Math 34 Review

April 28, 2011
Disclaimer

Our course follows Sue Colley’s *Vector Calculus* fairly closely. This presentation is basically an annotated table of contents of that book.
Preliminaries

- The basic language of functions
Preliminaries

- The basic language of functions
 - domain, codomain, graph, sections
Preliminaries

- The basic language of functions
 - domain, codomain, graph, sections
 - one-to-one, onto
Preliminaries

- The basic language of functions
 - domain, codomain, graph, sections
 - one-to-one, onto
- The basic language of linear algebra
Preliminaries

- The basic language of functions
 - domain, codomain, graph, sections
 - one-to-one, onto
- The basic language of linear algebra
 - dot and cross products
Preliminaries

- The basic language of functions
 - domain, codomain, graph, sections
 - one-to-one, onto

- The basic language of linear algebra
 - dot and cross products
 - determinants
Preliminaries

- The basic language of functions
 - domain, codomain, graph, sections
 - one-to-one, onto
- The basic language of linear algebra
 - dot and cross products
 - determinants
 - equations of lines, planes, etc.
Preliminaries

- The basic language of functions
 - domain, codomain, graph, sections
 - one-to-one, onto
- The basic language of linear algebra
 - dot and cross products
 - determinants
 - equations of lines, planes, etc.
- Spherical, Cylindrical, and Polar Coordinates
Preliminaries

- The basic language of functions
 - domain, codomain, graph, sections
 - one-to-one, onto
- The basic language of linear algebra
 - dot and cross products
 - determinants
 - equations of lines, planes, etc.
- Spherical, Cylindrical, and Polar Coordinates
- The basic language of subsets of \mathbb{R}^n
Preliminaries

- The basic language of functions
 - domain, codomain, graph, sections
 - one-to-one, onto
- The basic language of linear algebra
 - dot and cross products
 - determinants
 - equations of lines, planes, etc.
- Spherical, Cylindrical, and Polar Coordinates
- The basic language of subsets of \mathbb{R}^n
 - interior, exterior, boundary
Preliminaries

- The basic language of functions
 - domain, codomain, graph, sections
 - one-to-one, onto

- The basic language of linear algebra
 - dot and cross products
 - determinants
 - equations of lines, planes, etc.

- Spherical, Cylindrical, and Polar Coordinates

- The basic language of subsets of \mathbb{R}^n
 - interior, exterior, boundary
 - open, closed
Preliminaries

- The basic language of functions
 - domain, codomain, graph, sections
 - one-to-one, onto
- The basic language of linear algebra
 - dot and cross products
 - determinants
 - equations of lines, planes, etc.
- Spherical, Cylindrical, and Polar Coordinates
- The basic language of subsets of \mathbb{R}^n
 - interior, exterior, boundary
 - open, closed
- Continuity and limits of several variable functions
Differentiation

- The derivative as a good linear approximation (tangent plane to graph)
Differentiation

- The derivative as a good linear approximation (tangent plane to graph)
- The derivative as a matrix of partial derivatives
Differentiation

- The derivative as a good linear approximation (tangent plane to graph)
- The derivative as a matrix of partial derivatives
- The chain rule
Differentiation

- The derivative as a good linear approximation (tangent plane to graph)
- The derivative as a matrix of partial derivatives
- The chain rule
- Directional derivatives and the gradient
Differentiation

- The derivative as a good linear approximation (tangent plane to graph)
- The derivative as a matrix of partial derivatives
- The chain rule
- Directional derivatives and the gradient
- Partial derivatives as slopes of sections
Differentiation

- The derivative as a good linear approximation (tangent plane to graph)
- The derivative as a matrix of partial derivatives
- The chain rule
- Directional derivatives and the gradient
- Partial derivatives as slopes of sections
- Higher order partial derivatives
Differentiation

- The derivative as a good linear approximation (tangent plane to graph)
- The derivative as a matrix of partial derivatives
- The chain rule
- Directional derivatives and the gradient
- Partial derivatives as slopes of sections
- Higher order partial derivatives
- C^n functions (n-th order partials are continuous.)
Differentiation

- The derivative as a good linear approximation (tangent plane to graph)
- The derivative as a matrix of partial derivatives
- The chain rule
- Directional derivatives and the gradient
- Partial derivatives as slopes of sections
- Higher order partial derivatives
- C^n functions (n-th order partials are continuous.)
- Linearity and the product rule
Differentiation

