Theorem. If $G(V, E)$ is a connected graph with even degree everywhere, then Algorithm IterativeEuler outputs an Euler cycle for G.

Input $G(V, E), v$
[Graph and start vertex]

Output C
[Euler cycle as sequence of edges]

Algorithm IterativeEuler

Pathgrow($E, v; C$)
[Same Pathgrow as in DAM3]

$e \leftarrow$ first edge of C

repeat until e is last edge of C

$v \leftarrow$ other end of e

if some edge of $E - C$ is incident to v

then Pathgrow($E - C, v; C'$)

splice C' into C after e

[C is now the augmented cycle]

else $e \leftarrow$ next edge of C

endif

endrepeat

Proof of the Theorem. By loop invariant. The invariant is the following statement S: C is a cycle that uses each edge of G at most once, and no edges in $E - C$ are incident to v or any earlier vertex in C.

We show that S is a loop invariant by showing that it meets the three conditions of Section 2.5.

1) S is true just before entering the repeat-loop for the first time because at that point C is the result of the single call $\text{Pathgrow}(E, v; C)$, and we know (from DAM3) that Pathgrow returns a cycle (that begins and ends at v and doesn’t reuse edges) when $G(V, E)$ has even degree everywhere, and furthermore that every edge incident to v is in this cycle. Therefore, there are no edges of $E - C$ incident to v, and there are no earlier vertices in C to worry about.

2) If S is true just before some entrance to the repeat-loop, then it is true just before the next entrance: The additional pass through the loop either just checks that the next vertex v in C is not incident to $E - C$, in which case the invariant certainly remains true; or else it finds an edge of $E - C$ incident to this v. In the latter case, since $E - C$ has even degree at every vertex, $\text{Pathgrow}(E - C, v; C')$ returns a cycle that doesn’t reuse edges but does use every edge incident to v that is not in C. Therefore, splicing C' into C, and renaming the whole thing C means that C is still a cycle that uses each edge at most once, and no edges of the now smaller $E - C$ are incident at the current v either. This completes the pass through the repeat-loop, so the invariant is again true just before we reenter the loop.

3) S is true at termination, because termination occurs at an entrance to the loop.

Finally at termination C is an Euler cycle because $E - C$ is empty. Why? By the loop invariant, at termination $E - C$ is not incident to any vertex on C, so if $E - C$ were nonempty, G would be disconnected.
Moreover, termination must occur, because each pass through the repeat-loop either reduces $|E - C|$ (but never below 0) or moves us one vertex further along C (which never grows to more than $|E|$ edges).