Math 35
Second Midterm

Show your work. Correct answers with no justification may receive little or no credit. No calculators are allowed. No uncalled-for simplification is required. Use the backs of pages if you run out of space.

Problem 1. In this problem, let D_R denote the disk of radius R centered at the origin in \mathbb{R}^2. That is to say, $D_R = \{(x, y) \mid x^2 + y^2 \leq R^2\}$. Similarly, let $S_R = [-R, R] \times [-R, R]$ be the square centered at the origin with sides which are parallel to the coordinate axes and of length $2R$.

a) (10 points) Calculate $\iint_{D_R} e^{-(x^2+y^2)} \, dA$.

Solution.

$$\iint_{D_R} e^{-(x^2+y^2)} \, dA = \int_0^{2\pi} \int_0^R e^{-r^2} r \, dr \, d\theta = -2\pi \left. \frac{1}{2} e^{-r^2} \right|_{r=0}^R = \pi \left(1 - e^{-R^2}\right).$$

b) (5 points) Express $\iint_{S_R} e^{-(x^2+y^2)} \, dA$ in terms of the quantity $\int_{-R}^R e^{-x^2} \, dx$.

Solution.

$$\iint_{S_R} e^{-(x^2+y^2)} \, dA = \int_{-R}^R \int_{-R}^R e^{-x^2} e^{-y^2} \, dx \, dy = \left(\int_{-R}^R e^{-x^2} \, dx\right) \left(\int_{-R}^R e^{-y^2} \, dy\right) = \left(\int_{-R}^R e^{-x^2} \, dx\right)^2.$$

d) (5 points) Justify the following inequalities:

$$\iint_{D_R} e^{-(x^2+y^2)} \, dA < \iint_{S_R} e^{-(x^2+y^2)} \, dA < \iint_{D_{2R}} e^{-(x^2+y^2)} \, dA.$$
Solution. \(e^{-(x^2+y^2)} \) is positive for all \((x, y)\) and \(D_R \subset S_R \subset D_{\sqrt{2}R} \). (\(S_R \) is the circle circumscribed around \(D_R \) while \(D_{\sqrt{2}R} \) is a square circumscribed around \(S_R \).) \(\square \)

d) (5 points) Use the previous parts of this problem to deduce the value of \(\int_{-\infty}^{\infty} e^{-x^2} \, dx \). (Here, you may assume without proof that all the following limits exist and are finite: \(\lim_{R \to \infty} \int_{-R}^{R} e^{-x^2} \, dx \), \(\lim_{R \to \infty} \iint_{S_R} e^{-(x^2+y^2)} \, dA \), and \(\lim_{R \to \infty} \iint_{D_R} e^{-(x^2+y^2)} \, dA \).)

Solution. From part c we see that

\[
\lim_{R \to \infty} \iint_{D_R} e^{-(x^2+y^2)} \, dA = \lim_{R \to \infty} \iint_{S_R} e^{-(x^2+y^2)} \, dA.
\]

From part b we see that

\[
\lim_{R \to \infty} \iint_{S_R} e^{-(x^2+y^2)} \, dA = \left(\int_{-\infty}^{\infty} e^{-x^2} \, dx \right)^2.
\]

From part a we see that

\[
\lim_{R \to \infty} \iint_{D_R} e^{-(x^2+y^2)} \, dA = \pi.
\]

Therefore \(\int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi} \). \(\square \)

Problem 2. In this problem, let \(f(x, y) = 6x - 8y - x^2 - y^2 \).

a) (5 points) Find the gradient and the Hessian of \(f \).

Solution.

\[
\nabla f = (6 - 2x, -8 - 2y)
\]

\[
Hf = \begin{bmatrix}
-2 & 0 \\
0 & -2
\end{bmatrix}.
\]

\(\square \)

b) (5 points) Find and classify the critical points of \(f \).

Solution. Using the formulas from part a, we see that the only critical point is located at \((3, -4)\) and that the second derivative test shows it to be a local maximum. \(\square \)
c) (10 points) Use the method of Lagrange Multipliers to find the maximum and minimum values that f takes on the circle $x^2 + y^2 = 100$.