- The derivative as a good linear approximation (tangent plane to graph)
- The derivative as a matrix of partial derivatives
- The chain rule
- Directional derivatives and the gradient
- Partial derivatives as slopes of sections
- Higher order partial derivatives
- C^n functions (n-th order partials are continuous.)
- Linearity and the product rule
- (Omit Newton’s Method)
Sample problem

Problem

In this problem, let \(f(x, y, z) = x^3 - 2y^2 + z^2 \). Let \(S \) be the surface defined by \(f(x, y, z) = 25 \).
Sample problem

Problem
In this problem, let \(f(x, y, z) = x^3 - 2y^2 + z^2 \). Let \(S \) be the surface defined by \(f(x, y, z) = 25 \).

a) Find the gradient, \(\nabla f \) of \(f \).
Sample problem

Problem
In this problem, let \(f(x, y, z) = x^3 - 2y^2 + z^2 \). Let \(S \) be the surface defined by \(f(x, y, z) = 25 \).

a) Find the gradient, \(\vec{\nabla} f \) of \(f \).

b) Find a vector perpendicular to the surface, \(S \), at the point \((3, 1, 0) \).
Problem

In this problem, let $f(x, y, z) = x^3 - 2y^2 + z^2$. Let S be the surface defined by $f(x, y, z) = 25$.

a) Find the gradient, $\vec{\nabla} f$ of f.

b) Find a vector perpendicular to the surface, S, at the point $(3, 1, 0)$.

c) Find a conditional equation for the plane tangent to S at $(3, 1, 0)$. (That is to say find an equation in x, y, and z which is satisfied if and only if (x, y, z) is on the specified tangent plane.)
Sample Problem

Problem

a) State the general form of the chain rule.

b) Let \(w = f(u, v) \) where \(u = x^2 + y^2 \) and \(v = x^2 - y^2 \).

Show how the chain rule as you stated it above allows you to calculate \(\frac{\partial w}{\partial x} \) and \(\frac{\partial w}{\partial y} \) in terms of \(x, y, f_u, \) and \(f_v \). (I.e. do this calculation using the chain rule as you stated it.)
Sample Problem

Problem

a) State the general form of the chain rule.
Sample Problem

Problem

a) State the general form of the chain rule.

b) Let \(w = f(u, v) \) where \(u = x^2 + y^2 \) and \(v = x^2 - y^2 \). Show how the chain rule as you stated it above allows you to calculate \(\frac{\partial w}{\partial x} \) and \(\frac{\partial w}{\partial y} \) in terms of \(x, y, f_u, \) and \(f_v \). (I.e. do this calculation using the chain rule as you stated it.)
Vector valued functions

► Parametrized Curves
Vector valued functions

- Parametrized Curves
 - functions $\mathbb{R} \rightarrow \mathbb{R}^n$ as parametrized paths
Vector valued functions

- Parametrized Curves
 - functions $\mathbb{R} \to \mathbb{R}^n$ as parametrized paths
 - velocity and acceleration
Vector valued functions

- Parametrized Curves
 - functions $\mathbb{R} \rightarrow \mathbb{R}^n$ as parametrized paths
 - velocity and acceleration
 - tangent line
Vector valued functions

- Parametrized Curves
 - functions $\mathbb{R} \rightarrow \mathbb{R}^n$ as parametrized paths
 - velocity and acceleration
 - tangent line
 - product rules (for \cdot and \times)
Vector valued functions

- Parametrized Curves
 - functions $\mathbb{R} \to \mathbb{R}^n$ as parametrized paths
 - velocity and acceleration
 - tangent line
 - product rules (for \cdot and \times)
 - speed and arclength
Vector valued functions

- Parametrized Curves
 - functions $\mathbb{R} \rightarrow \mathbb{R}^n$ as parametrized paths
 - velocity and acceleration
 - tangent line
 - product rules (for \cdot and \times)
 - speed and arclength
 - the moving frame: tangent, normal and binormal
Vector valued functions

- **Parametrized Curves**
 - functions $\mathbb{R} \to \mathbb{R}^n$ as parametrized paths
 - velocity and acceleration
 - tangent line
 - product rules (for \cdot and \times)
 - speed and arclength
 - the moving frame: tangent, normal and binormal

- **Vector Fields**
Vector valued functions

- Parametrized Curves
 - functions $\mathbb{R} \rightarrow \mathbb{R}^n$ as parametrized paths
 - velocity and acceleration
 - tangent line
 - product rules (for \cdot and \times)
 - speed and arclength
 - the moving frame: tangent, normal and binormal

