A Minimal Counterexample Proof is one where you show that some result must be true because if there were a minimal counterexample that would be contradictory. While not every proof by contradiction is a minimal counterexample proof, many are. The first proof in DAM of the Euler Cycle Theorem is such a proof. Here is another; compare with the direct induction proof of the same result in DAM (p145).

Theorem. In every round-robin tournament, the teams may be ordered so that each team beat the next one in the ordering.

Proof. Suppose not. Let n be the minimum number of teams for which there is a round-robin tournament T in which no such ordering exists. Then $n \geq 2$ since such an ordering exists (vacuously) for $n = 1$.

Temporarily ignore one team t. Then by minimality, the subtournament on the remaining teams has such an ordering. Now recall t. It can’t be that t beat the first team in the ordering, for then putting t ahead of it creates the nonexistent ordering in T. For the same reason, it can’t be that there are two teams t_k and t_{k+1} in the ordering such that t_k beat t and t beat t_{k+1}. But this means that all the other teams in T beat t. That can’t be either, for then putting t last creates the nonexistent ordering in T. Therefore it is impossible for T to exist, i.e., the existence of a minimal counterexample is a contradiction. ■