component of this course.
4. Students who are given permission to do a second-year module as part of MAM3000W might be required to do additional reading and be examined on it.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Tutorials:</td>
<td>Friday, 14h00-17h00, with tutorials for some modules at other times to be arranged.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assessment: Year mark counts up to 40%; the examination mark, project and test on additional reading, where applicable, account for the balance. The examination consists of four papers of up to 2 hours each. First-semester modules will be examined in June and second-semester modules in October/November.

MAM3001W MATHEMATICS 3001
72 HEQF credits at level 7
Course co-ordinator(s): Professor H-P Künzi
Entrance requirements: MAM2000W.
Course outline: The modules offered are those for MAM3000W. A second-year module may be selected with the course co-ordinator's approval. MAM3001W is a third-year senior course for students selecting four modules which do not satisfy the requirements for the major course MAM3000W. No project is required for this course.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Tutorials:</td>
<td>Friday, 14h00-17h00, with tutorials for some modules at other times to be arranged.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

uario: A class record of 30% or more.
Assessment: Year mark counts up to 40%; the examination mark account for the balance. The examination consists of four papers of up to 2 hours each. First-semester modules will be examined in June and second-semester modules in October/November.
MAM3002H and MAM3003S MATHEMATICS 3002 & MATHEMATICS 3003

MAM3002H: 36 HEQF credits at level 7
MAM3003S: 36 HEQF credits at level 7

MAM3002H is a half course for students who register at the beginning of the year. MAM3003S is a half course for those who register in the second semester, or those who have already obtained credit for MAM3002H.

Course co-ordinator(s): Professor H-P Künzi

Entrance requirements: MAM2000W.

Course outline:
These half courses may consist of any two third-year modules. Either half course may be taken instead of a full course or in addition to it. A student who takes both MAM3002H and MAM3003S may count the combination as a major only if the four modules studied would be acceptable for MAM3000W and if the necessary project is completed. Otherwise the combination may be equivalent to MAM3001W. A second-year module may be taken as part of a third-year half course with the course co-ordinator's approval.

Period
<table>
<thead>
<tr>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>with options in 4th period.</td>
</tr>
</tbody>
</table>

Tutorials: Friday, 14h00-17h00, with tutorials for some modules at other times to be arranged.

DP requirements: A class record of 30%.

Assessment: As for MAM3000W, except that the examination consists of two papers of up to 2 hours each.

Modules for Third-Year Mathematics Courses

<table>
<thead>
<tr>
<th>Module</th>
<th>Title</th>
<th>Semester</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>3AL</td>
<td>Algebra</td>
<td>1</td>
<td>Module 2IA</td>
</tr>
<tr>
<td>3CA</td>
<td>Complex Analysis</td>
<td>2</td>
<td>Module 2RA</td>
</tr>
<tr>
<td>3LC</td>
<td>Logic and Computation</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>3MS</td>
<td>Metric Spaces</td>
<td>1</td>
<td>Module 2RA</td>
</tr>
<tr>
<td>3TA</td>
<td>Topics in Algebra</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>3TN</td>
<td>Topics in Analysis</td>
<td>2</td>
<td>Module 3MS</td>
</tr>
</tbody>
</table>

Allowed combinations
All combinations of modules are subject to the restrictions imposed by the timetable and the approval of the course co-ordinator.

Recommended modules for Mathematics Honours courses
Five types of Honours programmes are available to students who have completed senior courses in Mathematics:

(a) BROAD COVERAGE OF MATHEMATICS: Intended for prospective researchers and mathematicians.
(b) TEACHING: Intended for prospective high school mathematics teachers.
(c) MATHEMATICS OF COMPUTER SCIENCE: A co-operative venture with the Department of Computer Science. Each Department offers one half of the degree.
(d) INDUSTRIAL MATHEMATICS: Designed to prepare a mathematician to enter industry, this programme is run jointly through the Department of Mathematics & Applied Mathematics and the Department of Statistical Sciences.
(e) FINANCIAL MATHEMATICS: A course run jointly with the University of Stellenbosch and the African Institute for Mathematical Sciences, for those interested in employment in the financial sector.

Students registering for MAM3000W and intending to take (a) are advised to take modules 3MS, 3CA and 3AL as part of their course, and those intending to do (c) are advised to take Modules 3LC and 3AL. Students intending to do (b) are also advised to do 3MS, 3CA and 3AL, but may also do
one of these as part of their Honours course. For (c) and (d) please refer also to the entries for MAM4007W and MAM4008W in this Handbook.

Syllabuses
3AL ALGEBRA An introductory course of modern abstract algebra involving the following concepts: algebraic operations; magmas and unitary magmas; semigroups; monoids; closure operators; equivalence relations; categories; isomorphism; initial and terminal objects; algebras, homomorphisms, isomorphisms; subalgebras; products; quotient algebras; canonical factorizations of homomorphisms; free algebras. Various classical-algebraic constructions for groups, rings, fields, and vector spaces, seen as examples of these concepts, will be described in tutorials.

3CA COMPLEX ANALYSIS An introduction to the theory of complex functions with applications.

3LC LOGIC AND COMPUTATION The propositional and predicate calculi: their syntax, semantics and metatheory. Resolution theorem proving.

3MS METRIC SPACES An introduction to metric spaces and their topology, with applications.

3TA TOPICS IN ALGEBRA A selection from lattices and order, congruences, Boolean algebra, representation theory, naive set theory, universal algebra. (Please note that this module is not a prerequisite for entry to the Honours course in Algebra.)

3TN TOPICS IN ANALYSIS A selection from the implicit function theorem and inverse mapping theorem, Lebesgue integral, Fourier analysis, Hilbert spaces, Lebesgue and Sobolev spaces, Fractals and approximation theory. (Please note that this module is not a prerequisite for entry to the Honours course in Functional Analysis.)

Courses Offered in Other Faculties
The Department of Mathematics & Applied Mathematics also offers courses to students registered in other faculties, as follows (see the appropriate Faculty Handbooks for course details):

FACULTY OF COMMERCE
MAM1010F/S Mathematics 1010
MAM1012F/S Mathematics 1012

FACULTY OF ENGINEERING AND THE BUILT ENVIRONMENT
MAM1017F/S Engineering Mathematics A
MAM1018F/S Engineering Mathematics B
MAM1042S Engineering Statics
MAM1045S Modelling and Programming with MATLAB for Electrical Engineers
MAM2003Z Mathematics 2003
MAM2050S Boundary-value Problems
MAM2053S Numerical Analysis and Scientific Computing
MAM2082F Computer Programming in MATLAB
MAM2083F/S Vector Calculus for Engineers
MAM2084F/S Linear Algebra and DE's for Engineers
MAM3004Z Mathematics 3004
MAM3043S Methods of Mathematical Physics
MAM3049S Introduction to General Relativity
MAM3050F Numerical Modelling
MAM3054S Fluid Dynamics
MAM3080F Numerical Methods

FACULTY OF HUMANITIES
MAM1014F Quantitative Literacy for Humanities
MAM1015S Introductory Mathematics for Quantitative Social Sciences
MAM1016S Quantitative Literacy for Social Science

FACULTY OF LAW
MAM1013F Law that counts: Quantitative Literacy for Law
MAM1013S Law that counts: Quantitative Literacy for Law
Postgraduate Courses

There are several Honours programmes available to students who have completed senior courses in Applied Mathematics and Mathematics. A booklet will be available from the Department giving details. Those interested should enquire at the Department's offices, or write to The Head, Department of Mathematics & Applied Mathematics, University of Cape Town, Rondebosch 7701. Course co-ordinator for all Honours programmes in the Department: Dr J Murugan.

MAM4000W BSc (HONS) IN MATHEMATICS
160 HEQF credits at level 8
(includes research project of 30 credits)

Course co-ordinator(s): Professor G Janelidze

Entrance requirements: Normally a BSc degree with MAM3000W, or equivalent. In all cases subject to individual approval by the Head of Department. See the MAM3000W entry for recommended undergraduate modules.

Course outline:
A minimum of 160 credits is required for the Honours degree and each module offered at Honours level carries a specific credit rating. Each student will be required to do a project and a research seminar. Three streams are available:

Mathematical orientation: This course provides an introduction to some topics which are basic to a professional mathematician. The following modules are among those that have been offered in recent years: Algebra, Algebraic Geometry, Algebraic Topology, Category Theory, Computability and Complexity, Differential Geometry, Differential Topology, Functional Analysis, Lie Algebras, Measure Theory, Number Theory, Quantum Computing, Topology.

Teaching orientation: This course is for students who intend to enter the teaching profession. It aims at a very broad coverage of mathematics, without necessarily providing great depth. Students may be required to take some of the undergraduate courses that they did not take in their first degree. Students taking this orientation may need to undertake a programme of further work if they wish to proceed to a Master's degree.

Financial Mathematics: (See the Departmental Honours Handbook for a full description). This Honours stream is a jointly run course together with the University of Stellenbosch and the African Institute for Mathematical Sciences (AIMS). Students graduating from this stream will obtain a BSc (Hons) in Mathematics. The transcript of the modules taken will reflect that the course is a thorough grounding in Mathematical Finance. The stream gives a broad introduction to the field (which relies heavily on Mathematics) and graduates would normally either seek employment in an investment house, bank or hedge fund, or would proceed to do a Masters degree in Mathematics in the area, which at UCT is by thesis only. Graduates would not normally be admitted to the MPhil in Mathematical Finance in the Commerce Faculty at UCT.

Assessment: The project counts 18.75% of the final mark for the course. On average, the examination counts at least 50% of the balance of the final mark for the course.

MAM4001W BSc (HONS) IN APPLIED MATHEMATICS
160 HEQF credits at level 8
(includes research project of 40 credits)

Course co-ordinator(s): Dr J Murugan

Entrance requirements: Normally a BSc degree with MAM3040W, or an equivalent. In all cases subject to individual approval by the Head of Department.

Course outline:
A minimum of 160 credits is required for the Honours degree and each module offered at Honours level carries a specific credit rating. Each student will be required to do a research project and an associated seminar. Among the modules which have been offered in recent years are: Advanced Mathematical Methods, Nonlinear Optimisation, Environmental Modelling, General Relativity and
Cosmology, Continuum Mechanics, and String Theory. It is a requirement that all Honours curricula include the module, Project and Seminar, but otherwise there is considerable flexibility in the structure of individual curricula. Furthermore, it is recommended that students include one or more modules from cognate departments in order to make up a well-rounded degree. However, the curriculum must include a minimum of 110 credits from Applied Mathematics modules.

Assessment: The project counts 25% of the final mark for the course. On average, the examination counts at least 50% of the balance of the final mark for the course.

MAM4007W BSc (HONS) IN MATHEMATICS OF COMPUTER SCIENCE
160 HEQF credits at level 8
(includes research project of 30 credits)

Course co-ordinator(s): Associate Professor V Brattka

Entrance requirements: Normally a BSc degree with a major in either Computer Science or Mathematics and at least second-year level in the other, but in all cases subject to individual approval by the Heads of both departments.

Course outline:
A minimum of 160 credits is required for the Honours degree and each module offered at Honours level carries a specific credit rating. Each student will be required to do a research project. This Honours degree is offered jointly by the Departments of Computer Science and Mathematics & Applied Mathematics. Its subject matter involves logical and mathematical theories and structures relevant to computer science, together with their applications. Students will be required to do approximately half their work in each department, including course work in both departments for the course. Every syllabus must be approved by the Heads of both departments. Completion of this degree could yield admission to Master's studies in either Mathematics or Computer Science.

Assessment: The project counts 18.75% of the final mark for the course. On average, the examination counts at least 50% of the balance of the final mark for the course.

MAM4008W BSc (HONS) IN INDUSTRIAL MATHEMATICS
160 HEQF credits at level 8
(includes research project of 30 credits)

NOTE: This course will not be offered in 2012

Entrance requirements: Normally a BSc degree in Applied Mathematics, Computer Science, Mathematics or Statistics, though graduates in other subjects (such as Physics or Engineering) are also eligible to apply. Admission is in all cases at the discretion of the Heads of the Department of Mathematics & Applied Mathematics and the Department of Statistical Sciences.

Course outline:
This programme is offered jointly by the Departments of Mathematics & Applied Mathematics and Statistical Sciences. The curriculum comprises a set of core courses, including case studies in the Mathematics of Management, a set of elective courses, and a research project. A minimum of 160 credits is required for the Honours degree and each module offered at Honours level carries a credit rating. Each student's curriculum has to be approved by the course co-ordinator. Further details about the curriculum may be obtained from the course co-ordinator.

Assessment: The project counts 18.75% of the final mark for the course. On average, the examination counts at least 50% of the balance of the final mark for the course.

PHY4002W BSc (HONS) IN MATHEMATICAL & THEORETICAL PHYSICS
The Honours degree is offered jointly by the Department of Mathematics and Applied Mathematics and the Department of Physics.

See entry under courses offered by the Department of Physics.
AST4007W BSc (HONS) IN ASTROPHYSICS & SPACE SCIENCE (National Astrophysics and Space Science Programme (NASSP))
For course details see entry under Department of Astronomy.

AST5003F TAUGHT COMPONENT OF THE MASTERS IN ASTROPHYSICS & SPACE SCIENCE (National Astrophysics and Space Science Programme (NASSP))
For course details see entry under Department of Astronomy.

MAM5005W DISSERTATION COMPONENT OF THE MASTERS IN ASTROPHYSICS & SPACE SCIENCE
90 HEQF credits at level 9
Entrance requirements: AST5003F
Dissertation: Students will work on an approved research topic on which a dissertation must be presented.

MAM5000W MASTERS IN MATHEMATICS
180 HEQF credits at level 9
Supervision of research towards the Masters degree will be provided in the areas of research represented in the Department (see 'Research in Mathematics & Applied Mathematics') and further details may be obtained from the Head of Department (see address at the beginning of the section "Postgraduate courses"). General rules for this degree may be found in the front of the handbook.

MAM5001W MASTERS IN APPLIED MATHEMATICS
180 HEQF credits at level 9
The course will consist of the investigation of one or two topics chosen for intensive study by the candidate and approved by the Head of Department. Examination will be by dissertation. An oral examination may be required. The Department has research programmes in four particular areas of Applied Mathematics, namely (i) general relativity and astrophysics, (ii) mathematical modelling of biological, ecological and environmental systems, (iii) continuum mechanics, applied analysis and finite elements, and (iv) nonlinear evolution equations and non-integrable systems. See also 'Research in Mathematics & Applied Mathematics'. Candidates will be particularly encouraged to take part in one of these programmes. General rules for this degree may be found in the front of the handbook.

MAM5002W and MAM5003W MASTERS IN MATHEMATICS OF FINANCE
Coursework: 90 HEQF credits at level 9
Dissertation: 90 HEQF credits at level 9
MAM5002W is no longer offered. MAM5003W is the dissertation component of the MSc in Mathematics of Finance and will be offered in 2012 to those who have already completed MAM5002W.

NOTE: The MSc degree in Mathematics of Finance has been replaced by CM027, the MPhil in Mathematical Finance; refer to the Commerce Faculty Handbook.
MAM6000W PhD IN MATHEMATICS
360 HEQF credits at level 10
Candidates are referred to the general rules for the PhD as set out in Book 3, General Rules and Policies. Supervision of research towards the PhD degree will be provided in the areas of research represented in the Department (see 'Research in Mathematics & Applied Mathematics' and http://www.mth.uct.ac.za) and further details may be obtained from the Head of Department (see address at the beginning of the section 'Postgraduate Courses').

MAM6001W PhD IN APPLIED MATHEMATICS
360 HEQF credits at level 10
As for MAM6000W.
DEPARTMENT OF MOLECULAR AND CELL BIOLOGY

The Department is housed in the Molecular Biology Building, 22 University Avenue
Telephone (021) 650-3270 Fax (021) 689-7573
The Departmental abbreviation for Molecular and Cell Biology is MCB.

Professor and Acting Head of Department:
J P Hapgood, BSc (Hons) PhD Cape Town (1st semester)
J M Farrant, BSc (Hons) PhD Natal (2nd semester)

Professors:
N Illing, MSc Cape Town DPhil Oxon
E P Rybicki, MSc PhD Cape Town

Associate Professors:
V R Abratt, BSc (Hons) Rhodes PhD Cape Town
V E Coyne, BSc (Hons) PhD Cape Town
S J Reid, BSc (Hons) PhD Rhodes

Senior Lecturer:
R A Ingle, BA (Hons) DPhil Oxon
P Meyers, BSc (Hons) PhD Cape Town
C O’Ryan, BSc (Hons) PhD Cape Town
L Roden, BSc (Hons) Wits PhD Cantab

Lecturers:
T Oelgeschläger Dr rer nat Hanover
S Murray, MSc Natal PhD Edinburgh
S Rafudeen, BSc (Hons), PhD Cape Town
J D E A Rodrigues, BSc (Hons) PhD Cape Town
Z L Woodman, BSc (Med Hons) PhD Cape Town

Emeritus Professors:
H Klump, Dr rer nat habil Freiberg Dipl Chem
J A Thomson, BSc Cape Town MA Cantab PhD Rhodes

Principal Scientific Officer:
P Thompson, BSc Cape Town

Chief Scientific Officers:
M Chauhan
A M Clennell, BSc (Hons) Cape Town
F Davids
M D Kriqie
T Millard, BSc Pret

Senior Scientific Officers:
Z McDonald, MSc UKZN PhD Cape Town

Principal Technical Officer:
N Bredekamp

Chief Technical Officer:
U R Mutzeck
D September

Research Assistant/Technical Officer:
P Ma, MSc Cape Town

Department Manager:
Y L Burrows

Administrative Assistant, Postgraduate:
E J Liebenberg

Finance Administrator:
C Sandwith
RESEARCH IN MOLECULAR AND CELL BIOLOGY

The Department has interests and expertise in diverse areas of biology. Plant desiccation research (Professors Farrant and Illing, and Dr Rodrigues): the problem of desiccation in plants is being tackled by a combination of physiological and molecular approaches. Plant biotechnology (Professor Rybicki and Drs Ingle, Rafudeen and Roden): research is focussed on developing virus-resistant and drought-tolerant crops, and optimising transient and transgenic expression of pharmaceutically-relevant proteins. Signal transduction in *Arabidopsis thaliana* is being studied during plant-pathogen and plant-insect interactions, as well as in the control of flowering time. Eukaryotic gene expression (Professors Hapgood, Illing and Dr Roden): projects include regulation of transcription by steroid receptors, the role of chromatin modifications in regulating the onset of flowering, and the regulation of gene expression during neuronal differentiation. Evolutionary genetics (Dr O'Ryan): projects focus on the evolution of neutral DNA markers to address population-genetics questions. Molecular virology (Professor Rybicki): studies focus on the expression of antigens from human and animal viruses in plants and insect cells for use as human and animal vaccines, and on the genetic diversity and molecular biology of single-stranded DNA viruses. Research in biochemistry (Professor Hapgood and Dr Woodman): includes investigating the structure, function and posttranslational modification of HIV proteins and their interactions with host proteins with a view to understanding mechanisms of viral pathogenesis and drug development. Research in marine biotechnology (Associate Professor Coyne): includes genomic and proteomic studies of the effect of stress and disease on the abalone immune system, the role of marine microorganisms in abalone nutrition and disease resistance, and genomic / proteomic characterisation of the stress and disease of the red seaweed, *Gracilaria gracilis*. Research in microbiology (Associate Professors Abratt and Reid and Dr Meyers): includes molecular-genetic investigations of industrially and medically important anaerobic bacteria such as *Corynebacterium*, *Bacteroides fragilis*, *Bifidobacterium* and fibre-degrading bacteria in the ostrich gut. South African soil and marine actinomycete bacteria are being screened for novel antibiotics and strains of *Clostridium acetobutylicum* are being optimised for biofuel production. Analytical services: the Department runs an analytical-biochemistry facility (amino acid analysis, DNA sequencing, DNA synthesis and protein sequencing).

Undergraduate Courses

Second-Year Courses

MCB2014F MOLECULAR COMPONENTS OF CELLS

24 HEQF credits at level 6

NOTE: Entrance is limited to 140 students.

Course co-ordinator(s): Dr J Rodrigues

Entrance requirements: CEM1000W or equivalent, BIO1000F.
Course outline:
This course deals with the structures and properties of biological molecules and macromolecules as a basis to understanding the distinctive properties of living systems. Topics include: properties of water, pH, amino acids, protein primary and higher order structure, carbohydrates, lipids, membranes, nucleotides and nucleic acids, prokaryotic DNA replication, transcription and translation. Protein synthesis, chromatin structure, thermodynamics and enzymes are also covered.