- Vector Fields
 - read and write pictures
Vector valued functions

- **Parametrized Curves**
 - functions $\mathbb{R} \to \mathbb{R}^n$ as parametrized paths
 - velocity and acceleration
 - tangent line
 - product rules (for \cdot and \times)
 - speed and arclength
 - the moving frame: tangent, normal and binormal

- **Vector Fields**
 - read and write pictures
 - flowlines
Vector valued functions

- **Parametrized Curves**
 - functions $\mathbb{R} \rightarrow \mathbb{R}^n$ as parametrized paths
 - velocity and acceleration
 - tangent line
 - product rules (for \cdot and \times)
 - speed and arclength
 - the moving frame: tangent, normal and binormal

- **Vector Fields**
 - read and write pictures
 - flowlines
 - **Divergence, Gradient, and Curl**
Sample problem

Problem
Let \(\vec{x}(t) = (t \cos t, t \sin t, t) \), and suppose that \(\vec{x} \) represents the position of a particle at time \(t \).
Sample problem

Problem
Let \(\vec{x}(t) = (t \cos t, t \sin t, t) \), and suppose that \(\vec{x} \) represents the position of a particle at time \(t \).

a) Find the velocity of the particle as a function of \(t \).
Sample problem

Problem
Let $\vec{x}(t) = (t \cos t, t \sin t, t)$, and suppose that \vec{x} represents the position of a particle at time t.

a) Find the velocity of the particle as a function of t.

b) Find the speed of the particle as a function of t.
Problem
Let \(\vec{x}(t) = (t \cos t, t \sin t, t) \), and suppose that \(\vec{x} \) represents the position of a particle at time \(t \).

a) Find the velocity of the particle as a function of \(t \).

b) Find the speed of the particle as a function of \(t \).

c) Write down but do not evaluate an integral which gives the total distance traveled by the particle between time \(t = a \) and time \(t = b \).
Problem
Let $\vec{x}(t) = (t \cos t, t \sin t, t)$, and suppose that \vec{x} represents the position of a particle at time t.

a) Find the velocity of the particle as a function of t.

b) Find the speed of the particle as a function of t.

c) Write down but do not evaluate an integral which gives the total distance traveled by the particle between time $t = a$ and time $t = b$.

d) Describe the trajectory traced out by the particle.
Sample Problem

Problem
For each of the following descriptions, either give a specific example of the thing described or a brief explanation of why no such thing exists.

a) A scalar function $f(x, y, z)$ which is not constant, but for which $\vec{\nabla}f = \vec{0}$.

b) A vector field $\vec{F}(x, y, z)$ none of whose partial derivatives are zero, but for which $\vec{\nabla} \times \vec{F} = \vec{0}$.

c) A vector field $\vec{F}(x, y, z)$ none of whose partial derivatives are zero, but for which $\vec{\nabla} \cdot \vec{F} = 0$.

d) Are there vector fields $\vec{F}(x, y, z)$ none of whose partial derivatives are zero, but for which both $\vec{\nabla} \times \vec{F} = \vec{0}$ and $\vec{\nabla} \cdot \vec{F} = 0$? What would the geometry of such a field look like? Can you relate such fields to solutions to Laplace's equation, $\nabla^2 f = 0$ for an appropriately chosen scalar field, f?
Sample Problem

Problem

For each of the following descriptions, either give a specific example of the thing described or a brief explanation of why no such thing exists.

a) A scalar function $f(x, y, z)$ which is not constant, but for which $\nabla f = \vec{0}$.
Sample Problem

Problem
For each of the following descriptions, either give a specific example of the thing described or a brief explanation of why no such thing exists.

a) A scalar function $f(x, y, z)$ which is not constant, but for which $\nabla f = \vec{0}$.

b) A vector field $\vec{F}(x, y, z)$ none of whose partial derivatives are zero, but for which $\nabla \times \vec{F} = \vec{0}$.
Sample Problem

Problem
For each of the following descriptions, either give a specific example of the thing described or a brief explanation of why no such thing exists.

a) A scalar function \(f(x, y, z) \) which is not constant, but for which \(\vec{\nabla} f = \vec{0} \).

b) A vector field \(\vec{F}(x, y, z) \) none of whose partial derivatives are zero, but for which \(\vec{\nabla} \times \vec{F} = \vec{0} \).

c) A vector field \(\vec{F}(x, y, z) \) none of whose partial derivatives are zero, but for which \(\vec{\nabla} \cdot \vec{F} = 0 \).
Sample Problem

Problem
For each of the following descriptions, either give a specific example of the thing described or a brief explanation of why no such thing exists.

