Algorithms and Complexity

Herbert S. Wilf
procedure \(mst(x:\text{array of } n \text{ points in the plane}) \);
{constructs a spanning tree \(T \) of minimum length, on the}
vertices \(\{x_1, x_2, \ldots, x_n\} \) in the plane\}
let \(T \) consist of a single vertex, \(x_1 \);
while \(T \) has fewer than \(n \) vertices do
for each vertex \(v \) that is not yet in \(T \), find the
distance \(d(v) \) from \(v \) to the nearest vertex of \(T \);
let \(v^* \) be the vertex of smallest \(d(v) \);
adjoint \(v^* \) to the vertex set of \(T \);
adjoint to \(T \) the edge from \(v^* \) to the nearest
vertex \(w \neq v^* \) of \(T \);
end{while}
end. \(\{mst\} \)

Proof of correctness of \(mst \): Let \(T \) be the tree that is produced by
running \(mst \), and let \(e_1, \ldots, e_{n-1} \) be its edges, listed in the same order in
which algorithm \(mst \) produced them.

Let \(T' \) be a minimum spanning tree for \(x \). Let \(e_r \) be the first edge of \(T \)
that does not appear in \(T' \). In the minimum tree \(T' \), edges \(e_1, \ldots, e_{r-1} \) all
appear, and we let \(S \) be the union of their vertex sets. In \(T' \) let \(f \) be the
edge that joins the subtree on \(S \) to the subtree on the remaining vertices
of \(x \).

Suppose \(f \) is shorter than \(e_r \). Then \(f \) was one of the edges that was
available to algorithm \(mst \) at the instant that it chose \(e_r \), and since \(e_r \) was
the shortest available edge at that moment, we have a contradiction.

Suppose \(f \) is longer than \(e_r \). Then \(T' \) would not be minimal because
the tree that we would obtain by exchanging \(f \) for \(e_r \) in \(T' \) (why is it
still a tree if we do that exchange?) would be shorter, contradicting the
minimality of \(T' \).

Hence \(f \) and \(e_r \) have the same length. In \(T' \) exchange \(f \) for \(e_r \). Then
\(T' \) is still a tree, and is still a minimum spanning tree.

The index of the first edge of \(T \) that does not appear in \(T' \) is now at
least \(r + 1 \), one unit larger than it was before. The process of replacing
dges of \(T \) that do not appear in \(T' \) without affecting the minimality of
\(T \) can be repeated until every edge of \(T \) appears in \(T' \), i.e., until \(T = T' \).
Hence \(T \) was a minimum spanning tree. \(\blacksquare \)