<table>
<thead>
<tr>
<th>Period</th>
<th>Lectures</th>
<th>Tutorials</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 4 4 4 4</td>
<td>One tutorial per week.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 4 4 4 4</td>
<td>One practical per week, Monday or Tuesday, 14h00-17h00.</td>
<td></td>
</tr>
</tbody>
</table>

Assessment:
Tests count 40%; practicals, tutorials, essays and assignments count 10%; one 3-hour paper written in June counts 50%. A subminimum of 40% in the examination is required.

MCB2015S METABOLISM
24 HEQF credits at level 6

NOTE: Entrance is limited to 140 students.

Course co-ordinator(s): Dr Z L Woodman

Entrance requirements: MCB2014F

Course outline:
This course deals with aspects of prokaryotic and eukaryotic metabolism. The following are covered: energetics and thermodynamics, glycolysis, citric acid cycle, oxidative phosphorylation, photosynthesis, gluconeogenesis, glycogen and the pentose phosphate pathway, lipid and amino acid metabolism and nitrogen fixation.

<table>
<thead>
<tr>
<th>Period</th>
<th>Lectures</th>
<th>Tutorials</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 4 4 4 4</td>
<td>One tutorial per week.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 4 4 4 4</td>
<td>One practical per week, Monday or Tuesday, 14h00-17h00.</td>
<td></td>
</tr>
</tbody>
</table>

Assessment:
Tests count 40%; practicals, tutorials, essays and assignments count 10%; one 3-hour paper written in November counts 50%. A subminimum of 40% in the examination is required.

MCB2016F INTRODUCTION TO MICROBIOLOGY
24 HEQF credits at level 6

NOTE: Entrance is limited to 100 students.

Course co-ordinator(s): Associate Professor S Reid

Entrance requirements: CEM1000W or equivalent, BIO1000F.

Course outline:
Prokaryote cell structure and function; bacterial growth and control; microbial diversity and taxonomy.

<table>
<thead>
<tr>
<th>Period</th>
<th>Lectures</th>
<th>Tutorials</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 5 5 5 5</td>
<td>One tutorial per week.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 5 5 5 5</td>
<td>One practical per week, Thursday or Friday, 14h00-17h00.</td>
<td></td>
</tr>
</tbody>
</table>

Assessment:
Tests count 40%; practicals, tutorials, essays and assignments count 10%; one 3-hour paper written in June counts 50%. A subminimum of 40% in the examination is required.
MCB2017S MICROBIAL BIOTECHNOLOGY
24 HEQF credits at level 6
Course co-ordinator(s): Dr S Rafudeen
Entrance requirements: MCB2016F
Course outline:
Microbial biotechnology; production of fine chemicals; basics of fermentation; water purification; introduction to bacterial genetics.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Tutorials:</td>
<td>One tutorial per week.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practicals:</td>
<td>One practical per week, Thursday or Friday, 14h00-17h00.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements:</td>
<td>40% test average; 50% average for assignments; attendance at practicals.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment:</td>
<td>Tests count 40%; practicals, tutorials, essays and assignments count 10%; one 3-hour paper written in November counts 50%. A subminimum of 40% in the examination is required.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MCB2018F INTRODUCTION TO GENETICS
24 HEQF credits at level 6
NOTE: Entrance is limited to 90 students.
Course co-ordinator(s): Dr C O'Ryan
Entrance requirements: BIO1000F, BIO1004S, CEM1000W or equivalent
Course outline:
This course will cover an introduction to the basic principles of genetics. Topics include the chromosomal theory of inheritance, genome organisation, chromosome numbers, duplications, rearrangements and transposons, sex determination and sex-linked genes, basic genetic linkage and mapping, human genetics, extranuclear inheritance. An introduction will also be given to population genetics and conservation/evolution genetics.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Tutorials:</td>
<td>One tutorial per week.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practicals:</td>
<td>One practical per week, Wednesday, 14h00-17h00.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements:</td>
<td>40% test average; 50% average for assignments; attendance at practicals.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment:</td>
<td>Tests count 40%; practicals, tutorials, essays and assignments count 10%; one 3-hour paper written in June counts 50%. A subminimum of 40% in the examination is required.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MCB2019S EUKARYOTIC GENE REGULATION & CELL SIGNALLING
24 HEQF credits at level 6
NOTE: Entrance is limited to 90 students.
Course co-ordinator(s): Professor N Illing
Entrance requirements: MCB2014F or MCB2018F
Course outline:
Principles of eukaryotic gene regulation including: gene structure; regulation of gene transcription and chromatin modification; post-transcriptional regulation: RNA processing, RNAi, RNA stability and storage; translation; post-translational modifications; protein degradation. Principles of cell signalling including receptors and signal transduction pathways. Integration of principles of genetics, eukaryotic gene regulation and cell signalling in a cellular context using the following examples: Drosophila axis determination, regulation of the cell cycle and apoptosis, cancer, circadian rhythms.
<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Tutorials</td>
<td>One tutorial per week.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practicals:</td>
<td>One practical per week, Wednesday, 14h00-17h00.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements:</td>
<td>40% test average; 50% average for assignments; attendance at practicals.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment:</td>
<td>Tests count 40%; practicals, tutorials, essays and assignments count 10%; one 3-hour paper written in November counts 50%. A subminimum of 40% in the examination is required.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Third-Year Courses

NOTE: All MCB majors must complete MCB3012Z (Research project in Molecular and Cell Biology) during the second semester. This course replaces practical classes for all third year second semester MCB courses.

MCB3012Z RESEARCH PROJECT IN MOLECULAR & CELL BIOLOGY

0 HEQF credits

- **Course co-ordinator(s):** Professor J Farrant
- **Entrance requirements:** MCB3019F, MCB3020F or MCB3021F (or concurrent registration in MCB3022S, MCB3023S or MCB3024S).
- **Course outline:** Groups of students will select and perform a research project two afternoons per week by arrangement. The work will be written up in the form of a research paper.
- **Practicals:** Two afternoons per week
- **DP requirements:** None
- **Assessment:** Project counts 100%.

MCB3019F RECOMBINANT DNA, GENOMICS & PROTEOMICS

36 HEQF credits at level 7

- **NOTE:** Entrance is limited to 90 students.
- **Course co-ordinator(s):** Dr L Roden
- **Entrance requirements:** Any two second year MCB semester courses, MAM1004F (or MAM1000W), STA1007S.
- **Course outline:** This course includes recombinant DNA techniques and an introduction to genomic/proteomic and computational approaches to study molecular systems. Topics include: DNA isolation, restriction endonucleases, cloning, polymerase chain reaction, genetic and physical maps, DNA sequencing, databases, comparative genomics, gene expression analysis, proteomics.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Tutorials</td>
<td>One tutorial per week.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practicals:</td>
<td>One practical per week, Friday, 14h00-17h00.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements:</td>
<td>40% test average; 50% average for assignments; attendance at practicals.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment:</td>
<td>Tests count 40%; practicals, tutorials, essays and assignments count 10%; one 3-hour paper written in June counts 50%. A subminimum of 40% in the examination is required.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MCB3020F PROTEIN STRUCTURE & FUNCTION

36 HEQF credits at level 7

- **NOTE:** Entrance is limited to 90 students.
- **Course co-ordinator(s):** Dr T Oelgeschläger
- **Entrance requirements:** MCB2015S, MAM1004F (or MAM1000W), STA1007S.
DEPARTMENT OF MOLECULAR AND CELL BIOLOGY

Course outline:
This course deals with aspects of protein structure and function covering the following topics: protein purification, protein secondary, tertiary and quaternary structure, advanced aspects of enzymology, non-Michaelis Menten Kinetics, WMC model, cooperativity and allostery, Scatchard and Hill plots, haemoglobin, myoglobin, bisubstrate reactions, protein-DNA interactions, cell signalling, signal transduction, receptor structure, channels and neurotransmission.

Period
<table>
<thead>
<tr>
<th>Lectures:</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Tutorials: One tutorial per week.
Practicals: One practical per week, Thursday, 14h00-17h00.

DP requirements: 40% test average; 50% average for assignments; attendance at practicals.
Assessment: Tests count 40%; practicals, tutorials essays and assignments count 10%; one 3-hour paper written in June counts 50%. A subminimum of 40% in the examination is required.

MCB3021F MOLECULAR MICROBIAL GENETICS
36 HEQF credits at level 7

NOTE: Entrance is limited to 60 students.

Course co-ordinator(s): Associate Professor V R Abratt
Entrance requirements: MCB2017S, MCB3019F highly recommended, MAM1004F (or MAM1000W), STA1007S.

Course outline:
Bacterial genetics, recombination and repair, prokaryotic gene regulation.

Period
<table>
<thead>
<tr>
<th>Lectures:</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Tutorials: One tutorial per week.
Practicals: One practical per week, Tuesday, 14h00-17h00

DP requirements: 40% test average; 50% average for assignments; attendance at practicals.
Assessment: Tests count 40%; practicals, tutorials, essays and assignments count 10%; one 3-hour paper written in June counts 50%. A subminimum of 40% in the examination is required.

MCB3022S ADVANCED BIOTECHNOLOGY
36 HEQF credits at level 7

Course co-ordinator(s): Dr P Meyers
Entrance requirements: MCB2017S, MAM1004F (or MAM1000W), STA1007S.

Course outline:
New venture planning; metabolic engineering, bioethanol; beer and wine biotechnology; biotransformations; heterologous gene expression; bioprocess technology; bioprocess kinetics.

Period
<table>
<thead>
<tr>
<th>Lectures:</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Tutorials: One tutorial per week, Wednesday, 14h00-17h00

DP requirements: 40% test average; 50% average for assignments; attendance at tutorials.
Assessment: Tests count 20%; project counts 20%; one 3-hour paper written in November counts 60%. A subminimum of 40% in the examination is required.
MCB3023S MOLECULAR EVOLUTIONARY GENETICS & DEVELOPMENT
36 HEQF credits at level 7
Course co-ordinator(s): Dr R Ingle
Entrance requirements: MCB2018F, MAM1004F (or MAM1000W), STA1007S. MCB2019S and MCB3019F highly recommended.
Course outline:
Molecular data used in evolutionary genetics: neutral theory of evolution; behavioural genetics. Principles of mouse molecular genetics applied to vertebrate eye, limb and neural development. Evolution of development; evolution of sex; interactions between the environment and development.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Tutorials:</td>
<td>One tutorial per week.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements:</td>
<td>40% test average.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment:</td>
<td>Tests count 40%; one 3-hour paper written in November counts 60%. A subminimum of 40% in the examination is required.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MCB3024S DEFENCE & DISEASE
36 HEQF credits at level 7
Course co-ordinator(s): Professor J Hapgood
Entrance requirements: Any two second year MCB semester courses, MAM1004F (or MAM1000W), STA1007S.
Course outline:
This course will introduce the vertebrate immune system and its components such as MHC cell structure and pathogen recognition. The immune systems of invertebrates and plants will then be examined. The focus will switch to the three major disease challenges in South Africa, HIV, TB and malaria, and host-pathogen interactions. Finally, the course will focus on strategies to produce vaccines that enable immunity to viral infection.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Tutorials:</td>
<td>One tutorial per week.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements:</td>
<td>40% test average.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment:</td>
<td>Tests count 40%; one 3-hour paper written in November counts 60%. A subminimum of 40% in the examination is required.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Postgraduate Courses

MCB4002W BSc (HONS) IN MOLECULAR & CELL BIOLOGY
160 HEQF credits at level 8
(includes research project of 64 credits)
Course co-ordinator(s): Dr C O’Ryan
Entrance requirements: BSc degree with a major in Biochemistry, Biotechnology, Genetics or Microbiology. Molecular-based courses are highly recommended. Preference may be given to UCT graduates. Entrance is limited to 30 students, dependent on availability of supervisors and funding. Acceptance will be at the discretion of the Head of Department who will consider quality of senior course results and material covered in the undergraduate curriculum.
Course outline:
Ten week techniques course including gel electrophoresis, recombinant DNA technology, PCR, sequencing, bioinformatics, gene expression, protein isolation and analysis, confocal and electron microscopy, and large data set analysis. A six month research project.
DP requirements: Techniques examination 50% to continue course.
Assessment: Two 3-hour techniques examinations written in May, and the techniques course assignments, count 20%; essays count 15%; oral presentations count 20%; statistics module 1%, one 4-hour examination written in November counts 10%; project counts 34%.

MCB5005W MASTERS IN MOLECULAR & CELL BIOLOGY
180 HEQF credits at level 9
General rules for this degree may be found in the front of the handbook. The Department provides facilities for research and supervision in the field of Molecular and Cell Biology. Candidates must carry out a research project leading to the presentation of a dissertation.

MCB5008W MASTERS IN BIOINFORMATICS
180 HEQF credits at level 9
NOTE: New registrations will not be offered in 2011.
Entrance requirements: An Honours degree in either Molecular & Cell Biology, Computer Science or Mathematics.
General rules for this degree may be found in the front of the handbook. Candidates must carry out a research project leading to the presentation of a dissertation.

MCB6002W PhD IN MOLECULAR & CELL BIOLOGY
360 HEQF credits at level 10
Candidates are referred to the rules for this degree as set out in Book 3, General Rules and Policies. The Department provides facilities for research and supervision in the branches of Molecular Biology outlined in the preceding section on research in the Department.
DEPARTMENT OF OCEANOGRAPHY

The Department is housed in the RW James Building, Residence Road
Telephone (021) 650-3277 Fax (021) 650-3979
The Departmental abbreviation for Oceanography is SEA.

Professor and Head of Department:
C J C Reason, BSc (Hons) Cape Town MPhil City MSc PhD British Columbia

South African Research Chair in Modelling of the Coupled Ocean-Land-Atmosphere Phenomena Related to Climate:
S G H Philander, BSc (Hons) Cape Town PhD Harvard

Professor:
F A Shillington, BSc (Hons) Wits MSc PhD Cape Town

Senior Lecturers:
I J Ansorge, BSc Plymouth MSc PhD Cape Town
H N Waldron, BSc (Hons) Swansea MSc PhD Cape Town

Lecturer:
J A Veitch, MSc PhD Cape Town

Emeritus Professors:
G B Brundrit, BSc (Hons) PhD Manchester

Honorary Professor in Oceanography:
L V Shannon, MSc PhD Cape Town FRSSAf

Senior Research Officer:
M Rouault, MSc PhD Aix-Marseille

Honorary Research Associates:
S Bernard, BSc Soton PhD Cape Town (CSIR)
D A Byrne, PhD Columbia
C M Duncombe Rae, BSc Rhodes BSc(Hons) PhD Cape Town (University of Maine)
K P Findlay, BSc (Hons) Cape Town MSc PhD Pret (Southern Whales)
J Hermes, BSc Bangor PhD Cape Town (SAEON)
A Mavume, PhD Cape Town
P M S Monteiro, MSc PhD Cape Town (CSIR)

Departmental Librarian:
N Jabaar, ND (Cost accounting) CPUT

Principal Technical Officer:
P Truter, BSc Stell

Senior Scientific Officer:

Administrative Officer:
C Khai, Nat. Dipl Bus Management South Peninsula College

NANSEN-TUTU CENTRE FOR MARINE ENVIRONMENTAL RESEARCH

Co-Directors:
F A Shillington, BSc (Hons) Wits MSc PhD Cape Town
J A Johannessen, PhD Bergen

Associates:
J A Veitch, BSc (Hons) PhD Cape Town
B Backeberg, BSc (Hons) PhD Cape Town
MARINE RESEARCH INSTITUTE (MA-RE)

Director:
J G Field, BSc (Hons) PhD Cape Town FRSSAf

Manager:
E Balarin, BSc (Hons) Rhodes

Scientific Officer:
P Pillay, BSc (Hons) MSc Cape Town

Administrative Assistant:

RESEARCH IN OCEANOGRAPHY

Undergraduate Courses

Second-Year Courses

SEA2004F PRINCIPLES OF OCEANOGRAPHY
24 HEQF credits at level 6
Course co-ordinator(s): Dr H N Waldron
Entrance requirements: CEM1000W, PHY1031F or PHY1032S, BIO1004S or GEO1009F.
Course outline:
A basic introduction to the principles of oceanography, including an introduction to physical, biological and chemical oceanography, marine geology, and the ocean atmosphere system. The course comprises six 2-week modules, which cover the above topics. Oceanographic instrumentation and methods of data analysis will be covered in the tutorials and practicals.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Practical:</td>
<td>One tutorial or practical per week, Tuesday, 14h00-17h00.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements:</td>
<td>Attendance at tutorials and practicals and a class mark of at least 40%.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment:</td>
<td>Tutorials/practicals and tests count 40%; one 3-hour paper written in June counts 60%.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Third-Year Courses

SEA3003F MARINE SYSTEMS
36 HEQF credits at level 7
Course co-ordinator(s): Dr I J Ansorge
Entrance requirements: CEM1000W, PHY1031F or PHY1032S, BIO1004S or GEO1009F, SEA2004F, BIO2013S.
Course outline:
Building on the principles of oceanography, this advanced course will cover the main ocean and atmosphere systems. These include the physical forcing and response of upwelling ecosystems (coastal and equatorial upwelling and upwelling domes), coastal systems (waves and beaches), shelf circulation, western boundary systems, Southern Ocean and polar systems, and oligotrophic systems. Emphasis will be on treating the systems as a whole. The course comprises six 2-week modules, which cover the above topics. Oceanographic field visits and methods of data sampling and analysis will be covered in the tutorials and practicals.
Period
Mon Tue Wed Thu Fri
Lectures: 4 4 4 4 4
Practicals: One tutorial or practical per week, Monday, 14h00-17h00.
DP requirements: Attendance at tutorials and practicals, and a class mark of at least 40%.
Assessment: Tutorials/practicals and tests count 40%; one 3-hour paper written in June counts 60%.

SEA3004S OCEAN & ATMOSPHERE DYNAMICS
36 HEQF credits at level 7
Course co-ordinator(s): Professor C J C Reason, Dr J A Veitch
Entrance requirements: CEM1000W, PHY1031F or PHY1032S, BIO1004S or GEO1009F, SEA2004F, BIO2013S, SEA3003F.
Course outline:
The Ocean & Atmosphere dynamics course will begin to specialise in advanced material related to physical oceanography, atmospheric science and climate. These topics will include a quantitative approach to ocean/atmosphere dynamics, theories of circulation and the development of ocean and atmospheric weather systems, coupled ocean/atmosphere processes, interactions and feedbacks and climate change. Oceanographic field visits and methods of data sampling and analysis will be covered in the tutorials and practicals.

Period
Mon Tue Wed Thu Fri
Lectures: 4 4 4 4 4
Practicals: One tutorial or practical per week, Monday, 14h00-17h00.
DP requirements: Attendance at tutorials and practicals, and a class mark of at least 40%.
Assessment: Tutorials/practicals and tests count 40%; one 3-hour paper written in October counts 60%.

Postgraduate Courses

SEA4001W BSc (HONS) IN OCEAN & ATMOSPHERE SCIENCE
160 HEQF credits at level 8
(includes research project of 48 credits)
Course co-ordinator(s): Dr I J Ansorge
Entrance requirements: A BSc degree with a major/specialisation in Ocean & Atmosphere Science or in a related discipline. Acceptance will be at the discretion of the Head of Department who will consider quality of final year results, material covered in the undergraduate curriculum, and possibly referee reports. Preference may be given to UCT graduates who meet the entrance requirements.
Course outline:
Scope: Honours students intending careers in ocean and atmosphere science will complete a full set of modules and a research project. Honours students from Environmental & Geographical Science, Applied Mathematics, and other physical science and engineering departments, are encouraged to attend selected modules, such as Earth Systems Science I.
Content: Lecture-tutorials, seminars and practical work in advanced physical oceanography, meteorology and marine climatology, an introduction to earth systems science, including participation in a research cruise. First semester modules: physics of the ocean and atmosphere, regional dynamics of the ocean and atmosphere, variability and extreme events, introduction to regional modelling. Second semester modules: air-sea interaction influences on heat budget and climate variability, mesoscale and coastal oceanography and meteorology studies, remote sensing of the ocean and atmosphere, marine biogeochemistry. Student performance in each module will be assessed by short research assignments at regular intervals and written examinations, together making up 70% of the final mark. In the second half of the year the research project will take
priority. Students will be expected to present a seminar on their projects at the year's end.
Assessment: Module assessment by submission of a research portfolio, which includes field trip reports, skills examination and formal test results. A weighted average of the continuous assessment of reports and tests counts 70% of the final mark; the research project counts 30% of the final mark.