a) A scalar function \(f(x, y, z) \) which is not constant, but for which \(\vec{\nabla} f = \vec{0} \).

b) A vector field \(\vec{F}(x, y, z) \) none of whose partial derivatives are zero, but for which \(\vec{\nabla} \times \vec{F} = \vec{0} \).

c) A vector field \(\vec{F}(x, y, z) \) none of whose partial derivatives are zero, but for which \(\vec{\nabla} \cdot \vec{F} = 0 \).

d) Are there vector fields \(\vec{F}(x, y, z) \) none of whose partial derivatives are zero, but for which both \(\vec{\nabla} \times \vec{F} = \vec{0} \) and \(\vec{\nabla} \cdot \vec{F} = 0 \)? What would the geometry of such a field look like? Can you relate such fields to solutions to Laplace’s equation, \(\nabla^2 f = 0 \) for an appropriately chosen scalar field, \(f \)?
Taylor’s Theorem and Finding Maxima and Minima

- Taylor approximations for scalar functions of several variables
Taylor’s Theorem and Finding Maxima and Minima

- Taylor approximations for scalar functions of several variables
 - first order
Taylor’s Theorem and Finding Maxima and Minima

- Taylor approximations for scalar functions of several variables
 - first order
 - second order
Taylor’s Theorem and Finding Maxima and Minima

- Taylor approximations for scalar functions of several variables
 - first order
 - second order
 - remainder formulas
Taylor’s Theorem and Finding Maxima and Minima

- Taylor approximations for scalar functions of several variables
 - first order
 - second order
 - remainder formulas
 - higher order
Taylor’s Theorem and Finding Maxima and Minima

- Taylor approximations for scalar functions of several variables
 - first order
 - second order
 - remainder formulas
 - higher order

- Finding extrema
Taylor’s Theorem and Finding Maxima and Minima

- Taylor approximations for scalar functions of several variables
 - first order
 - second order
 - remainder formulas
 - higher order

- Finding extrema
 - The multivariable second derivative test
Taylor’s Theorem and Finding Maxima and Minima

- Taylor approximations for scalar functions of several variables
 - first order
 - second order
 - remainder formulas
 - higher order
- Finding extrema
- The multivariable second derivative test
 - the hessian
Taylor’s Theorem and Finding Maxima and Minima

- Taylor approximations for scalar functions of several variables
 - first order
 - second order
 - remainder formulas
 - higher order
- Finding extrema
- The multivariable second derivative test
 - the hessian
 - positive and negative definite
Taylor’s Theorem and Finding Maxima and Minima

- Taylor approximations for scalar functions of several variables
 - first order
 - second order
 - remainder formulas
 - higher order
- Finding extrema
- The multivariable second derivative test
 - the hessian
 - positive and negative definite
 - max, min, and saddle points
Taylor’s Theorem and Finding Maxima and Minima

- Taylor approximations for scalar functions of several variables
 - first order
 - second order
 - remainder formulas
 - higher order
- Finding extrema
- The multivariable second derivative test
 - the hessian
 - positive and negative definite
 - max, min, and saddle points
- Lagrange multipliers
Taylor’s Theorem and Finding Maxima and Minima

- Taylor approximations for scalar functions of several variables
 - first order
 - second order
 - remainder formulas
 - higher order
- Finding extrema
- The multivariable second derivative test
 - the hessian
 - positive and negative definite
 - max, min, and saddle points
- Lagrange multipliers
 - applying the method
Taylor’s Theorem and Finding Maxima and Minima

- Taylor approximations for scalar functions of several variables
 - first order
 - second order
 - remainder formulas
 - higher order

- Finding extrema

- The multivariable second derivative test
 - the hessian
 - positive and negative definite
 - max, min, and saddle points

- Lagrange multipliers
 - applying the method
 - understanding the geometry
Taylor’s Theorem and Finding Maxima and Minima

- Taylor approximations for scalar functions of several variables
 - first order
 - second order
 - remainder formulas
 - higher order
- Finding extrema
- The multivariable second derivative test
 - the hessian
 - positive and negative definite
 - max, min, and saddle points
- Lagrange multipliers
 - applying the method
 - understanding the geometry
- Applications
Taylor’s Theorem and Finding Maxima and Minima

- Taylor approximations for scalar functions of several variables
 - first order
 - second order
 - remainder formulas
 - higher order
- Finding extrema
- The multivariable second derivative test
 - the hessian
 - positive and negative definite
 - max, min, and saddle points
- Lagrange multipliers
 - applying the method
 - understanding the geometry
- Applications
 - least squares
Taylor’s Theorem and Finding Maxima and Minima