Solution. Letting $g = x^2 + y^2$, the conditions $\nabla f = \lambda \nabla g$ and $g = 100$ become the system of equations

$$
\begin{align*}
6 - 2x &= 2\lambda x \\
-8 - 2y &= 2\lambda y \\
100 &= x^2 + y^2
\end{align*}
$$

(1) \hspace{5cm} (2) \hspace{5cm} (3)

Solving equation (1) for x and equation (2) for y, we see that $y = -\frac{4}{x}$. Substituting this into equation (3) and solving for x^2 gives $x^2 = 36$, so $x = \pm 6$. Thus the two constrained critical points we get are $(6, -8)$ and $(-6, 8)$. Since $f(6, -8) = 0$ and $f(-6, 8) = -200$, the first is a maximum and the second is a minimum.

\[\square\]

d) (5 points) Use the previous parts of this problem to find the maximum and minimum values that f takes on the disk $D_{10} = \{(x, y) | x^2 + y^2 \leq 100\}$.

Solution. Whatever extreme values f takes on D_{10}, they must either occur in the interior, and thus at the critical point $(3, -4)$, found in part b, or occur on the boundary and thus at one of the constrained critical points, $(6, -8)$ or $(-8, 8)$. The values are these locations are $f(3, -4) = 25$, $f(6, -8) = 0$, and $f(-6, 8) = -200$. Thus the first of these values is the maximum and the last is the minimum.

\[\square\]

Problem 3. In this problem, let $\mathcal{H} = \{(x, y, z) | x^2 + y^2 + z^2 \leq 25 \text{ and } x \geq 0\}$, be the hemisphere of radius 5 centered at the origin and having positive x coordinate. Let $f : \mathcal{H} \rightarrow \mathbb{R}$ be an unknown scalar function.

a) (9 points) Express $\iiint_{\mathcal{H}} f \, dV$ as an iterated integral in rectangular (x, y, z) coordinates.

Solution. Several orders of integration are possible. Here is one:

$$
\int_{z=-5}^{z=5} \int_{y=-\sqrt{25-z^2}}^{y=\sqrt{25-z^2}} \int_{x=0}^{x=\sqrt{25-y^2-z^2}} f(x, y, z) \, dx \, dy \, dz.
$$

\[\square\]

b) (8 points) Express $\iiint_{\mathcal{H}} f \, dV$ as an iterated integral in cylindrical (r, θ, z) coordinates.
Solution. Note that on the spherical part of the boundary of H we have $r^2 + z^2 = 25$. Again more than one order is possible. Here is one:

$$
\int_{\theta=-\frac{\pi}{2}}^{\theta=\frac{\pi}{2}} \int_{r=0}^{r=5} f(r \cos \theta, r \sin \theta, z) r \, dz \, dr \, d\theta
$$

\[\square \]

c) (8 points) Express $\iiint_H f \, dV$ as an iterated integral in spherical (ρ, ϕ, θ) coordinates.

Solution.

$$
\int_{\theta=-\frac{\pi}{2}}^{\theta=\frac{\pi}{2}} \int_{\phi=0}^{\phi=\pi} \int_{\rho=0}^{\rho=5} f(\rho \cos \theta \sin \phi, \rho \sin \theta \sin \phi, \rho \cos \phi) \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta
$$

\[\square \]

Problem 4. Let C be a simple closed curve going counter-clockwise around a region D in the plane.

a) (10 points) Express the integral $\oint_C M \, dx$ as a double integral over D.

Solution. Green's theorem with $N = 0$ gives:

$$
\oint_C M \, dx = - \iint_D \frac{\partial M}{\partial y} \, dy \, dx
$$

\[\square \]

b) (15 points) Find M so that $\oint_C M \, dx$ gives the x-coordinate of the centroid of D. (You may assume that the area, A, of D is known.)

Solution. What we need is to find M so that

$$
- \iint_D \frac{\partial M}{\partial y} \, dy \, dx = \frac{1}{A} \iint_D x \, dy \, dx.
$$

This will be accomplished if $\frac{\partial M}{\partial y} = -\frac{x}{A}$. Thus $M = -xy/A$ works just fine as will any function of the form $-\frac{xy}{A} + g(x)$.