SEA5000W MASTERS IN OCEAN & ATMOSPHERE SCIENCE
180 HEQF credits at level 9
Candidates are required to undertake research and complete a dissertation on an approved topic. General rules for this degree may be found in the front of the handbook.

SEA5001W MASTERS IN PHYSICAL OCEANOGRAPHY
180 HEQF credits at level 9
Candidates are required to undertake research and complete a dissertation on an approved topic. General rules for this degree may be found in the front of the handbook.

SEA5002H and SEA5003W MASTERS IN APPLIED MARINE SCIENCE
(by coursework and dissertation)
Coursework: 90 HEQF credits at level 9
Dissertation: 90 HEQF credits at level 9
This Masters programme is offered in Operational Oceanography. It is designed to attract students with an appropriate quantitative background and to provide them with expertise and experience in Operational Oceanography. See also ZOO5005H.
Course co-ordinator(s): Professor C J C Reason
Entrance requirements: Students entering the programme must have completed an Honours degree in Ocean and Atmosphere Science, Marine Biology or related discipline (or an equivalent four year degree).
Course outline:
Prescribed coursework (SEA5002H): Students must complete a compulsory programme of introductory coursework in all aspects of Oceanography, including field work. This is followed by advanced coursework in observations, analysis, interpretation and forecasting in aspects of operational oceanography, supplemented by skills and professional practice. Modules may also be taken from ZOO5005H.
Dissertation (SEA5003W): A research project must be completed and submitted as a dissertation for formal examination, which addresses a particular aspect of operational oceanography.
Assessment: Assessment of the coursework component will be by formal examination (counting an average of 30%) and continual assessment of essays and written assignments (70%). The dissertation will be formally examined. Coursework and dissertation each count 50% to the final assessment of the degree.

SEA5009H and SEA5010W MASTERS IN OCEAN & CLIMATE DYNAMICS
(by coursework and dissertation)
Coursework: 90 HEQF credits at level 9
Dissertation: 90 HEQF credits at level 9
This Masters programme in Ocean & Climate Dynamics is designed for students who wish to gain an advanced training in the ocean component of the climate system and how it interacts with the atmosphere, the cryosphere and the land surface. It is intended to be completed in one academic year.
Course co-ordinator(s): Professor C J C Reason
Entrance requirements: Students entering the programme must have completed an Honours degree in Oceanography, Ocean & Atmosphere Science, Atmospheric Science, Meteorology, or related field.

Course outline:
Prescribed coursework (SEA5009H): During the first semester, modules in ocean modelling and data analysis, climate dynamics, marine biogeochemistry, marine remote sensing and instrumentation must be completed. Participation in an oceanic research cruise and associated observational analyses is also required.

Dissertation (SEA5010W): A research project must be completed and submitted as a dissertation for formal examination, which addresses a particular aspect of Ocean & Climate Dynamics. Students are expected to complete the dissertation by the end of the academic year.

Assessment: Coursework and dissertation each count 50% to the final assessment of the degree. The dissertation will be formally examined.

SEA6000W PhD IN PHYSICAL OCEANOGRAPHY

360 HEQF credits at level 10

Applications for candidature are considered on merit. Candidates are required to complete an original research project and thesis on an approved topic. Rules for the degree may be found in Book 3, General Rules and Policies.
DEPARTMENT OF PHYSICS

The Department is housed in the R W James Building, 9 University Avenue
Telephone (021) 650-3326 Fax (021) 650-3342
The Departmental abbreviation for Physics is PHY.

Professor and Head of Department:
D G Aschman, BSc (Hons) Cape Town DPhil Oxon

Professors:
D T Britton, MSc PhD London
A Peshier, MA PhD Dresden

Associate Professors:
M S Allie, MSc PhD Cape Town (CHED)
M D Blumenthal, BSc Wits Dipl Phys Bonn PhD Cantab
A Buffler, MSc PhD HDE Cape Town
R W Fearick, BSc (Hons) PhD Wits
M Härtling, Dipl Phys Regensburg Dr. Ing BW München
H W G Weigert, Dipl Phys Dr rer nat habil Regensburg

Senior Lecturers:
I Govender, BSc (Hons) PhD Cape Town HDE Unisa
S M Wheaton, MSc PhD Cape Town

Lecturers:
A Hamilton, MSc PhD Alberta
W A Horowitz, MA MSc PhD Columbia
M R Nchodu, MSc PhD Cape Town
S W Peterson, MA PhD Wisconsin
D Taylor, BSc (Hons) HDE UKZN MSc Wits (CHED)

Part-time Lecturer:
G Leigh, HDE MSc Cape Town

Senior Scholar:
J W A Cleymans, MSc D en Sc Louvain FRSSAf

Emeritus Professors:
F D Brooks, DSc Rhodes
C A Dominguez, MSc PhD Buenos Aires FRSSAf
S M Perez, BSc (Hons) Wits DPhil Oxon
R D Viollier, Dipl Phys Basel Dr phil nat Basel FRSSAf

Emeritus Associate Professors:
C M Comrie, MSc Natal PhD Cantab
P E Spargo, BSc (Eng) MSc Wits Cert Ed Cantab FRSSAf
G N v d H Robertson, BSc (Hons) Cape Town DPhil Oxon

Honorary Research Associate:
F E Lubben, MSc Delft MA York PGCE Delft

Principal Technical Officer:
L N van Heerden, BSc Stell

Chief Technical Officers:
G K Fowle
K J Ontong

Chief Scientific Officer:
J E Fearon, MSc Cape Town

Department Administrator:
N Lovric

Senior Secretary:
M Maich (part-time)
RESEARCH IN PHYSICS

The Department of Physics is accommodated in the R W James Building, which houses laboratories equipped for nuclear physics, solid state and nanophysics, and physics education research. Additional facilities available to the Department are provided by iThemba Laboratories for Accelerator Based Sciences (200 MeV cyclotron and a 5 MeV Van de Graaff accelerator).

Major areas of interest at present include:
1. Experimental nuclear physics at iThemba LABS (D G Aschman, A Buffler, R W Fearick, M R Nchodu), comprising: (a) Gamma ray spectroscopy with the AFRODITE array; (b) Giant resonance reactions with the magnetic spectrometer; (c) Fast neutron physics.
2. Theoretical Physics (J W A Cleymans, C A Dominguez, W A Horowitz, A Peshier, S M Perez, H W G Weigert, S M Wheaton and R D Viollier), comprising: (a) Research within the Centre for Theoretical and Mathematical Physics; (b) Structure of elementary particles; (c) Weak interactions; (d) Quantum field theory, quantum electrodynamics and chromodynamics in free space, in the cavity and at extreme temperatures and pressures; (e) Renormalization group equations, both linear and nonlinear (Color Glass Condensate); (f) Nonlinear effects in QCD at high densities; (g) Phenomenology of heavy ion reactions; (h) Quark gluon plasma; (i) Nuclear structure and models.
3. Experimental high energy physics (J W A Cleymans, R W Fearick, A Hamilton), comprising: (a) Research within the UCT-CERN Research Centre; (b) Relativistic heavy ion collisions within the ALICE collaboration at CERN; (c) High energy proton-proton collisions within the ATLAS collaboration at CERN.
4. Nanophysics and solid state physics (M D Blumenthal, D T Britton, C M Comrie and M Härting), comprising: (a) Research within the Nanosciences Innovation Centre; (b) Structural and electrical properties of thin films; (c) X-ray diffraction studies of strain fields and residual stress analysis; (d) Single electron transport and interactions.
5. Applied Physics (A Buffler, I Govender, M R Nchodu, S W Peterson, S M Wheaton), comprising: (a) Positron Emission Particle Tracking at PEPT Cape Town, iThemba LABS; (b) Particulate flow and interaction characterization in engineering and biological systems by computational and mechanistic modelling; (c) Radiation transport modelling in industrial and medical systems; (d) Applied nuclear physics using neutrons; (e) Geo-neutrino detection (EARTH collaboration).
6. Tertiary physics education (M S Allie, A Buffler and D Taylor), comprising: (a) Curriculum design and evaluation; (b) Role of language; (c) Understanding of measurement and uncertainty; (d) Modelling and visualization.

Undergraduate Courses

Credit will not be given for both PHY1023H and PHY1031F. Credit will not be given for both of PHY1024F and PHY1032S.

First-Year Courses

PHY1004W MATTER & INTERACTIONS
36 HEQF credits at level 5

An advanced calculus-based introductory course for Science students intending to continue with second-year Physics, featuring modelling of physical systems from fundamental principles, and computational problem solving using VPython.
Course co-ordinator(s): Associate Professor A Buffler

Entrance requirements: Students will normally be expected to have passed Physical Science NSC level 5. MAM1000W (or equivalent) must have been passed or be taken concurrently.

Course outline:
MODERN MECHANICS: Conservation laws, the momentum principle, atomic nature of matter, conservation of energy, energy in macroscopic systems, energy quantization, multiparticle systems, exploring the nucleus, angular momentum, entropy, kinetic theory of gases, efficiency of engines.
ELECTRIC AND MAGNETIC INTERACTIONS: Electric fields, electric potential, magnetic fields, electric circuits, capacitance, resistance, magnetic force, Gauss' law, Ampere's law, Faraday's law, induction, electromagnetic radiation, waves and particles.

Period

<table>
<thead>
<tr>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Practicals: One practical or tutorial per week, Tuesday, 14h00-17h00.

DP requirements: Minimum of 40% in class record, including 50% in laboratory assessment.

Assessment: Class record (weekly problem sets, class tests and laboratory record) counts 50%; one June 2-hour examination counts 25%; one November 2-hour examination counts 25%.

PHY1023H PRINCIPLES OF PHYSICS A

18 HEQF credits at level 5

An algebra-based introductory course primarily for students on the General Entry Programme for Science (GEPS). Some calculus may be used. It is possible for students from other courses to transfer to this course during the year.

Course co-ordinator(s): Ms D Taylor

Entrance requirements: This course is taken by students on the General Entry Programme for Science.

Course outline:
The first half of this course provides students with the essential tools and skills that are required for dealing successfully with physics at first-year university level. The three broad areas that are covered are (a) mathematical techniques and their relationship with physical phenomena, (b) experimental procedures and (c) communication skills, in particular report writing.

Second semester:
MECHANICS: vectors, kinematics, dynamics, work, energy power, conservative and non-conservative forces, friction, impulse, momentum, collisions, rotation, rotational dynamics, torque, rotational inertia, rotational energy, angular momentum, static equilibrium, gravitation.
PROPERTIES OF MATTER: elasticity, elastic moduli, hydrostatics, hydrodynamics.
THERMAL PHYSICS: temperature, heat, kinetic theory of gases, thermodynamics, entropy.

Period

<table>
<thead>
<tr>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Practicals: One practical or tutorial per week, Tuesday, 14h00-17h00.

DP requirements: Minimum of 40% in class record, including 50% in laboratory assessment.

Assessment: Class record (weekly problem sets, class tests and laboratory record) counts 50%; one 3-hour written examination counts 50%.

PHY1024F PRINCIPLES OF PHYSICS B

18 HEQF credits at level 5

An algebra-based introductory course usually taken by students who have completed PHY1023H. Some calculus may be used.

Course co-ordinator(s): Dr M R Nchodu
Entrance requirements: PHY1023H; MAM1000W (or equivalent) must have been passed or be taken concurrently.

Course outline:
ELECTRICITY AND MAGNETISM: electric charge, electric field, Gauss’ law, electric potential, capacitance, current, current density, emf, resistance, resistivity, networks, magnetic field, Biot-Savart law, Ampere’s law, electromagnetic induction, inductance, alternating currents.
VIBRATIONS AND WAVES: simple harmonic motion, damped oscillations, forced oscillations, resonance, travelling waves, phase velocity, superposition, standing waves, sound intensity, Doppler effect, interference, diffraction.
MODERN PHYSICS: electromagnetic waves, interference, diffraction, the electron, quantum physical phenomena, atomic structure, wave-particle duality, X-rays, elementary nuclear physics, radioactivity.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Practicals:</td>
<td>One practical or tutorial per week, Wednesday, 14h00-17h00.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements:</td>
<td>Minimum of 40% in class record, including 50% in laboratory assessment.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment:</td>
<td>Class record (weekly problem sets, class tests and laboratory record) counts 50%; one 3-hour written examination counts 50%.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PHY1031F GENERAL PHYSICS A
18 HEQF credits at level 5
An algebra-based introductory course for Science students who do not intend proceeding to second-year courses in Physics. Some calculus may be used.

Course co-ordinator(s): Dr S M Wheaton

Entrance requirements: Students will be expected to have passed Physical Science at NSC level 5.

Course outline:
MECHANICS: vectors, unit vectors, kinematics, rates of change, dynamics, work, energy, power, conservative and non-conservative forces, friction, impulse, momentum, collisions, rotation, rotational dynamics, torque, rotational inertia, rotational energy, angular momentum, static equilibrium, gravitation.
PROPERTIES OF MATTER: elasticity, elastic moduli, hydrostatics, hydrodynamics.
THERMAL PHYSICS: temperature, heat, kinetic theory of gases, thermodynamics.
OPTICS: Geometrical optics, polarization, electromagnetic waves, interference, diffraction.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Practicals:</td>
<td>One practical or tutorial per week, Monday, Wednesday, Thursday or Friday, 14h00-17h00.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements:</td>
<td>Minimum of 40% in class record, including 50% in laboratory assessment.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment:</td>
<td>Class record (weekly problem sets, class tests and laboratory record) counts 50%; one 3-hour written examination counts 50%.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PHY1032S GENERAL PHYSICS B
18 HEQF credits at level 5
A non-calculus introductory course for Science students who do not intend proceeding to second-year courses in Physics.

Course co-ordinator(s): Dr S W Peterson

Entrance requirements: PHY1031F, or PHY1023H
Course outline:
ELECTRICITY AND MAGNETISM: electric charge, electric field, Gauss’ law, electric potential, capacitance, current, current density, emf, resistance, resistivity, networks, magnetic field, Biot-Savart law, Ampere’s law, electromagnetic induction, inductance, alternating currents.
VIBRATIONS AND WAVES: simple harmonic motion, damped oscillations, forced oscillations, resonance, travelling waves, phase velocity, superposition, standing waves, sound waves, sound intensity, Doppler effect, interference, diffraction.
MODERN PHYSICS: the electron, quantum physical phenomena, atomic structure, wave-particle duality, X-rays, elementary nuclear physics, radioactivity.

Period
Lectures: 3 3 3 3 3
Practicals: One practical or tutorial per week, Monday, Wednesday, Thursday or Friday, 14h00-17h00.
DP requirements: Minimum of 40% in class record, including 50% in laboratory assessment.
Assessment: Class record (weekly problem sets, class tests and laboratory record) counts 50%; one 3-hour written examination counts 50%.

Second-Year Courses

PHY2009S INTERMEDIATE PHYSICS
24 HEQF credits at level 6
A course normally taken by students who have not completed PHY1004W, to prepare them for PHY2014F and PHY2015S.
NOTE: This course may not run in 2012.
Course co-ordinator(s): Dr A Hamilton
Entrance requirements: PHY1023H and PHY1024F (or equivalent), and MAM1005H (or equivalent), MAM1006H must be taken concurrently.
Course outline:
VECTOR FIELDS IN PHYSICS: Vector calculus, div, grad, curl, line, surface and volume integrals, Gauss' Theorem, Stokes' Theorem, applications to fluid dynamics and electromagnetism.
STATISTICAL MODELLING OF RADIATION AND MATTER: mathematical descriptions of solids, liquids and gases, entropy, temperature, the Boltzmann distribution, thermodynamics, statistical models of photons, statistical models in quantum mechanics, wave-particle duality.

Period
Lectures: 5 5 5 5 5
Practicals: One practical or tutorial per week, Wednesday, 14h00-17h00.
DP requirements: Minimum of 40% in class record, completion of all laboratory reports and 75% of tutorial work, attendance at all class tests.
Assessment: Class record (tests, tutorials, projects, laboratory work) counts 50%, one 3-hour paper written in November counts 50%.

PHY2014F WAVES & ELECTROMAGNETISM
24 HEQF credits at level 6
Course co-ordinator(s): Professor D G Aschman
Entrance requirements: PHY1004W or (PHY2009S and MAM1043H), a full first-year course in Mathematics and MAM2000W or (MAM2004H and MAM2046W) as corequisite.
Course outline:
VIBRATIONS AND WAVES: Harmonic oscillations, damped and forced oscillations, resonance, Fourier analysis, harmonic chains, waves, dispersion, interference, diffraction.
ELECTROMAGNETISM: Vector calculus (div, grad, curl), electrostatics, special techniques for potentials, electric fields in matter, magnetostatics, Magnetic fields in matter, current, Ohm's law, circuits, electromagnetic induction, electrodynamics, Maxwell's equations.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Practicals: One practical per week, Monday, 14h00-17h00.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements: Minimum of 40% in class record; completion of all laboratory reports, 75% of tutorial work and problem sets; attendance at all tests.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment: Class record (tests, weekly problem sets and laboratory work) counts 50%; one 3-hour examination written in June counts 50%. A subminimum of 45% is required in the final examination.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PHY2015S CLASSICAL & QUANTUM MECHANICS

24 HEQF credits at level 6

Course co-ordinator(s): Associate Professor R W Fearick

Entrance requirements: As for PHY2014F, and at least 40% in PHY2014F.

Course outline:

CLASSICAL MECHANICS: Review of Newton's laws, constraints, D'Alembert principle, Lagrangian formulation of mechanics, conservation laws, applications, central forces, planetary motion, small oscillations, normal co-ordinates.

QUANTUM MECHANICS: The basic assumptions of quantum mechanics, solutions of Schrödinger's equation, properties of wave functions and operators, one-dimensional applications, angular momentum in quantum mechanics, three-dimensional applications, the hydrogen atom, approximate methods.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Practicals: One computational practical per week, Monday, 14h00-17h00.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements: Minimum of 40% in class record; completion of all laboratory reports, 75% of tutorial work and problem sets; attendance at all tests.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment: Class record (tests, weekly problem sets and laboratory work) counts 50%; one 3-hour paper written in November counts 50%. A subminimum of 45% is required in the final examination.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Third-Year Courses

PHY3021F ADVANCED PHYSICS A

36 HEQF credits at level 7

Course co-ordinator(s): Associate Professor R W Fearick

Course outline:

ELECTROMAGNETISM: Maxwell's equations in vacuum and in matter, conservation laws, momentum and angular momentum in electromagnetic fields, electromagnetic waves, the Fresnel relations, laws of optics, absorption and dispersion, frequency dependence of permittivity, wave guides, gauge transformations, retarded potentials, electric and magnetic dipole radiation, power radiated by a point charge, special relativity, four-vectors, relativistic kinematics, relativistic electrodynamics, the electromagnetic field tensor.

THERMODYNAMICS AND STATISTICAL PHYSICS: Temperature, heat and work, First law of thermodynamics, Ensembles and entropy, Second law of thermodynamics, Boltzmann distribution and Helmholtz free energy, thermal radiation, chemical potential and Gibbs distribution, Fermi-
Dirac statistics, electrons in metals, Bose-Einstein statistics, phonons, photons and the black-body distribution, the Bose-Einstein condensate, applications to classical and quantum systems.

Period

<table>
<thead>
<tr>
<th></th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Practicals:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DP requirements: Two sessions per week, Monday and Thursday, 14h00-17h00.

Assessment: Class record (tests, essays, projects and laboratory reports) counts 50%; one 3-hour paper and one 2-hour paper count 50%. A subminimum of 45% is required in the final examination.

PHY3022S ADVANCED PHYSICS B

36 HEQF credits at level 7

Course co-ordinator(s): Professor D G Aschman

Entrance requirements: PHY2014F and PHY2015S, and at least 40% in PHY3021F.

Course outline:

ATOM PHYSICS: angular momentum, atomic structure and spectra, selection rules, spin, fine structure, Zeeman effect, time dependent and independent perturbation theory, molecular structure and spectra.

NUCLEAR AND PARTICLE PHYSICS: properties of nuclei, nuclear forces, nuclear structure and reactions, radioactivity, decay modes, interactions of elementary particles, quarks & leptons, symmetries and the gauge forces.

SOLID STATE PHYSICS: crystal structure; lattice vibrations, electron states in solids, energy band theory, semiconductor physics and devices.