- Taylor approximations for scalar functions of several variables
 - first order
 - second order
 - remainder formulas
 - higher order
- Finding extrema
- The multivariable second derivative test
 - the hessian
 - positive and negative definite
 - max, min, and saddle points
- Lagrange multipliers
 - applying the method
 - understanding the geometry
- Applications
 - least squares
 - Newtonian motion
Sample Problem

Problem
In this problem, let $f(x, y) = 6x - 8y - x^2 - y^2$.

a) Find the gradient and the Hessian of f.

b) Find and classify the critical points of f.

c) Use the method of Lagrange Multipliers to find the maximum and minimum values that f takes on the circle $x^2 + y^2 = 100$.

d) Use the previous parts of this problem to find the maximum and minimum values that f takes on the disk $D_{10} = \{(x, y) | x^2 + y^2 \leq 100\}$.
Sample Problem

Problem
In this problem, let \(f(x, y) = 6x - 8y - x^2 - y^2 \).

a) Find the gradient and the Hessian of \(f \).
Sample Problem

Problem
In this problem, let \(f(x, y) = 6x - 8y - x^2 - y^2 \).

a) Find the gradient and the Hessian of \(f \).

b) Find and classify the critical points of \(f \).
Sample Problem

Problem
In this problem, let \(f(x, y) = 6x - 8y - x^2 - y^2 \).

a) Find the gradient and the Hessian of \(f \).

b) Find and classify the critical points of \(f \).

c) Use the method of Lagrange Multipliers to find the maximum and minimum values that \(f \) takes on the circle \(x^2 + y^2 = 100 \).
Sample Problem

Problem
In this problem, let \(f(x, y) = 6x - 8y - x^2 - y^2 \).

a) Find the gradient and the Hessian of \(f \).

b) Find and classify the critical points of \(f \).

c) Use the method of Lagrange Multipliers to find the maximum and minimum values that \(f \) takes on the circle \(x^2 + y^2 = 100 \).

d) Use the previous parts of this problem to find the maximum and minimum values that \(f \) takes on the disk \(D_{10} = \{(x, y) \mid x^2 + y^2 \leq 100\} \).
Multiple Integrals

- Integrals as Riemann sums
Multiple Integrals

- Integrals as Riemann sums
- Fubini’s Theorem
Multiple Integrals

- Integrals as Riemann sums
- Fubini’s Theorem
- Iterated integrals
Multiple Integrals

- Integrals as Riemann sums
- Fubini’s Theorem
- Iterated integrals
- Type I, II, ... regions
Multiple Integrals

- Integrals as Riemann sums
- Fubini’s Theorem
- Iterated integrals
- Type I, II, … regions
- Changing the order of integration
Multiple Integrals

- Integrals as Riemann sums
- Fubini’s Theorem
- Iterated integrals
- Type I, II, … regions
- Changing the order of integration
- Change of variables
Multiple Integrals

- Integrals as Riemann sums
- Fubini’s Theorem
- Iterated integrals
- Type I, II, … regions
- Changing the order of integration
- Change of variables
- Applications
Multiple Integrals

- Integrals as Riemann sums
- Fubini’s Theorem
- Iterated integrals
- Type I, II, … regions
- Changing the order of integration
- Change of variables
- Applications
 - area and volume
Multiple Integrals

- Integrals as Riemann sums
- Fubini’s Theorem
- Iterated integrals
- Type I, II, ... regions
- Changing the order of integration
- Change of variables
- Applications
 - area and volume
 - average values
Multiple Integrals

- Integrals as Riemann sums
- Fubini’s Theorem
- Iterated integrals
- Type I, II, ... regions
- Changing the order of integration
- Change of variables
- Applications
 - area and volume
 - average values
 - total stuff
Multiple Integrals

- Integrals as Riemann sums
- Fubini’s Theorem
- Iterated integrals
- Type I, II, … regions
- Changing the order of integration
- Change of variables
- Applications
 - area and volume
 - average values
 - total stuff
 - stuff-weighted averages
Multiple Integrals

- Integrals as Riemann sums
- Fubini’s Theorem
- Iterated integrals
- Type I, II, ... regions
- Changing the order of integration
- Change of variables
- Applications
 - area and volume
 - average values
 - total stuff
 - stuff-weighted averages
 - center of mass and centroid
Multiple Integrals

- Integrals as Riemann sums
- Fubini’s Theorem
- Iterated integrals
- Type I, II, … regions
- Changing the order of integration
- Change of variables
- Applications
 - area and volume
 - average values
 - total stuff
 - stuff-weighted averages
 - center of mass and centroid
 - moment of inertia
Sample Problem

