Math 34
First Midterm

Show your work. Correct answers with no justification may receive little or no credit. No calculators are allowed. No uncalled-for simplification is required. Use the backs of pages if you run out of space.

Each part of each problem is worth ten points.

Problem 1. Let $\vec{f} : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be defined by $\vec{f}(x, y) = (x^2 + y^2, xy)$.

a) (10 points) Calculate the matrix derivative $D\vec{f}$.

Solution.

\[
\begin{pmatrix}
2x & 2y \\
y & x
\end{pmatrix}
\]

b) (10 points) Use the chain rule to calculate the matrix derivative of $\vec{f} \circ \vec{f}$. (Your final answer should be a two-by-two matrix of functions of x and y.)

Solution.

\[
\begin{pmatrix}
2x & 2y \\
y & x
\end{pmatrix}
\bigg|_{x=x^2+y^2, y=xy} = \begin{pmatrix}
2x^2+y^2 & 2xy \\
xy & x^2+y^2
\end{pmatrix} \begin{pmatrix}
2x & 2y \\
y & x
\end{pmatrix}
\]

\[
= \begin{pmatrix}
4x^3+6xy^2 & 4y^3+6x^2y \\
3x^2y+y^3 & 3xy^2+x^3
\end{pmatrix}
\]
Problem 2. In this problem, we consider a particle moving along the path given by
\[\vec{x}(t) = (-t \cos t + \sin t, t \sin t + \cos t, t^2). \]

a) (10 points) Find the velocity of the particle.

Solution. The velocity is given by \(\vec{v} = \frac{d}{dt} \vec{x}. \) We get
\[\vec{v} = (t \sin t, t \cos t, 2t). \]

b) (10 points) Find the acceleration of the particle.

Solution. The acceleration is given by \(\vec{a} = \frac{d}{dt} \vec{v}. \) We get
\[\vec{a} = (\sin t + t \cos t, \cos t - t \sin t, 2). \]

c) (10 points) Find the function \(s(t) \) which gives the total distance moved by the particle since time 0.

Solution. \(s \) is given by the integral of the speed. In this case the speed has a simple formula: \(\|\vec{v}\| = t \sqrt{5} \), so we get
\[s(t) = \int_0^t \|\vec{v}(\tau)\| \, d\tau = \sqrt{5} \int_0^t \tau \, d\tau = \frac{\sqrt{5} t^2}{2}. \]

d) (10 points) Suppose that the temperature in the space through which the particle moves is given by \(T = x^3 - 3xy^2 + z \). How fast is the temperature observed by the particle changing when \(t = \pi \)?
Solution. The simplest way to find this rate of change is to use the chain rule. We get
\[\frac{dT}{dt} = \frac{\partial T}{\partial x} \frac{dx}{dt} + \frac{\partial T}{\partial y} \frac{dy}{dt} + \frac{\partial T}{\partial z} \frac{dz}{dt} = (3x^2 - 3y^2)t \sin t + (-6)xyt \cos t + 2t. \]
When \(t = \pi \) we have \(\sin(t) = 0 \) and \(\cos(t) = -1 \), so \(x = \pi \), \(y = -1 \), and \(z = \pi^2 \). Using these values we get \(\frac{dT}{dt} = -6\pi^2 + 2\pi \).

Problem 3. Let \(S \) be the surface defined by \(x^3 + y^2 - z^2 = 1 \).

a) (10 points) Find a parametric expression for the line which intersects \(S \) perpendicularly at \((1,1,1)\).

Solution. The surface \(S \) is a level curve of a function, so we can use the gradient of that function to get a normal vector, \(\vec{n} \), at the desired point. We get
\[\vec{n} = \nabla(x^3 + y^2 - z^2) \bigg|_{(1,1,1)} = (3x^2, 2y, -2z) \bigg|_{(1,1,1)} = (3, 2, -1). \]
Thus the line we want has vector parametric equation \(\vec{x}(t) = (1, 1, 1) + t\vec{n} \). More explicitly we have
\[\begin{align*}
x &= 1 + 3t \\
y &= 1 + 2t \\
z &= 1 - 2t.
\end{align*} \]

b) (10 points) Find an equation for the plane tangent to \(S \) at \((1,1,1)\).

Solution. The tangent plane will consist of all of those points, \(P \), that satisfy the condition that the vector from \((1,1,1)\) to \(P \) is perpendicular to \(\vec{n} \). That is to say, in vector terms the desired equation for the coordinates of such \(P \) is
\[(1 - x, 1 - y, 1 - z) \cdot (3, 2, -2) = 0. \]
Multiplied out, this equation becomes \(3x + 2y - 2z = 3 \).
Problem 4. In each of the following two parts of this problem, either evaluate the given limit or explain why it does not exist.

a) (10 points)

\[\lim_{(x,y) \to (0,0)} \frac{x^2}{x^2 + y^2} \]

Solution. When \(y = 0 \), \(\frac{x^2}{x^2 + y^2} = 1 \), no matter what \(x \) is. (Except when \((x, y) = (0, 0) \) when the expression is undefined.) At the same time, when \(x = 0 \), we get \(\frac{x^2}{x^2 + y^2} = 0 \) no matter what \(y \) is. Thus there is no value to which \(\frac{x^2}{x^2 + y^2} \) approaches as \((x, y) \) approaches \((0, 0) \). That is to say, the limit does not exist. \(\square \)

b) (10 points)

\[\lim_{(x,y) \to (0,0)} \frac{e^x \sin(y)}{x + y + 1} \]

Solution. This expression is made up of continuous functions, by addition and multiplication in such a way that the denominator is nonzero at \((x, y) = (0, 0) \). Thus, it is continuous at \((0, 0) \). In other words the limit is just equal to the value of the function evaluated at \((0, 0) \).

\[\lim_{(x,y) \to (0,0)} \frac{e^x \sin(y)}{x + y + 1} = \left. \frac{e^x \sin(y)}{x + y + 1} \right|_{(0,0)} = 0. \]

(A cautionary note is in order here: It does not suffice in the second part of this problem to only note that the argument used in the first part fails. For example \(\frac{x^2 y}{x^2 + y^2} \) approaches zero along every straight line through the origin, fails to be continuous at the origin. In particular, its value along the parabola \(y = x^2 \) is the constant, \(\frac{1}{2} \).) \(\square \)