Period

<table>
<thead>
<tr>
<th></th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Practicals:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assessment: Class record (tests, essays, projects and laboratory reports) counts 50%; one 3-hour paper and one 2-hour paper count 50%; oral exam 2% (bonus). A subminimum of 45% is required in the final examination.

Postgraduate Courses

PHY4000W BSc (HONS) IN PHYSICS

160 HEQF credits at level 8

(includes research project of 40 credits)

Course co-ordinator(s): Professor A Peshier

Entrance requirements: The entrance requirement is a BSc degree with a major in Physics. Acceptance will be at the discretion of the Head of Department who will consult the Honours course co-ordinator. Criteria for acceptance include a pass of 60% in PHY3021F and PHY3022S, or equivalent; and a pass of 60% in MAM2000W or MAM2046W or equivalent; and in cases where the Head of Department deems it necessary, favourable referee reports. Enrolment is limited to 15 students. Preference may be given to UCT graduates who meet the entrance requirements.

Course outline:

The Honours course in Physics consists of several modules comprising at least 12, but not more than 14 units. The 4 compulsory modules are: Research Project (3 units), Electromagnetism (2 units), Quantum Mechanics (2 units), and Statistical Physics (1 unit). At least three further single-unit modules must be chosen from: Classical Mechanics, Computational Physics, Particle Physics,
Physics Education, Nuclear Physics, Relativistic Quantum Mechanics and Solid State Physics. Furthermore, the course can be complemented by physics-related modules offered by the Departments of Astronomy, and Mathematics and Applied Mathematics. The choice of modules and research project must be approved by the Head of Physics in consultation with the Honours co-ordinator. Details appear on the Physics Honours website: www.phy.uct.ac.za.

DP requirements: 30% for class tests and problem sets, and suitable progress in the Research Project.

Assessment: The pass mark is 50% and is based on an aggregation of all modules, and is further subject to the subminimum criteria of obtaining a minimum mark of 35% in the Research Project, passing two thirds of all modules, and achieving a mark of at least 35% in all but one of the compulsory modules. The Research Project will count 25% of the final mark.

NOTE: PHY4001W and PHY4002W will not be offered in 2012. All students will be registered for PHY4000W which caters for both Physics and Theoretical Physics.

PHY4001W
BSc (HONS) IN THEORETICAL PHYSICS
160 HEQF credits at level 8
(includes research project of 40 credits)
NOTE: This course will not be offered in 2012.

PHY4002W
BSc (HONS) IN MATHEMATICAL & THEORETICAL PHYSICS
160 HEQF credits at level 8
(includes research project of 40 credits)
NOTE: This course will not be offered in 2012.

PHY5000W
MASTERS IN PHYSICS
180 HEQF credits at level 9
The Masters in Physics consists of the completion of a research project on an approved topic on which a dissertation must be presented. General rules for this degree may be found in the front of the handbook.

PHY5001W
MASTERS IN THEORETICAL PHYSICS
180 HEQF credits at level 9
The Masters in Theoretical Physics is obtained by satisfactorily completing a research project on which a dissertation must be presented. Students are required to participate in courses which may be offered on topics such as quantum electrodynamics, relativistic quantum field theory, particle physics, electroweak and strong interactions. General rules for this degree may be found in the front of the handbook.

PHY5003W
DISSERTATION COMPONENT OF THE MASTERS IN ASTROPHYSICS & SPACE SCIENCE
90 HEQF credits at level 9
Entrance requirements: AST5003F
Dissertation: Students will work on an approved research topic on which a dissertation must be presented.

PHY5006W
MASTERS IN TERTIARY PHYSICS EDUCATION
180 HEQF credits at level 9
The Masters in Physics consists of the completion of a research project on an approved topic on which a dissertation must be presented. General rules for this degree may be found in the front of the handbook.
PHY6000W PhD IN PHYSICS
360 HEQF credits at level 10
The PhD degree may be undertaken either in the field of Physics or of Theoretical Physics. In both cases students are required to complete an original research project on which an acceptable thesis must be presented. Students of Theoretical Physics, in addition, must participate successfully in an advanced course entitled Special Topics in Theoretical Physics and in the MSc courses in Theoretical Physics listed above, if these have not been attended previously. Candidates are referred to the rules for this degree as set out in Book 3, General Rules and Policies.

PHY6001W PhD IN TERTIARY PHYSICS EDUCATION
360 HEQF credits at level 10
Candidates for the PhD degree are required to complete an approved original research project on which an acceptable thesis must be presented. Candidates are referred to the rules for this degree as set out in Book 3, General Rules and Policies.
DEPARTMENT OF STATISTICAL SCIENCES

The Department is housed in the P D Hahn Building, Level 5
Telephone (021) 650-3219 Fax (021) 650-4773
The Departmental abbreviation for Statistical Sciences is STA.

Associate Professor and Head of Department:
C Thiart, BSc Agric (Hons) Stell MSc PhD Cape Town

Professor of Avian Demography:
L G Underhill, MSc PhD Cape Town

Professors:
G D I Barr, MSc PhD Cape Town
D J Bradfield, MSc PhD Cape Town HED Unisa
T T Dunne, BA (Hons) BSc (Hons) UED BEd Natal PhD Cape Town CStat

Associate Professors:
F Little, MSc PhD Cape Town
S Lubbe, MCom PhD Stell

Senior Lecturers:
B Erni, BSc (Hons) MSc Cape Town PhD Basel
I Durbach, MBusSc PhD Cape Town
F N Gumedze, MSc PhD Cape Town
J C Nyirenda BSc Newcastle Upon Tyne PhD Cambridge
LD Scott, MSc PhD Cape Town
K Stielau, BSc(Hons) Natal

Lecturers:
A Clark, MSc Cape Town
G Distiller, BCom (Hons) MSc Cape Town
H Gerber, MSc NMMU MSc UPE
D Katshunga, BSc(Hons) DRC MSc Cape Town
M J P Lacerda, MSc Cape Town
K Ramaboa, MBusSc PhD Cape Town
S Silal, MSc Cape Town
M Varughese, BSc (Hons) MSc Wits DipAc&Tech Edinburgh PhD Cape Town

Senior Scholar:
R K Guo, BSc Tsinghua MSc PhD Iowa State

Emeritus Professors:
T J Stewart, BSc (Chem Eng) Cape Town MSc (OR) PhD Unisa
Emeritus Associate Professor:
J M Juritz, BSc (Hons) UNISA, MSc PhD Cape Town

Visiting Professor:
L M Haines, BA MA Cambridge BSc (Hons) Natal MPhil UCL PhD Unisa FRSSAf

Adjunct Associate Professor:
G Witten, PhD Cape Town

Principal Scientific Officer (Consultant):
K Mauff, BBusSci (Hons) Cape Town

Administrative Manager:
B King, HDE UWC

Administrative Assistants:
S Achilles
L Futuse

Senior Clerk:
K Jeptha

Receptionist:
A Davids
RESEARCH IN STATISTICAL SCIENCES

Research areas and research units:

OPERATIONAL RESEARCH and MULTICRITERIA DECISION SUPPORT: The development of interactive decision aids, to assist in the analysis of decision problems with multiple and conflicting objectives, with particular reference to natural resource management and others; combinatorial optimization; application to decision making and planning in private and public sectors (T J Stewart, L Scott, J Nyirenda, H Gerber).

BAYESIAN DECISION THEORY: General principles of Bayesian statistical analysis; applications in sequential stochastic optimization and other fields (T J Stewart, T T Dunne, R K Guo).

ECONOMETRIC MODELLING: Econometric techniques are being used to test theories related to the South African economy in the fields of finance, monetary economics, interest rate theory and stock market research (G D I Barr, R K Guo, L M Haines).

BIOSTATISTICS: Medical applications of statistics (T T Dunne, F Little, L M Haines, J M Juritz, F Gumedze, S Silal). The objectives of the Biostatistics Interest Group are to develop statistical methodology motivated by medical problems, particularly in the area of community health, and to provide statistical support to medical researchers in the form of short courses and consulting.

MULTIVARIATE ANALYSIS: Detection of outliers and influential observations (T T Dunne, C Thiart, F Gumedze); multivariate distribution theory; multidimensional scaling, correspondence analysis and cluster analysis (L G Underhill, S Lubbe); robust regression procedures (C Thiart); classification and discrimination procedures; graphical displays of multivariate data (S Lubbe).

EDUCATIONAL APPLICATIONS: Statistical examination of data pertaining to schools, disadvantaged students and to science education (T T Dunne, K Stielau, F Gumedze, L Zacna).

MIXED LINEAR MODELS: Longitudinal data analysis, analysis of repeated measures data, generalized linear (mixed) models, hierarchical generalized linear mixed models (robust estimation and diagnostics). (F Gumedze, C Thiart, J M Juritz, T T Dunne).

SOCIAL SCIENCE STATISTICS: Research surveys; local government support; analysis of poverty and development (T T Dunne).

OPTIMAL DESIGN: The design of experiments in agriculture, biology and engineering which are in some sense optimal (L M Haines).

ASTROSTATISTICS: The application of statistical techniques to problems in astronomy (M M Varughese).

BIOINFORMATICS: The application of statistical and computational techniques to problems in genetics and molecular biology (M J P Lacerda).

Undergraduate Courses

NOTES
1. Students may not obtain credit for both STA2030S and either STA2004F or STA2005S.
2. Students may not obtain credit for both STA3030F and STA2004F.
3. Students who intend to specialise in Statistics are strongly advised to include Computer Science in their curriculum.
4. Note that MAM1000W is a prerequisite for STA3041F, STA3043S, STA3045F and MAM2000W is strongly recommended.
5. A specialisation in Statistics and a major in Mathematical Statistics for the BSc require STA3041F and STA3043S.
First-Year Courses

STA1000F AND STA1000S STATISTICS 1000

18 HEQF credits at level 5

Identical first year half-courses, offered in first and second semesters. Owing to the mathematics prerequisites, first-year students must register for STA1000S in the second semester.

Course co-ordinator(s): STA1000F: Mr G Distiller; STA1000S: Dr K Leask

Entrance requirements:

STA1000F (no first year students): A pass in any of MAM1000W, MAM1004F/H, MAM1005H, MAM1006H, MAM1002W/X, MAM1003W, MAM1010F/S, MAM1017F/S or STA1001F.

STA1000S: A pass in any of MAM1000W, MAM1004F/H, MAM1005H, MAM1006H, MAM1002W/X, MAM1003W, MAM1010F/S, MAM1017F/S or STA1001F or decanted MAM1005H.

Co-requisites: In addition, students will be admitted to STA1000S if they are concurrently registered for MAM1000W, MAM1005H, MAM1012S or MAM1018S or have a supplementary examination for STA1001F or MAM1004F or MAM1010F or MAM1017F in the same year.

Course outline:

Lectures: First semester: five lectures per week, Monday to Friday, 1st and 4th period.
Second semester: five lectures per week, Monday to Friday, 1st, 2nd, 3rd or 4th period. Students may be required to attend a particular period and venue.

Tutorials: One compulsory tutorial per week, at times to be arranged.

DP requirements: Attendance and completion of all tests and assignments; class record of 35%.

Assessment: Class work (test and assignments) counts 30%; one 3-hour examination in June (STA1000F) or November (STA1000S) counts 70%. Candidates awarded a supplementary examination for STA1000F MUST write this examination in the October/November examination period of the same year.

STA1006S STATISTICS FOR MATHEMATICAL DISCIPLINES

18 HEQF credits at level 5

Course co-ordinator(s): Dr F Gumedze

Entrance requirements: Mathematics at NSC level 6 (or senior certificate HG D). Concurrent registration on MAM1000W or MAM1006H (or MAM1010S or MAM1012S).

Course outline:

Lectures: Five lectures per week, Monday to Friday, 1st and 4th period.

Tutorials: One compulsory tutorial per week.

DP requirements: Attendance and completion of all tests and assignments; class record of 35%.

Assessment: Class record counts 30%; one 3-hour written examination in November counts 70%.
STA1007S BIONUMERACY
18 HEQF credits at level 5
Course co-ordinator(s): Mr G Distiller
Entrance requirements: Mathematics at NSC level 5 (or senior certificate HG E/SG A). For foreign students a pass at A-level or a C-symbol at O-Level is required. A pass or concurrent registration with MAM1004F/H or equivalent.

Course outline:
Introduction to Biological Statistics; Scientific Method; Computing and Data Manipulation and Presentation; Measures of Central Tendency; Distributions and Functions; Probability Theory; Basic Inferential Statistics; Mathematical Modelling. There will be one research project that will serve as vehicles for instruction in the above areas. Students will be required to collect, manipulate, analyze (using a spreadsheet) and interpret data to answer research questions in a scientific way. The course is the equivalent of STA1000S, in a biological setting.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tutorials</td>
<td>One compulsory tutorial per week, Friday, 1st period.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements</td>
<td>Attendance and completion of all tests and assignments; class record of 35%.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment</td>
<td>Class record 30%; one 3-hour written examination in November counts 70%.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second-Year Courses

STA2004F STATISTICAL THEORY & INFERENCE
24 HEQF credits at level 6
Course co-ordinator(s): Associate Professor C Thiart
Entrance requirements: MAM1000W and STA1006S.

Course outline:

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tutorials</td>
<td>One compulsory tutorial of 2 hours per week, by arrangement.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements</td>
<td>Attendance and completion of all tests and assignments; class record of 35%.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment</td>
<td>Class record counts 30%; one 3-hour examination in June counts 70%.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STA2005S LINEAR MODELS
24 HEQF credits at level 6
Course co-ordinator(s): Dr B Emi
Entrance requirements: DP certificate for STA2004F.

Course outline:
REGRESSION: The multivariate normal; quadratic forms; the linear model; maximum likelihood; estimates of parameters in the linear model; the Gauss-Markov theorem; variable selection procedures; analysis of residuals.
APPLIED STATISTICS: Non-parametric methods. Design and analysis of experiments. Fixed, mixed and random effects models.
STA2007F APPLIED STATISTICAL MODELLING
24 HEQF credits at level 6

Course co-ordinator(s): Dr B Emi

Entrance requirements: (STA1000F/S or STA1007S or STA1006S) and (MAM1004F/H or MAM1000W or MAM1005H or equivalent).

Course outline:
Introduction to statistical notation, linear regression, design and analysis of experiments, generalized linear models. There will be a strong emphasis on the practical application of the above methods, using open-source statistical software such as R.

STA2020F BUSINESS STATISTICS
24 HEQF credits at level 6

NOTE: This course will be counted as a non-Science credit.

Course co-ordinator(s): Dr K Ramaboa

Entrance requirements: MAM1000W or MAM1004F/H or MAM1005H or MAM1006H or MAM1010F/S and MAM1012F/S (MAM1002W) or MAM1017F/S and MAM1018F/S (MAM1003W) or STA1001 and STA1000F/S or STA1006S or STA1007S.

Course outline:
Analysis of variance (ANOVA) and experimental design; Revision and extension of simple linear regression; Multiple regression; Econometric models; Time series analysis; Non-parametric statistics.

STA3041F MARKOV PROCESSES & TIME SERIES
36 HEQF credits at level 7

Course co-ordinator(s): Associate Professor S Lubbe

Course outline:
Markov Processes: Discrete Markov chains; application to experience rating; Poisson and renewal processes; continuous time Markov chains; Theory of Markov processes; Ruin theory.
Time Series Analysis: General concepts; filters; backward shift operators; concepts of AR, ARMA and ARIMA models; frequency domain analysis; multivariate autogressive models; identification, estimation and diagnosis of time series models; non-stationary and non-linear models; applications.

Period

<table>
<thead>
<tr>
<th>Lectures:</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Tutorials: Tutorials and practicals by arrangement.

DP requirements: Class record of 35% and submission of all projects.

Assessment: Class record counts 30%; one 3-hour examination in June counts 70%.

STA3043S DECISION THEORY & GLMs
36 HEQF credits at level 7
Course co-ordinator(s): Associate Professor F Little

Course outline:
Decision and Risk Theory: Structure of decision making under uncertainty; game theory and non-probabilistic decision criteria; probabilistic decision criteria: expected value and utility; use of Bayes' theorem; value of information; Bayesian statistical analysis for Bernoulli and normal sampling; empirical Bayes and credibility theory; loss and extreme value distributions; Monte Carlo method.

Generalized Linear Models: Definition of a generalized linear model; estimation and testing procedures; applications including logistic regression and log-linear models.

Period

<table>
<thead>
<tr>
<th>Lectures:</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Tutorials: Monday and Wednesday, 6th and 7th period.

DP requirements: Class record of 35% and submission of all projects.

Assessment: Class record counts 30%; one 3-hour examination in November counts 70%.

STA3045F ADVANCED STOCHASTIC PROCESSES
36 HEQF credits at level 7

NOTE: This course does not form part of the compulsory requirements for the specialisation in Statistics.

Course co-ordinator(s): Dr M Varughese

Entrance requirements: STA1006S, STA2004F, STA2005S and concurrent registration for STA3041F and MAM2000W.

Course outline:
This course will cater to the needs of Actuarial Science students.
Module 1: Foundations of stochastic processes, Markov processes, Markov jump processes, two-state and general Markov models. (Lectures will be held simultaneously with BUS3018F).
Module 2: Advanced Time Series. (Content presumes prior experience of STA3041F Time Series).

Period

<table>
<thead>
<tr>
<th>Lectures:</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Tutorials: One compulsory tutorial per week. Refer department.
DP requirements: Class record of 35%, submission of all projects.
Assessment: Class record counts 30%; one 3-hour examination in June counts 70%.

Postgraduate Courses

STA4007W BSc (HONS) IN STATISTICAL SCIENCES

160 HEQF credits at level 8
(includes research project of 40 credits)

Course co-ordinator(s): Associate Professor F Little

Entrance requirements: Completion of STA2004F, STA2005S, STA3041F, STA3043S, or their deemed equivalents, at a satisfactory level (normally an average of 65% or more in the 3rd year courses at first attempt). Students without MAM2000W, but with a good statistical major will also be considered. Acceptance will be at the discretion of the Head of Department who will consider quality of final year results, material covered in the undergraduate curriculum, and possibly referee reports. Preference may be given to UCT graduates who meet the entrance requirements. Enrolments are limited to 22 in all, for the combined Honours programs made up of STA4007W, STA4019H, STA4006W and STA4010W.

Course outline:
Students are required to complete the following:
Core courses: 81 credits
Elective courses: ≥39 credits
Individual project: 40 credits

The core modules include statistical computing, matrix methods, theory of statistics, operations research and professional communication. Available electives vary from year to year, but typically include a variety of applied and theoretical topics in statistics, econometrics and operations research.

Assessment: Each coursework module comprises of tests, assignments and a final examination. The relative weighting placed on the year work within different modules varies between 30% and 50%. The final grade for STA4007W as a whole is a weighted average (3 : 1) of the combined final marks for each coursework module (weighted by the number of credits), and the individual project. In addition, the student is required to obtain a mark of at least 50% in all core courses, at least 40% in best 39 credits for elective modules and at least 50% for the individual project.

STA4019H STATISTICAL SCIENCES FOR ACTUARIES

104 HEQF credits
(includes research project of 40 credits)

Course co-ordinator(s): Associate Professor F Little

Entrance requirements: Completion of STA2004F, STA2005S, STA3041F, STA3043S, or their deemed equivalents, at a satisfactory level (normally an average of 65% or more in the 3rd year courses at first attempt), as well as a pass in MAM2000W. In addition, admission to STA4019H requires that the student is admitted by the Actuarial Science Division of the School of Management Studies to BUS4027W and BUS4028F. Acceptance will be at the discretion of the Head of Department who will consider quality of final year results, material covered in the undergraduate curriculum, and possibly referee reports. Preference may be given to UCT students who meet the entrance requirements. Enrolments are limited to 22 in all, for the combined Honours program made up of STA4007W, STA4019H, STA4006W and STA4010W.

Course outline:
This course constitutes 65% of the 160 HEQF credit requirement for the BSc (Hons) in Actuarial Science. Students are required to complete the following:
Core courses: 25 credits
Elective courses: ≥39 credits
Individual project: 40 credits

The core modules include statistical computing, matrix methods, theory of statistics, operations...
research and professional communication. Available electives vary from year to year, but typically include a variety of applied and theoretical topics in statistics, econometrics and operations research. **Assessment:** Each coursework module comprises tests, assignments and a final examination. The relative weighting placed on the year work within different modules varies between 30% and 50%. The final grade for STA4019H as a whole is a weighted average (5 : 3) of the combined final marks for each coursework module (weighted by the number of credits), and the individual project. In addition, the student is required to obtain a mark of at least 50% in all core courses, at least 40% in best 39 credits for elective modules and at least 50% for the individual project. In addition the courses BUS4027W and BUS4028F must also be passed for the degree to be awarded.