Problem

Let $D_R = \{(x, y) \mid x^2 + y^2 \leq R^2\}$ and let $S_R = [-R, R] \times [-R, R]$.

a) Calculate $\int\int_{D_R} e^{-x^2 - y^2} \, dA$.

b) Express $\int\int_{S_R} e^{-x^2 - y^2} \, dA$ in terms of the quantity $\int_{-R}^{R} e^{-x^2} \, dx$.

c) Justify the following inequalities:

$$\int\int_{D_R} e^{-x^2 - y^2} \, dA < \int\int_{S_R} e^{-x^2 - y^2} \, dA < \int\int_{D_R \sqrt{2}} e^{-x^2 - y^2} \, dA.$$

d) Use the previous parts of this problem to deduce the value of $\int_{-\infty}^{\infty} e^{-x^2} \, dx$.
Sample Problem

Problem
Let $D_R = \{(x, y) \mid x^2 + y^2 \leq R^2\}$ and let $S_R = [-R, R] \times [-R, R]$.

a) Calculate $\int \int_{D_R} e^{-(x^2+y^2)} \, dA$.
Sample Problem

Problem
Let \(D_R = \{(x, y) \mid x^2 + y^2 \leq R^2 \} \) and let \(S_R = [-R, R] \times [-R, R] \).

a) Calculate \(\int \int_{D_R} e^{-(x^2+y^2)} \, dA \).

b) Express \(\int \int_{S_R} e^{-(x^2+y^2)} \, dA \) in terms of the quantity \(\int_{-R}^{R} e^{-x^2} \, dx \).
Sample Problem

Problem
Let \(D_R = \{(x, y) \mid x^2 + y^2 \leq R^2\} \) and let \(S_R = [-R, R] \times [-R, R] \).

a) Calculate \(\int \int_{D_R} e^{-(x^2+y^2)} \, dA \).

b) Express \(\int \int_{S_R} e^{-(x^2+y^2)} \, dA \) in terms of the quantity \(\int_{-R}^{R} e^{-x^2} \, dx \).

c) Justify the following inequalities:

\[
\int \int_{D_R} e^{-(x^2+y^2)} \, dA < \int \int_{S_R} e^{-(x^2+y^2)} \, dA < \int \int_{D_{\sqrt{2}R}} e^{-(x^2+y^2)} \, dA.
\]
Sample Problem

Problem

Let $D_R = \{(x, y) \mid x^2 + y^2 \leq R^2\}$ and let $S_R = [-R, R] \times [-R, R]$.

a) Calculate $\int \int_{D_R} e^{-(x^2+y^2)} \, dA$.

b) Express $\int \int_{S_R} e^{-(x^2+y^2)} \, dA$ in terms of the quantity $\int_{-R}^{R} e^{-x^2} \, dx$.

c) Justify the following inequalities:

$$\int \int_{D_R} e^{-(x^2+y^2)} \, dA < \int \int_{S_R} e^{-(x^2+y^2)} \, dA < \int \int_{D_{\sqrt{2}R}} e^{-(x^2+y^2)} \, dA.$$

d) Use the previous parts of this problem to deduce the value of $\int_{-\infty}^{\infty} e^{-x^2} \, dx$.
Sample Problem

Problem

In this problem, let
\(H = \{ (x, y, z) \mid x^2 + y^2 + z^2 \leq 25 \text{ and } x \geq 0 \} \), be the hemisphere of radius 5 centered at the origin and having positive x coordinate. Let \(f : H \rightarrow \mathbb{R} \) be an unknown scalar function.
Sample Problem

Problem
In this problem, let
\[H = \{(x, y, z) \mid x^2 + y^2 + z^2 \leq 25 \text{ and } x \geq 0\}, \]
be the hemisphere of radius 5 centered at the origin and having positive \(x\) coordinate. Let \(f : H \to \mathbb{R} \) be an unknown scalar function.

