Statistics 139.

Regression Analysis

Half Course

To be given Fall Term

Official Course Description: Statistics 139 introduces the linear models and associated computational and statistical inference techniques that use empirical data to predict “response” variables from a variety of “independent” variables such as “background” or experimentally “controlled” variables. The course examines sketches of a range of extensions to the basic theory, including hierarchical models with random effects, nonlinear regression models, models for count data, and models for phenomena tracked through time.

Steve C. Wang

Requirements: Project (10%), Final (30%), Homework (30%), Two midterms (30%).

Reading: Rice, Mathematical Statistics and Data Analysis, 2nd ed.

Instructor: Just under one third of respondents rate Dr. Steve C. Wang excellent. An equal number rate that his lectures are interesting, and a few laud their clarity. One sixth find the audio-visual portion of lectures particularly engaging. This year, Professor Arthur P. Dempster assumes teaching responsibilities for this course.

Sections: Just over one third of those polled find sections useful. One sixth, however, complain that they are not helpful.
Statistics 149.
Generalized Linear Models

To be given Spring Term

Official Course Description: Statistics 149 is an introduction to the application and theory of generalized linear models. Emphasis is placed on understanding models and applying them to data. Topics include: (1) likelihood theory; (2) exponential families; (3) model specification; (4) model checking and diagnostics; (5) logistic and ordinal regression; (6) log-linear models and (7) quasi-likelihood. Applications are drawn from a variety of fields, including medicine, biology and the social sciences.

![Course Enrollment and Statistics](image)

Course Overview
- **Total Responses:** 13
- **Undergraduate Enrollment:** 4
- **Response Rate:** 31.5%

Course Statistics

<table>
<thead>
<tr>
<th>Course Overall</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>NA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor</td>
<td>3.9</td>
<td>3.9</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Barnard</td>
<td>3.9</td>
<td>3.7</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Reading</td>
<td>3.7</td>
<td>3.5</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Handouts</td>
<td>3.9</td>
<td>3.9</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Website</td>
<td>3.9</td>
<td>3.9</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Workload</td>
<td>3.9</td>
<td>3.7</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Difficulty</td>
<td>3.7</td>
<td>3.5</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Competition</td>
<td>3.9</td>
<td>3.7</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Tapes</td>
<td>3.9</td>
<td>3.7</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Course Engaging</td>
<td>3.9</td>
<td>3.7</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Primary Reason for Enrolling:
- Elective: 0
- Concentration: 5
- Other: 7

Requirements: Class presentations (5%), Final (12%), Midterm (12%), Final project (15%), Homework (50%).

Reading: Hamilton, *Regression with Graphics*.

Instructor: One third of respondents laud Dr. Steve C. Wang's excellent lectures. A handful marvel at their clarity.

Requirements: A small number of students surveyed consider the assignments appropriate. One fourth find them helpful for understanding the course material. A large minority appreciate that assignments are returned promptly.

Preparation: Several polled students suggest an introductory statistics course as preparation.

One third of respondents heartily endorse Statistics 139.