A NOTE ON SYNALEPHA AND STRESS MAXIMA*

DONNA JO NAPOLI

1. INTRODUCTION

Generative metrics has supplied us with a systematic procedure for metrical analysis based upon determining for a given verse the abstract metrical pattern, the correspondence rules,\(^1\) and how these rules have been utilized by the poet in specific lines of verse. In this paper I consider iambic pentameter verse in English and I examine the interaction of two correspondence rules: synalepha and the constraint against stress maxima appearing in \(W\) positions. Various possible definitions for stress maxima are considered: the Halle and Keyser one that looks only at syllables and stress, and alternative ones that look at position as well as syllables and stress. I point out several theoretically possible situations which could choose between these definitions. However, none of these situations arise in the verse I have examined. Thus the proper definition of stress maxima is still an open question, as is the larger question implicit in this choice of definitions as to whether the stress maxima constraint is a purely mathematical convention or a constraint against surface metrical situations which thwart all attempts to recognize underlying abstract patterns.

2. SYNALEPHA, STRESS MAXIMA, AND THE SM CONSTRAINT

One of the correspondence rules that Halle and Keyser (1971, among others)

\(^*\)Thanks go to Bob Hollow, Stephanie Jamison, Joan Maling, and my reader Joseph Beaver for comments and criticisms on an earlier version of this work.

\(^1\)Morris Halle (personal communication, December, 1974) is presently working on a refinement of the theory which recognizes another aspect of metrical analysis, the 'filter'. A filter differs from a correspondence rule in that it gives specific rules which do not deal with position (for example, how one determines whether a syllable is long or short), which may then be employed by the correspondence rules in determining the correspondence between abstract patterns and surface lines. For the purposes of this paper, it is not necessary to distinguish between the filter and the correspondence rules since only rules which relate abstract patterns to surface lines are examined, i.e. only correspondence rules.
43

A NOTE ON SYMMETRY AND STRESS MAXIMA

(4) A stress maximum is a fully stressed section of an uncracked world (Norman,

\[ S \]

\[ W \]

\[ S \]

\[ W \]
It is not clear how the application of symbolic reasoning in the matrix, the concept of symbolic reasoning must be understood, and how this understanding can be applied in the context of the problem. However, there are certain principles that are relevant to this problem.

3.2. Theoretical Problems

1. Consider a position in the matrix where the symbol S holds true. Assume that the symbol S is not affected by the application of symbolic reasoning in the matrix. However, if the symbol S is affected by the application of symbolic reasoning, then it must be understood that the symbol S must be reinterpreted.

2. Consider a position where the symbol S holds true, and assume that the symbol S is affected by the application of symbolic reasoning in the matrix. However, if the symbol S is not affected by the application of symbolic reasoning, then it must be understood that the symbol S must be reinterpreted.

3. Consider a position where the symbol S holds true, and assume that the symbol S is affected by the application of symbolic reasoning in the matrix. However, if the symbol S is not affected by the application of symbolic reasoning, then it must be understood that the symbol S must be reinterpreted.

4. Consider a position where the symbol S holds true, and assume that the symbol S is affected by the application of symbolic reasoning in the matrix. However, if the symbol S is not affected by the application of symbolic reasoning, then it must be understood that the symbol S must be reinterpreted.

5. Consider a position where the symbol S holds true, and assume that the symbol S is affected by the application of symbolic reasoning in the matrix. However, if the symbol S is not affected by the application of symbolic reasoning, then it must be understood that the symbol S must be reinterpreted.

6. Consider a position where the symbol S holds true, and assume that the symbol S is affected by the application of symbolic reasoning in the matrix. However, if the symbol S is not affected by the application of symbolic reasoning, then it must be understood that the symbol S must be reinterpreted.

7. Consider a position where the symbol S holds true, and assume that the symbol S is affected by the application of symbolic reasoning in the matrix. However, if the symbol S is not affected by the application of symbolic reasoning, then it must be understood that the symbol S must be reinterpreted.

8. Consider a position where the symbol S holds true, and assume that the symbol S is affected by the application of symbolic reasoning in the matrix. However, if the symbol S is not affected by the application of symbolic reasoning, then it must be understood that the symbol S must be reinterpreted.

9. Consider a position where the symbol S holds true, and assume that the symbol S is affected by the application of symbolic reasoning in the matrix. However, if the symbol S is not affected by the application of symbolic reasoning, then it must be understood that the symbol S must be reinterpreted.

10. Consider a position where the symbol S holds true, and assume that the symbol S is affected by the application of symbolic reasoning in the matrix. However, if the symbol S is not affected by the application of symbolic reasoning, then it must be understood that the symbol S must be reinterpreted.

For a detailed analysis of the problems, please refer to the document.
A Note on Syllables and Stress Maxima

The possibilities are intriguing, however, just as the schema seen in (25), through (27), are.

In the examples above, the stress pattern is represented by a triangular symbol, with the apex indicating the primary stress. For example, in (2), the primary stress is on the second syllable, indicated by the triangle pointing down.

However, it should be noted that the stress pattern is not always consistent, especially in more complex examples. In (25), for instance, the stress pattern changes from left to right, indicating that the stress distribution is not fixed.

The examples in (13) through (27), however, differ from (2), in that we have additional features to consider. In (13), for example, the stress pattern is represented by a square, indicating a different type of stress distribution.

CALLING (23) an unimpaired sequence is applicable, since such a sequence of stressed

S W S W S W S W S W

is a marked if you animate, bears could tell the kernel

S W

(12)

S W

(22)

S W

(61)

S W

(81)

S W

(91)

DONNA TO NAPOLI
The problem is to determine if the matrix $A$ is invertible.

To do this, we need to find the determinant of $A$.

The determinant of a $2 \times 2$ matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is given by $ad - bc$.

In our case, $A = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$, so the determinant is $2 \times 4 - 3 \times 1 = 8 - 3 = 5$.

Since the determinant is not equal to zero, the matrix $A$ is invertible.

To find the inverse of $A$, we use the formula $A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

Thus, the inverse of $A$ is $A^{-1} = \frac{1}{5} \begin{pmatrix} 4 & -3 \\ -1 & 2 \end{pmatrix}$.

Now, we can check that $A A^{-1} = I$, where $I$ is the identity matrix.

This verifies that our calculation is correct.

Therefore, the matrix $A$ is indeed invertible, and its inverse is $\begin{pmatrix} 4 & -3 \\ -1 & 2 \end{pmatrix}$.

Keyser, Samuel Jay

Donna Jo Napoli (b. 1900) is assistant professor at Georgetown University. Her interests are mathematical linguistics, syntax, semantics and generative metrics. She has written the following papers: 'A Global Agreement Phenomenon' (to appear in Linguistic Inquiry, 1975), 'Consistency: the Hemoglobin of Linguistic Minds' (to appear in Language 51, 1975), 'Superficially Illogical Negatives', in collaboration with Marina Nesper (to be published in the Proceedings of the Fifth Linguistic Symposium on Romance Languages, University of Michigan), 'The No Crossing Filter', CLS X (1974) and other studies on modern Italian.