(a) Express \(\iiint_H f \, dV \) as an iterated integral in rectangular \((x, y, z)\) coordinates.
Sample Problem

Problem
In this problem, let
\(H = \{(x, y, z) \mid x^2 + y^2 + z^2 \leq 25 \text{ and } x \geq 0\} \), be the hemisphere of radius 5 centered at the origin and having positive \(x \) coordinate. Let \(f : H \rightarrow \mathbb{R} \) be an unknown scalar function.

a) Express \(\iiint_H f \, dV \) as an iterated integral in rectangular \((x, y, z)\) coordinates.

b) Express \(\iiint_H f \, dV \) as an iterated integral in cylindrical \((r, \theta, z)\) coordinates.
Problem

In this problem, let
\(H = \{ (x, y, z) \mid x^2 + y^2 + z^2 \leq 25 \text{ and } x \geq 0 \} \), be the hemisphere of radius 5 centered at the origin and having positive \(x \) coordinate. Let \(f : H \rightarrow \mathbb{R} \) be an unknown scalar function.

a) Express \(\iiint_H f \, dV \) as an iterated integral in rectangular \((x, y, z)\) coordinates.

b) Express \(\iiint_H f \, dV \) as an iterated integral in cylindrical \((r, \theta, z)\) coordinates.

c) Express \(\iiint_H f \, dV \) as an iterated integral in spherical \((\rho, \phi, \theta)\) coordinates.
Line Integrals

- Scalar line integrals
Line Integrals

- Scalar line integrals
- Vector line integrals
Line Integrals

- Scalar line integrals
- Vector line integrals
- Work and circulation
Line Integrals

- Scalar line integrals
- Vector line integrals
- Work and circulation
- Reparameterization
Line Integrals

- Scalar line integrals
- Vector line integrals
- Work and circulation
- Reparameterization
- Orientation of curves
Line Integrals

- Scalar line integrals
- Vector line integrals
- Work and circulation
- Reparameterization
- Orientation of curves
- Green’s Theorem
Line Integrals

- Scalar line integrals
- Vector line integrals
- Work and circulation
- Reparameterization
- Orientation of curves
- Green’s Theorem
 - statement
Line Integrals

- Scalar line integrals
- Vector line integrals
- Work and circulation
- Reparameterization
- Orientation of curves
- Green’s Theorem
 - statement
 - application
Line Integrals

- Scalar line integrals
- Vector line integrals
- Work and circulation
- Reparameterization
- Orientation of curves
- Green’s Theorem
 - statement
 - application
 - as special case of divergence theorem
Line Integrals

- Scalar line integrals
- Vector line integrals
- Work and circulation
- Reparameterization
- Orientation of curves
- Green's Theorem
 - statement
 - application
 - as special case of divergence theorem
 - as special case of curl theorem
Line Integrals

- Scalar line integrals
- Vector line integrals
- Work and circulation
- Reparameterization
- Orientation of curves
- Green’s Theorem
 - statement
 - application
 - as special case of divergence theorem
 - as special case of curl theorem
- Path independence, conservation and anti-gradients
Line Integrals

- Scalar line integrals
- Vector line integrals
- Work and circulation
- Reparameterization
- Orientation of curves
- Green’s Theorem
 - statement
 - application
 - as special case of divergence theorem
 - as special case of curl theorem
- Path independence, conservation and anti-gradients
- Fundamental theorem of calculus for curves
Sample Problem

Problem
Let C be a simple closed curve going counter-clockwise around a region D in the plane.

Problem
Let C be a simple closed curve going counter-clockwise around a region D in the plane.
Sample Problem

Problem
Let C be a simple closed curve going counter-clockwise around a region D in the plane.

a) Express the integral $\int_C M \, dx$ as a double integral over D.
Sample Problem

Problem
Let C be a simple closed curve going counter-clockwise around a region D in the plane.

a) Express the integral $\oint_C M \, dx$ as a double integral over D.

b) Find M so that $\oint_C M \, dx$ gives the x-coordinate of the centroid of D. (You may assume that the area, A, of D is known.)
Surface Integrals

- Parameterization of Surfaces
Surface Integrals

- Parameterization of Surfaces
 - tangent space and normal vector from parameterization
Surface Integrals

- Parameterization of Surfaces
 - tangent space and normal vector from parameterization
 - smooth parameterizations
Surface Integrals

- Parameterization of Surfaces
 - tangent space and normal vector from parameterization
 - smooth parameterizations
 - orientation from parameterization
Surface Integrals

- Parameterization of Surfaces
 - tangent space and normal vector from parameterization
 - smooth parameterizations
 - orientation from parameterization
- Scalar surface integrals
Surface Integrals

- Parameterization of Surfaces
 - tangent space and normal vector from parameterization
 - smooth parameterizations
 - orientation from parameterization

- Scalar surface integrals

- Vector surface integrals
Surface Integrals

- Parameterization of Surfaces
 - tangent space and normal vector from parameterization
 - smooth parameterizations
 - orientation from parameterization

- Scalar surface integrals
- Vector surface integrals
- Flux and flow
Surface Integrals

- Parameterization of Surfaces
 - tangent space and normal vector from parameterization
 - smooth parameterizations
 - orientation from parameterization

- Scalar surface integrals
- Vector surface integrals
- Flux and flow
- Reparametrization
Surface Integrals

- Parameterization of Surfaces
 - tangent space and normal vector from parameterization
 - smooth parameterizations
 - orientation from parameterization

- Scalar surface integrals
- Vector surface integrals
- Flux and flow
- Reparametrization
- Orientability
Surface Integrals, ctd.