STA5000W MASTERS IN MATHEMATICAL STATISTICS
180 HEQF credits at level 9
This degree may be conferred after satisfactory completion of a dissertation embodying research under the guidance of an approved supervisor. The normal duration of the course is two years although, under exceptional circumstances, may be completed in one and a half years. General rules for this degree may be found in the beginning of the handbook.

STA5001W MASTERS IN OPERATIONAL RESEARCH
180 HEQF credits at level 9
This degree may be conferred after satisfactory completion of a dissertation embodying research under the guidance of an approved supervisor. The normal duration of the course is two years although, under exceptional circumstances, may be completed in one and a half years. General rules for this degree may be found in the beginning of the handbook.

STA5003W and STA5004W MASTERS IN STATISTICAL SCIENCES
(by coursework and dissertation)
Coursework: 90 HEQF credits at level 9
Dissertation: 90 HEQF credits at level 9
NOTE: This course may not be offered in 2012.
For this taught MSc programme, candidates are required to complete coursework STA5003W given at a Master's level at the end of which they will sit and pass formal examinations. They are also required to submit a mini-dissertation (STA5004W), which is normally considered as a half dissertation (one year of study), for which a pass is the requirement for the Masters degree. General rules for completion of the masters by coursework and dissertation may be found at the beginning of the handbook.

Entrance Requirements: A relevant Honours degree.
Deadlines for applications for the following year: International Students, 30th September and local students, 31st October.
Assessment: Examinations count 50% and marked coursework 50% of the final course result.

STA5010W and STA5011W MASTERS IN OPERATIONAL RESEARCH IN DEVELOPMENT
(by coursework and dissertation)
Coursework: 90 HEQF credits at level 9
Dissertation: 90 HEQF credits at level 9
NOTE: This course may not be offered in 2012.
Entrance requirements: Entry to the programme requires a good honours degree including a strong quantitative component (normally at least two years of Mathematics at a tertiary level). In selecting candidates for admission to the programme, consideration will also be given to recommendations from at least two referees who are able to attest to the applicants academic abilities and suitability
for the programme. Deadlines for applications for the following year: 30th September.

Course outline:
The aim of the programme is to provide a broad professional training in the principles and tools of operational research (OR), with particular emphasis on application in the context of development and the developing world. Operational Research has been defined as the discipline of applying advanced analytical methods (system analysis, and computer and mathematical models) to help make better decisions. The OR in Development programme focuses on preparing graduates for a career in applying OR to the unique problems of the developing world, such as conflicting objectives in balancing (for examples) socio-economic development and corrective actions, less reliable infrastructures, and a post-colonial need for community participation in all levels of planning.

Curriculum: The programme is structured over two years, although completion in 18 months may be possible.

The first academic year is based primarily on coursework (STA5010W), supplemented by group discussions and case studies. The course work includes the basic techniques of operational research and statistics, specific developmental issues, problem structuring and decision analysis.

On successful completion of the coursework component, students will undertake an individual applied research project on a suitable topic, the results of which are to be written up as a dissertation (STA5011W). In some cases, the project might be undertaken on a local problem at the student's home base.

Assessment: In order to qualify for the Masters degree, the student will need to pass both the coursework and dissertation. A pass for the coursework requires an average of 50% over all modules, as well as a minimum of 50% for certain modules designated as core material.

STA6001W PhD IN STATISTICAL SCIENCES
360 HEQF credits at level 10

Supervision of research work towards this degree is provided by the Department. Candidates are referred to the rules for this degree as set out in book 3, General Rules and Policies.
DEPARTMENT OF ZOOLOGY

The Department is housed in the John Day Zoology Building, 20 University Avenue
Telephone (021) 650-3603/4 Fax (021) 650-3301
The Animal Demography Unit may be reached on telephone (021) 650-2423.
The Percy Fitzpatrick Institute of African Ornithology may be reached on telephone (021) 650-3291.
The Departmental abbreviation for Zoology is ZOO. Courses jointly offered with the Botany
department are designated BIO.

Professor and Head of Department:
A Chinsamy-Turan, BSc (Hons) PhD Wits

Pola Pazvolsky Chair of Conservation Biology:
G Cumming, BSc (Hons) Rhodes DPhil Oxon

South African Research Chair in Animal Evolution and Systematics:
D S Jacobs, BSc (Hons) Cape Town PhD Hawaii

South African Research Chair in Marine Ecology & Fisheries:
A Jarre, MSc Kiel PhD Bremen

Professors:
T M Crowe, MSc Chicago PhD Cape Town
C L Griffiths, BSc (Hons) Soton PhD Cape Town
P A R Hockey, BSc (Hons) Edinburgh PhD Cape Town

Associate Professors:
C Attwood BSc (Hons) PhD Cape Town
J H Hoffmann, MSc PhD Rhodes
M I Lucas, BSc (Hons) PhD Wales
C L Moloney, BSc (Hons) PhD Cape Town
M J O'Riain, BSc (Hons) PhD Cape Town
M D Picker, BSc (Hons) PhD Wits
P G Ryan, MSc PhD Cape Town

Senior Lecturers:
A D Amar, BSc (Hons) Newcastle PhD Aberdeen
G N Bronner, MSc PhD Natal

Lecturers:
J Bishop, BSc (Hons) King's College London PhD Cape Town
H Marco, BSc (Hons) PhD Cape Town
D Pillay, BSc (Hons) PhD UKZN
C C Reed, MSc PhD UFS

Senior Scholars:
G M Branch, BSc (Hons) PhD Cape Town FRSSAf
J G Field, BSc (Hons) PhD Cape Town FRSSAf
G Gäde, MS PhD Munster\nL G Underhill, MSc PhD Cape Town

Emeritus Associate Professors:
B R Davies, BSc (Hons) Newcastle PhD CNAA MSAIE & ES
J A Day, BSc (Hons) PhD Cape Town MSAIE & ES
J U M Jarvis, MSc Cape Town PhD East Africa FRSSAf

Honorary Professor:
L Hutchings, BSc (Hons) PhD Cape Town

Honorary Research Associate:
K Tolley, MSc Massachusetts DSc Bergen

Principal Technical Officer:
A Plos, BSc Cape Town
Chief Technical Officers:
G Du Plessis
P Müller

Chief Scientific Officer:
L V Phigeland, BSc Cape Town

Administrative Officer:
S Manie

Senior Secretary:
J Palmer

Administrative Assistant:
N Jodamus

Laboratory Assistants:
G Faulmann
L Smith

MARINE BIOLOGY RESEARCH CENTRE
Director:
C L Griffiths, BSc (Hons) Soton PhD Cape Town

Associates:
C Attwood, BSc (Hons) PhD Cape Town
J J Bolton, BSc (Hons) PhD Liverpool
G M Branch, BSc (Hons) PhD Cape Town FRSSAf
J G Field, BSc (Hons) PhD Cape Town FRSSAf
A Jarre, MSc Kiel PhD Bremen
M I Lucas, BSc (Hons) PhD Wales
C L Moloney, BSc (Hons) PhD Cape Town
D Pillay, BSc (Hons) PhD UKZN
L Shannon, BSc (Hons) PhD Cape Town

Honorary Research Associates:
L Atkinson, MSc PhD Cape Town
R Barlow, MSc Natal PhD Cape Town
A Cockroft, MSc PhD UPE
D Durholtz, BSc (Hons) PhD Cape Town
D Y Ghebrehiwet, BSc Asmara PhD Cape Town
J A Huggett, MSc PhD Cape Town
K Hutchings, BSc (Hons) PhD Cape Town
S Kerwath, MSc Erlangen PhD Rhodes
R W Leslie, BSc Stellenbosch PhD Wits
B Patterson, MA Aachen PhD Cape Town
G Pitcher, BSc (Hons) Natal PhD Cape Town
T Samaai, BSc (Hons) IC London PhD UWC
C N Steffani, MSc Hamburg PhD Cape Town
C van der Lingen, BSc (Hons) Rhodes PhD Cape Town
H Verheyen, MSc Ghent PhD Cape Town

Scientific Officers:
G E Smith BSc Cape Town

FRESHWATER RESEARCH UNIT
Director:
J A Day, BSc (Hons) PhD Cape Town MSAIE & ES

Associate:
C C Reed, MSc PhD UFS

Chief Research Officers:
H Malan, MSc UPE PhD Cape Town
Scientific Officers:
J Ewaert-Smith, BSc (Hons) MSc Cape Town

Research Affiliates:
H F Dallas, BSc (Hons) Rhodes PhD Cape Town
E G Day, BSc (Hons) PhD Cape Town
N Job, BA UKZN HDE Cape Town
J M King, BSc (Hons) PhD Cape Town MSAIE & ES
D Ollis, BSc (Hons) MPhil Cape Town MSc Stell
P Pushnee, BSc Wits BSc (Hons) MSc Cape Town
G Ractliffe, BSc (Hons) PhD Cape Town

WEED BIOLOGICAL CONTROL UNIT
Chief Research Officer:
J H Hoffmann, MSc PhD Rhodes

Scientific Officers:
F A C Impson, BSc (Hons) Rhodes MSc Cape Town
C A Kleinjan, MSc Cape Town
V C Moran, MSc PhD Rhodes FRES FLS FRSSAf

THE PERCY FITZPATRICK INSTITUTE OF AFRICAN ORNITHOLOGY
Director:
P A R Hockey, BSc (Hons) Edinburgh PhD Cape Town

Pola Pazvolsky Chair of Conservation Biology:
G Cumming, BSc (Hons) Rhodes DPhil Oxon

Professor:
T M Crowe, MSc Chicago PhD Cape Town

Associate Professor:
P G Ryan, MSc PhD Cape Town

Emeritus Professor:
W R Siegfried, PhD Cape Town

Honorary Professors:
D Cumming, BSc (Hons) PhD Rhodes
S Milton, BA BSc Cape Town BSc (Hons) Stell PhD Cape Town

Senior Lecturer:
A D Amar, BSc (Hons) Newcastle PhD Aberdeen

Manager, Centre of Excellence:
R M Little, PhD Cape Town

Honorary Research Associates:
P Barnard, MSc Wits PhD Upsala
D Grémillet PhD Kiel
A R Ridley, BSc (Hons) Lincoln PhD Cantab
R Simmons, MSc Acadia PhD Wits
R M Wanless, MSc PhD Cape Town

Research Affiliates:
P Bloomer, PhD Virginia
R C K Bowie, MSc PhD Cape Town
R Covas, MSc Lisbon PhD Cape Town
W R J Dean, MSc Natal PhD Cape Town
T Mandiwana-Neudani, BSc (Hons) Venda MSc Cape Town
A McKechnie, PhD Natal
A Milewski, MSc Cape Town PhD Murdoch
M Pineiro de Melo, MSc Cape Town PhD Edinburgh
C O’Ryan, BSc (Hons) PhD Cape Town
L Roxburgh, BSc (Hons) Pietermaritzburg PhD Ben Gurion
C Spottiswoode, BSc (Hons) Cape Town PhD Cantab

Postdoctoral Fellows:
R S Boyes, PhD UKZN
T R Cook, PhD Strasbourg
S Cunningham, PhD Massey
D Loewenthal, MSc PhD Cape Town
R Martin, BSc (Hons) East Anglia PhD Sheffield
F Nchu, MSc Limpopo PhD Pretoria
L Pichegru, PhD Strasbourg
T Reid, PhD Tasmania

Principal Technical Officer:
C J Tobler

Librarian:
M M Sandwith Koopman, BA Unisa HDipLib Info Sci MSc Natal

Administrative Assistant:
H Buchanan, BA H Dip Lib Cape Town

Senior Secretary:
T Jansen

Departmental/Accounts Assistant:
A Links

ANIMAL DEMOGRAPHY UNIT

Director:

Honorary Associate Professor:
R J M Crawford, MSc PhD Cape Town

Honorary Research Associates:
R Altwegg, MSc PhD Zurich
P Barham, MSc PhD Bristol
M de Villiers, MSc PhD Pretoria
J P Roux, MSc PhD Montpellier
I Wiesel, MSc PhD Hamburg
A J Williams, MSc PhD Cape Town

Senior Scientific Officer:
R A Navarro, MSc Austral de Chile

Research Assistants:
M Brooks, Nat Dipl in Conservation
D M Harebottle, MSc Natal
S Kuyper, BA Natal HDLS Unisa
H D Oschadleus, MSc PhD Cape Town
M T E Wren-Sargent, BA HDE Natal PG Dip LIS Cape Town
D J Young, MSc Cape Town

Postdoctoral Fellows:
F Bled, PhD Toulouse
F Gebreselassie, PhD Bern
K Ludynia, PhD Kiel
R B Sherley, PhD Bristol
A Steinfurth, PhD Kiel

RESEARCH IN ZOOLOGY

The Department of Zoology specialises in ecology and conservation biology. In the marine field, research concentrates on the ecology of rocky shores (C L Griffiths), the upwelling zone off the Cape west coast (M I Lucas) and the management of living marine resources (C L Moloney). The
Marine Biological Research Centre (Director C L Griffiths) co-ordinates and stimulates marine biological research at the University of Cape Town. Studies on the biology and management of inland waters (J A Day, H L Malan and C C Reed) are co-ordinated within the Freshwater Research Unit (Director J A Day), with emphasis on the functioning of rivers and wetlands in the face of human interference.

The ethology, physiology and ecology of terrestrial vertebrates, particularly small mammals, are studied by D S Jacobs, G Bronner and J O'Riain; G Gade and H Marco specialise in arthropod physiology, particularly endocrinology; M D Picker focuses on insect ecology and systematics; and J H Hoffmann and V C Moran on the biological control of invasive alien plants pests. A Chinsamy-Turan elucidates the biology of extinct vertebrates by analysing their bone structure.

The Department includes the Percy FitzPatrick Institute of African Ornithology, which is involved in a wide range of research topics on avian evolutionary and behavioural ecology and conservation biology (T M Crowe, G S Cumming, P A R Hockey, P G Ryan). The Percy FitzPatrick Institute has been awarded the status of Centre of Excellence by the National Department of Science and Technology and the National Research Foundation.

The Animal Demography Unit (ADU) is a research group within the department. With its roots in statistics, the ADU's main research focus is in the development of models for biological systems, and in the collection and analysis of data used for these models. The ADU coordinates several national biodiversity initiatives (bird, butterfly and reptile atlases, the national bird ringing unit, and bird monitoring projects).

Undergraduate Courses

NOTE: Supplementary examinations are not normally granted to students for senior courses in Zoology.

First-Year Courses

BIO1000F CELL BIOLOGY

See course details under Department of Botany.

AGE1003H FOUNDATIONS OF BIOLOGY, EARTH & ENVIRONMENTAL SCIENCES

18 HEQF credits at level 5

A course for students on the General Entry Programme for Science (GEPS) providing a general introduction to the study of the earth and its living and non-living systems.

See course details under Department of Archaeology.

BIO1004S BIOLOGICAL DIVERSITY

18 HEQF credits at level 5

This course is available to all undergraduates.

Course co-ordinator(s): Dr H Marco

Entrance requirements: BIO1000F or a pass in Life Sciences at NSC level 5 (or a senior certificate pass in Biology) or by permission of the Head of the Zoology Department.

Course outline:

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Practicals: One practical per week, Monday, Tuesday, Wednesday, Thursday or Friday, 14h00-17h00. Practical will examine animal and plant diversity.

Fieldwork: A compulsory one-day excursion will be held over a weekend.

DP requirements: Attendance at practicals and an average of 50% for the practical record.

Assessment: Class record counts 40%; one 2-hour theory paper written in November counts 40% (subminimum of 40% applies); one 1.5-hour practical examination written in November counts 20%.

Second-Year Courses

BIO2010F PRINCIPLES OF ECOLOGY & EVOLUTION
24 HEQF credits at level 6
Course co-ordinator(s): Professor C L Griffiths
Entrance requirements: BIO1000F, BIO1004S.
Course outline:
This course explains how species have evolved and are adapted to the environments in which they live. Topics include: an introduction to evolution, natural selection, inheritance and genetics; ecology at the community, population and individual levels; animal and plant life histories and interactions. The formal lectures and practicals will be supported by a 5-day compulsory field camp.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tutorials:</td>
<td>One per week, Friday 1st period.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Practicals: One practical per week, Monday, 14h00-17h00.
Fieldwork: One 5 day field trip during April vacation.

DP requirements: 50% for class record; submission of assignments on schedule and attendance at field camp held during the Easter vacation.
Assessment: A 2-hour theory examination will count for 50% of the course with a sub-minimum of 40%. Coursework marks will be allocated as follows: Practical classes (assessed weekly) count 10%; project based on field camp data collection counts 25%; one class test counts 15%.

BIO2011S LIFE ON LAND: ANIMALS
24 HEQF credits at level 6
NOTE: This course replaces BIO3012F & BIO2002S
Course co-ordinator(s): Dr G Bronner
Entrance requirements: BIO1000F and BIO1004S.
Course outline:
This course will familiarise students with the evolution, functional biology and physiology of invertebrates and vertebrate animals living in terrestrial environments. It covers the diversity and life styles of land animals (particularly myriapods, arachnids, insects and tetrapod vertebrates), paying special attention to the major adaptations required for life on land.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Tutorials:</td>
<td>One per week, Friday, 4th period.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Practicals: One practical per week, Monday, 14h00-17h00.
Fieldwork: One 5 day field trip during September vacation.

DP requirements: 50% for class record; submission of assignments on schedule and attendance at a 5 day field camp held during the September vacation.
Assessment: A 2-hour theory examination will count for 50% of the course with a sub-minimum of 40%. Coursework marks will be allocated as follows: Practical classes (assessed weekly) count 10%; project based on field camp data collection counts 25%; two class tests count 15%.
BIO2012S LIFE ON LAND: PLANTS
For course details see entry under Department of Botany

BIO2013F LIFE IN THE SEA
24 HEQF credits at level 6

NOTE: This course replaces BIO2009S.
Course co-ordinator(s): Dr D Pillay
Entrance requirements: BIO1000F, BIO1004S.
Course outline:
The Life in the Sea course is intended to introduce students to the diversity of life present in oceans, including the invertebrates, vertebrates and plants. It will focus on adaptations of form to function (locomotion, reproduction, feeding) and to habitat (rocky shore, open ocean, sedimentary). The course is also to familiarise students with biophysical processes that influence life in the oceans.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Tutorials:</td>
<td>One per week, Friday, 3rd period.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practicals:</td>
<td>One practical per week, Wednesday, 14h00-17h00.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fieldwork:</td>
<td>One 4-day field trip during April vacation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements:</td>
<td>50% for class record; submission of assignments on schedule.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment:</td>
<td>A 2-hour theory examination will count for 50% of the course with a sub-minimum of 40%. Coursework marks will be allocated as follows: Practical classes (assessed weekly) count 10%; project counts 25%; class tests count 15%.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Third-Year Courses

BIO3002F MARINE ECOSYSTEMS
36 HEQF credits at level 7

NOTE: This course replaces BIO3002S.
Course co-ordinator(s): Associate Professor M I Lucas
Entrance requirements: SEA2004F, BIO2013F/S
Course outline:
The course aims to develop and promote skills in the marine sciences in South Africa; making students familiar with global marine ecosystem structure and functioning, but with an emphasis on South African systems. Lectures, tutorials and practicals will be aimed at developing interpretative and integrative skills built during previous courses (eg. SEA2004F; BIO1004S; BIO1000F) which cover large amounts of more basic information. A further important aim will be to develop numerical and written skills; as well as introducing students to modern research techniques and approaches.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tutorials:</td>
<td>One per week, Friday 1st period.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practicals:</td>
<td>One practical per week, Wednesday, 14h00-17h00.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fieldwork:</td>
<td>A compulsory 5 day field camp during the April vacation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements:</td>
<td>50% for class record; submission of assignments on schedule and attendance at field camp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment:</td>
<td>A 3-hour theory exam written in June will count for 50% of the course with a sub-minimum of 40%. Course work marks will be allocated as follows: project based on field camp data collection counts 25%; two class tests count 10% each; tutorial counts 2.5%; essay counts 2.5%.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BIO3013F GLOBAL CHANGE ECOLOGY
For course details see entry under Department of Botany

BIO3014S CONSERVATION: GENES, POPULATIONS & BIODIVERSITY
36 HEQF credits at level 7

Course co-ordinator(s): Dr J Bishop
Entrance requirements: BIO2010F

Course outline:
This course introduces students to the science and practice of conservation biology, beginning with an overview of conservation issues, the value of biodiversity, extinction risks and the history and philosophy of conservation. The conservation of biodiversity at the level of genes, species, populations and ecosystems, starting with the understanding of conservation at the genetic level as well as the management of genetic diversity are explored. At the species and population levels, the life history, behaviour and the management of populations in the real world is covered. The conservation and management of ecosystems is considered in terms of important processes, such as disturbance, and threats by alien plants and animals. This course concludes by considering conservation and society. Issues to be considered here include: incentives, access, who benefits from conservation, legal aspects and management policies.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Tutorials:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practical:</td>
<td>One practical per week, Monday, 14h00-17h00.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fieldwork:</td>
<td>A compulsory 3-day field trip during the September vacation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP requirements:</td>
<td>Submission of assignments by due date and 40% subminimum.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment:</td>
<td>A 2-hour practical examination and a 2-hour theory examination will together count for 50% of the course with a sub-minimum of 40%. Coursework counts 50% with marks allocated as follows: Practicals, tests and projects count equally.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BIO3015F ECOSYSTEM ECOLOGY
For course details see entry under Department of Botany

BIO3016S SYSTEMATICS & MACROEVOLUTION
For course details see entry under Department of Botany

BIO3017S MARINE RESOURCES
36 HEQF credits at level 7

Course co-ordinator(s): Associate Professor C Attwood
Entrance requirements: BIO1000F, BIO1004S, BIO2013F/S

Course outline:
Topics include the diversity and life-history strategies of living marine resources, the diversity of fishing methods and fisheries, surplus production and responses of exploited populations, monitoring and assessment techniques, regulatory strategies, non-consumptive industries, diversity and principles of marine aquaculture, and marine conservation theory and practise.

