Given two sets disjoint M, W of n elements each, a matching is an assignment of each $m \in M$ to a distinct $w \in W$ (e.g., a one-to-one function).

Suppose each element in each set has a preference order for all the elements in the other set, that is, a ranking of all n of those elements, with no ties. Then the matching is stable if there are no pairs (m, w) and (m', w') in the matching such that m prefers w' to w and w' prefers m to m'. If such a duet of pairs does exist, it is called an instability in the matching.

Theorem 1. Given n-sets M, W with any preference orders, there always exists a stable matching.

Proof: Uses the matching algorithm discussed in class.

Preferences between whole matchings:

Given two matchings \mathcal{M} and \mathcal{M}' of M to W, we say that set M prefers \mathcal{M}, and write $\mathcal{M} >_m \mathcal{M}'$, if every $m \in M$ is at least as well off in \mathcal{M} as in \mathcal{M}'. Similarly one defines $>_w$.

Theorem 2. For any stable matchings $\mathcal{M}, \mathcal{M}'$, we have $\mathcal{M} >_m \mathcal{M}' \iff \mathcal{M} <_w \mathcal{M}'$.

Theorem 3. The matching \mathcal{M}^* created by the Algorithm when set M chooses is preferred by M to all other stable matchings (if there are any). That is, \mathcal{M}^* is optimal for set M in the collection of all stable matchings.

Math 9, May 2, 2002