- Stokes’ theorem
Surface Integrals, ctd.

- Stokes’ theorem
 - the right hand rule for surfaces
Surface Integrals, ctd.

- Stokes’ theorem
 - the right hand rule for surfaces
 - the statement of Stokes’ theorem
Surface Integrals, ctd.

- Stokes’ theorem
 - the right hand rule for surfaces
 - the statement of Stokes’ theorem
 - applications and corollaries
Surface Integrals, ctd.

- Stokes’ theorem
 - the right hand rule for surfaces
 - the statement of Stokes’ theorem
 - applications and corollaries
 - anti-gradients and curl
Surface Integrals, ctd.

- Stokes’ theorem
 - the right hand rule for surfaces
 - the statement of Stokes’ theorem
 - applications and corollaries
 - anti-gradients and curl

- Gauss’ Theorem
Surface Integrals, ctd.

- Stokes’ theorem
 - the right hand rule for surfaces
 - the statement of Stokes’ theorem
 - applications and corollaries
 - anti-gradients and curl

- Gauss’ Theorem
 - Infinitesimal integrals explain the geometry of derivatives
Surface Integrals, ctd.

- Stokes’ theorem
 - the right hand rule for surfaces
 - the statement of Stokes’ theorem
 - applications and corollaries
 - anti-gradients and curl

- Gauss’ Theorem
 - Infinitesimal integrals explain the geometry of derivatives

- Gauss, Green, and Stokes are all fundamental too
Sample Problem

Problem
Let D be the solid region, $D := \{(x, y, z) \mid x^2 + y^2 + 1 \leq z \leq 5\}$. Let \vec{F} be the vector field defined by $\vec{F}(x, y, z) := (x, y^2, z)$.
Sample Problem

Problem
Let D be the solid region, $D := \{(x, y, z) | x^2 + y^2 + 1 \leq z \leq 5\}$. Let \vec{F} be the vector field defined by $\vec{F}(x, y, z) := (x, y^2, z)$.

a) Use Gauss’ theorem (also known as the divergence theorem) to convert $\iint_{\partial D} \vec{F} \cdot d\vec{S}$ into a volume integral.
Sample Problem

Problem
Let D be the solid region,
$D := \{(x, y, z) \mid x^2 + y^2 + 1 \leq z \leq 5\}$. Let \vec{F} be the vector field defined by $\vec{F}(x, y, z) := (x, y^2, z)$.

a) Use Gauss’ theorem (also known as the divergence theorem) to convert $\int\int_{\partial D} \vec{F} \cdot d\vec{S}$ into a volume integral.

b) Compute the value of the volume integral you gave as the answer to the previous part.
Sample Problem

Problem
Let D be the solid region, $D := \{(x, y, z) \mid x^2 + y^2 + 1 \leq z \leq 5\}$. Let \vec{F} be the vector field defined by $\vec{F}(x, y, z) := (x, y^2, z)$.

a) Use Gauss’ theorem (also known as the divergence theorem) to convert $\iint_{\partial D} \vec{F} \cdot d\vec{S}$ into a volume integral.

b) Compute the value of the volume integral you gave as the answer to the previous part.

c) Parametrize the boundary, ∂D, of D. (Split ∂D into more than one piece, if necessary.)
Sample Problem

Problem
Let D be the solid region,
$$D := \{(x, y, z) \mid x^2 + y^2 + 1 \leq z \leq 5\}.$$ Let \vec{F} be the vector field defined by $\vec{F}(x, y, z) := (x, y^2, z)$.

a) Use Gauss’ theorem (also known as the divergence theorem) to convert $\iint_{\partial D} \vec{F} \cdot d\vec{S}$ into a volume integral.

b) Compute the value of the volume integral you gave as the answer to the previous part.

c) Parametrize the boundary, ∂D, of D. (Split ∂D into more than one piece, if necessary.)

d) Express $\iint_{\partial D} \vec{F} \cdot d\vec{S}$ in terms of one or more explicit iterated integrals with respect to the parameters. Do not evaluate these integrals.