<table>
<thead>
<tr>
<th>Period</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Tutorials:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practical:</td>
<td>One practical per week, Friday, 14h00-17h00.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fieldwork:</td>
<td>A compulsory 2-day field trip.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DP requirements: 50% for class record; submission of assignments on schedule.

Assessment: A 3-hour theory examination will count for 50% of the course marks, with a subminimum of 40%. Coursework marks will be allocated as follows: Practical classes (assessed weekly) count 30%; two class tests count 20%.

Postgraduate Courses

NOTE: In addition to submitting an application to the University, prospective applicants to all Zoology postgraduate courses MUST contact the Zoology Department. Failure to do so might result in applications not being received by the department in time for consideration.

On graduating they are also expected to give a short presentation at the Graduation Symposium on the day of their graduation.

ZOO4000W BSc (HONS) IN ZOOLOGY
160 HEQF credits at level 8
(includes a research project of 80 credits)

Course co-ordinator(s): Associate Professor C Attwood and Dr D Pillay

Entrance requirements: A BSc degree specialising in Zoology or related field. Registrations are limited to 15, and acceptance will be at the discretion of the Head of Department who will consider quality of final year results, material covered in the undergraduate curriculum, and referee reports in making decisions. Preference will be given to UCT graduates who meet the entrance requirements.

Course outline:
A training in research methodology and execution, including one original research project. The Honours course is designed to enrich the students' appreciation of theory through advanced coursework, seminars, discussion groups, reading and fieldwork. There will be a compulsory field camp in late January/early February focusing on field methods. A compulsory core module includes biostatistics, the history and philosophy of science, molecular genetics and communication techniques.

Fieldwork: A compulsory 3-day field camp will be held in late January.

DP requirements: Attendance at field camp; submission of all course assignments by due date.

Assessment: Class record counts 75% and includes a compulsory module (25%) and a research project (50%); two 3-hour theory examinations (10% each) and one oral examination (5%) in November.

ZOO5000W MASTERS IN ZOOLOGY
180 HEQF credits at level 9

A training in research techniques leading to a dissertation. General rules for this degree may be found at the front of this handbook.

ZOO5003H and ZOO5004W MASTERS IN CONSERVATION BIOLOGY
(by coursework and dissertation)

Coursework: 90 HEQF credits at level 9
Dissertation: 90 HEQF credits at level 9

Course co-ordinator(s): Professor G S Cumming and Associate Professor P G Ryan

Course outline:
A one-year intensive programme deals with the conservation and biologically sustainable and economically viable use of biodiversity. It provides the education and training necessary to identify threatened species, ecosystems and ecological processes, and to develop appropriate measures to mitigate against, or reduce the effects of, particular threats to biodiversity. From a utilisation perspective, it focuses on biological and socio-economic criteria necessary to select species and areas of utilisation and the development of appropriate management and monitoring strategies. This
programme is intended for students concerned with both the theory and practise of conservation and consists of two components. Component 1 (ZOO5003H) is a series of modules covering a range of fields of conservation biology: philosophy of science and conservation ethics; community ecology, population ecology, biodiversity basics, ecosystem/aquatic ecology, molecular ecology, disturbance and restoration ecology, invasive species, complex systems concepts, landscape ecology, GIS and conservation planning, climate change and conservation, resource economics, societies and natural resources and decision analysis. Each student receives a mark for each of the modules, and the modules are examined in groups during 'open-book' examinations. Component 2 is a research project (ZOO5004W) which must be submitted as a dissertation. A pass in both components is required for the degree. It should be completed by mid-February following first registration. Those students already in possession of an MSc degree, or in exceptional cases those who wish to upgrade to a PhD, may expand a project in accord with the normal pursuit of that degree at UCT (see below). A handbook for the programme is available from the Director, Percy FitzPatrick Institute or from the Institute's website: www.fitzpatrick.uct.ac.za.

Assessment: Both coursework and dissertation components must be passed separately for the degree to be awarded. Examinations count 50% of the final result for the coursework component.

ZOO5005H and ZOO5006W MASTERS IN APPLIED MARINE SCIENCE
(by coursework and dissertation)
Coursework: 90 HEQF credits at level 9
Dissertation: 90 HEQF credits at level 9
Course co-ordinator(s): Associate Professor C L Moloney
Course outline:
The objective of this MSc by coursework and dissertation is to provide skills and specialised knowledge appropriate for a broad range of disciplines in marine science. The course is intended for professional scientists interested in applied aspects of marine science, where broadly-based, practical skills are required, often in a management context. The course has two components. Component 1 (ZOO5005H) runs for approximately 7-8 months, and consists of a series of modules. Students are engaged full-time with activities relating to the modules. Topics include coastal and shelf oceanography, marine ecology, biostatistics, marine environmental law, fisheries and population modelling, aquaculture, remote sensing, ocean modelling techniques, multivariate analysis, marine conservation, project management, building a habitable planet, ecosystem approach to fisheries management, decision analysis, marine meteorology and integrated coastal management. The modules are conducted in a classroom setting involving lectures and tutorials, and field and laboratory practicals.
Each student is assessed on each module, with formal marks for essays, presentations and mini-projects, and in some cases for class tests. Two formal examinations are used to assess progress, and to consolidate the material covered in the completed modules. The research undertaken in component 2 (ZOO5006W) must be submitted as a dissertation. The expected duration of the research component is 5-6 months.
DP requirements: Satisfactory completion of each module, and a pass in the first examination; we reserve the right to ask students to leave part way through the course if their progress is deemed unsatisfactory.
Assessment: Both coursework and dissertation components must be passed separately for the degree to be awarded. Of the coursework component, class assessments will count 60% and two formal examinations will count 40%.

ZOO5009W MASTERS IN CONSERVATION BIOLOGY
180 HEQF credits at level 9
A training in research leading to a dissertation in the field of conservation biology. General rules for this degree may be found at the front of this handbook.
ZOO6000W PhD IN ZOOLOGY

360 HEQF credits at level 10

This research degree is offered in a number of specialised zoological fields, eg. marine ecology, animal behaviour, freshwater biology, ornithology, entomology, mammalogy and environmental physiology. Candidates are referred to the rules for this degree as set out in Book 3, General Rules and Policies.

ZOO6002W PhD IN CONSERVATION BIOLOGY

360 HEQF credits at level 10

This is a research degree in all aspects of conservation biology. Candidates are referred to the rules for this degree as set out in Book 3, General Rules and Policies.
INTER-FACULTY UNIT

Electron Microscope Unit

Director:
Associate Professor B T Sewell, MSc Witwatersrand PhD Lond

Principal Scientific Officer:
B W Weber, BSc (Hons), PhD Cape Town

Principal Technical Officer:
M A Jaffer, BSc (Hons) Cape Town

Principal Technical Officer (Part-time):
J Duncan

Chief Scientific Officers:
F Cummings, BSc (Hons) PhD UWC
M Waldron, BSc (Hons) Swansea MSc Cape Town

Technical Assistant:
S Karriem

The Electron Microscope Unit is housed in the R W James Building at 9 University Avenue and provides scanning, transmission light microscopy facilities for staff and research students in all faculties. The Unit has two Scanning Electron Microscopes: the ultra high resolution FEI Nova Nano field emission gun (FEG)SEM with accessories including X-ray analyser and electron backscattered diffraction pattern analysis, and a Zeiss S440, equipped with a range of accessories including an X-ray analyser, cathodoluminescence detector and cryo facilities. The Unit also has three Transmission Electron Microscopes two of which are considered high resolution, namely the 200 kV Tecnai TF20 (FEG)TEM and the Tecnai G20 energy-filter (EF)TEM equipped with a LaB6 filament. The third is a 120 kV Leo912 TEM equipped with an in-column energy filter and LaB6 filament. Preparative, darkroom, light microscopy, image analysis and library facilities are also provided.

Enquiries regarding the use of these facilities are welcome. The Unit is able to provide information and training on a wide range of microscopy related topics. More information is available at http://sbio.uct.ac.za/webemu/
Schedule of Courses, Entrance Requirements, Lecture and Practical Times

Lecture Periods

The academic day is divided into lecture periods as follows:

<table>
<thead>
<tr>
<th>Period</th>
<th>Lecture Times</th>
<th>Practical/Tutorial Times</th>
<th>Entrance Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>08h00 to 08h45</td>
<td>Meridian</td>
<td>13h00 to 13h45</td>
</tr>
<tr>
<td>2</td>
<td>09h00 to 09h45</td>
<td>Period 6</td>
<td>14h00 to 14h45</td>
</tr>
<tr>
<td>3</td>
<td>10h00 to 10h45</td>
<td>Period 7</td>
<td>15h00 to 15h45</td>
</tr>
<tr>
<td>4</td>
<td>11h00 to 11h45</td>
<td>Period 8</td>
<td>16h00 to 16h45</td>
</tr>
<tr>
<td>5</td>
<td>12h00 to 12h45</td>
<td>Period 9</td>
<td>17h00 to 17h45</td>
</tr>
</tbody>
</table>

Course Table

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lecture Times</th>
<th>Practical/Tutorial Times</th>
<th>Entrance Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE1002S</td>
<td>Africa & World Archaeology</td>
<td>5 M to Th</td>
<td>By arrangement; F 5th</td>
<td>None</td>
</tr>
<tr>
<td>AGE1003H</td>
<td>Foundations of Biology, Earth & Environmental Sciences</td>
<td>2 M to F</td>
<td>One practical per week, F 14h00-17h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>AGE2011S</td>
<td>Human Evolution</td>
<td>2 M to Th</td>
<td>One per week, by arrangement</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>AGE2012F</td>
<td>Southern African Hunters & Herders</td>
<td>2 M to Th</td>
<td>One per week, by arrangement</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>AGE3006H</td>
<td>Directed Reading & Research</td>
<td>By arrangement</td>
<td>none</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>AGE3011F</td>
<td>Roots of Black Identity</td>
<td>4 M to Th</td>
<td>One per week, by arrangement</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>AGE3012S</td>
<td>Global Interaction & The Transformation of South African Society</td>
<td>4 M to Th</td>
<td>One 2-hour practical per week, by arrangement</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>AGE3013H</td>
<td>Archaeology in Practice</td>
<td>See departmental entry</td>
<td>None</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>APG1015S</td>
<td>Programming for Geomatics</td>
<td>4 M to F</td>
<td>W 6th to 8th</td>
<td>None</td>
</tr>
<tr>
<td>APG1016F</td>
<td>Geomatics I</td>
<td>3 M to F</td>
<td>W 6th to 8th</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>APG2014S</td>
<td>Geomatics II</td>
<td>4 M to F</td>
<td>Tu 6th to 8th</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>APG2015F</td>
<td>Geographic Information Systems I</td>
<td>4 M to F</td>
<td>F 6th to 8th</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>APG2018X</td>
<td>Geographic Information Systems Camp</td>
<td>See departmental entry</td>
<td>See departmental entry</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>APG2026F</td>
<td>Elementary Surveying</td>
<td>5 M to F</td>
<td>One per week: M 08h00-12h00; T 14h00-17h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>APG3011S</td>
<td>Geographical Information Systems II</td>
<td>4 M to F</td>
<td>M 6th to 8th</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>APG3012S</td>
<td>Geomatics III</td>
<td>1 M to F</td>
<td>Tu 6th to 8th</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>APG3016C</td>
<td>Surveying II</td>
<td>3 M to F</td>
<td>W 6th to 8th</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>APG4011F</td>
<td>Geomatics IV</td>
<td>1 M to F</td>
<td>Tu 6th to 8th</td>
<td>See departmental entry</td>
</tr>
</tbody>
</table>
SCHEDULE OF COURSES

