Class Log and Schedule

All references below are to Gamelin, unless otherwise indicated.

Class Log: What we've done so far.
Week Date Reading Problems Presentation Topics Presenters Food
1 Thu, Sep 6 Ch. I(all) I.1: 1(UPick 3), 2b, 6
I.2: 1(all)
I.3: 2,3,4
I.4: 3(all), 4b
I.5: 2(UPick 3)
I.6: 2(Upick 3)
I.7: 1, 4, 7
I.8: 1(Upick 1),4,5
Exp and Log Peter Thomas Hunter
Branches (I.7) Thaniel
2 Thu, Sep 13 Ch. II(1–4) I.7: 11
II.1: 13, 14, 17, 18
II.2: 3, 5
II.3: 2, 3, 4
II.4: 2, 3, 4, 7
Cauchy-Riemann equations Rebecca Nathaniel
The Jacobian Eric
3 Thu, Sep 20 Ch. II(5–7) II.5: 1(UPick 3), 3, 6, 7
II.6: 1(UPick 1), 5, 6, 7
II.7: 1(UPick 3), 2, 3, 6, 9, 12
Harmony (Include proof of Theorem on page 57) Adam Peter
Fractional Linear Transformations Nick
4 Thu, Sep 27 Ch. III (1–5) III.1: 7, 8.
III.2: 3, 4.
III.3: 1, 2.
III.4: 1, 3.
III.5: 1, 3, 5 or 6, 8.
One problem in the weekly plan.
More Harmony Corey Rebecca
The Mean Value Property Ben
5 Thu, Oct 4 Ch. IV (1–6) IV.1: 1, 3, 5.
IV.2: 2, 4.
IV.3: 1, 3.
IV.4: 1, 2, 3, 4.
IV.5: 1, 2, 3, 4.
IV.6: 1, 2.
Morera's (two) theorems Rebecca Eric
Cauchy's (countably many) integral formulas Nathaniel
6 Thu, Oct 11 Ch. V (1–6) V.1:∅.
V.2:3, 7.
V.3:4, 5, 6..
V.4:4, 8 (9 or 10), 13.
V.5:1(Upick 2), 2, 4.
V.6:3, 4, 6.
V.2 Eric Adam
V.4 Peter
Fall Break
7 Thu, Oct 25 Ch. V (7–8)
Ch. VI (1–5)
V.7: 2, 8, 11, 12, 13.
V.8: 2, 5, 9.
VI.1: 1, 2, 5.
VI.2: 2, 6, 9, 12.
VI.3: 1, 2.
VI.4: 2, 3.
VI.5: 3, 5.
Analytic Continuation Adam Nick
Laurant Series Corey
8 Thu, Nov 1 Ch. VII(1–5, 8) VII.1: 1, 3abf, 5, 6.
VII.2: 4, 8, 12.
VII.3: 2.
VII.4: 2.
VII.5: 4, 5.
VII.8: 4, 5, 10, 13.
UPick 2 more from any part of VII.
Residues: Definition and generalities. Nick Corey
Residues: A concrete example or two. Ben
9 Thu, Nov 8 VIII: 1–6, and the thm in VIII.8 VIII.1: 1, 4, 9.
VIII.2: 2, 7.
VIII.3: 1.
VIII.4: 1, 5, 6.
VIII.5: 1, 4, 8, 10.
VIII.6: (1,2), 4, (5,6,7).
The argument principle Rebecca Ben
Winding Numbers Peter
10 Thu, Nov 15 Ch IX. IX.1: 1, 7.
IX.2: (1, 2), 5, 7, 8, 9, 10.
IX.3: 2, 7, 13, 14.
Groups of conformal automorphisms. Nathaniel Thomas Hunter
Hyperbolic Geometry Eric
Thanksgiving Break
11 Thu, Nov 29 Ch. XI:1,2,5,6. XI.1: 1, 2, 3.
XI.2: 1, 2, A.
XI.5: 1, A, B.
XI.6: 1, 2
Montel's theorem. Adam Nathanial
The Riemann mapping theorem. Ben
12 Thu, Dec 6 Ch. XIII XIII.1: 1, A.
XIII.2: 1, 6, A.
XIII.3: 1, 3, 9, 10.
XIII.4: 1, 2, 5.
The Mittag-Leffler theorem. Corey Rebecca
The Weierstrass product theorem. Nick
13 Tue, Dec 11 Ch. XIV XIV.1: 1, 2, (7), (3).
XIV.2:4, 6.
XIV.3: 1, 5, A
XIV.4: 4, 11.
XIV.5: 1, 2, 3, 4.
The gamma function Rebecca Peter
The prime number theorem Adam

Schedule: What Lies ahead.
Week Date Reading Problems Presentation Topics Presenters Food
Thu, Dec 20 Final exam 2:00 – 5:00

Send questions, comments and complaints to Thomas Hunter
Last modified: 2007-12-19 14:15:12 by Thomas Hunter.