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Days</th>
<th>Times</th>
<th>TAs/Supervisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST1000F</td>
<td>INTRODUCTION TO ASTRONOMY</td>
<td>M to F</td>
<td>W 14h00-17h00</td>
<td>None</td>
</tr>
<tr>
<td>AST2002S</td>
<td>ASTROPHYSICS</td>
<td>2 M to F</td>
<td>W 14h00-16h30</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>AST3002F</td>
<td>STELLAR ASTROPHYSICS</td>
<td>2 M to F</td>
<td>W 14h00-16h30</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>AST3003S</td>
<td>GALACTIC & EXTRAGALACTIC ASTROPHYSICS</td>
<td>2 M to F</td>
<td>W 14h00-16h30</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>BIO1000F</td>
<td>CELL BIOLOGY</td>
<td>5 M to F</td>
<td>W 14h00-16h30</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>BIO1004S</td>
<td>BIOLOGICAL DIVERSITY</td>
<td>5 M to F</td>
<td>W 14h00-16h30</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>BIO2010F</td>
<td>PRINCIPLES OF ECOLOGY & EVOLUTION</td>
<td>1 M to Th</td>
<td>M 14h00-17h00</td>
<td>BIO1000F, BIO1004S</td>
</tr>
<tr>
<td>BIO2011S</td>
<td>LIFE ON LAND: ANIMALS</td>
<td>4 M to Th</td>
<td>M 14h00-17h00</td>
<td>BIO1000F and BIO1004S</td>
</tr>
<tr>
<td>BIO2012S</td>
<td>LIFE ON LAND: PLANTS</td>
<td>2 M to F</td>
<td>W 14h00-17h00</td>
<td>BIO1000F, BIO1004S</td>
</tr>
<tr>
<td>BIO2013S</td>
<td>LIFE IN THE SEA</td>
<td>3 M to Th</td>
<td>W 14h00-17h00</td>
<td>BIO1004S and GEO1009F</td>
</tr>
<tr>
<td>BIO3002F</td>
<td>MARINE ECOSYSTEMS</td>
<td>1 M to F</td>
<td>M 14h00-17h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>BIO3013F</td>
<td>GLOBAL CHANGE ECOLOGY</td>
<td>2 M to F</td>
<td>M 14h00-17h00</td>
<td>BIO1000F, BIO1004S</td>
</tr>
<tr>
<td>BIO3014S</td>
<td>CONSERVATION: GENES, POPULATIONS & BIODIVERSITY</td>
<td>2 M to F</td>
<td>M 14h00-17h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>BIO3015F</td>
<td>ECOSYSTEM ECOLOGY</td>
<td>5 M to F</td>
<td>By arrangement</td>
<td>BIO2010F</td>
</tr>
<tr>
<td>BIO3016S</td>
<td>SYSTEMATICS AND MACROEVOLUTION</td>
<td>5 M to F</td>
<td>W 14h00-17h00</td>
<td>BIO2010F</td>
</tr>
<tr>
<td>BIO3017S</td>
<td>MARINE RESOURCES</td>
<td>4 M to F</td>
<td>W 14h00-17h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>CEM1000W</td>
<td>CHEMISTRY 1000</td>
<td>2 or 4 M to W, F</td>
<td>W or Th or F, 14h00-17h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>CEM1009H</td>
<td>CHEMISTRY 1009</td>
<td>4 W to F</td>
<td>W 14h00-17h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>CEM1010F</td>
<td>CHEMISTRY 1010</td>
<td>4 M to F</td>
<td>W 14h00-17h00</td>
<td>CEM1009H</td>
</tr>
<tr>
<td>CEM2007F</td>
<td>PHYSICAL CHEMISTRY & SPECTROSCOPY</td>
<td>3 M to F</td>
<td>W 14h00-17h00</td>
<td>CEM2008S</td>
</tr>
<tr>
<td>CEM2008S</td>
<td>ORGANIC & INORGANIC CHEMISTRY</td>
<td>3 M to F</td>
<td>W 14h00-17h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>CEM2013S</td>
<td>CHEMISTRY IN HEALTH & DISEASE</td>
<td>5 M to F</td>
<td>W and F, 14h00-17h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>CEM3005W</td>
<td>CHEMISTRY 3005</td>
<td>3 M to F</td>
<td>W and F, 14h00-17h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>CSC1010H</td>
<td>COMPUTER SCIENCE 1010</td>
<td>5 M to Th</td>
<td>W 14h00-17h30</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>CSC1011H</td>
<td>COMPUTER SCIENCE 1011</td>
<td>4 M to Th</td>
<td>M 14h00-17h30</td>
<td>CSC1010H, MAM1005H</td>
</tr>
<tr>
<td>CSC1015F</td>
<td>COMPUTER SCIENCE 1015</td>
<td>4 or 5 M to F</td>
<td>M or Tu or W, 14h00-17h30</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>CSC1016S</td>
<td>COMPUTER SCIENCE 1016</td>
<td>4 or 5 M to F</td>
<td>M or Tu or W, 14h00-17h30</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>CSC2001F</td>
<td>COMPUTER SCIENCE 2001</td>
<td>2 M to F</td>
<td>One prac per week, 14h00-18h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>CSC2002S</td>
<td>COMPUTER SCIENCE 2002</td>
<td>2 M to F</td>
<td>One prac per week, 14h00-18h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>CSC2003S</td>
<td>COMPUTER GAMES</td>
<td>3 M to F</td>
<td>One prac per week, 14h00-18h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Schedule</td>
<td>Prerequisites</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>CSC3002F</td>
<td>COMPUTER SCIENCE 3002</td>
<td>2 M</td>
<td>Tu to F</td>
<td>Two pracs per week, 14h00-18h00</td>
</tr>
<tr>
<td>CSC3003S</td>
<td>COMPUTER SCIENCE 3003</td>
<td>2 M</td>
<td>Tu to F</td>
<td>Two pracs per week, 14h00-18h00</td>
</tr>
<tr>
<td>CSC3020H</td>
<td>THREE DIMENSIONAL & DISTRIBUTED GAMES DESIGN</td>
<td>3 M</td>
<td>F</td>
<td>4 hours per week, by arrangement</td>
</tr>
<tr>
<td>CSC3022H</td>
<td>C++ WITH APPLICATIONS</td>
<td>3 M</td>
<td>F</td>
<td>4 hours per week, by arrangement</td>
</tr>
<tr>
<td>EEE3067W</td>
<td>DIGITAL ELECTRONICS & MICROPROCESSORS</td>
<td>See</td>
<td>Departmental entry</td>
<td>See Departmental entry</td>
</tr>
<tr>
<td>EEE3077W</td>
<td>DIGITAL & EMBEDDED SYSTEMS</td>
<td>See</td>
<td>Departmental entry</td>
<td>See Departmental entry</td>
</tr>
<tr>
<td>EEE3078W</td>
<td>DIGITAL, EMBEDDED & ADAPTIVE SYSTEMS</td>
<td>See</td>
<td>Departmental entry</td>
<td>See Departmental entry</td>
</tr>
<tr>
<td>EEE3079W</td>
<td>EMBEDDED & ADAPTIVE SYSTEMS</td>
<td>See</td>
<td>Departmental entry</td>
<td>See Departmental entry</td>
</tr>
<tr>
<td>EGS1003S</td>
<td>GEOGRAPHY, DEVELOPMENT & ENVIRONMENT</td>
<td>2 M</td>
<td>M or Tu or Th, 14h00-17h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>EGS1004S</td>
<td>INTRODUCTION TO EARTH & ENVIRONMENTAL SCIENCES</td>
<td>None</td>
<td>F</td>
<td>14h00-17h00</td>
</tr>
<tr>
<td>EGS2013F</td>
<td>THE PHYSICAL ENVIRONMENT</td>
<td>5 M</td>
<td>F</td>
<td>14h00-17h00</td>
</tr>
<tr>
<td>EGS2014S</td>
<td>CONTEMPORARY URBAN CHALLENGES</td>
<td>5 M</td>
<td>F</td>
<td>14h00-17h00</td>
</tr>
<tr>
<td>EGS3012S</td>
<td>ATMOSPHERIC SCIENCE</td>
<td>1 M</td>
<td>Tu or W, 14h00-17h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>EGS3020F</td>
<td>ENVIRONMENTAL CHANGE & CHALLENGE</td>
<td>5 M</td>
<td>Th</td>
<td>14h00-17h00</td>
</tr>
<tr>
<td>EGS3021F</td>
<td>SUSTAINABILITY & ENVIRONMENT</td>
<td>3 M</td>
<td>W</td>
<td>14h00-17h00</td>
</tr>
<tr>
<td>EGS3022S</td>
<td>GEOGRAPHIC THOUGHT</td>
<td>4 M</td>
<td>W</td>
<td>14h00-17h00</td>
</tr>
<tr>
<td>GEO1006S</td>
<td>INTRO TO MINERALS, ROCKS & STRUCTURE</td>
<td>5 M</td>
<td>Th or F</td>
<td>14h00-17h00</td>
</tr>
<tr>
<td>GEO1009F</td>
<td>INTRO TO EARTH & ENVIRONMENTAL SCIENCES</td>
<td>2 M</td>
<td>M or Tu or Th or F, 14h00-17h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>GEO2001F</td>
<td>MINERALOGY & CRYSTALLOGRAPHY</td>
<td>2 M</td>
<td>W</td>
<td>14h00-17h00</td>
</tr>
<tr>
<td>GEO2004S</td>
<td>PHYSICAL GEOLOGY</td>
<td>2 M</td>
<td>W</td>
<td>14h00-17h00 GEO2001F</td>
</tr>
<tr>
<td>GEO2005X</td>
<td>FIELD GEOLOGY & GEOLOGICAL MAPPING (second-year half course)</td>
<td>None</td>
<td>See departmental entry</td>
<td>GEO1006S, GEO2004S (co-requisite)</td>
</tr>
<tr>
<td>GEO3001S</td>
<td>STRATIGRAPHY & ECONOMIC GEOLOGY</td>
<td>2 M</td>
<td>Tu and Th</td>
<td>14h00-17h00 GEO2004S, DP in GEO3005F</td>
</tr>
<tr>
<td>GEO3005F</td>
<td>PETROLOGY & STRUCTURAL</td>
<td>2 M</td>
<td>Tu and Th</td>
<td>14h00-17h00 GEO2001F, GEO2004S, first qualifying course in</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Learning Period</td>
<td>Days</td>
<td>Time</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>----------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>HUB2019F</td>
<td>INTRODUCTION TO HUMAN BIOLOGY</td>
<td>1 M to F</td>
<td>M or Tu</td>
<td>14h00-17h00</td>
</tr>
<tr>
<td>HUB2021S</td>
<td>HUMAN BIOLOGY : MAINTENANCE & INTEGRATION</td>
<td>1 M to F</td>
<td>M or Tu, 14h00-17h00</td>
<td>HUB2019F, CEM1000W or equivalent</td>
</tr>
<tr>
<td>HUB3006F</td>
<td>GENERAL & APPLIED PHYSIOLOGY</td>
<td>1 M to F</td>
<td>W or Th, 14h00-17h00</td>
<td>HUB2021S, CEM1000W (or equivalent)</td>
</tr>
<tr>
<td>HUB3007S</td>
<td>BIOPHYSICS & NEUROPHYSIOLOGY</td>
<td>1 M to F</td>
<td>W or Th, 14h00-17h00</td>
<td>HUB2021S, CEM1000W (or equivalent)</td>
</tr>
<tr>
<td>MAM1000W</td>
<td>MATHEMATICS 1000</td>
<td>1 or 3, M to F</td>
<td>One 2-hour tutorial per week</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>MAM1004F</td>
<td>MATHEMATICS 1004</td>
<td>1 M to F</td>
<td>M or W 14h00-16h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>MAM1004H</td>
<td>MATHEMATICS 1004</td>
<td>Three lectures per week, days to be arranged, in Meridian</td>
<td>By arrangement</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>MAM1005H</td>
<td>MATHEMATICS 1005</td>
<td>1 M to Th</td>
<td>F 8h00-9h00, M 14h00-16h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>MAM1006H</td>
<td>MATHEMATICS 1006</td>
<td>1st, three days per week</td>
<td>1st, two days per week</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>MAM1019H</td>
<td>FUNDAMENTALS OF MATHEMATICS</td>
<td>M, Th and alt Tu in Meridian</td>
<td>W 13h00-14h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>MAM1043H</td>
<td>MODELLING & APPLIED COMPUTING</td>
<td>See departmental entry</td>
<td>One hour per week</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>MAM1044H</td>
<td>DYNAMICS</td>
<td>See departmental entry</td>
<td>Every second F 14h00-16h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>MAM2000W</td>
<td>MATHEMATICS 2000</td>
<td>5 M to F with options in 4th</td>
<td>Th or F 14h00-16h00</td>
<td>MAM1000W or equivalent</td>
</tr>
<tr>
<td>MAM2001H, MAM2004H and MAM2002H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAM2043S</td>
<td>INTRODUCTION TO BIOLOGICAL MODELLING</td>
<td>5 M to F</td>
<td>F 14h00-16h00</td>
<td>MAM1004F or MAM1004H or MAM1005H</td>
</tr>
<tr>
<td>MAM2046W</td>
<td>APPLIED MATHEMATICS 2046</td>
<td>3 M to F</td>
<td>Th 14h00-16h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>MAM2047H</td>
<td>APPLIED MATHEMATICS 2047</td>
<td>3 M to F</td>
<td>Th 14h00-16h00</td>
<td>MAM1043H, MAM1044H and MAM1000W</td>
</tr>
<tr>
<td>MAM2048H</td>
<td>APPLIED MATHEMATICS 2048</td>
<td>3 M to F</td>
<td>Th 14h00-16h00</td>
<td>MAM2047H</td>
</tr>
<tr>
<td>MAM2052S</td>
<td>QUANTITATIVE SKILLS FOR SCIENTISTS</td>
<td>4 M to F</td>
<td>F 10h00-11h00 or Th 12h00-13h00</td>
<td>MAM1004F or MAM1004H or MAM1005H or MAM1000W</td>
</tr>
<tr>
<td>MAM3000W</td>
<td>MATHEMATICS 3000</td>
<td>5 M to F with options in 4th</td>
<td>F 14h00-17h00</td>
<td>MAM2000W</td>
</tr>
<tr>
<td>MAM3001W</td>
<td>MATHEMATICS 3001</td>
<td>5 M to F with options in 4th</td>
<td>F 14h00-17h00</td>
<td>MAM2000W</td>
</tr>
<tr>
<td>MAM3002W, MAM3003S and MAM3003S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAM3040W</td>
<td>APPLIED MATHEMATICS 3040</td>
<td>3 M to F</td>
<td>Th 14h00-16h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>MAM3041H</td>
<td>APPLIED MATHEMATICS 3041</td>
<td>3 M to F</td>
<td>Th 14h00-16h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>MAM3042H</td>
<td>FURTHER BIOLOGICAL MODELLING</td>
<td>Average of two and a half per week, to be arranged</td>
<td>One every two to three weeks, to be arranged</td>
<td>MAM2043S</td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credit</td>
<td>Days</td>
<td>Time</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--------</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>MAM3048H</td>
<td>APPLIED MATHEMATICS 3048</td>
<td>3 M to F</td>
<td>Th 14h00-16h00</td>
<td>MAM3041H</td>
</tr>
<tr>
<td>MCB2014F</td>
<td>MOLECULAR COMPONENTS OF CELLS</td>
<td>4 M to F</td>
<td>M or Tu 14h00-17h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>MCB2015S</td>
<td>METABOLISM</td>
<td>4 M to F</td>
<td>M or Tu 14h00-17h00</td>
<td>MCB2014F</td>
</tr>
<tr>
<td>MCB2016F</td>
<td>INTRODUCTION TO MICROBIOLOGY</td>
<td>5 M to F</td>
<td>Th or F 14h00-17h00</td>
<td>CEM1000W or equivalent, BIO1000F</td>
</tr>
<tr>
<td>MCB2017S</td>
<td>MICROBIAL BIOTECHNOLOGY</td>
<td>5 M to F</td>
<td>Th or F 14h00-17h00</td>
<td>MCB2016F</td>
</tr>
<tr>
<td>MCB2018F</td>
<td>INTRODUCTION TO GENETICS</td>
<td>3 M to F</td>
<td>W 14h00-17h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>MCB2019S</td>
<td>EUKARYOTIC GENE REGULATION & CELL SIGNALLING</td>
<td>3 M to F</td>
<td>W 14h00-17h00</td>
<td>MCB2014F, MCB2018F</td>
</tr>
<tr>
<td>MCB3012Z</td>
<td>RESEARCH PROJECT IN MOLECULAR & CELL BIOLOGY</td>
<td>None</td>
<td>two afternoons per week</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>MCB3019F</td>
<td>RECOMBINANT DNA, GENOMICS & PROTEOMICS</td>
<td>3 M to F</td>
<td>F 14h00-17h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>MCB3020F</td>
<td>PROTEIN STRUCTURE & FUNCTION</td>
<td>4 M to F</td>
<td>Th 14h00-17h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>MCB3021F</td>
<td>MOLECULAR MICROBIAL GENETICS</td>
<td>5 M to F</td>
<td>Tu 14h00-17h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>MCB3022S</td>
<td>ADVANCED BIOTECHNOLOGY</td>
<td>2 M to F</td>
<td>W 14h00-17h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>MCB3023S</td>
<td>MOLECULAR EVOLUTIONARY GENETICS & DEVELOPMENT</td>
<td>3 M to F</td>
<td>One tutorial per week</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>MCB3024S</td>
<td>DEFENCE & DISEASE</td>
<td>5 M to F</td>
<td>One tutorial per week</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>PHY1004W</td>
<td>MATTER & INTERACTIONS</td>
<td>3 M to F</td>
<td>Tu 14h00-17h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>PHY1023H</td>
<td>PRINCIPLES OF PHYSICS A</td>
<td>3 M to F</td>
<td>Tu 14h00-17h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>PHY1024F</td>
<td>PRINCIPLES OF PHYSICS B</td>
<td>3 M to F</td>
<td>W 14h00-17h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>PHY1031F</td>
<td>GENERAL PHYSICS A</td>
<td>3 M to F</td>
<td>M or W or Th or F, 14h00-17h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>PHY1032S</td>
<td>GENERAL PHYSICS B</td>
<td>3 M to F</td>
<td>M or W or Th or F, 14h00-17h00</td>
<td>At least 40% in PHY1031F or PHY1023H</td>
</tr>
<tr>
<td>PHY2009S</td>
<td>INTERMEDIATE PHYSICS</td>
<td>5 M to F</td>
<td>W 14h00-17h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>PHY2014F</td>
<td>WAVES & ELECTROMAGNETISM</td>
<td>4 M to F</td>
<td>M 14h00-17h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>PHY2015S</td>
<td>CLASSICAL & QUANTUM MECHANICS</td>
<td>4 M to F</td>
<td>M 14h00-17h00</td>
<td>As for PHY2014F</td>
</tr>
<tr>
<td>PHY3021F</td>
<td>ADVANCED PHYSICS A</td>
<td>4 M to F</td>
<td>M and Th, 14h00-17h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>PHY3022S</td>
<td>ADVANCED PHYSICS B</td>
<td>4 M to F</td>
<td>M and Th, 14h00-17h00</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>SAN1015F</td>
<td>WORDS, DEEDS, BONES & THINGS</td>
<td>See departmental entry</td>
<td>See departmental entry</td>
<td>None</td>
</tr>
<tr>
<td>Code</td>
<td>Course</td>
<td>Credits</td>
<td>Days</td>
<td>Start Time - End Time</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------------</td>
<td>---------</td>
<td>------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>SEA2004F</td>
<td>PRINCIPLES OF OCEANOGRAPHY</td>
<td>4</td>
<td>M to F</td>
<td>Tu 14h00-17h00</td>
</tr>
<tr>
<td>SEA3003F</td>
<td>MARINE SYSTEMS</td>
<td>4</td>
<td>M to F</td>
<td>M 14h00-17h00</td>
</tr>
<tr>
<td>SEA3004S</td>
<td>OCEAN & ATMOSPHERE DYNAMICS</td>
<td>4</td>
<td>M to F</td>
<td>M 14h00-17h00</td>
</tr>
<tr>
<td>STA1000F</td>
<td>STATISTICS 1000</td>
<td>1st Sem: 1 or 4 M to F</td>
<td>By arrangement, one a week</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>STA1006S</td>
<td>STATISTICS FOR MATHEMATICAL DISCIPLINES</td>
<td>1 or 4 M to F</td>
<td>one a week</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>STA1007S</td>
<td>BIONUMERACY</td>
<td>1</td>
<td>M to Th</td>
<td>F 8h00-9h00</td>
</tr>
<tr>
<td>STA2004F</td>
<td>STATISTICAL THEORY & INFEERENCE</td>
<td>1</td>
<td>M to F</td>
<td>One per week by arrangement</td>
</tr>
<tr>
<td>STA2005S</td>
<td>LINEAR MODELS</td>
<td>1</td>
<td>M to F</td>
<td>One per week by arrangement</td>
</tr>
<tr>
<td>STA2007F</td>
<td>APPLIED STATISTICAL MODELLING</td>
<td>2</td>
<td>M to F</td>
<td>One per week by arrangement</td>
</tr>
<tr>
<td>STA2020F</td>
<td>BUSINESS STATISTICS</td>
<td>1 or 3 or 5, M to F</td>
<td>By arrangement</td>
<td>See departmental entry</td>
</tr>
<tr>
<td>STA3041F</td>
<td>STATISTICS 3041</td>
<td>1</td>
<td>M to F</td>
<td>Tutorials and practicals by arrangement</td>
</tr>
<tr>
<td>STA3043S</td>
<td>STATISTICS 3043</td>
<td>1</td>
<td>M to F</td>
<td>M and W, 14h00-16h00</td>
</tr>
<tr>
<td>STA3045F</td>
<td>MARKOV PROCESSES & ADVANCED TIME SERIES</td>
<td>2</td>
<td>M to F</td>
<td>One tutorial per week, by arrangement</td>
</tr>
</tbody>
</table>
Science Faculty Courses Arranged by Lecture Period

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lecture Period</th>
<th>Practical/Tutorial Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAM1000W</td>
<td>Mathematics 1000</td>
<td>1</td>
<td>By arrangement</td>
</tr>
<tr>
<td>MAM1004F</td>
<td>Mathematics 1004</td>
<td>1</td>
<td>M or W, 14h00-16h00</td>
</tr>
<tr>
<td>MAM1005H</td>
<td>Mathematics 1005</td>
<td>1</td>
<td>M 14h00-17h00</td>
</tr>
<tr>
<td>MAM1006H</td>
<td>Mathematics 1006</td>
<td>1</td>
<td>By arrangement</td>
</tr>
<tr>
<td>STA1000F</td>
<td>Statistics 1000</td>
<td>1</td>
<td>By arrangement</td>
</tr>
<tr>
<td>BIO2010F</td>
<td>Principles of Ecology & Evolution</td>
<td>1</td>
<td>M 14h00-17h00</td>
</tr>
<tr>
<td>HUB2019F</td>
<td>Introduction to Human Biology</td>
<td>1</td>
<td>M or Tu, 14h00-17h00</td>
</tr>
<tr>
<td>STA2004F</td>
<td>Statistical Theory & Inference</td>
<td>1</td>
<td>By arrangement</td>
</tr>
<tr>
<td>STA2020F</td>
<td>Business Statistics</td>
<td>1</td>
<td>By arrangement</td>
</tr>
<tr>
<td>HUB3006F</td>
<td>General & Applied Physiology</td>
<td>1</td>
<td>W or Th, 14h00-17h00</td>
</tr>
<tr>
<td>SEA3002F</td>
<td>Ocean Circulation</td>
<td>1</td>
<td>M 14h00-17h00</td>
</tr>
<tr>
<td>STA3041F</td>
<td>Markov Processes & Time Series</td>
<td>1</td>
<td>By arrangement</td>
</tr>
</tbody>
</table>

First period, second semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lecture Period</th>
<th>Practical/Tutorial Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA1000S</td>
<td>Statistics 1000</td>
<td>1</td>
<td>By arrangement</td>
</tr>
<tr>
<td>STA1006S</td>
<td>Statistics for Mathematical Disciplines</td>
<td>1</td>
<td>By arrangement</td>
</tr>
<tr>
<td>STA1007S</td>
<td>Bionumeracy</td>
<td>1</td>
<td>F 8h00-9h00</td>
</tr>
<tr>
<td>HUB2021S</td>
<td>Human Biology : Maintenance & Integration</td>
<td>1</td>
<td>M or Tu, 14h00-17h00</td>
</tr>
<tr>
<td>STA2005S</td>
<td>Linear Models</td>
<td>1</td>
<td>M and W, 14h00-16h00</td>
</tr>
<tr>
<td>EGS3012S</td>
<td>Atmospheric Science</td>
<td>1</td>
<td>Tu or W, 14h00-17h00</td>
</tr>
<tr>
<td>HUB3007S</td>
<td>Biophysics & Neurophysiology</td>
<td>1</td>
<td>W or Th, 14h00-17h00</td>
</tr>
<tr>
<td>STA3043S</td>
<td>Decision Theory & GLMs</td>
<td>1</td>
<td>M and W, 14h00-16h00</td>
</tr>
</tbody>
</table>
SCHEDULE OF COURSES

Second period, first semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE1003H</td>
<td>FOUNDATIONS OF BIOLOGY, EARTH & ENVIRONMENTAL SCIENCES</td>
<td>2</td>
<td>F 14h00-17h00</td>
</tr>
<tr>
<td>CEM1000W</td>
<td>CHEMISTRY 1000</td>
<td>2/4</td>
<td>Tu, Th or F 14h00-17h00</td>
</tr>
<tr>
<td>GEO1009F</td>
<td>INTRODUCTION TO EARTH & ENVIRONMENTAL SCIENCES</td>
<td>2</td>
<td>M, Tu, Th or F 14h00-17h00</td>
</tr>
<tr>
<td>MAM1043H</td>
<td>MODELLING & APPLIED COMPUTING</td>
<td>2</td>
<td>By arrangement</td>
</tr>
<tr>
<td>MAM1044H</td>
<td>DYNAMICS</td>
<td>2</td>
<td>F 14h00-17h00</td>
</tr>
<tr>
<td>AGE2012F</td>
<td>SOUTHERN AFRICAN HUNTERS & HERDERS</td>
<td>2</td>
<td>By arrangement</td>
</tr>
<tr>
<td>CSC2001F</td>
<td>COMPUTER SCIENCE 2001</td>
<td>2</td>
<td>M to F, 14h00-18h00</td>
</tr>
<tr>
<td>GEO2001F</td>
<td>MINERALOGY & CRYSTALLOGRAPHY</td>
<td>2</td>
<td>W 14h00-17h00</td>
</tr>
<tr>
<td>STA2007F</td>
<td>APPLIED STATISTICAL MODELLING</td>
<td>2</td>
<td>By arrangement</td>
</tr>
<tr>
<td>AST3002F</td>
<td>STELLAR ASTROPHYSICS</td>
<td>2</td>
<td>By arrangement</td>
</tr>
<tr>
<td>BIO3010F</td>
<td>SYSTEMATICS & MACRO EVOLUTION</td>
<td>2</td>
<td>Tu and Th, 14h00-17h00</td>
</tr>
<tr>
<td>BIO3013F</td>
<td>GLOBAL CHANGE ECOLOGY</td>
<td>2</td>
<td>M 14h00-17h00</td>
</tr>
<tr>
<td>CSC3002F</td>
<td>COMPUTER SCIENCE 3002</td>
<td>2</td>
<td>By arrangement</td>
</tr>
<tr>
<td>GEO3005F</td>
<td>PETROLOGY & STRUCTURAL GEOLOGY</td>
<td>2</td>
<td>Tu and Th, 14h00-17h00</td>
</tr>
<tr>
<td>STA3045F</td>
<td>MARKOV PROCESSES & ADVANCED TIME SERIES</td>
<td>2</td>
<td>By arrangement</td>
</tr>
</tbody>
</table>

Second period, second semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGS1003S</td>
<td>GEOGRAPHY, DEVELOPMENT & ENVIRONMENT</td>
<td>2</td>
<td>M, Tu or Th 14h00-17h00</td>
</tr>
<tr>
<td>STA1000S</td>
<td>STATISTICS 1000</td>
<td>2</td>
<td>By arrangement</td>
</tr>
<tr>
<td>AGE2011S</td>
<td>HUMAN EVOLUTION</td>
<td>2</td>
<td>By arrangement</td>
</tr>
<tr>
<td>AST2002S</td>
<td>ASTROPHYSICS</td>
<td>2</td>
<td>W 14h00-16h30</td>
</tr>
<tr>
<td>BIO2012S</td>
<td>LIFE ON LAND : PLANTS</td>
<td>2</td>
<td>Th 14h00-17h00</td>
</tr>
<tr>
<td>CSC2002S</td>
<td>COMPUTER SCIENCE 2002</td>
<td>2</td>
<td>By arrangement</td>
</tr>
<tr>
<td>GEO2004S</td>
<td>PHYSICAL GEOLOGY</td>
<td>2</td>
<td>W 14h00-17h00</td>
</tr>
<tr>
<td>AST3003S</td>
<td>GALACTIC & EXTRAGALACTIC ASTROPHYSICS</td>
<td>2</td>
<td>By arrangement</td>
</tr>
<tr>
<td>BIO3003S</td>
<td>INLAND WATER ECOSYSTEM</td>
<td>2</td>
<td>M + one other, 14h00-17h00</td>
</tr>
<tr>
<td>BIO3014S</td>
<td>CONSERVATION: GENES, POPULATIONS & BIODIVERSITY</td>
<td>2</td>
<td>M 14h00-17h00</td>
</tr>
<tr>
<td>CSC3003S</td>
<td>COMPUTER SCIENCE 3003</td>
<td>2</td>
<td>By arrangement</td>
</tr>
<tr>
<td>GEO3001S</td>
<td>STRATIGRAPHY & ECONOMIC GEOLOGY</td>
<td>2</td>
<td>Tu and Th, 14h00-17h00</td>
</tr>
<tr>
<td>MCB3022S</td>
<td>ADVANCED BIOTECHNOLOGY</td>
<td>2</td>
<td>W 14h00-17h00</td>
</tr>
</tbody>
</table>
Third period, first semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAM1000W</td>
<td>MATHEMATICS 1000</td>
<td>3</td>
<td>By arrangement</td>
</tr>
<tr>
<td>PHY1004W</td>
<td>MATTER & INTERACTIONS</td>
<td>3</td>
<td>Tu 14h00 to 17h00</td>
</tr>
<tr>
<td>PHY1023H</td>
<td>PRINCIPLES OF PHYSICS A</td>
<td>3</td>
<td>Tu 14h00-17h00</td>
</tr>
<tr>
<td>PHY1024F</td>
<td>PRINCIPLES OF PHYSICS B</td>
<td>3</td>
<td>W 14h00-17h00</td>
</tr>
<tr>
<td>PHY1031F</td>
<td>GENERAL PHYSICS A</td>
<td>3</td>
<td>M, W, Th or F 14h00-17h00</td>
</tr>
<tr>
<td>CEM2007F</td>
<td>PHYSICAL CHEMISTRY & SPECTROSCOPY</td>
<td>3</td>
<td>M or Th, 14h00-17h00</td>
</tr>
<tr>
<td>MAM2046W</td>
<td>APPLIED MATHEMATICS 2046</td>
<td>3</td>
<td>Th 14h00-16h00</td>
</tr>
<tr>
<td>MAM2047H</td>
<td>APPLIED MATHEMATICS 2047</td>
<td>3</td>
<td>Th 14h00-16h00</td>
</tr>
<tr>
<td>MAM2048H</td>
<td>APPLIED MATHEMATICS 2048</td>
<td>3</td>
<td>Th 14h00-16h00</td>
</tr>
<tr>
<td>MCB2018F</td>
<td>INTRODUCTION TO GENETICS</td>
<td>3</td>
<td>W 14h00-17h00</td>
</tr>
<tr>
<td>STA2020F</td>
<td>BUSINESS STATISTICS</td>
<td>3</td>
<td>By arrangement</td>
</tr>
<tr>
<td>CEM3005W</td>
<td>CHEMISTRY 3005</td>
<td>3</td>
<td>W and F, 14h00-17h00</td>
</tr>
<tr>
<td>CSC3020H</td>
<td>THREE DIMENSIONAL & DISTRIBUTED GAMES DESIGN</td>
<td>3</td>
<td>By arrangement</td>
</tr>
<tr>
<td>CSC3022H</td>
<td>C++ WITH APPLICATIONS</td>
<td>3</td>
<td>By arrangement</td>
</tr>
<tr>
<td>EGS3021F</td>
<td>SUSTAINABILITY & ENVIRONMENT</td>
<td>3</td>
<td>W 14h00-17h00</td>
</tr>
<tr>
<td>MAM3040W</td>
<td>APPLIED MATHEMATICS 3040</td>
<td>3</td>
<td>Th 14h00-16h00</td>
</tr>
<tr>
<td>MAM3041H</td>
<td>APPLIED MATHEMATICS 3041</td>
<td>3</td>
<td>Th 14h00-16h00</td>
</tr>
<tr>
<td>MAM3048H</td>
<td>APPLIED MATHEMATICS 3048</td>
<td>3</td>
<td>Th 14h00-16h00</td>
</tr>
<tr>
<td>MCB3019F</td>
<td>RECOMBINANT DNA, GENOMICS & PROTEOMICS</td>
<td>3</td>
<td>F 14h00-17h00</td>
</tr>
</tbody>
</table>

Third period, second semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA1000S</td>
<td>STATISTICS 1000</td>
<td>3</td>
<td>By arrangement</td>
</tr>
<tr>
<td>PHY1032S</td>
<td>GENERAL PHYSICS B</td>
<td>3</td>
<td>M, W, Th or F 14h00-17h00</td>
</tr>
<tr>
<td>BIO2013S</td>
<td>LIFE IN THE SEA</td>
<td>3</td>
<td>Tu 14h00-17h00</td>
</tr>
<tr>
<td>CEM2008S</td>
<td>ORGANIC & INORGANIC CHEMISTRY</td>
<td>3</td>
<td>M or Th, 14h00-17h00</td>
</tr>
<tr>
<td>CSC2003S</td>
<td>COMPUTER GAMES</td>
<td>3</td>
<td>By arrangement</td>
</tr>
<tr>
<td>MCB2019S</td>
<td>EUKARYOTIC GENE REGULATION & CELL SIGNALLING</td>
<td>3</td>
<td>W 14h00-17h00</td>
</tr>
<tr>
<td>BIO3002S</td>
<td>MARINE ECOLOGY</td>
<td>3</td>
<td>W 14h00-17h00</td>
</tr>
<tr>
<td>MCB3023S</td>
<td>MOLECULAR EVOLUTIONARY GENETICS & DEVELOPMENT</td>
<td>3</td>
<td>None</td>
</tr>
</tbody>
</table>
Schedule of Courses

Fourth period, first semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM1000W</td>
<td>Chemistry 1000</td>
<td>2/4</td>
<td>Tu, Th or F, 14h00-17h00</td>
</tr>
<tr>
<td>CEM1009H</td>
<td>Chemistry 1009</td>
<td>4</td>
<td>W 14h00-17h00</td>
</tr>
<tr>
<td>CEM1010F</td>
<td>Chemistry 1010</td>
<td>4</td>
<td>Th 14h00-17h00</td>
</tr>
<tr>
<td>CSC1011H</td>
<td>Computer Science 1011</td>
<td>4</td>
<td>M 14h00-17h30</td>
</tr>
<tr>
<td>CSC1015F</td>
<td>Computer Science 1015</td>
<td>4/5</td>
<td>M, Tu or W 14h00-17h30</td>
</tr>
<tr>
<td>CSC1016S</td>
<td>Computer Science 1016</td>
<td>4/5</td>
<td>M, Tu or W 14h00-17h31</td>
</tr>
<tr>
<td>STA1000F</td>
<td>Statistics 1000</td>
<td>4</td>
<td>By arrangement</td>
</tr>
<tr>
<td>MAM2001H</td>
<td>Mathematics 2001</td>
<td>4</td>
<td>Th or F, 14h00-16h00</td>
</tr>
<tr>
<td>MCB2014F</td>
<td>Molecular Components of Cells</td>
<td>4</td>
<td>M or Tu, 14h00-17h00</td>
</tr>
<tr>
<td>MCB2015S</td>
<td>Metabolism</td>
<td>4</td>
<td>M or Tu, 14h00-17h00</td>
</tr>
<tr>
<td>PHY2014F</td>
<td>Waves & Electromagnetism</td>
<td>4</td>
<td>M 14h00-17h00</td>
</tr>
<tr>
<td>SEA2004F</td>
<td>Principles of Oceanography</td>
<td>4</td>
<td>Tu 14h00-17h00</td>
</tr>
<tr>
<td>AGE3011F</td>
<td>Roots of Black Identity</td>
<td>4</td>
<td>By arrangement</td>
</tr>
<tr>
<td>BIO3012F</td>
<td>Vertebrates: Biology & Behavioural Ecology</td>
<td>4</td>
<td>F + M or Tu 14h00-17h00</td>
</tr>
<tr>
<td>MCB3020F</td>
<td>Protein Structure & Function</td>
<td>4</td>
<td>Th 14h00-17h00</td>
</tr>
<tr>
<td>PHY3021F</td>
<td>Advanced Physics A</td>
<td>4</td>
<td>M and Th, 14h00-17h00</td>
</tr>
<tr>
<td>SEA3003F</td>
<td>Marine Systems</td>
<td>4</td>
<td>M 14h00-17h00</td>
</tr>
</tbody>
</table>

Fourth period, second semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA1000S</td>
<td>Statistics 1000</td>
<td>4</td>
<td>By arrangement</td>
</tr>
<tr>
<td>STA1006S</td>
<td>Statistics for Mathematical Disciplines</td>
<td>4</td>
<td>By arrangement</td>
</tr>
<tr>
<td>BIO2011S</td>
<td>Life on Land: Animals</td>
<td>4</td>
<td>Tu 14h00-17h00</td>
</tr>
<tr>
<td>PHY2015S</td>
<td>Classical & Quantum Mechanics</td>
<td>4</td>
<td>M 14h00-17h00</td>
</tr>
<tr>
<td>AGE3012S</td>
<td>Global Interaction & The Transformation of South African Society</td>
<td>4</td>
<td>By arrangement</td>
</tr>
<tr>
<td>BIO3011S</td>
<td>Global Change Ecology</td>
<td>4</td>
<td>W and F, 14h00-17h00</td>
</tr>
<tr>
<td>BIO3017S</td>
<td>Marine Resources</td>
<td>4</td>
<td>F 14h00-17h00</td>
</tr>
<tr>
<td>EGS3022S</td>
<td>Geographic Thought</td>
<td>4</td>
<td>W 14h00-17h00</td>
</tr>
<tr>
<td>PHY3022S</td>
<td>Advanced Physics B</td>
<td>4</td>
<td>M and Th, 14h00-17h00</td>
</tr>
<tr>
<td>SEA3004S</td>
<td>Ocean & Atmosphere Dynamics</td>
<td>4</td>
<td>M 14h00-17h00</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Name</td>
<td>Credits</td>
<td>Time</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>ST1000F</td>
<td>INTRODUCTION TO ASTRONOMY</td>
<td>5</td>
<td>W 14h00-17h00</td>
</tr>
<tr>
<td>BIO1000F</td>
<td>CELL BIOLOGY</td>
<td>5</td>
<td>M, Tu, W or Th 14h00-17h00</td>
</tr>
<tr>
<td>CSC1010H</td>
<td>COMPUTER SCIENCE 1010</td>
<td>5</td>
<td>Th 14h00-17h30</td>
</tr>
<tr>
<td>CSC1015F</td>
<td>COMPUTER SCIENCE 1015</td>
<td>4/5</td>
<td>M, Tu or W 14h00-17h30</td>
</tr>
<tr>
<td>CSC1016S</td>
<td>COMPUTER SCIENCE 1016</td>
<td>4/5</td>
<td>M, Tu or W 14h00-17h31</td>
</tr>
<tr>
<td>EGS2013F</td>
<td>THE PHYSICAL ENVIRONMENT</td>
<td>5</td>
<td>F 14h00-17h00</td>
</tr>
<tr>
<td>MAM2000W</td>
<td>MATHEMATICS 2000</td>
<td>5</td>
<td>Th or F, 14h00-16h00</td>
</tr>
<tr>
<td>MAM2004H</td>
<td>MATHEMATICS 2004</td>
<td>5</td>
<td>Th or F, 14h00-16h00</td>
</tr>
<tr>
<td>MCB2016F</td>
<td>INTRODUCTION TO MICROBIOLOGY</td>
<td>5</td>
<td>Th or F, 14h00-17h00</td>
</tr>
<tr>
<td>STA2020F</td>
<td>BUSINESS STATISTICS</td>
<td>5</td>
<td>By arrangement</td>
</tr>
<tr>
<td>EGS3020F</td>
<td>ENVIRONMENTAL CHANGE & CHALLENGE</td>
<td>5</td>
<td>Th 14h00-17h00</td>
</tr>
<tr>
<td>MAM3000W</td>
<td>MATHEMATICS 3000</td>
<td>5</td>
<td>F 14h00-17h00</td>
</tr>
<tr>
<td>MAM3001W</td>
<td>MATHEMATICS 3001</td>
<td>5</td>
<td>F 14h00-17h00</td>
</tr>
<tr>
<td>MAM3002H</td>
<td>MATHEMATICS 3002</td>
<td>5</td>
<td>F 14h00-17h00</td>
</tr>
<tr>
<td>MCB3021F</td>
<td>MOLECULAR MICROBIAL GENETICS</td>
<td>5</td>
<td>W 14h00-17h00</td>
</tr>
</tbody>
</table>

Fifth period, second semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE1002S</td>
<td>AFRICA & WORLD ARCHAEOLOGY</td>
<td>5</td>
<td>F 12h00-13h00</td>
</tr>
<tr>
<td>BIO1004S</td>
<td>BIOLOGICAL DIVERSITY</td>
<td>5</td>
<td>M, Tu, W, Th or F 14h00-17h00</td>
</tr>
<tr>
<td>GEO1006S</td>
<td>INTRODUCTION TO MINERALS, ROCKS & STRUCTURE</td>
<td>5</td>
<td>Th 14h00-17h00</td>
</tr>
<tr>
<td>GEO1007S</td>
<td>EARTH STEWARDSHIP</td>
<td>5</td>
<td>None</td>
</tr>
<tr>
<td>CEM2013S</td>
<td>CHEMISTRY IN HEALTH & DISEASE</td>
<td>5</td>
<td>Tu 14h00-17h00</td>
</tr>
<tr>
<td>EGS2014S</td>
<td>CONTEMPORARY URBAN CHALLENGES</td>
<td>5</td>
<td>F 14h00-17h00</td>
</tr>
<tr>
<td>MAM2002S</td>
<td>MATHEMATICS 2002</td>
<td>5</td>
<td>Th or F, 14h00-16h00</td>
</tr>
<tr>
<td>MAM2043S</td>
<td>INTRODUCTION TO BIOLOGICAL MODELLING</td>
<td>5</td>
<td>F 14h00-16h00</td>
</tr>
<tr>
<td>MCB2017S</td>
<td>MICROBIAL BIOTECHNOLOGY</td>
<td>5</td>
<td>Th or F, 14h00-17h00</td>
</tr>
<tr>
<td>PHY2009S</td>
<td>INTERMEDIATE PHYSICS</td>
<td>5</td>
<td>W 14h00-17h00</td>
</tr>
<tr>
<td>BIO3016S</td>
<td>SYSTEMATICS AND MACROEVOLUTION</td>
<td>5</td>
<td>Th 14h00-17h00</td>
</tr>
<tr>
<td>MAM3003S</td>
<td>MATHEMATICS 3003</td>
<td>5</td>
<td>F 14h00-17h00</td>
</tr>
<tr>
<td>MCB3024S</td>
<td>DEFENCE & DISEASE</td>
<td>5</td>
<td>None</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Location</td>
<td>Days</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>MAM1019H</td>
<td>FUNDAMENTALS OF MATHEMATICS</td>
<td>Meridian</td>
<td>W</td>
</tr>
<tr>
<td>MAM1004H</td>
<td>MATHEMATICS 1004</td>
<td>Meridian</td>
<td>By arrangement</td>
</tr>
<tr>
<td>EGS1004S</td>
<td>INTRODUCTION TO EARTH & ENVIRONMENTAL SCIENCES</td>
<td>None</td>
<td>F</td>
</tr>
<tr>
<td>AGE3006H</td>
<td>DIRECTED READING & RESEARCH</td>
<td>By arrangement</td>
<td>None</td>
</tr>
<tr>
<td>BIO3006F</td>
<td>ECOSYSTEM ECOLOGY</td>
<td>By arrangement</td>
<td>By arrangement</td>
</tr>
<tr>
<td>BIO3015F</td>
<td>ECOSYSTEM ECOLOGY</td>
<td>By arrangement</td>
<td>By arrangement</td>
</tr>
<tr>
<td>MAM3042H</td>
<td>FURTHER BIOLOGICAL MODELLING</td>
<td>By arrangement</td>
<td>By arrangement</td>
</tr>
</tbody>
</table>
INDEX

Admission to an undergraduate degree, Minimum requirements for .. 7
Admission to the Bachelor of Science (Hons) degree .. 27
Admission to the Masters (MSc/MPhil) degree ... 28
Admission, Transfer from other faculties .. 12
Archaeology .. 33
Astronomy .. 49
Bachelor of Science degree structure .. 12
Bachelor of Science, Rules for the degree of .. 12
Bachelor of Science (Honours), Rules for the degree of .. 27
Bachelor of Science (Honours), Subjects for the degree of .. 27
Botany .. 45
Chemistry ... 52
Class Medals .. 7
Computer Science .. 58
Course codes, Explanatory note on .. 7
Curriculum for the General Entry Programme for Science, SB011 .. 26
Dean's Merit List .. 7
Degrees offered in the Faculty of Science .. 8
Distinction (majors), Award of ... 16
Distinction (specialisations), Award of .. 24
Distinguished Teachers in the Faculty ... 5
DSc, Rules for the degree of .. 31
Electron Microscope Unit ... 154
Environmental Evaluation Unit .. 67
Environmental & Geographical Science .. 67
Examinations, Supplementary .. 10
Fellows in the Faculty .. 5
Geology .. 77
Geomatics Division (Faculty of Engineering & the Built Environment) 83
Human Biology .. 89
Mathematics & Applied Mathematics .. 93
Master of Science/Philosophy, Dissertation for the degree of ... 29
Master of Science/Philosophy, Subjects for the degree of .. 28
Molecular & Cell Biology ... 112
Oceanography .. 120
PhD, Rules for the degree of ... 30
Physics ... 125
Postgraduate Centre, The ... 4
Prizes .. 5
Readmission to the Faculty, Refusal of .. 11
Rules for the Bachelor of Science degree .. 9
Rules for the Bachelor of Science (Honours) degree ... 27
Rules for the DSc degree ... 31
Rules for the Master of Science/Philosophy degree ... 28
Rules for the PhD degree .. 30
Scholarships .. 6
Schedule of courses ... 155
Schedule of courses, by lecture period .. 161
Statistics .. 134
Student Advisers in the Faculty .. 3
Student Councils .. 4
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplementary examinations</td>
<td>10</td>
</tr>
<tr>
<td>Transfer from other faculties</td>
<td>12</td>
</tr>
<tr>
<td>UCT Book Award</td>
<td>5</td>
</tr>
<tr>
<td>Zoology</td>
<td>143</td>
</tr>
</tbody>
</table>